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Abstract

In this article the Tomographic IterativeGPU-based Reconstruction (TIGRE)Toolbox, aMATLAB/

CUDA toolbox for fast and accurate 3D x-ray image reconstruction, is presented. One of the key

features is the implementation of awide variety of iterative algorithms aswell as FDK, including a

range of algorithms in the SART family, the Krylov subspace family and a range ofmethods using total

variation regularization. Additionally, the toolbox hasGPU-accelerated projection and back

projection using the latest techniques and it has amodular design that facilitates the implementation

of new algorithms.Wepresent an overview of the structure and techniques used in the creation of the

toolbox, together with two usage examples. The TIGREToolbox is released under an open source

licence, encouraging people to contribute.

1. Introduction

Among the techniques for x-ray computed tomogra-

phy (CT) in widespread use, cone beam (CB) geometry

is getting increasing attention nowadays, frommedical

imaging to material science. The possibility of recon-

structing full 3D images using a reduced x-ray radia-

tion dose is an important feature for CBCT

development inmedicine and it has led to high-quality

3D reconstruction in micro-CT [1]. Applications

include maxillofacial imaging [2], guidance for radia-

tion therapy in oncology [3], insect imaging [4] and

material science [5].

In all applications of CBCT, the working principle

is the same: 2D x-ray images of the ‘sample’ are

obtained from different angles and a tomographic

reconstruction algorithm is used to create an image

from the data. The fact that in circular CBCT the origi-

nal image is mathematically impossible to obtain [6, 7]

and other factors, such as the high dimensionality of

the problem or the inconsistency created by different

physical effects with photons, make the image recon-

struction problem what mathematicians define as ill-

posed. Advanced mathematics is needed to generate a

solution. This has led to extended research in image

reconstruction algorithms, with a wide range of

published approaches that give differing results. And it

remains a hot topic.

While the use of CBCT is being increasingly exten-

ded to cover different imaging fields and research on

reconstruction algorithms still sees newmethods pub-

lished, the end users of the images, both in medicine

andmicrotomography, mainly use the simplest recon-

struction algorithm, FDK [8]. This is worrying

because, while FDK produces satisfactory images for

good quality, full-projection, noiseless data, it per-

forms poorly in less ideal scenarios. It has been repeat-

edly demonstrated that iterative algorithms [9]

outperformFDK [10–14].

There are a few factors that influence the lack of

connection between mathematics and usage. The

main one is computation time. Most, if not all, alter-

native algorithms are iterative. They need to recom-

pute repeatedly operations that are very memory- and

computationally expensive, while FDK needs less time

than a single such iteration. This is an important point

especially in medical applications, where an image is

needed rapidly as medical decisions are taken on the

basis of what can be read from it. The time scales for

iterative algorithms to run on a modern computer

CPU are of the order of hours, days or even weeks for

themost complex algorithms and bigger data. Another
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factor is the lack of easy-to-use and free-distribution

iterative algorithms. While some of the most recent

toolboxes (presented later) do include some iterative

algorithms, the vast majority of these algorithms have

been completely ignored by both open source and

commercial image reconstruction software. This lack,

in conjunction with the fact that the research on

reconstruction algorithms requires a deep under-

standing of such fields ofmathematics as linear algebra

and inverse problems, makes iterative algorithms

somewhat out of reach for the end users of the recon-

structed images.

In order to reduce the gap between algorithm

research and end use, we have developed the Tomo-

graphic Iterative GPU-based Reconstruction (TIGRE)

Toolbox, a MATLAB/GPU toolbox featuring a wide

range of iterative algorithms. It uses the higher level

abstraction of MATLAB with the lower (hardware-

specific) performance of CUDA in order to make it

fast and easy to use. In an attempt to bring the different

fields together, we addressed the computation-time

problemusing the latest technologies inGPU comput-

ing with massive parallelization andmemory manage-

ment efficiency. Only the main computationally

expensive blocks have been parallelized, with a mod-

ular design, allowing algorithm researchers easily to

plug new methods together with the GPU blocks pro-

vided. Additionally, the algorithms can be used as

single-line functions, giving total abstraction to

researchers who are only interested in the resultant

images, rather than in algorithmdevelopment.

Before explaining the specifics of the TIGRE tool-

box, it is worth mentioning some other toolboxes that

are also available. There are several commercial and

free software packages for FDK reconstruction,

including (but not exhaustively) CoBRA [15] , Ultra-

fast CB CT reconstruction [16] , OSCaR [17], Accel-

erating ConebeamCT [18]. Additionally, some more

advanced toolboxes that include one or two iterative

reconstruction algorithms (SIRT and/or CGLS) are

also available, such as ASTRA [19], RTK [20] and 3D

CB CT MATLAB [21]. Of these, ASTRA and RTK are

the toolboxes that are most complete, however their

infrastructure in low-level programming languages

make them less suitable to work with when developing

new algorithms.

In this paper we briefly describe the CBCT image

reconstruction problem and some of themany ways to

solve it. Thereafter, we give an overview of the struc-

ture of the TIGRE Toolbox and show some perfor-

mance results and some reconstructed images. Finally,

we discuss the future vision of the toolbox.

2.Methods

2.1. CBCT geometry

The geometry of CBCT can be represented as in

figure 1. An x-ray source, S, is located at distance DSO

from a centre of rotation O, where the origin of a

cartesian coordinate system is located. The x-ray

source irradiates a cone-shaped region containing the

image volume  and a detector  measures the

intensity of the photons impinging on it, photons that

have been attenuated following the Beer-Lamber law.

The image is centred at position ¢O , which is displaced

by
¾
Vorig from the coordinate system origin. The

detector, located at distance DSD from the source and

centred at ¢D , has an offset of
¾
Vdet from D, which is a

point lying in the xy-plane at distance -DSD DSO

from the origin. A projection coordinate system uv is

defined centred at the lower left corner of the detector.

During the measurement acquisition, the source and

the detector rotate around the z-axis at an angle of α

from their initial position.

The geometric variables described above are used

in the TIGREToolbox to perform the necessary opera-

tions for image reconstruction, as shown in code snip-

pet 1. It is worthmentioning that both
¾
Vdet and

¾
Vorig

are vectors that define a single offset per projection.

Code Snippet 1.Geometry definition in TIGRE.

%%Geometrystructure definition.

%Distances

geo.DSD=1536; %DistanceSourceDetector

geo.DSO=1000; %DistanceSourceOrigin

%Detectorparameters

geo.nDetector=[512;512]; %numberofpixels

geo.dDetector=[0.8;0.8]; %sizeinmmofeachpixel

geo.sDetector=geo.nDetector.*
geo.dDetector; %totalsizeofthedetectorinmm

%Imageparameters

geo.nVoxel=[512;512;512]; %numberofvoxelsintheimage

geo.sVoxel=[256;256;256]; %totalsizeoftheimageinmm

geo.dVoxel=geo.sVoxel./geo.nVoxel; %sizeinmmofeachvoxel

%Offsets

geo.offOrigin=[0;0;0]; %V_orig

geo.offDetector=[0;0]; %V_det

2
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2.2. Image reconstruction problem

For a given geometry, image reconstruction can be

described by two different approaches. The first one is

by solving the inverse Radon transform, a mathema-

tical tool to describe the integral of a function over

straight lines. The solution of the inverse Radon

transform is well known in tomography and Feld-

kamp, Davis, and Kress modified it for CB geometries.

Their solution is known as the FDK algorithm [22].

While the FDK algorithm will produce good quality

images in an ideal scenario, it copes poorly with

common unaccounted sources of error, such as beam

hardening or photon scattering [23].

Alternatively, the image reconstruction problem

has been described as a minimization one as in

equation (1), where b are the projection data, x is the

image and A is a matrix describing the intersections of

x-rays and voxels in the image. In this equation,G(x) is

an optional term that describes a regularization func-

tional (·)G . This functional can be used to introduce

additional constraints to the image reconstruction

algorithm

= - +ˆ ( ) ( )x b Ax G xargmin . 1x
2 

While the minimization formulation allows the

use of advanced linear algebra techniques, there is a

significant complication: the size of the matrix A. This

is especially important asmost, if not all, iterative tech-

niques to solve equation (1) use one Ax and one ATb

matrix-vectormultiplication. As an example, matrixA

for the geometry described in code snippet 1 for 360

projections has 94 371 840×134 217 728 elements

with a sparsity index of 0.0017%. This requires 320 Gb

of memory even using optimized sparse memory

methods.

In order to cope with a problem of this scale, the

most common approach is to substitute the matrix-

vector multiplications Ax and ATb by operators A(x)

and ( )A bT , recomputing the relevant matrix values

whenever necessary. While computationally very

expensive to perform, the operators have an

advantage: the values are completely independent of

each other, making them suitable for parallel comput-

ing. In the TIGRE Toolbox, these two operators have

been implemented using CUDA in a GPU capable of

computing over 60K floating-point operations simul-

taneously4. This has resulted in speed-ups of up to

1400 times compared tomatrix-basedmethods.

2.3. Toolbox structure

In this section an overview of the structure of the

toolbox is given (see figure 2). As mentioned in the

previous section, the main building blocks of any

iterative algorithm are the so-called projection (A(x))

and back projection ( ( )A bT ) operators. In the TIGRE

Toolbox, these two blocks have been optimized for

GPU computing using CUDA. They lie in the lowest

layer of the toolbox design and are constantly used by

the other layers. The algorithms themselves lie in the

topmost layer and are all coded in MATLAB, which

provides the power and flexibility of a high-level

language. To be able to communicate between the

low-level, hardware-oriented CUDA and the high-

level, design-oriented MATLAB, a set of the so-called

MEX functions are needed. The toolbox has been

designed not to have any specific data types or classes.

Instead, it comprises only the basic MATLAB types,

such asmatrices and structures.

2.3.1. Projection and back projection

As already mentioned, the main building blocks of the

toolbox are the CUDA/C++ implementations of the

projection and back projection operators. Concep-

tually, the matrix A is a linearization of the model that

describes the x-ray attenuation measured over a given

domain and several different approaches to compute

this may be found in the literature. Similarly, back

projection is a ‘smearing’ over the domain with a

weighting applied. Without explaining in detail all the

Figure 1.Geometry of CBCT.

4
In specificGPUmodels.

3
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methods available, we briefly describe those used in

the toolbox.

For the projection, two approaches have been

implemented: the voxel-ray intersection approach and

the interpolation approach. The first of these uses the

Siddon ray-tracing algorithm [24] with optimized

operations [25]. This algorithm computes the distance

between a given voxel and an infinitesimally narrow

x-ray beam and multiplies that by the voxel intensity.

This approach is the fastest way of computing the pro-

jector. However, it is known to introduce discretiza-

tion square-block artefacts due to the finite size of the

voxels, artefacts which become more significant the

bigger the voxel size. To avoid this problem, a trilinear

interpolation approach has been implemented where

the path integral is evaluated every fixedDl and image

values are interpolated using advanced texture mem-

ory. To implement this an additional variable is added

to the geometric definition of the problem:

=geo.accuracy 0.5, which defines Dl as a fraction of

the voxel size. This fraction is best chosen to be 0.5 or

lower, as Jia et al [26] demonstrated.

For the back projection, two different approaches

based on the same concept are used. Initially a ray is

linked from the source location to the desired voxel,

and extended to the detector. There, using bilinear

interpolation, a value is read and added to that voxel

with a weight. The difference between the two back

projections is in this weight. One of them implements

the FDKweight. However, this makes the back projec-

tion unmatched, i.e., it makes the back projection

operator not equivalent to the transpose of the pro-

jector. While not important for most algorithms, this

is crucial for Krylov subspace methods. In order to

change that, a matched weight as described by Jia et al

[27] is used.While not completelymatched, they claim

that it is above 99% similar to the transpose of matrix

A. Both back projectors perform similarly.

2.4. Algorithms

One of the key features that we wish to introduce with

the TIGRE Toolbox is algorithm variety. The field of

image reconstruction has seen the development of a

wide variety of methods to solve equation (1) using

different solvers and regularization techniques. There

are four main families of reconstruction algorithms

present in the current implementation of the toolbox:

the filtered back projection family, the SART-type

family, the Krylov subspace method family and the

total variation regularization family. A brief descrip-

tion of each algorithm subgroup follows, together with

which algorithms are included in the toolbox.

The filtered back projection family is a set of algo-

rithms based on solving the inverse of the Radon

transform. Different variations of the algorithm have

been proposed in the literature, but the toolbox con-

tains just the standard FDK implementation with a

small choice offiltering kernels5.

The SART-type family [28] is set of algorithms that

derives originally from the Kaczmarz method and is

adapted to work projection by projection instead of

row by row. This family of algorithms follows

equation

l= + -+ ( ) ( )x x VA W b Ax , 2k k k T k1

where V and W are weight matrices based on ray

length. The algorithms of this family mainly differ by

the number of projections used simultaneously. In the

TIGRE Toolbox, SIRT, OS-SART [29] and SART are

implemented, where the image is updated using all

projections, subsets of projections or projection by

projection, respectively. Additionally, the toolbox

provides different options for tuning the algorithms.

For example different initialization techniques are

implemented, such as FDK, multi-grid, or user-

specified image. The main difference between the

performance of the algorithms in this family is in

convergence versus speed. The more data used in one

update, the faster the algorithm will be per iteration,

but slower (in number of iterations) to converge. For a

more accurate solution, SART is suggested, while a

faster result is obtained using SIRT, and with OS-

SART somewhere in between.

Krylov subspace methods consitute a set of faster

algorithms for solving linear equations. They iterate

through Krylov subspaces, minimizing the eigenvec-

tors of the residuals in descending order and so have

Figure 2. Structure of the TIGREToolbox.

5
FDKadapted from 3DCBCTMATLAB [21], with permission.

4
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increased convergence rates compared to the SART

family. From this family, the conjugate gradient least

squares (CGLS) [30] has been added to the TIGRE

Toolbox. This family of algorithms will get to a similar

result compared to, for example SIRT, in approxi-

mately a tenth of the iterations while still having prac-

tically the same computational cost per iteration.

These methods rely on iterating over the so-called

‘Krylov subspaces’, which are generated by the linear

combination of the kfirst powers ofA acting on b as in

= ¼ -( ) { } ( )K A b b Ab A b A b, span , , , , . 3r
k2 1

Finally, the total variation regularization family is

included. The total variation norm is a common con-

straint in image denoising as it constrains the image to

be piecewise smooth. It was introduced in CT with the

advent of the ASD-POCS algorithm [31]. This set of

algorithms is particularly good when the data are very

noisy or the number of projections is reduced as the

piecewise smoothness constraint forces the image into

the least noisy state. From this family, the ASD-POCS

(or POCS-TV), OSC-TV [32], B-POCS-TV-β [33] and

SART-TV [34] (minimizing the Rudin–Osher–Fatemi

model) are implemented. The total variation mini-

mization has been partially GPU-accelerated. One of

the limitations of this family of algorithms is that they

require the tuning of more parameters than the other

families, often needing to be tested several times until

the optimal behaviour is found. The particularity of

this family of algorithms resides in the double optim-

ization of the problem. Theyminimize data first, using

some of the algorithms from the previously men-

tioned families and after they minimize the ‘total var-

iation’, essentially the noise in the image. The main

difference between them is in the tools used in each of

these minimization steps. ASD-POCS, OSC-TV and

B-POCS-TV-β generally perform better with a limited

amount of data, while SART-TV has an important role

in reconstructing data from noisy projections. The

minimization problem can be mathematically expres-

sed as in

= - +ˆ ( )x b Ax xargmin . 4x
2

TV   

In addition to image reconstruction algorithms,

some basic tools for image denoising, plotting, loading

data and quality measurement are included in TIGRE.

These include projection and image plotting utilities,

an image denoising function, a CBCT cropping tool

and a projection noise simulator among others. The

toolbox contains demos to illustrate the usage of all

algorithms, with extensive explanations of each of the

parameters that they may require. There are also help

pages for each of the functions that are included.

3. Results

In this section we demonstrate how the toolbox works

by giving some performance figures and by showing

some examples of image reconstructions. Before

getting to the results, it is worth mentioning the

specifications of the computer on which the toolbox

has been developed and tested. The computer is a

64 bit Windows 7, with an Intel® CoreTM i7-4930K

3.40 GHz CPU, and 32 Gb of RAM, running

MATLAB® (R2014b, The Mathworks, Cambridge,

UK) on aNVIDIATesla K40GPU.

3.1. Performance

The performance of the GPU-accelerated projection

and back projection is shown in figures 3 and 4,

Figure 3.Projection operator performance (logarithmic scale) inGPU for a single projection and different image and detector sizes for
interpolatedmode (a) and ray-voxel intersectionmode (b).

5

Biomed. Phys. Eng. Express 2 (2016) 055010 ABiguri et al



respectively. In all these tests memory allocation time

has been ignored.

The code has been run for a single projection with

varying image and detector sizes for both projection

types, interpolated and ray-voxel intersected. The

resultant times go up to a second per projection for a

10243 image size and a 10242 detector size, which is

considerably larger than a standard medical device.

The interpolation test has been performed taking a

sample every half voxel and, with this sampling rate,

the ray-voxel intersection algorithm is about 4 times

faster than the interpolation one. For the geometry in

code snippet 1 (taken from a medical device), the ray-

voxel intersection algorithm computes the projection

every 10 ms.

A single back projection test is shown as both back

projections perform similarly. Note also that, as

expected, back projection performance is independent

of the detector size.

3.2. Sample code

To illustrate the use and functionality of the toolbox

we present two examples, one with phantom data

and the other with data obtained from the RANDO

head phantom at the Christie Hospital, Manche-

ster, UK.

3.2.1. RANDOhead reconstruction

We will first demonstrate the reconstruction of the

RANDO head phantom using three different algo-

rithms with the geometry defined in code snippet 1.

The data set contains 360 equidistant projections.

Once the data have been loaded using the code of

snippet 2, the results of figure 5 can be obtained

without the need for any more code. Information

about total computation time and computation time

per iteration are shown. Only some of the possible

options are shown in the snippet, butmore customiza-

tion is possible. We refer the reader to the published

documentation for advanced options and for insight

into their numerical ranges.

Code Snippet 2.RANDOhead data reconstruction.

%DefineGeometry&loaddata

%Fromthedata,theprojectionangles(in

%radians)musthavebeenread

alpha=...

%%Reconstructimagewithdifferentalgorithms

%FDK

imgFDK=FDK(data,geo,alpha);

%CGLS

iterCGLS=15;

imgCGLS=CGLS(data,geo,alpha,iterCGLS);

%OS-SARTwithmulti-gridinitialization

iterOSSART=70;

imgOSSART=OS_SART(data,geo,alpha,iterOSSART,…

’BlockSize’,20,’Init’,’multigrid’);

3.2.2. Reconstructions with few projections

The second test uses the 3D Shepp–Logan phantom to

demonstrate the difference in image quality created by

different algorithms in the case of few projections.

Using just 20 projections, an image is reconstructed

using FDK, OS-SART and ASD-POCS. The code

snippet 3 demonstrates how to load data, set up

parameters and reconstruct a limited amount of

projection data. The results are shown in figure 6 and

emphasize the distinct behaviour of these algorithms

in certain scenarios.

Figure 4.Back projection operator performance (logarithmic scale) in GPU.

6
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Code Snippet 3. Limited data reconstruction.

%DefineGeometry

%Loadphantomdata

img=sheppLogan3D;

%Defineangles

alpha=[0:18:360]∗pi/180;

%Createprojections

proj=Ax(img,geo,alpha);

%%Reconstructimages

imgFDK=FDK(proj,geo,alpha);

imgOSSART=OS_SART(proj,geo,alpha,50,…

’BlockSize’,5);

imgASDPOCS=ASD_POCS(proj,geo,alpha,50,12);

3.3. Implementation of an algorithmusing TIGRE

To demonstrate the facility with which anyone can

develop new algorithms using the TIGRE toolbox, we

present in this section a side-by-side comparison of an

algorithm definition and its TIGRE equivalent code,

using the GPU accelerated features. For the sake of

brevity, the CGLS algorithmhas been chosen.

In table 1 the definition of the CGLS iterations and

the implementation in TIGRE are shown. From the

code snippet, we would like to highlight the limited

use of library-related functions, as one of the strengths

of TIGRE for the developer point of view is the

easy-to-use application programming interface. The

only difference in the code from a completely standard

MATLAB script is the use of the function Ax() and Atb

(), the main building blocks of the toolbox, as descri-

bed in section 2.3. This allows anyone with MATLAB

code for solving image reconstruction to easily modify

their code by just changing the matrix-vector opera-

tions by TIGREGPU functions.

Note that the functions inside TIGRE do generally

have more code than the one shown here, as several

options and performance enhancing MATLAB tools

are used.

4.Discussion

In this paper we have presented a MATLAB/CUDA

toolbox for fast 3D x-ray image reconstruction. While

the toolbox has reasonably good performance—redu-

cing tominutes an image reconstructionwith complex

iterative algorithms—and a wide variety of tools,

improvements are possible.

The projection and back projection operators have

been fully implemented in the GPU, but the algo-

rithms are fully in CPU so a memory management

overhead exists because the data need to be introduced

and extracted from the GPU twice per iteration. This

design has been proposed in order to have the

Figure 5.Cross-section of the image reconstructed fromdata from theRANDOhead phantomby three different algorithms. FDKhas
noise across the entire image and significant strike artefacts (see top image). OS-SART andCGLS create a smoother image, removing
most artefacts and having a clearer separation between tissues.

7
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algorithms in a high-level language, as an algorithm

implementation cycle in a low-level language like C+

+ is significantly longer than in MATLAB. We esti-

mate that if the algorithms were written in C+

+/CUDA directly, an improvement in computation

time of up to 50% could be achieved in some cases.

However, this would increase the difficulty of adding

new algorithms to the toolbox. We consider that the

advantages of a high-level programming language for

new algorithms are better than the possible benefits of

doubling the speed, which is already reasonably good.

Comparing the forward and back projection speeds to

the ASTRA toolbox, TIGRE is 2.4 times slower. This

can be easily explained by two factors. Firstly, the geo-

metric options for CBCT are more flexible in TIGRE

than in ASTRA, thus requiring more floating-point

operations. Secondly, ASTRA implements an

advanced ray splitting that increases memory latency

in the GPU and that makes use of overlaps between

x-ray paths at different angles [35]. However, due to

the use of algorithms that do not compute adjacent

angles together (such as SART or OS-SART), such an

exploit has not been used in TIGRE, increasing the

memory read time in GPUs. The same thing applies to

back projection. Adding all the discussed effects that

would decrease the time performance, all algorithms

run about 5 times more slowly in TIGRE than in

ASTRA, which constitutes the state of the art. Numeri-

cally, the differences between ASTRA and TIGRE are

in absolute value of the order of 10−3, which is about

0.01% in relative terms. This difference can be attrib-

uted to accumulated floating point errors due to dif-

ferent numerical approaches in theGPU code.

To speed up further the projection and back pro-

jection operators, a multi-GPU approach [36] could

also be taken. Currently, TIGRE does not support

multi-GPU architectures. A further weakness of the

toolbox is the small number of functions for data load-

ing and post-processing. However, we are presenting a

first release and work will be continued, hopefully fill-

ing this gap in the near future. Another limitation of

TIGRE comes from the current limitations in GPU

technology. Currently, 12 GB is the maximum

amount of memory on a GPU board, thus limiting the

possible size of the images that can be reconstructed.

Nevertheless, there is no problem to reconstruct a

10243 image with most algorithms so the maximum

image size is still big.

The TIGRE Toolbox has been designed with the

objective of reducing the gap between image recon-

struction research and the end users of tomographic

images. While research in reconstruction creates new

algorithms every year, end users only have access to

FDK implementations. With these two groups in

mind, the toolbox:

• has easy-to-use ‘black box’ algorithms, making it

extremely straightforward for researchers who are

only interested in the quality of the images to test

Figure 6.Cross-section of the image reconstructed fromdata from20 projections of the 3D Shepp–Logan phantom.While an extreme
case, the increased performance of theminimization algorithms over FDK is evident, especially for ASD-POCS. Times for this
limited-projection example are all below aminute.
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different algorithms without them requiring any

knowledge of how the algorithmswork;

• has easy-to-use building blocks (projection and

back projection operators) that allow algorithm

developers to test new methods using a high-level

programming language butwith the performance of

the lowest level, GPU languages.

The code is released as open source, allowing any-

one to download, test, modify and improve it. We

enthusiastically encourage the submission of improve-

ments, bug-fixes, demos, data andwhatever elsemight

help the community. Likewise, we encourage algo-

rithm developers to submit their new algorithms to

the toolbox, giving them visibility. Finally, we would

like to encourage x-ray image end users to include data

or descriptions of specific challenges they may have,

allowing dialogue and hopefully leading to better ways

of creating enhanced tomographic images.

While the toolbox was originally designed for

CBCT image reconstruction, an option for 3D paral-

lel-beam CT reconstruction has also been included

allowing for more geometries, e.g., synchrotron data.

Further tweaking the geometry structure of the

toolbox would also permit 2D fan- and parallel-beam

reconstructions.

The minimum requirements to run the toolbox

are strongly dependent on the image size desired, as

memory is the strongest limiting factor both on the

CPU and GPU side. Generally speaking, any NVIDIA

GPU with a compute capability higher than 3.5 would

be sufficient to reconstruct arbitrarily large images.

We recommend having at least 3 times the desired

image size in GPUmemory and 8 times in RAM in the

computer. As an example, for a 5123 image, 2 GB of

GPU memory and 6 GB of computer RAM is the sug-

gested minimum. The computing power (number of

processors in the GPU and processor performance of

the CPU) will have a strong effect on the speed of

image reconstruction. Thus we recommend a state of

the art CPU and a computing oriented GPU, such as

from the Tesla family.

5. Conclusions

A 3D tomographic reconstruction toolbox has been

developed with fast GPU-based algorithms and a wide

variety of tools and image reconstruction algorithms.

While TIGRE has been created for CBCT imaging, it

can be used for any geometry, especially 3D geome-

tries. With this toolbox we hope to make advanced

algorithms more accessible to researchers and to

provide a platform on which applied mathematicians

and image users can work and collaborate. It will thus

facilitate the comparison of such advanced algorithms

with those inmore commonusage and so demonstrate

the potential to achieve the same image quality with

fewer projections and hence less dose. Future develop-

ments will include possible performance optim-

ization, more algorithms, additional support for file

formats and post-processing algorithms. With the

TIGRE Toolbox, we hope to build a bridge between

imaging communities and provide a platform where

they can interact via software. The entire package is

available at https://github.com/CERN/TIGRE.
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