
University of Alberta

TIGUKAT� A Uniform Behavioral Objectbase
Management System

by

Randal J� Peters

Technical Report TR �����
April ����

DEPARTMENT OF COMPUTING SCIENCE

The University of Alberta

Edmonton, Alberta, Canada

UNIVERSITY OF ALBERTA

TIGUKAT� A Uniform Behavioral Objectbase Management System

BY

Randal J� Peters

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful�llment
of the requirements for the degree of Doctor of Philosophy�

DEPARTMENT OF COMPUTING SCIENCE

Edmonton� Alberta
Spring ����

Abstract

Object�oriented computing is in�uencing many areas of computer science� including data�
base systems� Despite many advances� object�oriented computing is still in its infancy and
a universally accepted de�nition of an object�oriented model is virtually nonexistent� In
this thesis� the object model� meta�model� query model� dynamic schema evolution policies�
and version control of the TIGUKAT objectbase management system are presented� An
identifying characteristic of this system is that all components are uniformly modeled as
objects with well�de�ned behavior� This is an important achievement towards advancing
database technology because it uni�es the components of a database within a single� clean�
underlying semantics that can be easily extended to support other database services� The
TIGUKAT object model is purely behavioral � supports full encapsulation of objects� de�nes
a clear separation between primitive components� and incorporates a uniform semantics
over objects� A behavioral model de�nition speci�es the semantics of objects and this is
integrated with a structural model to form a complete model de�nition� The meta�model
is uniformly represented within the object model� giving rise to re�ective capabilities � The
query model is uniformly de�ned as type and behavior extensions to the base model� thus
incorporating queries and query processing as extensible parts of the model� The complete
query model includes a formal object calculus� formal object algebra� a de�nition of safety
based on the evaluable class of queries 	arguably the largest class of
reasonable� queries��
proofs of completeness� and an eective algorithmic translation from the calculus to algebra�
Dynamic schema evolution is a necessary feature that allows for the timely change of infor�
mation and for restructuring the schema of an objectbase� Since everything is uniform� the
schema evolution policies are simply behavior extensions to the base model� Temporality
is incorporated to support versioning of objects and of schema� It is also used to maintain
the semantic consistency of evolving behaviors�

This research leads toward the development of an extensible query optimizer� view man�
ager� and transaction manager as uniformly integrated components of the system� This ful�
�lls the typical gamut of database services� Temporal extensions and a seamlessly integrated
database programming language are other components that this research supports�

Acknowledgements

I would like to express my sincere thanks to Dr� Tamer �Ozsu� my supervisor� for his encour�
agement and support during my research� He created a balanced environment that allowed
me the necessary freedom to pursue my ideas� while at the same time oering the right
amount of guidance to keep me focused�

I would also like to thank the members of my committee Dr� Duane Szafron� Dr� William
Armstrong� Dr� Paul Sorenson� Dr� Alberto Mendelzon� and Dr� Barrie Nault for their many
insights and comments� I especially thank Duane Szafron for all his help on the object model
and query model�

Thanks to the database research group at the University of Alberta for the many inter�
esting discussions� I am especially grateful to those members who read earlier drafts of this
work and for the useful comments they provided�

Thanks go to Dr� �Ozsu� the Natural Science and Engineering Research Council of
Canada� the University of Alberta� and the Department of Computing Science for the
funding they provided throughout this degree�

I express my sincere gratitude to my wife� Sherry� for her patience� encouragement� and
love that gave me strength to carry this dream to reality�

Finally� I thank my parents� David and Tina Peters� for their love and complete support
during my studies and throughout my life� This thesis is for them�

Contents

� Introduction �
��� Overview �
��� Scope and Contributions �

����� Object Model Issues �
����� Query Model Issues �
����� Schema Evolution and Version Control Issues � � � � � � � � � � � � � �

��� Organization �

� The Object Model �

��� Related Work �
��� Object Model Overview ��
��� Example Objectbase ��
��� The Behavioral Model ��

����� Atomic Types� Classes and Objects ��
����� The Behavior and Function Primitives � � � � � � � � � � � � � � � � � ��
����� The Object Primitive ��
����� The Type Primitive ��
����� The Collection and Class Primitives � � � � � � � � � � � � � � � � � � ��
����� Higher Level Constructs ��
����� The Null Primitive ��
����� De�nition of an Objectbase ��

��� The Structural Model ��
����� Objects and Values ��
����� Abstract Objects ��
����� Object Graph ��
����� Structural Example ��
����� Schema Objects ��

� The Object Query Model ��

��� Related Work ��
����� Query Model Frameworks ��
����� Complete Object Query Models ��
����� Complex Object Algebras ��

��� Query Model Overview ��
��� Queries as Objects ��
��� The Object Calculus ��

����� Formal Object Calculus ��

����� Calculus Queries ��
����� Expressive Power of Calculus Queries � � � � � � � � � � � � � � � � � ��
����� Safety of Object Calculus Expressions � � � � � � � � � � � � � � � � � ��

��� The Object Algebra ��
����� Semantics of Type Inferencing ��
����� Algebra Expressions ��
����� Safety of Algebra Expressions ��

��� Example Queries ��
��� Completeness of Calculus and Algebra ��

����� Theorems and Proofs ��
����� Calculus to Algebra Translation ��

� The Meta�Model and Re�ection ���

��� Related Work ���
��� Overview ���
��� Features of the Meta�Model ���
��� Re�ective Capabilities ���

� Schema Evolution and Versioning ���
��� Issues of Schema Evolution ���
��� Issues of Version Control ���
��� Related Work ���
��� Overview of Schema Evolution and Versioning � � � � � � � � � � � � � � � � � ���
��� Temporality of the Object Model ���
��� Semantics of Schema Evolution ���

����� De�nition of Schema ���
����� Invariants of Schema ���
����� Semantics of Change ���

��� Versions of Types with Time ���
����� Adding�Dropping Behaviors ���
����� Changing Implementations of Behaviors � � � � � � � � � � � � � � � � ���

��� Change Propagation ���
��� Temporal Behavior Dispatch ���

����� Overview ���
����� Dispatch Semantics ���
����� Examples ���

	 Conclusions ���

��� Summary and Contributions ���
��� Future Research ���

Bibliography ���

A Primitive Type System �	�

B Behavior De
nitions �	�

C Object Model Analysis ���
C�� Conformance to Manifestos ���

C���� Mandatory requirements ���
C���� Optional Features ���
C���� Undetermined Mandatory or Optional � � � � � � � � � � � � � � � � � ���
C���� Open Choices ���

C�� Conformance to OODB Task Group Recommendations � � � � � � � � � � � � ���

List of Tables

��� Behavior signatures pertaining to example speci�c types of Figure ���� � � � ��
��� Object equalities of Figure ���� ��

��� Behavior signatures for type T query� Upper half are inherited from T function�
Lower half are native to this type� ��

��� Classi�cation of schema changes� ���
��� Valid implementation changes of a behavior in a type� � � � � � � � � � � � � ���

A�� Behavior signatures of the non�atomic types of the primitive type system� � ���
A�� Behavior signatures of the container types of the primitive type system� � � ���
A�� Behavior signatures of the atomic types of the primitive type system� � � � � ���

List of Figures

��� Primitive type system T ��
��� Type lattice for a simple geographic information system� � � � � � � � � � � � ��
��� An object reference example� ��
��� Example of subtype and specialize relationships� � � � � � � � � � � � � � � � ��
��� Super�lattice of type T map� ��
��� An example type schema� ��
��� Three tiered instance structure of TIGUKAT object management� � � � � � ��
��� Portion of primitive type lattice responsible for meta�system� � � � � � � � � ��
��� Subclass and instance structure of m� and m� objects� � � � � � � � � � � � � ��
���� Graphical representations of nodes in an object graph� � � � � � � � � � � � � ��
���� Objects of Sherwood County� ��
���� Object graph of SCounty� Notingham and Forest� objects in Figure ����� � � ��
���� Object graph of partial schema for type T zone� � � � � � � � � � � � � � � � � ��

��� Query type extension to primitive type system� � � � � � � � � � � � � � � � � ��
��� Sequence of behavioral applications making up a mop� � � � � � � � � � � � � ��
��� Logical rules that de�ne the gen and con relations� � � � � � � � � � � � � � � ��
��� Translation steps from object calculus to object algebra� � � � � � � � � � � � ��
��� Extended rules of gen and con that produce
generators�� � � � � � � � � � � ��
��� Prohibitive parent�child combinations in ENF formulas and rewrite rules to

correct the violations� The s entry indicates a call to simplify on the formula
and has highest priority� ��

��� Transformations from object calculus to object algebra� � � � � � � � � � � � ���

��� A
normal� class and instance structure for C person� � � � � � � � � � � � ���
��� An m� class and instance structure for C person� � � � � � � � � � � � � � � ���

��� The abstract time types� ���
��� Eects of dropping a direct supertype link from type T to type S� � � � � � ���
��� Eects of dropping a type T ���
��� History of the interface of type T ���
��� Implementation histories of behaviors b� and b� for type T and object repre�

sentations ���
��� Dispatch process for applying a behavior b to an object o at time t� � � � � � ���
��� Example showing eects on implementation histories of �rst adding and then

dropping a behavior� ���
��� Two example objects of type T ���

Chapter �

Introduction

��� Overview

Object�oriented computing is in�uencing many areas of computing science� including data�
base management� The appeal of object�orientation� from the perspective of database ap�
plications� is attributed to its higher levels of abstraction for modeling real world concepts�
its support for extensibility through user�de�ned types� and its potential for managing in�
teroperability�

Objectbase management systems 	OBMSs�� are emerging as the most likely candidate
to meet the complex data and information management requirements of new applications
such as geographic information systems� computer aided design 	CAD�� computer aided
manufacturing 	CAM�� multimedia systems� knowledge base applications� and o�ce infor�
mation systems� The general acceptance of this technology is dependent on the increased
functionality it can provide� In this respect� OBMSs subsume the modeling power and
expressibility of the �rst�generation 	i�e�� hierarchical and network� and second�generation
	i�e�� relational� systems� Unlike these earlier systems� OBMSs are well suited for handling
complex information with complex relationships� Furthermore� an OBMS is better suited
to integrate the components of traditional database systems such as a query model� query
optimizer� schema evolution� version control� view management� transaction management�
rule systems� and so on into a single� uniform system�

Despite many advances over the last decade� objectbase management technology is still
in its infancy� The �eld is generally suering from the absence of a universally accepted
object model� along the lines of the relational model �Cod���� whose features are formally
and unambiguously de�ned� This void makes it di�cult to reason about the internal consis�
tency of these models� investigate database features such as query models� schema evolution�
views� transaction management� etc�� and to generalize the results of various studies� Some
standardization eorts are being pursued �ABD���� SRL���� FKMT���� and general de�
scriptions of model characteristics are emerging �ZM��� Ken��a�� These have resulted in
the de�nition of a relatively small set of core concepts that most object models share�

�In this thesis� the terms �objectbase� and �objectbase management system� are preferred over the more
popular terms �object�oriented database� and �object�oriented database management system�� since not
only data in the traditional sense is managed� but also objects in general� which includes things such as code
and complex information in addition to data�

�

��� Scope and Contributions

This thesis describes the development of the TIGUKAT� extensible objectbase management
system 	OBMS�� A uniform� behavioral object model with extensible properties is devel�
oped� and this model is used to develop the foundations of the extensible OBMS� including
a full�featured object query model� a uniform meta�model with re�ective capabilities� dy�
namic schema evolution policies� and version control� This section provides an overview of
the contributions in each of these areas�

Although the work in this thesis is within the context of TIGUKAT� the �ndings extend
to any system based on a uniform� behavioral object model where behaviors de�ne the
semantics of types and are implemented within a functional paradigm�

The related areas of research touched upon in this thesis� but outside its scope� in�
clude the implementation of the object model �Ira���� the de�nition and implementation
of a user query language �Lip���� the de�nition and implementation of a query optimizer
and execution plan generator �Mu�n���� the incorporation of temporality into the model
�G�O���� the de�nition and implementation of a general objectbase programming language�
and distributed aspects of OBMSs�

����� Object Model Issues

The TIGUKAT object model is characterized by a purely behavioral semantics� a uniform
approach to object modeling� and extensibility� The behavioral paradigm provides a con�
sistent underlying operational semantics and uniformity provides a fundamental conceptual
model where every concept� including types� classes� collections� behaviors� functions and
meta�information� is modeled as a �rst�class object with well�de�ned behavior� The features
of uniformity and the behavioral paradigm form the foundation for the extensibility of the
model�

In TIGUKAT� traditional structural notions such as instance variables� method im�
plementations� and schema de�nition are cast into the uniform semantics of behaviors on
objects� The behavioral paradigm introduces the notion that the operations that may be
performed on an object are given entirely by the behaviors de�ned on the type of that
object� Uniformity is important in unifying the components of an OBMS into a seamless
integrated system with a single underlying 	behavioral� semantics�

A fundamental characteristic of object models� which dierentiate them from other mod�
els� is their richer semantics� On the one hand� this enables closer modeling of complex real
world applications such as geo�information and CAD�CAM systems� which makes object
models more powerful� On the other hand� the richer semantics makes it more di�cult to
specify a clean� well�de�ned� universally accepted model� The power and expressibility of
a general object model may prove too di�cult to formalize because many important prop�
erties become intractable as the model becomes more general �Mai���� However� certain
precautions have been identi�ed to avoid pitfalls while developing a complete object model
�KW��� Bee���� The resulting model de�nition may be more restrictive than a
general�
model� but power and expressibility 	which may not be needed anyway� must sometimes
be traded for tractability�

�TIGUKAT �tee�goo�kat� is a term in the language of the Canadian Inuit people meaning �objects�� The
Canadian Inuits� commonly known as Eskimos� have an ancestry originating in the Arctic regions of the
country�

�

The �rst result of this research is the development of an advanced object model through
the identi�cation and formalization of object�oriented characteristics with su�cient power
and �exibility for supporting the advanced functionality demanded by OBMSs and their
client applications� The TIGUKAT object model includes many of the core concepts intro�
duced by former models� along with additional features that extend its modeling power and
expressibility beyond others�

The power of the model is demonstrated in this thesis by using it to develop� in an
extensible way� a uniform meta�system that is seamlessly integrated with the base model
and provides re�ection �P�O���� an object query model with powerful querying facilities
�PL�OS��b� PL�OS��a�� plus dynamic schema evolution strategies and version control that
use time to manage versions of objects and maintain semantic consistency of behaviors�

A model for objects involves the speci�cation of two components� One part consists of
the behavioral aspects� which de�ne a universal conceptual abstraction of objects� includ�
ing the relationships between objects� The other part is the structural de�nition� which
speci�es the internal organization of objects and how their relationships are organized�
Subtleties� such as the dierence between objects and values 	hidden by the abstraction
of the behavioral model� are exposed at the structural level� King �Kin��� points to the
similarity between a structural object model and the semantic data modeling approach
�HM��� HK��� PM��� in the sense that both are concerned with the representation of data
and knowledge� A behavioral model goes further by addressing access and manipulation of
objects from general purpose programming and query languages�

Behavioral and structural issues have traditionally been treated separately in the data�
base community� with object models emphasizing one or the other� A notable exception
is �Bee���� which attempts to establish a link between the two� although the behavioral
and structural de�nitions of that model are not fully developed� Behavioral and structural
aspects are both important in the development of an object model� but the two are indepen�
dent� which accounts for the orthogonal directions taken by recent studies� Reconciling these
approaches assists in understanding the model and forms a basis for an implementation of
the model�

It has been noted that the behavioral aspects are fundamental in developing a theory
of objects �Ken��a�� In this thesis� a behavioral model is coupled with a formal structural
counterpart to unify the model semantics and form a complete de�nition� Beeri�s formal
structural model �Bee��� is chosen as a basis for the structural model� Several modi�ca�
tions are incorporated into Beeri�s model in order to extend its capabilities to match the
uniformity and enhanced functionality provided by the behavioral model� The integration
of these two de�nitions results in a complete� uniform object model speci�cation� which is
a favorable platform for the implementation of TIGUKAT�

The fundamental contributions of the TIGUKAT object model are as follows�

�� A precise speci�cation and integration of both the behavioral and structural aspects
of a uniform object model with the necessary power for handling advanced database
functionality such as a powerful query model and language� schema evolution� version
control� updatable views� transaction management� temporal rules� and so on�

�� A clean separation and precise de�nition of many object model features that are
usually bundled and only intuitively de�ned in other studies�

�� A uniform approach to objects that models all information as �rst�class objects with
well�de�ned behavior�

�

�� Re�ective capabilities through the uniform modeling of meta�information as objects
with well�de�ned behavior�

����� Query Model Issues

Two important measures of an OBMS lie in the power of its query model and the languages
used to query the objectbase� User requirements of these systems demand a declarative
facility to formulate queries by focusing on
what� information is needed and leaving it
up to the system to determine
how� to e�ciently retrieve the information� Therefore� a
formal query model for these systems de�nes an object calculus as a theoretical framework
for supporting declarative queries and a procedural 	or functional� algebra to execute them
e�ciently� In order to support this framework� it is desirable that the calculus and algebra
be equivalent in expressive power and that there be an e�cient translation from calculus to
algebra� Both of these properties are ful�lled by the query model presented in this thesis�

The TIGUKAT query model is de�ned as a uniform extension to the base object model�
The formal languages include a declarative object calculus and a behavioral�functional
object algebra� The query model is an extension to the object model in that queries are
de�ned as type and behavior extensions to the base model� meaning they inherit all the
characteristics of objects� One advantage of this approach is that the components of an
integrated query model can be queried just like other objects� For example� one may query
a collection of queries to gather statistical information about their performance� or a query
on the types and behaviors of the query model may be run to analyze their de�nition�
Another advantage is that the types and behaviors of the query model can be extended
through the application of appropriate behaviors� This kind of
open�architecture� results
in an extensible query model that allows advanced information processing features to be
added as they are discovered using the operations provided by the base model�

Safety is an important consideration of a query model� Essentially� a query is safe if it
returns a �nite result in a �nite amount of time �OW���� Developing e�cient methods for
recognizing broader classes of safe queries and rejecting those that are unsafe is a major
research issue� The TIGUKAT query model bases safety on one of the largest known class
of decidable queries�

The result of a query depends on the domains referenced within that query� Domain
independence is a property of queries that states the result of a query is not aected by
changes to domains not referenced within the query� The domain independent class of
queries �Mak��� has long been recognized as the largest class of
reasonable� queries� How�
ever� it is well�known that domain independence is an undecidable problem� Many decidable
subclasses of the domain independent class have been proposed� The
evaluable� class of
queries �GT��� is touted as the largest decidable subclass of the domain independent class�
The class of safe queries in TIGUKAT is based on the evaluable class� However� the se�
mantic characteristics of object generation introduced by the query model are exploited
to extend this class and provide a broader class of safe queries� In �EMHJ��a�� a similar
approach is presented that extends the evaluable class with scalar functions� although that
work is within the context of the relational model�

The identifying characteristics of the TIGUKAT query model that dierentiates it from
other object query models are the following�

�� It incorporates a formal and powerful object calculus and object algebra with a proven
equivalence in expressive power and an eective 	i�e�� algorithmic� translation from
calculus to algebra�

�

�� Its safety criterion is based on the evaluable class of queries� which is arguably the
largest decidable subclass of the 	undecidable� domain independent class�

�� It exploits object�oriented features to extend the evaluable class by introducing no�
tions of object generation on equality and membership atoms� which relaxes range
speci�cation requirements� The result is that the broadest class of safe queries known
to date is recognized by the approach�

�� It uniformly models queries as �rst�class objects by directly de�ning them as type
and behavior extensions to the TIGUKAT object model� This results in an extensible
query model with a consistent� uniform� underlying semantics commensurate with the
object model and its behavioral semantics�

�� The extensible algebra speci�cation forms a uniform basis for processing queries that
is exploited by the extensible algebraic query optimizer and execution plan generator
�Mu�n����

�� It is the most advanced object query model to be uniformly integrated with a base
object model in an extensible way� thereby unifying the components of an object
calculus� an object algebra� proofs of completeness between the languages� and an
eective translation from calculus to algebra within a common framework�

����� Schema Evolution and Version Control Issues

Dynamic schema evolution is the ability for a system to make changes to the database
schema while applications are running� The kinds of changes allowed� and the semantics of
these changes� vary in models proposed in the past� However� there is a fundamental set of
changes that is common to all models�

Schema evolution is necessary in complex applications in order to handle post�design
modi�cations that are typical in these systems� Some examples include changes in the the
way the application domain is structured� changes in the functionality of a particular appli�
cation� and changes needed in order to meet performance requirements� If properly de�ned�
schema evolution can also be used to support experimentation� or
what if� scenarios� with
existing applications�

In this thesis� the full schema evolution policies in the TIGUKAT object model are
presented� Everything is uniformly an object in TIGUKAT� but the schema evolution
component characterizes some objects as being part of the
schema� in order to de�ne
evolutionary operations on them� Objects of other types� such as application speci�c types�
are not considered to be part of the schema and� therefore� schema evolution policies are
not de�ned for them�

Temporality has been introduced as a uniform extension to the TIGUKAT model �G�O���
and is based on behaviors� A behavior is either temporal or non�temporal� By de�ning
temporal behaviors on types� the types become temporal� and all instances of a temporal
type are temporal� Actually� only the temporal behaviors de�ned by a type are temporal in
the objects� Thus� an object may consist of both temporal and non�temporal components�

The temporal aspects are used to implicitly manage histories of behaviors� Behavior
histories� in turn� are used to manage the properties of objects over time� By maintaining
histories for appropriate behaviors of types� a model for versioning types is developed�
This model is extended to include behavior objects and object representations as well�

�

Since versioning occurs implicitly through the management of behavior histories� objects
are instances of a type and not instances of a version of a type� This means that objects
support the full semantics of a type instead of just a portion 	version� of the type� This is
an identifying characteristic of the approach and has the bene�t of maintaining semantic
consistency between old and new versions of types and the applications that operate on
their instances�

By using time to implicitly model versions of types and objects� the schema and its
instances can be reconstructed at any time of interest� Each chosen time of interest is con�
sidered to be a version� Thus� the granularity of versions is based on the chosen granularity
of the time scale� rather than being restricted to version numbers� Note that the granularity
of the time scale could be version numbers if so desired� Using a given time reference 	ver�
sion number� etc��� the type lattice� type interfaces� behavior implementations� and object
representations can be reconstructed as they existed at that particular time of interest� A
contribution of this approach is that historical queries can be run on the objectbase quite
easily�

Another identifying characteristic of version model is that object coercion occurs on a

behavior�at�a�time� basis instead of on the entire object� This means that objects can
update certain behaviors to use an implementation de�ned by a newer version of a type�
while allowing other behaviors to continue using older versions� This means that a history
of the object�s semantics is maintained� which helps in maintaining semantic consistency
between old and new versions of types and the programs that operate on them�

��� Organization

The remainder of this thesis is organized into �ve chapters de�ning the components of the
TIGUKAT objectbase management system considered in this work� plus a summary chapter
with concluding remarks and future directions�

In Chapter �� the de�nition of the TIGUKAT object model is presented� First� the
high�level abstract behavioral de�nition of the model is given� This de�nes the primitives
that form the base object model and include the primitive type lattice structure� The base
model is extended through uniformity to develop other components of TIGUKAT� Second�
the behavioral model is linked with a structural example model for completeness� The struc�
tural model speci�es an organizational� yet implementation independent� representation of
conceptual objects of the behavioral model� A simpli�ed Geographic Information System
	GIS� is de�ned as a client OBMS application and is used as a running example to illustrate
results throughout this thesis�

In Chapter �� the TIGUKAT query model is de�ned as a uniform extension to the
object model and the concept of queries as objects is introduced� A formal object calculus
is de�ned by building on the behaviors of the extended object model� A class of safe
calculus expressions is de�ned as the set of
reasonable� queries considered for translation
to the algebra� The operators of the formal object algebra are presented� along with a
description of the type creation and inferencing mechanisms used by the algebra to derive
typing information for the results of queries� Finally� the theorems and proofs of equivalence
between the calculus and algebra are presented� An eective algorithm for translating safe
object calculus expressions into equivalent object algebra expressions is also given�

In Chapter �� the features of the meta�model introduced in Chapter � are presented�
These include the ability to extend the meta�model through regular subtyping� de�ning

�

behaviors for operating on classes of objects� and the ability to provide re�ection� which is
the focus of the chapter�

In Chapter �� the dynamic schema evolution policies and version control are de�ned�
A number of invariants are de�ned that must be maintained over schema changes� The
schema changes allowed by the model are given and their full semantics� including how
they maintain the invariants� are presented� The temporality of the object model �G�O���
is used to maintain histories of behaviors for version control� It is shown how histories are
used to manage versions of types and how type versions maintain behavioral consistency
between evolving types that may modify the behaviors they de�ne� Propagation of schema
changes to the instances is also considered� which results in versioned objects� A complete
description of how behaviors are dispatched to versioned objects is presented to illustrate
how the time model assists in maintaining behavior consistency between dierent versions
of types�

Conclusions and contributions of this work are presented in Chapter �� The results are
summarized and a number of future research directions that the work suggests are discussed�

Since Chapters � through � are fairly diverse in subject area� each respective chapter
includes a survey of related work for the topic and an overview of the chapter�s contents�

Three appendices are included at the end of the thesis� Appendix A and Appendix B
specify the semantics of the types and behaviors of the TIGUKAT primitive type system�
respectively� These were prepared as part of the implementation of the object model�
Appendix C analyzes and compares the characteristics of the TIGUKAT object model
with the object�oriented manifestos �ABD���� SRL���� and the NIST standards report
�FKMT��� as an exercise to illustrate the compliance of TIGUKAT with emerging de facto
standardization eorts�

�

Chapter �

The Object Model

Recent work on OBMSs has resulted in a number of object model proposals 	see �Day���
MZO��� Ken��b� Sny��� Bee��� among many�� Several properties of these models have
emerged from the development of various prototype systems� including �GR��� CM���
BMO���� CDV��� WLH��� Deu��� KGBW���� Consequently� object models have some
variance in the features they support� However� most of them incorporate a set of common
core concepts� but the semantics of these concepts lack precise de�nitions and are� in gen�
eral� di�cult to port from one system to another� The diversity of object model de�nitions
and the lack of a formal object model motivated the need to re�examine the qualities that
object�oriented systems provide and to develop a new object model that incorporates these
qualities and introduces new ones to extend the power of object models� Uniformity is an
example of one quality that has not been pursued in other models� but is fully integrated
into the object model de�ned here�

In this chapter�� the TIGUKAT object model is de�ned� The model includes some
common features of earlier proposals� along with distinctive qualities that extend its power
and expressibility beyond others� The TIGUKAT object model is purely behavioral in
nature� supports full encapsulation of objects� de�nes a clear separation between primitive
components such as types� classes� collections� behaviors and functions � and incorporates a
uniform semantics over objects� which makes it a favorable basis for an extensible objectbase
management system� Every concept that can be modeled in TIGUKAT has the uniform
semantics of a �rst�class object with well�de�ned behavior�

The literature recognizes two perspectives of an object model� the structural view and
the behavioral view� Most object�oriented formalisms have concentrated on one or the
other of these two approaches� The TIGUKAT object model includes a behavioral model
de�nition and this is integrated with an example structural model to form a complete model
de�nition�

��� Related Work

Codd�s landmark paper in ���� �Cod��� de�ned the relational model which provided a
simple� but powerful� method of organizing data� The main advantages of this approach
are that it oers a high degree of data independence� data consistency and language facili�
ties based on the �rst�order predicate calculus� The success of the relational model can be

�Portions of this chapter are published in the ���	 Proceedings of the Centre for Advanced Studies Con�
ference �CASCON����
 �OPI��	��

�

partially attributed to its precise formal speci�cation which facilitates a systematic investi�
gation of database management system 	DBMS� functions such as query processing� views
and transaction management� However� it is well recognized that the �at record based
representation of the relational model results in a semantic mismatch between the entities
being modeled and the underlying DBMS �Ken����

Several approaches have been followed to incorporate more meaning into a data model�
One approach proposes modi�cations to the relational model in order to supply it with
more power �Cod���� Others have extended the relational model with data abstraction by
including semantics for specifying user de�ned types �OH��� Sto��� WSSH���� Some pro�
totype systems employing this approach include STARBURST �Haa��� and POSTGRES
�SR��� RS��� SRH��� SK���� Another approach allows for non��rst normal form relations
which facilitates the modeling of nested relations �OY��� RK��� SS��� DKA����� This
extension takes the language features outside the domain of �rst�order predicate calculus�
thus higher�order languages for these nested relational models have also been developed
�AB��� JS��� Sch���� Some more recent relational model extensions have carefully in�
corporated properties of the object�oriented paradigm 	discussed below� designating them
relational object models �RK��� SS����

An orthogonal approach to relational model extensions has been to develop a completely
new data model with advanced modeling power and expressibility� One class of such models
are the semantic data models whose key features are based on the abstraction mechanisms
of classi�cation� aggregation and generalization �SS���� These features allow for complex
information to be categorized and accessed in meaningful ways� The pioneering models that
fall into this category are the Entity�Relationship 	ER� model �Che��� and SDM �HM���
HM���� An overview of the entire �eld can be found in �HK��� PM����

Some particular semantic data models that exihibit similarities with TIGUKAT include
the following�

� The functional data model and the data language DAPLEX �Shi��� which de�nes
entities and functions as primitive modeling constructs� In DAPLEX� properties of
entities and the relationships among them are modeled as functions� This places the
computational power of functional languages on properties and their relationships in
a uniform manner� which facilitates a better semantic expression of them� TIGUKAT
adopts this uniform functional approach and builds on it with the introduction of
behaviors as semantic de�nitions and the use of functions as the implementations of
behaviors�

� SIM �JGF���� is a commercially available DBMS based on the semantic data model
SDM� Entities are de�ned in terms of simple data�valued attributes and more complex
entity�valued attributes� which represent a binary relationship between two classes of
entities� Entities are organized into meaningful collections called classes � each of which
is either a base class 	a class de�ned independently of other classes� or a subclass 	a
class de�ned in terms of other classes�� This gives an inheritance hierarchy for entity
classes� TIGUKAT separates the notions of type and class and extends the basic
notion of class by supplementing classes with heterogeneous user�de�ned collections�

� The IFO data model �AH��� formalizes the characteristics of semantic data models
and was developed to serve as a theoretical foundation for the investigation of higher�
level data modeling� The TIGUKAT object model proposes a similar foundation for
the investigation of object�oriented modeling�

�

Object�oriented models were developed to further enhance the expressiveness and ab�
straction that semantic data models provide� Despite the number of object�oriented models
proposed� no universally accepted model exists� One reason for the absence of such a model
is that object�oriented development has followed the same informal route as semantic mod�
els�

Typically� DBMS development has followed two streams in the past� The �rst is to
extend object�oriented programming languages 	OOPLs� with DBMS features such as per�
sistence and a query facility� The resulting systems are typically a merger between object�
oriented and relational systems� Out of this approach has appeared extensions to C�� 	e�g��
ObjectStore �LLOW��� and EXODUS �CDV���� and Smalltalk 	e�g�� GemStone �BMO������
among others� The second approach is to develop a language�independent object model and
consistently extend it with DBMS features� TIGUKAT follows the second approach as do
ORION �BCG����� O� �BBB����� and IRIS �FBC����� among others�

There are currently several eorts to standardize the features of object�orientation� For
example� two recent manifestos have appeared �ABD���� SRL���� that propose various fea�
tures inherent in object�oriented database management systems 	OODBMSs�� A side�eect
of these manifestos is to outline some object�oriented concepts that have sifted through the
various model proposals over the years� In addition to these� Zdonik and Maier �ZM��� de�
�ne a reference model that speci�es the common features that should exist in an OODBMS�
Wegner �Weg��� examines the goals� concepts and paradigms of object�oriented technology
in the forum of object�oriented programming� Bancilhon and Kim �BK��� Kim��b� Kim��a�
discuss the issues that will be driving object�oriented research in the next few years� Kent
�Ken��a� de�nes a framework that emphasizes behaviors and their invocations as a means
of comparing the
objectness� of dierent models� The X��SPARC�DBSSG�OODBTG re�
port �FKMT��� de�nes an open object model architecture and recommends some standards
for object management 	ODM�� Furthermore� several other classi�cations of object�oriented
concepts have appeared �CW��� SB��� AC��� KC��� Ull��� Weg��� Kin��� Mai��� Nie���
Str���� These papers serve as useful guidelines to measure the
objectness� of various
models� The formal model developed in this thesis draws from all these reports and incor�
porates several of their core concepts� A comparison of the TIGUKAT object model with
these guidelines is given in Appendix C� Other models that have in�uenced the design of
TIGUKAT are discussed below�

Kent �Ken��b� de�nes a model that speci�es a rigorous semantics for the existence of
objects through unique object identities and has separated this from the semantics for
accessing objects� which is achieved through non�unique object references� The TIGUKAT
object model incorporates a semantics for object identity and object reference that is similar
to the concepts presented by Kent�

Snyder �Sny��� de�nes a generalized abstract object model that includes a set of core
concepts and terminology meant to represent the essence of object models� These concepts
intend to be abstract enough so that any speci�c object model may be built from them by
re�ning and populating the general model� The TIGUKAT model is open and extensible
because of the uniform treatment of objects� Extensions are easily made through subtyping
and re�nement of behaviors� which are operations provided by the primitive model�

Beeri�s model proposal �Bee��� is an analysis and classi�cation of the formal aspects
and common features found in most current OODBMSs� The framework of this model
includes both structural and behavioral components� The structural model deals with
the representation of complex structured objects vs� atomic data values� notions of object
identity� organization of inheritance graphs� and semantics of declarative languages� The

��

behavioral component explores higher�order concepts of object�orientation such as model
uniformity� the semantics of methods� the application of methods to objects� and the se�
mantics of inheritance� The model is mostly a sketch of ideas and is meant as a motivation
for object�oriented researchers to re�ne the formal aspects of object models� Emphasis on
logic�oriented modeling is evident throughout the paper� The structural model presented
in Section ��� of this thesis has evolved directly from the concepts presented by Beeri�

Maier� Zhu and Ohkawa �MZO��� outline the structural object model TEDM� which
encompasses prominent features of the object�oriented and logic programming worlds� From
the object�oriented side� TEDM includes support for object identities� complex objects�
type structures� and property inheritance� Types in TEDM have both an intensional and
extensional aspect� The intensional view consists of the structural organization of the
type in how it de�nes the representation of its instances� The extensional view denotes
the collection of objects adhering to the intensional structure of the type� Thus� TEDM
separates the notion of a type from its extent� However� the entire extent of a type is not
automatically maintained by the model 	i�e�� there is no notion of a class� and in this respect
resembles the structural model of Beeri �Bee����

The TIGUKAT object model supports the separation of type and extent� but automati�
cally maintains the extent of a type through a class� Collections are introduced to allow for
general� heterogeneous user�de�ned groupings of objects� In this way� classes are maintained
by the system to generate the entire extent of types� and there is the added �exibility of
user�de�ned collections for customized� application�speci�c groupings of objects� From the
separation of types and extents� the notions of specialization vs� subtyping evolved and are
de�ned in TEDM� These notions are included in the design of TIGUKAT because of their
application in type inferencing�

The PROBE DataModel 	PDM� �MD��� is based on the functional data model DAPLEX
�Shi���� PDM de�nes entities that denote individual elements such as PERSONs or MATE�
RIALs� and functions to represent properties of entities and the relationships among them�
PDM generalizes the functional language of DAPLEX by de�ning a function as a relation�
ship between collections of entities and scalar values� This generalization allows functions
with zero or more inputs and one or more outputs� Furthermore� function arguments can
serve as both inputs and outputs in PDM� DAPLEX functions on the other hand allow
zero or more inputs and only one output� and each argument must be either an input or
the single output� PDM allows functions that store values explicitly 	stored functions� or
that compute values through a piece of code 	computed functions�� However� syntactically
all functions resemble computed functions� Functions in TIGUKAT are multiple input� but
only single output because the result of a function must uniformly be an object� Multiple
outputs can be handled by returning a single product object that is a conglomeration of
other objects� The universal treatment of stored and computed functions is incorporated
into TIGUKAT�

OODAPLEX �Day��� extends DAPLEX into an object�oriented model by directly build�
ing on the PROBE model� The extensions to DAPLEX include abstraction� encapsulation
of behavior� closure� and enhancement of the declarative language features by allowing for
recursive queries and additionally describing a companion algebra�

Iris �FBC���� FAC���� WLH��� is a commercial OODBMS founded on the functional
data model of DAPLEX �Shi���� The Iris model de�nes primitives for objects � types � and
functions � Objects are classi�ed into the categories of literal 	atomic� and non�literal 	com�
plex� objects� Literals denote the directly system representable atomic building blocks of
non�literal objects� Iris fully encapsulates object properties into behaviors 	i�e�� functions

��

or operations�� which represent the only interface to objects� Thus� a high�level of data
abstraction and data independence is supported by the model� Operations take objects
as arguments and produce objects as results� All objects are classi�ed into types� which
de�ne the operations applicable to objects in the extent of that type� Types may be struc�
tured into subtype�supertype relationships and multiple subtyping is supported� Classes
of objects may overlap� meaning an object may belong to several heterogeneous types si�
multaneously unless there is an explicit declaration restricting classes to be disjoint 	classes
in subtype�supertype relationships must overlap�� There is no support for separate user�
de�ned collections in Iris� TIGUKAT adopts complete encapsulation of behaviors that
uniformly accept objects as inputs and produce objects as results� The structural model
re�nes this perspective by distinguishing between atomic� abstract and complex structured
values� The TIGUKAT model supports heterogeneity through collections� and classes are
restricted collections of objects that must be in a subset relationships with one another�

O� is a commercially available OODBMS �Deu��� Deu��� BDK���� It consists of a formal
model de�nition based on the framework of a set�and�tuple data model �LRV��� BBB����
and includes set� tuple� and list constructors for modeling complex nested objects �LR��a��
The O� model supports subtyping based on the set inclusion semantics developed in �Car���
and this is used to establish classes of objects� Explicit user�de�ned collections are not
supported� The language features of O� include an object�oriented database programming
language called CO� �LR��b� with C�� like features and an SQL�like ad�hoc query language
called RELOOP �BCD��� CDLR���� The query language is tightly integrated with CO�

and thus does not suer from the
impedance mismatch� problem� Unlike TIGUKAT�
the O� languages are not based on a complete formal query model that includes an object
calculus and an equivalent algebra� The emergence of O� as a commercial OODBMS makes
it valuable as a benchmark system for ranking other systems on their performance and
industrial viability�

Smalltalk �GR��� was one of the �rst commercially available object�oriented languages�
However� Smalltalk on its own lacks the functionality of database systems� GemStone
�CM��� BMO���� is a commercial system that extended Smalltalk with database features
to form one of the �rst OODBMSs�

Several other systems have provided insights into the development of object�oriented
features and have in�uenced the design of TIGUKAT� These contributions come from
Encore �ZW���� Orion �BCG���� KBC���� KGBW���� Exodus �CDF���� CDV���� FAD
�BBKV���� LOGRES�ALGRES �CCCR����� CACTIS �Hud���� CLASSIC �BBMR���� and
EMERALD �BHJ�����

One unconventional approach that has generated some ideas about object existence
and references to objects is the formal model proposal by Wand �Wan���� The philosophy
of ontology �Bun��� Bun��� is applied to de�ne the notion of an object� The technique
introduces an intriguing philosophical perspective in de�ning the foundations of a formal
object model� An ontological approach has applications in the design of object models
because these models are expected to have high levels of abstraction� and the more abstract
models become� the more likely it is that philosophical issues come into play�

��� Object Model Overview

The object model proposed here is founded on a high�level behavioral speci�cation with
object uniformity being an integral part of the de�nitions� The semantics of the TIGUKAT

��

object model is given by a complete set of de�nitions and is integrated with an example
structural model to clarify its functionality� The model is de�ned behaviorally with a uni�
form object semantics� The TIGUKAT object model is behavioral in the sense that access
and manipulation of objects occurs through the application of behaviors 	operations� to ob�
jects� and the model is uniform in that every concept modelled has the status of a �rst�class
object with well�de�ned behavior� A purely behavioral semantics� coupled with uniformity�
are two major features of the TIGUKAT object model that distinguish it from other models�

The integration of the behavioral model with a structural counterpart illustrates how
the behavioral concepts can be organized at a structural level� This de�nes a complete
model that forms a basis for a clean interface to an object storage manager subsystem�
The behavioral model of TIGUKAT is integrated with a structural counterpart to form a
complete model de�nition� This is in contrast to other models that concentrate on one or
the other� One exception is the model by Beeri �Bee���� which emphasizes the structural
model and the integration with a behavioral model is incomplete� It is important to stress
that the choice of a structural counterpart is orthogonal to the behavioral speci�cation
of TIGUKAT� The only requirement is that the structural component support the full
functionality outlined by the behavioral model�

Uniformity in TIGUKAT is more complete than in other models� This is demonstrated
in this thesis by uniformly de�ning a meta�model� a query model� schema evolution policies�
and version control as extensions to the base model� Other uniform extensions include a
query optimizer �Mu�n���� the introduction of temporality �G�O���� and a transaction man�
ager�

The behavioral model evolves from the de�nition of several primitives� The primitives
form a foundation that supplies the necessary tools from which other constructs such as user�
de�ned and system objects may be created and extended� The primitives follow the same
behavior application semantics as any other object because of the uniformity built into the
model� That is� the primitive object system evolves within the same forum as other
real�
world� objects through the application of behaviors� The primitive objects of the model
include� atomic entities 	i�e� reals� integers� naturals� characters� strings and booleans��
types for de�ning common features of objects� behaviors for specifying the semantics of
operations that may be performed on objects� functions for specifying implementations
of behaviors over various types�� classes for automatic classi�cation of objects based on
their type�� and collections� bags� partially ordered sets and lists for supporting general�
heterogeneous� user�de�ned groupings of objects�

The primitive type lattice of TIGUKAT is shown in Figure ��� with type T object as the
root and type T null as the base� The type T null binds the type lattice from the bottom
	i�e�� most de�ned type�� while T object binds it from the top 	i�e�� least de�ned type��
T null is a primitive type de�ned to be a subtype of all other types� T null is introduced to
provide� among other things� error handling and null semantics for the model� For example�
there is an object null that is an instance of T null and can be returned by behaviors that
have no other result� This is the case because T null 	and therefore null� supports the
behaviors of all other types and can be substituted as the result of any behavior� In a
similar way� instances unde�ned� dontknow and other error objects of type T null can be
de�ned�

Figure ��� illustrates the subtyping relationships of the primitive type system� Each

�Behaviors and functions form the support mechanism for overloading and late binding of behaviors�
�Types and their extents are separate constructs in TIGUKAT�

��

T_object

T_type

T_function

T_class

T_poset

T_bag

T_boolean

T_character

T_string

T_real T_integer T_natural

T_class-class

T_type-class

T_collection-class

T_null

Supertype Subtype

T_collection

T_atomic

T_listT_behavior

Figure ���� Primitive type system T �

oval in the �gure represents a primitive type and the edges between the ovals denote the
well�known notion of subtyping 	i�e�� the type T type is a subtype of type T object and so
on�� Types are identi�ed by an appropriate reference given within each oval� The semantics
of the types in Figure ��� are formally addressed in the following sections� A brief overview
is given here�

Uniformity dictates that everything in the model be an object� types� classes� collections�
behaviors� functions� and so on� are all de�ned and managed as objects� The introduction of
uniformity eliminates the need for externally maintained meta�information since all informa�
tion� including the meta�data� is self�contained within the model as objects� An additional
bene�t is that the limitless hierarchy of meta� meta�meta� etc� information is eliminated by
incorporating these levels into a single self�contained structure�

The type structure of Figure ��� is referred to as the primitive type system T � Each type
in T is associated with a unique corresponding primitive class object� Each primitive class
contains instances of other primitive objects 	e�g�� primitive behaviors� functions� collections�
strings� etc��� Types de�ne primitive behaviors and these behaviors are associated with
primitive functions that implement the semantics of the behaviors� The union of the types
in T with the set of all primitive classes� behaviors� functions and other instance objects is
de�ned as the primitive object system O of TIGUKAT�

From the type structure of Figure ���� it is clear to see the uniformity of TIGUKAT and
the relevance of the statement
everything is an object�� The TIGUKAT model restricts
dynamic type creation in that all types must be in a subtype relationship with T object�
Therefore� due to the semantics of subtyping� all behaviors de�ned on the type T object

are applicable to all objects in the system� including T object itself� This structured type
lattice is important in maintaining the uniformity of the TIGUKAT object model�

An object is an abstraction for encapsulating information into a single entity that may be
operated on by behaviors� An object is only accessible through the set of behaviors de�ned

��

by the type of that object� which constitutes the interface of the object� this is known
as the encapsulation property � Furthermore� TIGUKAT supports strong object identity
�KC���� meaning every object has a unique� immutable identi�er associated with it� which
distinguishes the object from all others�

Object accessibility in TIGUKAT is achieved through the notion of an object reference�
which is the only way to denote an object� A reference serves as a handle or locator for
an object� References are associated with a particular scope and their meaning may vary
depending on the scope in which they appear� Unlike object identities� references need
not be unique� That is� there may be many references to a particular object� The exact
speci�cation of scope and reference is outside the domain of TIGUKAT� These are left to be
precisely de�ned by application domains based on the model� For example� dierent object
programming languages may have varying levels of scoping that may dier from scoping in
query languages and graphical user interfaces�

Throughout this thesis� a functional programming environment is assumed as a global
scope� The following pre�x notations and font variations are adopted in this scope to denote
object references of the various primitive kinds�

T name is a type object reference�

C name is a class object reference�

L name is a collection object reference�

B name is a behavior object reference�

F name is a function object reference� and

name is some other application speci�c reference�

In this notation� the pre�xes T � C � L � B � and F distinguish between the various
primitive object types where the
name� part is an object speci�c reference name� The
last notation� which does not include any speci�c pre�x� refers to other system and user
de�ned objects that are not of a previously mentioned primitive kind� They may include any
sequence of characters� but should not normally begin with one of the established pre�xes�
For example� T person is a type object reference� C person a class reference� L seniors

a collection reference� B age a behavior object reference� F age a function object reference�
and a reference such as Sherry without any speci�c pre�x represents some other application
speci�c object reference� In some instances� mathematical symbols are used instead of
named references� This is done for both convenience and brevity� A full representation
using named references is always given as a supplement to the symbolic notations�

The means for de�ning the characteristics of objects 	i�e�� a type� is separated from the
mechanism for grouping instances of a particular type 	i�e�� a class�� A type is used to
specify the structure and behavior of objects� The type serves as an information repository
	template� of characteristics common among all objects that conform to that particular
type� As shown in Figure ���� types are organized into a lattice structure using the notion
of subtyping � which promotes software reuse and incremental type development�

A class ties together the notions of type and object instance� A class is a supplemental�
but distinct� construct from a type that is responsible for managing the instances of a
particular type� The entire collection of objects of a particular type is known as the extent
of the type� This is separated into the notion of deep extent that refers to all objects of a

��

given type� or one of its subtypes� and the notion of shallow extent that refers only to those
objects of a given type without considering its subtypes�

Objects of a particular type cannot exist without an associated class and every class
is uniquely associated with a single type� Thus� a fundamental notion of TIGUKAT is
that objects imply classes which imply types � Another unique feature of classes is that
object creation occurs only through a class using its associated type as a template for the
creation� De�ning object� type and class in this manner introduces a clear separation of
these concepts� This separation is important during type inferencing in the algebra which
manipulates type objects into new subtype relationships and need not be concerned with
the overhead of classes� Furthermore� many object�oriented systems include abstract types
whose sole purpose is to serve as place�holders for common behaviors of subtypes and are
never intended to have any instance objects� In this case� there may be no reason to manage
classes for abstract types� because there are no instances of these types� The separation is
also important to uniformly de�ne the model within itself� which builds the foundation for
features such as re�ective capabilities�

In addition to classes� collections 	essentially sets� are de�ned as a more general� user�
de�ned� grouping construct� A collection is similar to a class in that it groups objects�
but it diers in the following respects� First� object creation cannot occur through a col�
lection� object creation occurs only through classes� This means that collections only form
user�de�ned groupings of existing objects� Second� an object may exist in any number of
collections� but it is a member of the shallow extent of only a single class� Third� the man�
agement of classes is implicit in that the system automatically maintains classes based on
the type lattice whereas the management of collections is explicit � meaning that the user
is responsible for their extents� Finally� a class groups the entire extension of a single type
	shallow extent� along with the extensions of its subtypes 	deep extent�� Therefore� the
elements of a class are homogeneous up to inclusion polymorphism� On the other hand�
a collection may be heterogeneous in the sense that it can contain objects that may be of
dierent types that are not in a subtype relationship with one another� A collection of
objects is denoted using the standard set notation as fo�� o�� � � � � omg where each of the oi
is an object reference�

Basic collections are supplemented with de�nitions for bags 	type T bag�� which are
collections that allow duplication of elements� partially ordered sets 	type T poset�� which
are collections with an ordering relation de�ned between pairs of elements� and lists 	type
T list�� which are collections that combine the properties of bags and posets by allowing
both duplication and ordering of its elements�

These aggregate types may be specialized by subtyping the general types� One form
of specialization is to de�ne a subtype that restricts the elements of its instances to be
of a particular type� Parameterization is used to denote this form of re�nement� The
syntax is given as T collectionhT Xi� T baghT Xi� T posethT Xi and T listhT Xi where T X

represents some other type speci�cation� This restricts the members of the aggregate type
to be compatible with the type T X�� For example� T collectionhT personi represents a
collection whose members are objects that are compatible with the type T person� The
notion of type compatibility is formally de�ned in Section ������

In TIGUKAT� type T class is a specialization 	subtype� of T collection� which in�
troduces a clean semantics between the two and allows the model to utilize both grouping

�The notations T collection� T bag� T poset and T list are abbreviations for the parameterized nota�
tions T collectionhT objecti� T baghT objecti� T posethT objecti and T listhT objecti respectively�

��

constructs in an uniform manner� For example� the targets and results of queries are typed
collections of objects and since classes are a specialized collection� they may be used in
queries as well� This approach provides great �exibility and expressiveness in formulat�
ing queries and gives closure to the query model� which is often regarded as an important
feature �Bla��� YO����

The remaining subtypes of T class make up the meta type system� These include the
types T class�class� T type�class and T collection�class� Their placement within
the type system directly supports the uniformity de�nition of the model� Section �����
describes the semantics of the behaviors de�ned on these types and the architecture of
the corresponding class and instance structure of the types� This meta�model 	within the
model� is the foundation of re�ective capabilities which is addressed in Chapter ��

Two other fundamental concepts in TIGUKAT are behaviors and the functions 	known
as methods in other models� that implement them� Behaviors and functions have clearly
separate roles in TIGUKAT� The bene�t of this approach is that common behaviors over
dierent types can have a dierent implementation for each of the types� This is in direct
support for behavior overloading and late binding of implementations to behaviors� These
are recognized as major advantages of object�oriented computing�

The semantics of every operation on an object is speci�ed by a behavior de�ned on
its type� A function implements the semantics of a behavior� The implementation of a
particular behavior may vary over the types that support it� However� the semantics of a
behavior remains consistent over all types supporting that behavior� There are two kinds
of implementations for behaviors� computed functions and stored functions � A computed
function consists of runtime calls to executable code and a stored function is a reference to
an existing object in the objectbase� The uniformity of TIGUKAT considers each behavior
application as the invocation of a function� regardless of whether the function is stored or
computed�

A semantic description of a behavior may be quite complex� One approach is to de�ne
the functionality of behaviors using a denotational semantics �Sto��� All��� Sch��� CP����
A simpler technique� common in many other models� is a signature expression� A signature
de�nes a name 	reference� used to invoke the behavior� the types of the arguments to
the behavior� and the type of behavior�s result� Signatures are useful and necessary for
describing the semantics of behaviors� but they are inadequate for characterizing the full
semantics� Describing the full semantics of behaviors is a di�cult problem� In this thesis�
it is assumed that a proper semantic speci�cation mechanism exists� Only signatures are
de�ned for behaviors to give some indication of their semantics� A more complete semantic
speci�cation is part of the future research� It should be noted that the extensibility of
TIGUKAT allows the complete speci�cation to be easily added when it is �nally de�ned�

Functions are objects that include source and implementation components� The source
component is a human readable de�nition of the function�s operation 	behavior� usually
written in some object�oriented programming language� but can additionally include En�
glish commentary and further semantic descriptions� The implementation component of a
function consists of executable code if the function is computed� or is simply a reference
to a particular result object if the function is stored� The functional approach adopted by
TIGUKAT bene�ts from the signi�cant amount of research that has been done in the areas
of functional programming languages and functional theory such as the lambda calculus
�Bar��� Rev��� and category theory �Pie��� LS����

As a supplement to the behavioral model� a structural model maps behavior de�nitions
into a representation that is consistent with a storage manager level interface� The structural

��

level makes a cleaner distinction between atomic entities of the system and the structured
objects 	abstract data types 	ADTs�� that are constructed from them� At this level� the
domains of the atomic types are mapped into the semantics of values � which serve as the
identity and state of atomic objects and gives them the properties of immutability�

From the user�s perspective� the domains of atomic types can be assumed to exist and
can be manipulated using the behaviors de�ned by the atomic types� In other words�
they are seen as constants in the model� Exactly how this abstraction is maintained is
implementation dependent� Languages for the model must provide a syntax to specify
references to the constants of the atomic types� The act of specifying a constant 	in a
query language for example� from an atomic domain is interpreted as a request to return an
object representing that constant� An implementation can either scan the objectbase and
return the corresponding object constant if it exists� or create a new one if it does not� For
e�ciency reasons� an implementation should physically allow many duplicate instances of
atomic objects� but maintain the abstraction of uniqueness and immutability� This approach
is followed by the implementation of TIGUKAT �Ira����

Abstract objects include the user�de�nable objects of the system 	e�g�� application speci�c
objects� executable functions� etc��� along with the primitive non�atomic system objects
	e�g�� primitive types� classes� behaviors� etc��� An abstract object� as a whole� encompasses
the properties of immutability 	and in this sense is atomic�� but it incorporates a separate
state that may change over time� There are two main reasons for considering abstract
objects to be atomic� The �rst is related to the notion of strong object identity� Changing
the state of an abstract object does not transform the object into some other object 	i�e��
the identity of the object does not change�� Rather� it is still the same object it was before�
only now it carries dierent information� In other words� abstract objects are atomic in the
sense of their existence 	or identity�� The second reason deals with the representation of
	possibly complex� objects in mathematical logic� In this case� it is bene�cial to consider
abstract objects as atomic because this perspective relates them to the �rst�order semantics
of logic� which is well�de�ned �Bee����

The structural aspects of the model are clari�ed by the introduction of an object graph
representation de�ned in Section ���� An object graph is used to illustrate the structure
and contents of an objectbase with application speci�c and primitive system objects stored
uniformly� The nodes of an object graph correspond to the atomic values and abstract
objects in an objectbase� while the edges represent relationships 	de�ned as behaviors�
between the various nodes 	i�e�� objects��

Each concept introduced in this section� although related� has a separate role in the
model and each has a distinct semantics� In the sections that follow� these concepts are
discussed in more detail and their semantics are formalized� First� a simpli�ed geographic
information system 	GIS� is de�ned as a running example used throughout the thesis to
demonstrate results�

��� Example Objectbase

Object�orientation is intended to serve many application areas requiring advanced data
representation and manipulation� A geographic information system 	GIS� �Aro��� Tom���
is selected as an example to illustrate the practicality of the concepts introduced and to
assist in clarifying their semantics� A GIS was chosen because it is among the application
domains which can potentially bene�t from the advanced features oered by object�oriented

��

technology� Speci�cally� a GIS requires the following capabilities�

�� management of persistent and transient data�

�� management of large quantities of diverse data types and dynamic evolution of types�

�� a seamless integration of complex graphic images with complex structured attribute
data�

�� handling of large volumes of data and performing extensive numerical tabulations on
data�

�� management of diering views of data� and

�� the ability to e�ciently answer a variety of ad hoc queries�

A GIS can be de�ned as an application
designed for the collection� storage and anal�
ysis of objects and phenomena where geographic location is an important characteristic or
critical for analysis� � �In each case� what it is and where it is must be taken into account��
�Aro���� Some examples of this include displaying the eective range of a police force� illus�
trating how logging activities aect wildlife populations� and depicting the severity of soil
erosion�

GIS technology is being applied to many areas� Some common ones include agriculture
and land use planning� forestry and wildlife management� geology� archaeology� municipal
facilities management� and more global scale applications such as ecology� Each of these
areas rely on statistical data� historical information� aerial photographs� and satellite images
for analyzing and presenting empirical data� for drawing conclusions about certain phenom�
ena� or for predicting future events through sophisticated computer simulations using the
information at hand� GISs require advanced information management and analysis features
in order to be eective� Objectbase management systems have the potential to provide this
advanced functionality�

A type lattice for a simpli�ed GIS is given in Figure ���� The example is su�ciently
complex to illustrate the functionality of the model presented in this thesis� yet simple
enough to be understandable without an elaborate discussion� The example includes the
root types of the various sub�lattices of the primitive type system T to illustrate their
relative position in an extended application lattice� The additional types de�ned by the
GIS example include�

�� Abstract types for representing information on people and their dwellings� These
include the types T person� T date� T dwelling and T house� Note that T date is a
new atomic type introduced by the application which is used to represent dates in a
form acceptable to the application�

�� Geographic types to store information about the locations of dwellings and their
surrounding areas� These include the type T location� the type T zone along with
its subtypes which categorize the various zones of a geographic area� and the type
T map which de�nes a collection of zones suitable for displaying in a window�

�� Displayable types for presenting information on a graphical device� These include
the types T displayObject and T window which are application independent and the
type T map which is the only GIS application speci�c object that can be displayed�

��

T_object

T_geometricShapeT_dwellingT_person T_location

T_house T_displayObject

T_window

T_atomic T_behavior T_type

T_function T_collection

T_date

T_zone

T_water T_transport T_altitudeT_land

T_forest T_clear

T_developed

T_pond T_river T_road

T_map

T_null

Figure ���� Type lattice for a simple geographic information system�

�� A type T geometricShape which de�nes the geometric shape of the regions represent�
ing the various zones� For the purposes of this thesis� only the general type is used�
but in more practical applications this type would be further specialized into subtypes
representing polygons� polygons with holes� rectangles� squares� splines� and so on�

Table ��� de�nes the signatures of the GIS speci�c types in the lattice of Figure ����
The semantics of these behaviors will be clari�ed throughout the remainder of this the�
sis� Furthermore� the signatures for the types of the primitive type system T will also be
developed�

��� The Behavioral Model

In this section� the behavioral aspects of the TIGUKAT object model are emphasized� The
high�level abstract functionality of the model is described and the presentation follows a
formal approach� At times structural aspects are addressed to clarify certain points raised�
but these digressions are kept to a minimum� A full integration of the behavioral model
with an example structural counterpart is delayed until Section ����

����� Atomic Types	 Classes and Objects

Most data models include a set of basic primitive types referred to as atomic types � The
common types T boolean� T character� T string� T real� T integer and T natural are
included as part of the primitive model de�nitions� The collection of atomic types are
referred to as the atomic type pool � Other types may be easily added to this collection
through the operation known as subtyping�� For example� the GIS application schema of

�Subtyping is formally dened in Section ������

��

Type Signatures

T location B latitude� T real

B longitude� T real

T displayObject B display � T displayObject

T window B resize� T window

B drag � T window

T geometricShape

T zone B title� T string

B origin� T location

B region� T geometricShape

B area� T real

B proximity � T zone� T real

T map B resolution� T real

B orientation� T real

B zones� T collectionhT zonei
T land B value� T real

T water B volume� T real

T transport B e�ciency � T real

T altitude B low � T integer

B high� T integer

T person B name� T string

B birthDate� T date

B age� T natural

B residence� T dwelling

B spouse� T person

B children� T person� T collectionhT personi
T dwelling B address� T string

B inZone� T land

T house B inZone� T developeda

B mortgage� T real

aBehavior was rened from supertype T dwelling�

Table ���� Behavior signatures pertaining to example speci�c types of Figure ����

Section ��� extends the atomic types with the type T date�
Atomic types de�ne the behaviors applicable to atomic objects of that type� Atomic

objects are equated to the notion of literals de�ned in �FKMT���� They are never explicitly
created by the user� Instead� they can be assumed to exist and users can manipulate system
maintained references to these objects� or create and use their own references derived from
the primitive ones� For each atomic type� there exists a corresponding atomic class that
groups the instances of that atomic type� Thus� an atomic class for each one of the atomic
types is included�

Atomic types and classes are objects that are related to other types and classes in the
model� For example� the atomic types are all objects of the primitive type T type and
are managed as instances of the primitive class C type� The atomic classes are of type
T class and belong to class C class� This structure follows from the uniformity aspects of
the model�

TIGUKAT de�nes the usual behaviors for atomic types 	i�e�� behaviors that are com�
monly associated with objects of these types�� and provides conventional syntactic repre�
sentations of atomic objects to serve as references� Only brief descriptions are given here

��

since these types are universally known abstractions� The full behavioral speci�cation of
these types and their objects is de�ned in the implementation of the model �Ira����

Objects of the type T real are represented as �oating point numbers 	e�g�� ������� or
���E��� with behaviors for the usual arithmetic operations such as addition� subtraction�
multiplication and division� along with relational operators 	��������� Equality is ex�
cluded from this list because it is de�ned as a behavior of the more general object type�
Integer objects have the usual syntactic denotation as a string of digits 	e�g�� ������ with an
optional sign while naturals represent the subset of positive integers only� Booleans include
the two instance objects true and false which have the usual logical operations� Characters
are inclosed in single quotes 	e�g�� �x�� and correspond to a particular collating sequence�
Characters support comparison operators through their ordinal values� Strings are rep�
resented by a sequence of characters in double quotes 	e�g��
A string��� Strings support
comparison operators by examining the ordinal values of their component characters and
also include a variety of string manipulation behaviors�

The atomic types T real� T integer� T natural� and T string represent an in�nite
domain of atomic objects� A �nite objectbase is assumed and therefore all classes within
the model must be �nite� To deal with this� there are two kinds of classes provided by the
model� The one kind is called an explicit class because it explicitly manages its shallow
extent and computes its deep extent by recursing over the shallow extents of its subclasses�
The second kind is called an implicit class because the shallow extent is not explicitly stored�
but rather is implied from the contents of the objectbase� In other words� the shallow extent
of an implicit class is the 	�nite� collection of objects in the objectbase that belong to the
class� The shallow extent of an implicit class can be computed by scanning the objectbase
and returning the objects that have the same type as the type associated with the class�

Most classes are explicit classes� However� the classes for the atomic types T real�
T integer� T natural and T string are implicit� Moreover� they are special in the sense
that there is a built�in mechanism for creating the constants of the these classes� The act of
writing down a constant of one of these classes 	in a query for example� can be thought of
as a request to return an object representing the constant� creating a new one if necessary�
For example� the class C integer is initialized with the object zero and by using the B succ
and B pred behaviors on this object� any integer object can be theoretically created and
returned� The act of writing down the integer constant �� can be thought as a request to
apply B succ to the object zero and then to apply B succ to the result� This either returns
the existing object representing the integer �� or creates a new one� This is an assurance
that there is only one integer � in the objectbase� Any intermediate objects created along
the way that are not stored in the objectbase are deleted� The reals and naturals have a
similar semantics� The B succ and B pred behaviors on reals are limited to the precision
of reals on a particular system� The class C string is initialized with the empty string and
string representations of all the characters of which there are a �nite number� With these
initial strings and the concat function any string can be created and returned� The act
of writing down the string
joe� can be thought of as a request to apply B concat to the
string objects
j� and
o� and then to apply B concat to the result and the string object

e�� Of course� in the implementation of TIGUKAT �Ira��� it is not actually done in this
way� Instead the
native� domains of the implementation language are used� The above is
just a formal model that is consistent with the uniformity aspects of the object model�

The instances of the atomic types serve as both state and identity� For example� the
atomic type T integer draws from an in�nite domain of objects whose elements serve as
the identity and state of their existence� An integer reference � refers to an integer object

��

whose identity and state is the universally known abstraction of the integer �� There is
only one �� there always has been and there always will be� Note that this does not restrict
users from establishing additional references to the integer � such as �ve or V� The same
argument holds for all types in the atomic type pool�

An explicit tuple type is not included in the model� The notion of tuple can be cast
into ordinary object de�nitions� Tuples are entities with attributes that de�ne the value of
the tuple� Objects are entities with behaviors that de�ne the state of the object� Thus� a
tuple can be mapped directly into the representation proposed for an object by mapping
attributes to behaviors and values to state� Whenever a tuple de�nition is required� one
may create a type where the attributes of the tuple are de�ned as the behaviors of the type�
The values of the tuple attributes are accessed and manipulated by applying the behaviors
to objects that are compatible with the given type� Tuples and objects have an inherent
uniform representation� and de�ning tuples in this way makes for cleaner and more concise
semantics�

����� The Behavior and Function Primitives

Two fundamental concepts of TIGUKAT are behaviors and the functions 	known asmethods
in other models� that implement them�

A behavior is an object that performs an operation on other objects and produces an
object as a result� Behaviors are de�ned on types and are applicable to the object instances
that are compatible with that type� Types wanting to provide a particular behavior must
de�ne that behavior object as part of their interface or have the behavior inherited through
subtyping� Each behavior includes a semantic expression of its functionality� Equality for
behaviors is re�ned to incorporate equality of semantic expression�

Behaviors are separated from their implementations 	functions�methods�� The bene�t
of this approach is that common behaviors over dierent types can have a dierent imple�
mentation in each of the types� This is referred to as overloading the behavior� meaning
that the implementation of the behavior may vary depending on the type of the object to
which it is applied� This gives the model the ability to dynamically bind implementations to
behaviors at run time 	known as late�binding�� Overloading and late�binding are recognized
as major advantages of object�oriented computing�

The semantics of every operation on an object is speci�ed by a behavior de�ned on its
type� A function implements the semantics of a behavior� In other words� a function pro�
vides the operational semantics of the behavior it implements� Due to overloading� the im�
plementation of a particular behavior may vary over the types that support it� Nonetheless�
the semantics of the behavior remains consistent over all types supporting that behavior�
There are two kinds of implementations for behaviors� A computed function consists of
runtime calls to executable code and a stored function is a reference to an existing object
in the objectbase� Stored functions eliminate the need for instance variables� which limit
reuse �WBW��b�� The uniformity of TIGUKAT conceptually transforms each behavioral
application into the invocation of a function� regardless of whether the function is stored
or computed� This allows designers to concentrate on responsibilities rather than data
attributes �WBW��a��

Behaviors are instances of the type T behavior and functions are instances of the type
T function� The standard arrow 	�� notation is used as a syntactic representation for
functions and curry multiple argument function speci�cations� In this way� a wide variety
of other representations are supportable� A general function speci�cation is of the form

��

A � R where A represents the argument type expression of the function and R represents
the result type� In general� the argument and result type expressions may consist of any
other type speci�cations 	including function speci�cations��

Functions as implementations of behaviors are unary 	i�e�� curried� in the sense that
they have an argument expression A consisting of a single type that is compatible with the
type the function is expected to be applied to 	i�e�� the type de�ning the behavior that is
using the function as an implementation�� The result expression R of a function denotes
the result type of the object returned from the execution of that function�

Types have an extent of objects that are grouped by a corresponding class � Types de�ne
a set of behaviors that are applicable to the objects in its extent 	i�e�� its class��� Behaviors
represent the only means of accessing and manipulating objects in a class� and functions
are the objects that implement these behaviors�

The semantic de�nition of a behavior can be speci�ed in many ways� Some examples
include using the code that implements the function as a speci�cation� or using an informal
English description� or possibly a more formal denotational speci�cation �Sto��� All���
Sch��� CP���� A simple method� common among other models� is the use of a signature
expression for representing the meaning of a behavior� A signature de�nes for a behavior a
name 	reference� used for behavior application� the types of its arguments� and the type of its
result� Signatures are useful and necessary for describing behaviors� but they are inadequate
for characterizing the full semantics of behaviors� In this thesis� it is assumed that a
proper semantic speci�cation mechanism for behaviors exists and that equality testing on
behavioral semantics operates reliably� There is a behavior B semantics 	denoted �� ��� de�ned
on the type T behavior that returns the complete semantic speci�cation of a behavior� For
example� applying B semantics to a behavior� say b 	denoted ��b���� returns the semantic
speci�cation of b� Currently� only signatures are de�ned for behaviors to give some indication
of their semantics� As part of the future research� a more complete speci�cation of behavior
semantics is being developed�

A signature speci�cation consists of several elements� It has a name used to invoke the
behavior� it has argument types � and it has a result type� The name for invoking a behavior
is given by a standard string� and the argument types and result type are one of the types
available to the user� Since behaviors are always de�ned on a particular type� and types
can be function speci�cations� a behavioral speci�cation may be thought of as a function
with a single argument 	an object of the type it is de�ned on� and a single result 	an object
of the type speci�ed as the result� which may be a function�� Formally� the representation
of a signature is as follows�

De
nition �� Signature 	b � R�� A signature is a partial speci�cation of behavior� It is
denoted as b � R and consists of a name 	b� that is used to apply the behavior to an object
and a result type 	R� that speci�es the type of the object resulting from the application of
the behavior� The argument types of b may be embedded as a curried function expression
in R� �

Several primitive behaviors are de�ned on the type T behavior for the purpose of ac�
cessing and manipulating behavior objects� The behaviors relating to signature expressions
include the following�

B name � T string to access the name of a behavior�

�The relationships between type� class and extent are formally dened in Sections ����� and ������

��

B argTypes � T type � T listhT typei to return the list of argument types of a behavior
for a particular type� and

B resultType � T type� T type to return the result type of a behavior for a particular
type�

The name of a behavior must be unique over types that de�ne the behavior and are
in a subtype relationship with one another� However� the result type and argument types
of a behavior may vary as long as they are compatible with the types of the behavior in
all supertypes that de�ne that behavior� Type compatibility and subtyping is discussed in
Section ������

Behaviors are applied to objects� The object receiving the behavior is explicitly speci�ed�
This is similar to the classical or message�based object model outlined in �FKMT���� The
dot notation r�b	a�� � � � � an� is used to denote the application of behavior b to the receiver
object r using objects a� through an as arguments� If no arguments are required� then
the application simpli�es to r�b� The result of this behavior application is a reference to
an object in the extent of the result type speci�ed by the signature of b� Since the result
is a reference to an object� it may have other behaviors applied to it� Thus� the behavior
application itself may be thought of as an object reference�

For example� consider the following signature de�ned on the type T person in Table ����

B residence � T dwelling

Applying B residence to an object of type T person results in the execution of the
function object associated as the implementation of this behavior� which returns an object
that is compatible with the type T dwelling� If an expanded signature speci�cation as in
�S�O��a� were used� the signature would be written as follows�

B residence � T person� T dwelling

In TIGUKAT� a behavior must be de�ned on a type before being used and a behavior
can be de�ned on many types�� Therefore� the
T person �� part of the signature is
omitted and is derived from the type of the receiver object instead� Consider an object
Sherry as an instance of type T person� The application of B residence to Sherry is de�
noted as Sherry�B residence� This invokes the function associated as the implementation
of B residence in type T person and the result is a reference to an object in the extent of
T dwelling� A subtype of T person� such as T student for example� may have a dierent
implementation of B residence� but the behavior is semantically equivalent in both types�
The signature partially supports this semantic equivalence�

An optional representation for behavior application is function invocation denoted as
b	r� a�� � � � � an� where one of the arguments 	e�g�� the �rst one� is special in the sense that it
denotes the receiver object� This representation is equivalent to the dot notation� Referring
back to a previous example� applying the behavior B residence to the object Sherry using
function invocation is speci�ed as B residence	Sherry�� Function invocation represents an
optional representation for behavior application and has a direct translation to the dot
notation by moving the receiver object out of the argument list to the position before the
dot�

�In Section ������ a behavior �B interface� is dened that� when applied to a type� returns the collection
of behaviors dened on that type�

��

In order to associate a function with a behavior for a particular type� the type T behavior

de�nes the following behavior�

B associate � T type� 	T function� T behavior�

This behavior accepts a type and a function as arguments� For example� the behavior
application b�B associate	T� f� will associate function f with behavior b in type T � Now�
whenever b is applied to an object of type T � the function f will be invoked� Other behaviors
de�ned on T behavior include B implementation for accessing the function 	implementa�
tion� associated with a behavior for a particular type� B de�nes to get a collection of types
that the behavior is de�ned on� and B apply to apply a behavior to an object with a list of
arguments�

Functions have behaviors such as B source and B executable for accessing the source
code and executable load module of a function� The source component is a human readable
de�nition of the function�s operation most likely written in some object�oriented program�
ming language� but can include things like commentary and formal semantic speci�cation�
The implementation component of a function consists of executable code� in the case of
a computed function� or is simply a reference to a particular result object� in the case
of a stored function� The functional approach adopted by TIGUKAT bene�ts from the
signi�cant amount of research that has been done in the areas of functional programming
languages and functional theory such as the lambda calculus �Bar��� Rev��� and category
theory �Pie��� LS���� Category theory is a pure theory of functions consisting of objects
and morphisms 	essentially functions� that map one object to another� In the spirit of cate�
gory theory� the TIGUKAT object model is based on objects and behaviors� which act as a
mapping from one object to another� The identity� composition� and associative properties
of morphisms in category theory with appropriate modi�cations also hold for behaviors in
TIGUKAT� The lambda calculus is a functional language with a simple syntax for spec�
ifying parameterized functions and function application� Lambda expressions are used in
developing the predicates of the TIGUKAT algebraic operators to de�ne the application of
behaviors within queries�

The type T function de�nes the following additional behaviors to deal with function
properties and function application� B argTypes for accessing the list of argument types
of the function� B resultType for accessing the result type of the function� B compile for
compiling the source code� and B execute for executing the function�

In Section ������ subtyping 	also referred to as behavioral inheritance� is de�ned as a
reuse mechanism for the behaviors of types� A behavior is inherited in a subtype T � if it is
de�ned in a supertype of T � � Otherwise the behavior is native� Behavioral inheritance has
no implication on the reuse of implementations� That is� inherited behaviors do not neces�
sarily borrow any implementation from their supertypes 	although this may be the default��
For this reason� a separate reuse mechanism for implementations called implementation in�
heritance is de�ned� A behavior implementation 	i�e�� function� is inherited in a type if the
behavior that it implements is inherited� and if the implementation is the same function
as the implementation of that behavior in the supertype� Otherwise the implementation is
rede�ned 	or overridden��

The TIGUKAT object model supports multiple inheritance 	i�e�� multiple subtyping��
Multiple subtyping means that a type can be a direct subtype of several other types� This
requires a con�ict resolution policy to choose an implementation when inheriting semanti�
cally equivalent behaviors with dierent implementations from several types� TIGUKAT

��

can support dierent con�ict resolution policies because con�ict resolution is not part of the
base model de�nition� One approach is that used in Modular Smalltalk �WBW��a� where
it is an error for a type to inherit two dierent implementations 	i�e�� function�s� for the
same behavior� The error can be avoided by explicitly rede�ning the implementation for
that behavior� One of the two con�icting functions can be chosen as the rede�ned imple�
mentation� In TIGUKAT� a separate mechanism to resolve inheritance con�icts between
instance variables is not required because there is no concept of instance variables� They
are handled as behaviors with stored functions as the implementation and stored function
con�icts are resolved in the same manner as computed function con�icts�

Con�ict resolution is unnecessary for behavioral inheritance because this deals with
semantics of behaviors� which are preserved over type boundaries� while the implementation
of these semantics may dier over con�icting types� The inheritance mechanism� as well as
the con�ict resolution policy� is implementation dependent and not part of the base model
de�nition�

����� The Object Primitive

An object is a fundamental primitive in TIGUKAT because the conceptual level of the model
deals uniformly with objects� In Section ���� the concept of an object as an abstraction for
encapsulating information and behavior into a single entity is described� The encapsulated
portion of an object is referred to as its state� which is accessible only through a set of
behaviors de�ned on the type for that object� The state carries the information content
of the object� In addition to state� each object has an identity � which serves as a unique�
immutable system managed identity for the object throughout its existence� Thus� the
model considers an object as a pair consisting of an identity and a state�

De
nition �� Object� An object is de�ned as the pair 	identity� state� where identity is
the unique� immutable identity of the object and where state is the information carried by
the object� �

An unique object identi�er 	or oid� is associated with an object upon its creation and
persists with that object throughout its lifetime� An oid serves as the identity of an object�
In TIGUKAT� objects are composed of other objects because the result of behaviors applied
to objects are objects themselves� Conceptually� every object in TIGUKAT is a composite
object� By this� it is meant that every object has references�relationships 	not necessarily
implemented as pointers� to other objects� For example� even integers have behaviors that
return objects� but they are not implemented as pointers�

If one considers the domain of all objects as the collection of pairs consisting of all
possible combinations of identity and state� then an unwanted inconsistency arises� This
domain will contain objects with the same identity� each associated with dierent states�
This is obviously inconsistent because there is a single identity attempting to identify several
semantically distinct states�

To eliminate this inconsistency� the following de�nition of a consistent set of objects
is formed� which gives a basis for objectbase construction� The de�nition assumes the
existence of an operation oid	o� that takes an object o as input and returns the internal
identity 	oid� of the object as its result� Note that this operation could be de�ned as a
behavior that uniquely maps all objects 	past and present� to the integers�

��

De
nition �� Consistent Object Set �conset�� A set of objects O constitutes a consistent
object set 	conset� if and only if �oi� oj � O� oid	oi� � oid	oj� �� oi � oj � where ��
denotes logical implication� �

The de�nition of a consistent object set adheres to the notion of strong object identity
�KC���� That is� every object in a conset has an internal identi�er that is distinct from
all others in the conset � This feature gives each object a unique existence within a conset
and provides an unambiguous association with the state of that object� Note that with this
de�nition two separate objects may share the same state information� This is reasonable
since there are many examples of real�world objects 	printed maps of a city to name one�
that have identical properties� yet are distinguishable objects in their own right�

The primitive object system O is a conset of objects as laid out by the following axiom�
The remainder of the model development is within the bounds of a conset �

Axiom �� The primitive object system O is a conset � �

Some argue �SRL���� Bee��� that object identities should have the option of being either
system or user assigned� In the TIGUKAT model� all object identities are maintained au�
tomatically by the system without any user involvement� This is in keeping with the notion
of strong object identity and has additional bene�ts when it comes to reconciling the com�
ponents of distributed object bases and the variable interpretations that may exist among
them� Nevertheless� user de�ned identities can be supported in the presence of strong object
identity� They are possible through application speci�c interpretations� For example� a user
may choose to recognize one of the behaviors of an object 	e�g�� B social insurance number�
as an identi�er for that object and all other objects like it� The TIGUKAT model places
no restrictions on this kind of customized interpretation�

Object existence� access� and manipulation in TIGUKAT is based on the notions of
reference� scope and lifetime� This is similar to other model proposals �Sny��� Ken��b�
FKMT��� in that the only user expressible form of an object is a reference within a particular
scope� A scope de�nes the visibility� access paths and lifetime of object references� A
reference may be thought of 	and actually implemented� as a pointer 	or handle� to an
object� which in turn leads to the object�s identity and state� The notation Ri Si denotes
an object reference Ri in scope Si� This is shortened to Ri when the scope is obvious or
immaterial� The Ri component is a reference name adhering to the pre�x notation outlined
in Section ���� The lifetime of an object is independent of the lifetime of a reference to
that object in a particular scope� That is� when a reference disappears� the object being
referenced does not necessarily disappear� but may persist past the lifetime of the reference�
However� if an object no longer has any references 	system or user� maintaining its existence�
then the object should be selected as a candidate for storage reclamation� From the database
perspective� there is also the issue of explicit deletions� Deleting an object within a particular
scope should guarantee that the object is no longer visible in that scope� but how this aects
its visibility within other scopes concurrently referencing the object is part of a concurrency
control mechanism and is not addressed in the primitive model� The semantics of object
deletion in light of schema evolution is addressed in Chapter �� The semantics of storage
reclamation is outside the scope of this thesis� Figure ��� is an example of an object reference
model and illustrates the relationships among scope� reference� identity and state�

In Figure ��� there are the two scopes S� and S�� The scope S� could be an application
programming environment while S� may be an interactive query processor� The exact

��

���
�����
����
�����
������
�����

�����
�����

���
�����
����
�����
������
�����

�����
�����

���
�����
����
�����
������
�����

�����
�����

������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
���

���
���
���
���
��
���
������������

���������

���
�����
����
�����
������
�����
�����

�����

��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
�
��
�
��
�
��
�
��
��������������������

������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
���

���
���
���
���
��
���
������������

���������

���
�����
����
�����
������
�����
�����

�����

I�

I�

I�

R�

R�

R�

R�

R�

Reference

Scope S�

Scope S�

state�

state�

state�

State

Object

oid

TIGUKAT

Figure ���� An object reference example�

semantics of the scoping rules is de�ned by the application accessing the objectbase and
may vary over applications� Within scope S� there are the three object references R�� R�

and R�� References R� and R� refer to the same object identi�ed by I�� and R� refers to
the object identi�ed by I�� Within scope S� there are two object references� R� and R��
In this scope� R� refers to the same object as R� and R� do in scope S�� and R� refers to
the object identi�ed by I� which is unrelated to scope S�� This example shows the various
mappings from references over scopes S� and S� to their associated objects� The heavy
dark line around the objects indicates the boundary of the TIGUKAT object model� If� for
example� one considers everything within the boundary as being persistent 	i�e�� assuming
a persistent object store�� then if a reference or an entire scope disappears� the objects will
persist 	provided they have other references to them and won�t be garbage collected�� When
referring to objects� the terms
object� and
object reference� are used interchangeably�

Operations on objects are performed through behaviors� Since object access is speci�ed
through references� behaviors are applied to object references within a particular scope
which in turn applies the behavior to the actual objects and returns a reference to the
resulting object� There are several primitive behaviors de�ned on type T object that are
inherited by all other types because the lattice is rooted at T object� These behaviors
represent the fundamental operations on objects�

A basic requirement in the model is a mechanism to determine if two object references
are actually referring to the same object or dierent objects� Therefore� the following
equality behavior is de�ned on T object� which makes it applicable to all objects�

Behavior �� Object Equality� �B equal � T object � T boolean� 	��� For any two
object references Ri and Rj in their respective scopes Si and Sj � the result of applying
Ri Si�B equal	Rj Sj� is true if and only if Ri Si and Rj Sj map to the same object
identity in the domain of object identities 	i�e�� oid	Ri Si� � oid	Rj Sj��� Since the
model development is within the bounds of a conset � the states of the objects must also be
equal� The in�x binary relation operator
�� is used as a shorthand for B equal� and the
above behavioral application of B equal can be expressed as Ri Si � Rj Sj � Similarly�
the inverse relation �� is de�ned to test for inequality� The result of equality is an object
reference to an atomic boolean object true or false� Object equality�inequality is re�exive�
symmetric and transitive� �

��

Scope S� Scope S� Scopes S� and S�
R� � R� R� � R� R� S� � R� S�
R� � R� R� � R� R� S� �� R� S�
R� � R� R� �� R� R� S� � R� S�
R� � R� R� S� �� R� S�
R� �� R� R� S� �� R� S�
R� �� R� R� S� �� R� S�

Table ���� Object equalities of Figure ����

Table ��� lists the equalities�inequalities that result in true among the references of
Figure ��� over the two scopes� The �rst column shows the equalities in scope S�� the
second in scope S� and the third lists the equalities over both scopes�

This is the only kind of equality the primitive model de�nes� It is quite strong in that
the only way two object references are considered equal is if they actually refer to the same
object identity� This notion of object equality is the same as
identity equal� de�ned in
�KC��� or
��equality� de�ned in �LRV���� At this level� there are no notions of shallow or
deep equality found in other models �KC��� LRV��� Osb��� or extended versions of these
that determine equality at various levels �SZ���� These notions can be de�ned as identity
equivalence relationships on the behavioral characteristics of objects and therefore should
be left to customized interpretations at the behavioral level rather than being part of the
primitive model de�nition� For example� the model may provide the classical shallow and
deep equivalence through behaviors that evaluate and determine the equivalence of objects
based on the identity equivalence of their component behaviors� This is strictly a design
decision that should be left for the implementation phase of a particular system� Dayal
�Day��� also makes this argument by stating that there are many notions of equality and
those other than
identity equality� are best left for the
customizers� of the model to de�ne
the ones that are of most utility to them� For example� equality for behaviors is specialized
to mean semantic equality� and equality for atomic objects is specialized to mean value
equivalence�

Note that equality testing at the object identity level is transparent to the reference
model and is an operation provided by the system through the internal oid	� function�
This is necessary since the identities serve as part of the representation of objects and
are not objects themselves� Including identities as objects� in one sense� cleans up the
semantics of certain de�nitions� but poses problems in other aspects� The deciding argument
that suggests identities should not be treated as objects has to do with the circularity of
de�nitions that arise if identities are objects� If an identity is an object� then by de�nition
it must consist of an identity 	and a state�� but this new identity must be an object�
which must consist of an identity 	and a state�� A �x�point for this recursive de�nition is
not obvious and has led to the development of a consistent approach that does not treat
identities as objects�

Objects in TIGUKAT are strongly�typed� This means that each object is uniquely
associated with a particular type� which de�nes the object�s full semantics� Thus� object
implies a type 	object �� type�� A type de�nes the behaviors applicable to the objects of
that type� It is important in type�checking and query processing to know the type of an
object �S�O��b� 	or a conformance of types for an object�� Therefore� a behavior on objects
is de�ned that returns the type of the object� We say that every object maps to a particular

��

type� The B mapsto behavior is de�ned on the type T object making it applicable to all
objects�

Behavior �� Maps to �B mapsto � T type� 	���� For an object reference o� the behavior
application o�B mapsto is de�ned to be the singleton type object reference T � that repre�
sents the type of object o� The notation o �� T � denotes that object o maps to type T �
	i�e� 	o �� T �� �� 	o�B mapsto � T ���� �

For example� if the object Sherry is an instance of the type T person� then the following
behavior application returns the type of Sherry� which is T person�

Sherry�B mapsto

Using the symbolic notation� the behavior application is speci�ed as follows�

Sherry �� T person

Extending this uniformly to types� the behavior application T person�B mapsto returns
the type object T type and T type�B mapsto returns T type as well� Thus� T type is a
�x�point for the B mapsto behavior� Symbolically� this is speci�ed as follows�

Sherry �� T person

T person �� T type

T type �� T type

The support of objects that have behaviors from multiple types is handled by the single
type approach� For example� given types T student and T artist� and an object Sherry

that is both a student and an artist� a new type� say T student�artist� is created� with
all the behaviors of T student and T artist� The object Sherry can then map to this type�
thereby acquiring all the behaviors of students and artists� In Section ������ an automated
type inferencing mechanism is de�ned for generating types during query processing so that
result collections which containing objects of dierent types have a single type describing
the common behaviors of all objects in the result� The single type approach is advocated by
several type theories including Martin�L�of type theory �ML��� BCMS��� and those based
on the typed lambda calculus �Car����

A model must supply a mechanism for removing objects from the system� The TIGUKAT
model allows many references to an object� Therefore� the removal of an object 	within a
particular scope� consists of severing the link between the reference and the object� This
process does not necessarily destroy the object because other references may still be valid
and in use 	i�e�� reference lifetime is independent of scope lifetime�� When there are no
references to an object� the object is dangling � A garbage collection policy could be em�
ployed to reclaim the storage occupied by dangling objects� Since this is an implementation
issue� it is not part of the formal model de�nition� Concerning the primitive objects� these
are system de�ned objects and the system always maintains a reference to them� There�
fore� these objects are not endangered of becoming dangling objects and being removed by
storage reclamation�

�This type creation can be done through subtyping as described in Section ������

��

A �nal behavior on T object is the identity mapping behavior B self � T object that
maps every object to itself� That is� for any object o� o�B self � o� There are additional
object behaviors whose presentation depends on other primitive concepts� These behaviors
are introduced after their foundations are established�

����� The Type Primitive

A type de�nes behaviors and encapsulates hidden behavior implementations and state struc�
ture for objects created using the type as a template� The behaviors de�ned by a type
describe the interface to the objects of that type� Types are organized into a lattice�like	

structure using the notion of subtyping � which promotes software reuse and incremental type
development� TIGUKAT supports multiple subtyping� so the type structure is a directed
acyclic graph 	DAG�� However� this DAG has the root T object� which is a supertype of
all types� and the base T null� which is a subtype of all types�

The uniformity aspects of TIGUKAT imply that types are also objects with their own
state and identity along with their own type� The state of a type object consists of a struc�
tural speci�cation of its instances 	a template�� references to the encapsulated behaviors it
de�nes� references to its subtypes and supertypes� and a reference to its associated class 	if
it exists��

The type that describes all other type objects is the primitive type T type� which is also
a type 	i�e�� T type �� T type�� The type T type is a �x�point for the B mapsto type refer�
encing behavior� T type is accessible in the same manner as any other object� Thus types�
in addition to serving as descriptions of objects� are objects themselves and the type T type

serves as the description of all other types� this is known as the type�type property� The
issue of type�type is controversial� particularly in the area of programming languages� For�
tunately� some functional language speci�cations where the type�type property holds have
emerged �Car���� These are likely candidates to assist in the development of a programming
language for the model and in expanding the semantic descriptions of behaviors�

Recall from Section ����� that behaviors are either explicitly de�ned by a particular
type or are inherited from a supertype� Behaviors that are explicitly de�ned by a type and
are not de�ned in any of its supertypes are called native behaviors � Other behaviors of
the type that are de�ned by its supertypes are called inherited behaviors � T type de�nes
behaviors B native for accessing the native behaviors of a type and B inherited for accessing
the inherited behaviors� The entire public interface of a type is the union of the native and
inherited behaviors� The behavior B interface is de�ned to return this union� Additional
operations are de�ned on the interfaces to provide facilities for adding� deleting and updating
the behaviors of a type� These operations address issues of update semantics and schema
evolution which are covered in Chapter ��

Two relationships among types have been identi�ed ��OSP���� One is the concept of a
type specializing another type in a manner similar to what is described in �MZO���� The
other is the more popular� and stronger� notion of explicitly creating a type as a subtype
of another type �Car���� Specialize is a binary relation de�ned on types that determines
whether one type specializes another� A specialization is determined from the semantic
characteristics of behaviors�

	The term �lattice� is used loosely and is common in describing the type structure of object�oriented
systems� Formally� the type structure of TIGUKAT is a complete partial order with a least dened element
T object and a most dened element T null�

��

Behavior �� Specialize �B specialize � T type � T boolean� 	v�� A specialize re�
lation v between pairs of types T � � T � is a re�exive and transitive relation such that
T � �B specialize	T �� 	denoted T � v T �� is true if and only if the interface of T � is a sub�
set of the interface of T � 	i�e�� T ��B interface 	 T � �B interface�� This can be interpreted
as� type T � specializes type T � if and only if the behavioral interface of T � subsumes the
behavioral interface of T �� If T � v T � and T � v T � � then either the interfaces of T �
and T � are identical or T � and T � refer to the same type object 	i�e�� T � � T ��� �

A type may have an associated class of objects that have been created using that type
as a template� This is known as the extent of the type and is important in the context
of subtyping � Subtyping� like specializing� is de�ned as a binary relation on types� but
is stronger in the sense that it de�nes a partial ordering of the type lattice and a subset
inclusion relationship on extents�

Behavior �� Subtype �B subtype � T type � T boolean� 	
�� A subtype relation

between pairs of types T � � T � is a re�exive� transitive and antisymmetric relation such
that the behavior application T � �B subtype	T �� 	denoted T �
 T �� is true if and only if
type T � has been created as a subtype of type T �� The notation T �
 T � is interpreted
as T � is a subtype of T � and implies that�

�� T � v T ��

�� the behaviors of T � are inherited by T � 	i�e�� T � �B inherited � T ��B interface��
and

�� the extent of T � is a subset of the extent of T ��

It can equally be said that T � is the supertype of T � � �

Consider the simple example in Figure ���� The types T person and T house have no
explicit relationship with one another� however� they do have a derived specialize relation�
ship as indicated by the dashed arrow� On the other hand� the type T student is explicitly
denoted as a subtype of T person as indicated by the solid arrow� According to the behav�
iors de�ned on these types 	as shown in the boxes�� T person specializes T house because
T person de�nes all the behaviors of T house and more� From the de�nition of subtype�
T student specializes T person 	and transitively T house�� which conforms to the behav�
ioral inclusion notion of specialize 	i�e�� T student de�nes all the behaviors of T person 	and
T house�� plus more�� Conversely� T house does not specialize T person nor T student� It
is interesting to note that if T person did not de�ne the B name behavior� then T house

would specialize T person as well�
In addition to the behavioral information� the type extents are given in Figure ��� with

ownership indicated by the double solid line� The subtype relationship between T student

and T person insists that the extent of T student is a subset of the extent of T person 	i�e��
every student is a person�� This subset relationship is shown be the dotted line� On the
other hand� the specialize relationship does not demand subset inclusion of type extents�
This is reasonable since a person is not a house� Specialize is important when inferring
types for the results of queries� For example� if a query returns all the persons or houses
that are �� years of age� a type is needed to describe the members of the query result�
By using the specialize relationship between T person and T house� a common type can
be derived as a supertype of T person and T house that includes the behaviors B age and

��

�
�
��
�
��
��
�
��
��
�
��
��
��
���
��
���
��
���
���
����
���
����
�����
����
�����
������

������
�������

���������
�����������

�����������������
���

���
��
��
��
�
��
�
��
��
��
���
��

�������������
���������
��������
������
������
������
����
�����
����
����
���
���
���
���
���
��
���
��
��
��
��
��
��
��
�
��
��
�
��

�
�
��
��
��
��
��
��
�
��
��
��
��
���
��
���
���
���
���
���
����
����
�����

����
������

������
�������

��������
�����������

������������������
��

�����
���
��
��
�
��
�
��
�
��
��
���
������
���

���������������
����������
��������
������
������
�����
�����
�����
����
���
����
���
���
��
���
���
��
��
��
��
��
�
��
��
��
��
��
�
��

�
�
��
�
��
��
�
��
�
��
��
��
��
��
��
���
���
��
���
���
����
����
����
����
�����

�����
������

�������
��������

�����������
����������������

��
����
���
��
��
��
�
�
��
��
��
��
���
��

�������������
���������
�������
�������
�����
�����
�����
����
����
����
���
���
���
���
��
��
���
��
��
��
��
��
�
��
�
��
��
�
��

��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

��
��
��
�
��
��
��
�
��
��
��������������������

���������� ���������� ���������� ���������� ���������� ���������� ���������� ����������

���
�����
����
�����
������
�����
�����
�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��
�
��
��
�
��
��
�
��
��������������������

��
�����
�����
�����
������
�����
�����
�����
������
�����
�����
�����
�����

��
�����
�����
�����
������
�����
�����
�����
������
�����
�����
�����
�����

����
������
�����
�����
�����
������
�����
�����
�����
������
�����
�����
��

����
������
�����
�����
�����
������
�����
�����
�����
������
�����
�����
��

����
������
�����
�����
�����
������
�����
�����
�����
������
�����
�����
��

����
������
�����
�����
�����
������
�����
�����
�����
������
�����
�����
��

B age
B height

T houseT person
B name
B age
B height

T student
B degree
B GPA

� Extent of T house
Extent of T person

Extent of T student

v

�

Figure ���� Example of subtype and specialize relationships�

B height� These behaviors are applicable to all members of the query result� regardless of
whether the member is a person or a house� A complete discussion of type inferencing is
given in Section ������ In summary� specialize is important from the behavioral perspective�
while subtype is important from the behavioral and extent inclusion perspectives�

A type is either a direct subtype of another type or is a subtype through transitive
closure� The model de�nes two primitive behaviors on type T type for managing subtypes�
Behavior B subtypes returns a collection containing all the direct subtypes of a given type
and behavior B supertypes returns a collection of all the direct supertypes� The type
T object has no supertypes�

Subtyping is a stronger relationship than specialize in several respects� First� the subtype
relation 	
� de�nes a partial order on types while specialize 	v� does not� because specialize
is not antisymmetric� That is�

T �
 T � and T �
 T � �� T � � T �� but
T � v T � and T � v T � ��� T � � T �

Second� all behaviors of a supertype are automatically inherited by a subtype� which implies
that these behaviors cannot be native� Note that this only refers to the behavioral inheri�
tance which is dierent from implementation inheritance� the implementation of inherited
behaviors may change in the subtype as long as they provide the semantics speci�ed by
the behavior� For types in a specialize relationship only� common behaviors may be rede�
�ned as native behaviors in each of the types� Lastly� subtyping de�nes a subset inclusion
relationship on type extents while no such property is enforced for specialize� Specialize
can be used to test whether two types have compatible interfaces� On the the other hand�
subtyping guarantees that the interface of a type is compatible with 	or conforms to� the
interface of all its supertypes�

A type may be declared as a subtype of several other types� meaning that a type can
have many supertypes and also many subtypes� This is usually referred to as multiple
inheritance �Car���� but the termmultiple subtyping is used in this thesis� It follows from this
property that a type can also specialize many types and be specialized by many other types�
Multiple subtyping requires a con�ict resolution scheme to select a proper implementation
when a type inherits semantically common behaviors 	with dierent implementations� from

��

��
��
��
��
��
��
��
��
��
��������������������

��

��
��
��
���
��
��
��
���
���
��
��
��
���
��
��
��
��

�����
�����
������
�����
������
�����
������
�����
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
���

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

���
����
���
����
���
�����
����
����
���
����
�

��

�
��
��
��
��
��
��
��
��
�
��������������������

���
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
������
�����
������
�����
������
�����
��

T zone

T window

T displayObject

T object

T map

Figure ���� Super�lattice of type T map�

dierent types� The de�nition of this protocol is considered to be an implementation issue
and therefore is not include as part of the primitive model de�nition� A simple approach is to
force the user to resolve the con�ict by either choosing one of the possible implementations
or rede�ning the implementation altogether� Note that con�ict resolution is only a problem
in implementation inheritance and is not required for behavioral inheritance due to the
assumption that semantic de�nitions of behaviors are powerful enough to express uniqueness
that persists across type boundaries�

The de�nition of subtyping leads to the axiom of root type which imposes a lattice struc�
ture on the schema of types and is important for the maintaining the model�s uniformity�

Axiom �� Root Type� for all types T � � T �
 T object� �

The axiom of root type states that all type objects are subtypes of the type object
T object� which forms the root of the type lattice� This axiom is important in that it
forces all types in the system to support the behaviors de�ned on type T object� Since
types model entities in the system� the axiom ensures that everything is an object�

Every type� together with its supertypes� forms a structure called a complete lattice�
This structure is introduced and its role in the model is established through the de�nition
of a supertype lattice behavior on the type T type� The following de�nitions reference a
type system denoted T � that is de�ned to include the primitive type system T together
with all application speci�c types supplementing T �

Behavior �� Super�lattice �B super�lattice � T posethT typei� 	��� For a given type
T � � T � �B super � lattice 	denoted �T �� returns a collection of types� partially ordered
by
 	i�e�� a poset�� such that for all types T � � �T � � T �
 T � and there does not exist
a type T � � T � such that T �
 T � and T � �� �T � � �

From Axiom ���� all types are a subtype of the type T object� Therefore� T object

must be in �T � for all types T � and �T � forms a complete lattice of types with T � being
the most de�ned element in �T � and the type T object being the least de�ned one� For
example� applying the super�lattice behavior to the map type T map of Figure ��� 	denoted
as T map�B super�lattice� results in a collection of types including T map� T zone� T window�
T displayObject and T object that is partially ordered by the
 relation� This complete
lattice is represented graphically in Figure ����

In addition to super�lattice� the model de�nes a complement behavior B sub�lattice that
returns the sub�lattice of a type� The sub�lattice is also a complete lattice with the receiver

��

type as the root and type T null as the base� Note that B super�lattice and B sub�lattice
include the receiver type in their result while B subtypes and B supertypes do not� The
reason is that every type is a subtype of itself� but is not considered to be a direct subtype
of itself�

By de�nition� any object of type T � must support the behaviors of all types in the super�
lattice T � � In other words� any behaviors that operate on objects of a type T � � �T �

must operate on objects of type T � � Some have called this substitutability �SZ��� because
an object of type T � can be used 	substituted� in any context specifying a supertype of
T � � The de�nition of conformance is re�ned from �Str��a� to describe this property� but
�rst a conforms to relation on the type T object is de�ned as follows�

Behavior �	 Conforms�to �B conformsTo � T type� T boolean� 	��� Given an object
o and a type T � � the behavior application o�B conformsTo	T �� 	denoted o� T �� is true

if and only if o�B mapsto v T � � The term o� T � reads object o conforms to type T � � �

The truth of the statement o � T � implies that all behaviors de�ned on type T � are
applicable to the object o� Given an object o that maps to type T � � o must conform to all
types that T � specializes� Let S denote the collection containing these types� Each set in
the powerset of S forms what is called a conformance for the object o� A conformance is
formally de�ned as follows�

De
nition �� Conformance 	��� A conformance for an object o is a collection of types
! � fT �� T ��� � �� T ng such that for all types T i � !� o � T i� The notation o � ! is
used to indicate that object o has conformance !� �

A conformance for a particular object gives a typed perspective of that object� The
types in a conformance de�ne behaviors that are applicable to the given object� It is
possible that some of the behaviors may be shared among the types in the conformance
because of subtyping and specialize relationships that may exist among them� It is also
possible that not all behaviors applicable to the object are represented by the types in the
conformance� An object has 	possibly� many conformances� which translates directly into
the statement that a type can specialize 	possibly� many other types� However� for every
object there exists a conformance such that adding a type to the conformance does not add
any additional type information for the object� and deleting a type from the conformance
would lose typing information� This conformance is called the most speci�c conformance
for the object�

De
nition �� Most Speci�c Conformance 	MSC	��� A conformance ! for an object o
is a most speci�c conformance if and only if there does not exist a type T � � T � such that
o � T � and T � v T � for some T � � !� where T � �� T � � A most speci�c conformance
for an object o is denoted by MSC	o�� �

The most speci�c conformance for a particular object o is the one and only collection
of types MSC	o� that most speci�cally de�ne the behaviors of o� Every object has one
and only one most speci�c conformance� In general� for a given object o� the most speci�c
conformance is a collection consisting of the single type that the object o maps to� In
previous work �S�O��a�� we found that when an object o is a collection 	i�e�� set�� there is
another form of MSC to consider that is important for typing the results of queries� which
are collections� This second form of MSC is useful for determining the collection of types
that most speci�cally de�ne the common behaviors of the element objects in the collection
rather than the conformance of the collection object itself�

��

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
� �

��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��

��
��
��
��
��
��
��
�
��
���������������������

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��

����
�����
������

��������
���������
������

����
�����
����
�����
������
�����

�����
����

�

�

�

�

�

�

�

�

�

�

T �

T � T �

T �

supertypesubtype

o� o�

B �

B � B �

B �

Figure ���� An example type schema�

De
nition �	 Most Speci�c Set Conformance 	MSCset	��� The most speci�c set con�
formance for a collection of objects O 	denoted MSCset	O�� is the one and only collection
of types ! such that�

	�� �o � O� o � !� and
	�� � T � � T � j �o � O� o� T � and T � v T � for some T � � ! where T � �� T �

�

The �rst statement indicates that ! is a conformance for every object in O� The second
states that there is no type in the type lattice that more speci�cally de�nes the behavior of
all objects in O other than the types given in !� For example� consider the type structure
of Figure ���� and assume the existence of two objects o� and o� such that o� is in the
extent of T � and o� is in the extent of T �� Because of subtyping� o� and o� are also in
the extents of T � and T �� The MSC	o�� is fT �g and the MSC	o�� is fT �g� Using
this schema� a query could generate and return the generic collection object fo�� o�g� The
MSC	fo�� o�g� could be given as the generic collection type fT collectiong because of
the lack of additional type information� In contrast� the MSCset	fo�� o�g� is the collection
of types that most speci�cally de�ne the behaviors of the elements in fo�� o�g 	i�e�� objects
o� and o� respectively�� The result of this conformance is the collection fT ��T �g because
both o� and o� inherit the behaviors of T � and T � and there is no other type that more
speci�cally de�nes both objects� The result could not have been fT �g because o� does not
conform to T � and it could not have been fT �g because o� does not conform to T �� it also
couldn�t have been fT ��T �g for the same reason� Furthermore� fT �g and fT �g are also
incorrect because in these cases some typing information is lost for the member objects�
namely� behaviors B � or B � respectively�

MSCset	� is used in the query model to perform type checking and type inferencing
on the results of queries� The result of a query is a collection that may contain objects of
heterogeneous types� MSCset	� can be used on query results to determine the most typing
information 	i�e�� behaviors� for these results� The general usefulness of MSCset	� and an
algorithm for determining the most speci�c set conformance for a set of objects is presented
in �Str��a��

A �nal behavior required on types is for determining the unique class associated with a
given type� In order to create objects of a particular type� there must be a class associated
with the type to manage the instances of that type� However� types do not require an
associated class if there are no instances of that type� For example� many object�oriented
systems include abstract types whose sole purpose is to serve as placeholders for common

��

behaviors of subtypes and are never intended to have any instance objects� In this case�
there may be no reason to manage classes for abstract types� because there are no instances
of these types� However� a class may be formed if there is a need to categorize the objects of
the subtypes by a common class� Thus� the model enforces the one way implication� class
�� type� The behavior B classof is introduced to manage the class of a type�

Behavior �� Class of �B classof � T class� 	C�� Given a type T � � the behavior ap�
plication T � �B classof 	denoted as CT � � returns the unique class object 	if it exists� C �
associated with T � that manages the extent of type T � � �

For example� if one assumes that a class C map has been created and associated with
type T map� then the application T map�B classof returns the class object C map� The
notation CT map represents an object reference that is equivalent to the references C map
and T map�B classof 	i�e�� CT map � C map � T map�B classof ��

����
 The Collection and Class Primitives

The support of e�cient query processing and storage management requires mechanisms to
group related objects so that they may be managed� referenced and processed collectively�
The collection and class objects serve this purpose in TIGUKAT� The relative advantages
and disadvantages of providing a system�managed class as the only grouping mechanism
for the extent of a type versus supporting user de�ned and managed collections as clusters
of instances has been debated �YO��� �OSP���� Beeri �Bee��� shows� at a structural level�
that both can be supported� The TIGUKAT model de�nes both classes and collections for
grouping objects�

A collection is a general grouping mechanism� The objects managed by a collection are
called the extent � The term
collection� and
extent� are equated� meaning a reference to
a collection is a reference to its extent�

There are two ways that objects can be included in a collection� One is that objects
can be explicitly added to the collection� The other is that a predicate can be de�ned on a
collection that automatically includes objects�

The objects in a collection support a set of common behaviors� they must minimally
support the behaviors of T object� These common behaviors are de�ned by a type 	called
the member type� in the type lattice that is associated with the collection when it is created
and can evolve as the extent changes� Every collection knows its member type�

The semantics of collection objects are given by the behaviors de�ned on the primitive
type T collection� The following behavior is de�ned on T collection and returns the
member type of a collection� The member type may be speci�ed by the user or the system
may automatically derive this type�

Behavior �� Member Type �B memberType � T type� 	"�� Given a collection L � �
the behavior application L � �B typeof 	denoted "L �� returns the singleton type object
that represents the member type of collection L � � The member type has the property
�o � L � � o� "L � � �

Collections may be heterogeneous in the sense that the extent may contain objects that
map to dierent types which are not in a subtype relationship with one another� The
type inferencing mechanism in Section ����� guarantees that in such cases a unique type is
chosen 	or created� as the member type of the collection� and that this type represents the

��

most de�ned combination of the heterogeneous types� This approach allows Behavior ���
to always hold�

Heterogeneous collections are essential for proper handling of queries that may return
objects of various types �S�O��a�� A collection always has an associated type that speci�es
the behaviors supported by all objects in the extent of the collection� The maintenance of
this type may require the automatic derivation of new types 	during projections and joins
in the algebra for example� in order to provide as much type information as possible for
the objects in the collection� Type inferencing is used by the object query model de�ned in
Chapter ��

Other behaviors de�ned in T collection include B cardinality 	denoted jL � j� to return
the number of elements in a collection� B elementOf 	denoted o � L �� to determine if a
object is a member of a collection� B containedBy 	denoted L � 	 L �� to determine subset
inclusion of extents� B insert and B delete to add�remove objects to�from collections� and
a host of other behaviors representing the algebraic operators that are introduced by the
query model�

The specialized� better known� form of a collection is that of a class � The type T class

is de�ned as a subtype of the type T collection� Therefore� classes must support all
behaviors de�ned for collections� but these behaviors are re�ned 	i�e�� specialized� for classes�
Every class is uniquely associated with a single type� This association occurs at class
creation time and persists with the class throughout its lifetime� The B memberType
behavior for classes is de�ned to return this type� B memberType on classes is the inverse
behavior of B classof on types�

The extent of a class is separated into two forms� The �rst form is called the shallow
extent and is similar to the extent of a collection in that a class represents its shallow extent�
The second form is called the deep extent and is built from the shallow extents of classes�
Shallow and deep extents are well know concepts that have been discussed in other models
�KC��� BCG���� S�O��a�� They are formally de�ned as follows�

De
nition �� Shallow Extent 	��� The shallow extent of a class C � 	written C ��� is
the collection consisting of all objects o such that o �� "C � � The class itself represents its
shallow extent� �

De
nition �� Deep Extent 	��� The deep extent of a class C � 	written C ��� is the
collection consisting of all objects o such that o�B mapsto
 "C � � There is a behavior
B deepExtent de�ned on T class that returns the deep extent of a class� �

In a context where neither the shallow 	�� nor deep 	�� extent quali�cation is given�
the deep extent is assumed�

The shallow extent of a class includes all objects created using the class member type
as a template� The deep extent of a class includes the objects of the shallow extent union
the shallow extents of the associated classes of all subtypes of the class member type�
The shallow extent of classes are disjoint groupings of objects� That is� for all classes
C i� C j� the collection C i� � C j� is empty when C i �� C j� The de�nition of deep
extent imposes a subset inclusion relationship on the extents of classes� This is referred
to as subclassing � which has a direct relationship to subtyping and is in keeping with the
conformance properties on types�

De
nition �� Subclass� A class C � is a subclass of a class C �� meaning C �� 	 C ���
if and only if "C �
 "C � � One can equally say that C � is the superclass of C � � �

��

In TIGUKAT� a type is separated from the declaration of its class and subsequent
collections � This design issue is a controversial one� Many former model proposals bundled
these two concepts calling them either a
type� or a
class� �GR��� LRV��� BBB���� Str����
In the TIGUKAT model� special care is taken to separate the two notions and attach
individual semantics to each one� We believe that a type is simply a speci�cation mechanism
that is used to describe the structure and behavior of objects� This should be separated from
the grouping of objects in order to provide �exibility in de�ning exact grouping semantics�
In the TIGUKAT model� classes group the shallow and deep extents of types� which has its
basis on subtyping� In other models� this de�nition varies� The introduction of collections
supplements classes by providing a very general grouping mechanism that has a consistent
semantics with the concept of a class� The inclusion and separation of these notions provide
greater modeling �exibility and expressibility than if they were bundled into a single concept�
For example� in Chapter � queries are de�ned to operate on collections and return collections
as results� Since classes specialize collections� queries can also operate on classes� The type
checking of queries and the type inferencing of query results is a separate issue� Both classes
and collections should be type checked� Since types are separate from classes� this is possible
in TIGUKAT through the member type� Furthermore� a member type may be created for
a collection without ever creating any objects of that type 	i�e�� abstract types�� This new
type may de�ne the common behaviors of heterogeneous members of a collection consisting
of existing objects in the objectbase that do not map to the new type� Separation of type
and class allows this notion to be easily modelled as well�

A �nal behavior de�ned on the type T class is that of object creation� All objects are
created through a particular class using that class member type as a template� This has
the side eect of automatically placing the object in the shallow extent of the class� which
implies that it is in the deep extent as well� In the following signature� the notation "c

denotes the type resulting from applying the B memberType behavior on a receiver class
object c�

Behavior �� New �B new � "c�� Given a class C � � the application of the behavior
C � �B new has the result of creating a new object o such that o is consistent� o �� "C �

and o � C �� 	which implies o � C ���� The application C � �B new denotes an object
reference to the newly created object o whose type is "C � that is derived from the receiver
class object C � � �

The result type of B new is re�ned for each class to re�ect the member type of that
class� This ensures that objects created with B new have the proper type� For example� the
behavior application C person�B new creates a new object of type "C person � T person

and places it in the extent of class C person� The returned result of the application is an
object reference to the newly created T person object� Similarly� the behavior application
C map�B new creates a new object of type "C map � T map and places it in the extent
of class C map� The B new behavior on classes gives the TIGUKAT model the necessary
ability to create new objects and to have them automatically placed into their respective
class extents�

����� Higher Level Constructs

Several of the primitives introduced in the previous sections are referred to as meta�
information because they are objects which provide support for other objects� For ex�
ample� the type T type provides support for types by de�ning the structure and behaviors

��

C_class-class

m -objectsC_class

m -objectsClass object

instances

C_collection-class

m -objects

C_type-class

C_type

Type object

instances
Real World Objects

Persons

Maps

Dwellings

Behaviors

Functions
Strings

Zones

Integers

Geometric Shapes

Reals

C_collection

Collection

object

instances

2

1

0

Figure ���� Three tiered instance structure of TIGUKAT object management�

of type objects and the class C class supports classes by managing class objects in the
system� In a uniform model� these meta�objects are objects themselves and are uniformly
managed within the model as �rst�class objects� The support for this semantics lies in the
introduction of higher level constructs called meta�meta�objects or m��objects�

The meta�system of TIGUKAT is a three tiered structure for managing objects� This
structure is depicted in Figure ���� Each box in the �gure represents a class and the text
within the box is the common reference name of that class� The dashed arrows represent
shallow extent instance relationships between these objects with the head of the arrow being
the instance and the tail being the class to which that instance belongs�

The lowest level of the structure consists of the
normal� objects that depict real world
entities such as integers� persons� maps� behaviors and so on� plus most of the primitive
object system is integrated at this level� These include types� collections� behaviors and
functions that are represented as objects� which illustrates the uniformity in TIGUKAT�
This level is designated m
 and its objects are m
�objects�

The second level de�nes the class objects that manage the objects in the level below and
maintain schema information for these objects� These include C type� C collection and
all other classes in the system� except for the classes in the level above� The second level
is denoted as m� and its objects as m��objects� The reasoning for placing classes at this
higher level is that classes maintain objects of the system� every class is associated with a
type� and types de�ne the semantics of objects through behaviors which de�nes the schema
of the objects� Thus� classes together with their associated types are the meta�information
of the system�

The upper�most level consists of the meta�meta�information 	labeled m�� which de�nes
the functionality of the m��objects 	meta�information�� The structure is closed o at this
level because them��objectC class�class is an instance of itself as illustrated by the looped
instance edge� The introduction of the m��objects adds a level of abstraction to the type
lattice and instance structures� The need for this three�tiered structure comes from the fact
that every object belongs to a class and every class is associated with a type that de�nes
the semantics of the instance objects in the class� Regular objects 	level m
� belong to some

��

class 	level m��� Since classes are objects� the class objects 	level m�� belong to some class
	level m��� The m� class objects belong to the m��class C class�class which closes the
lattice� The types associated with these classes are all managed as regular objects at level
m
� The outcome of this approach is that the entire model is consistently and uniformly
de�ned within itself� In the following discussion� the interactions among the various levels
of the structure and how they contribute to the uniformity of TIGUKAT are described�
This forms the foundation of re�ective capabilities�

A portion of the primitive type lattice 	Figure ���� responsible for the meta�system is
shown in Figure ���� Furthermore� a companion subclass lattice for this portion is shown
in Figure ��� where C x in Figure ��� is the associated class of type T x in Figure ����

T_object

T_type T_class

T_class-class

T_type-class

T_collection-classT_collection

Supertype Subtype

Figure ���� Portion of primitive type lattice responsible for meta�system�

Figure ��� illustrates the subset inclusion relationship and instance structure for some
of the m
� m� and m��objects� Starting from the left�side of the lattice structure� the
relationships between these classes and their instances are described�

C_type

Instance edges to
type objects

C_object

C_type-classInstance edges to
other class objects

C_class

C_collection-class

C_collection C_class-class

Instance edges to
collection objects

Superset

Class Instance
Instance edge

Subset

Figure ���� Subclass and instance structure of m� and m� objects�

The class C object is anm��object that maintains all the objects in the objectbase 	i�e��
every object is in the deep extent of class C object�� Two otherm��objects in the �gure are
subclasses of C object� namely� C type and C collection� These two classes maintain
the instances of types and collections� respectively� ClassC collection is further subclassed
by the m��object C class because every object that is a class is also a collection of objects�
For example� the class C person is an instance of the class C class and C person is a
collection of person objects as well� The class C class manages the instances of all classes

��

in the system like C object� C person and so on� Finally� C class is subclassed by m��
objects C type�class� C class�class and C collection�class� Intuitively� C type�class

is a class whose instances are classes that manage type objects� Similarly� C class�class is
a class whose instances are classes that manage class objects and C collection�class is a
class whose instances are classes that manage collection objects�

In understanding the meta�system� it is important to remember that the following gen�
eral concept holds throughout the model including the meta�system�

Tenet of Uniformity� Behaviors de�ned on a type are applicable to the objects in the
extent of the class associated with that type�

For the following discussion� the reader is referred to Appendix A� which lists the sig�
natures of the behaviors de�ned on the primitive types� including the meta�types� In the
following�
o � r�B� denotes assignment of the result of behavior application r�B to an
object reference o�

The model must have a way of consistently creating new types� Applying the generic
B new behavior 	i�e�� the one in T class� on the class C type is inadequate for this pur�
pose because it simply creates new empty objects and a type must always be created as
a subtype of some other type	s�� minimally a subtype of T object� B new cannot handle
these semantics because it is a generic behavior for creating any kind of object and only new
type objects need supertype information� it would be inappropriate to place these semantics
on B new � Therefore� the B new behavior must be specialized for types to allow for the
addition of arguments that specify the supertype	s� of the new type� along with other ar�
guments such as its native behaviors� To accomplish this� the type T class is subtyped by
type T type�class 	see Figure ���� and the behavior B new is re�ned on this type� Now�
in the primitive system� the type T type�class is associated with the class C type�class

and the class C type is created as an instance of C type�class as shown in Figure ����
New types are created by applying the re�ned B new behavior to C type� This follows
the tenet of uniformity� the behaviors de�ned on type T type�class are applicable to the
object C type because it is in the extent of class C type�class and C type�class is as�
sociated with type T type�class� In the following signature de�nitions� the notation "c

again denotes the member type of a receiver class c�

Behavior ��� New Type �B new � T collectionhT typei � T collectionhT behaviori
� "c�� Given the class C type� a set of types T � and a set of behaviors B� the behavior
application C type�B new	T�B� creates a new type as an instance of C type such that it
is a subtype of the types in T and it de�nes the behaviors in B as native behaviors unless
they are inherited from a type in T � �

For example� in order to create a new type for modeling mobile homes 	as a subtype of
T dwelling� that adds a behavior
B numberOfMoves�T natural� 	assumed to be de�ned��
one applies the B new behavior to C type and passes the appropriate arguments� The
result is assigned to a standard type reference T mobileHome as follows�

T mobileHome� C type�B new	fT dwellingg� fB numberOfMovesg�

A class must be associated with a type 	its member type� in order to be able to create
objects of that type� Furthermore� classes must be uniquely associated with a single type
and no class may exist without an associated type� In order to consistently support these

��

semantics� the type T class is subtyped by the type T class�class 	see Figure ���� and
behavior B new is re�ned for creating and associating new classes with a type�

In the primitive system� the class C class�class is associated with T class�class and
maintains all the m��classes� Its instances include itself� C type�class� C collection�class
and C class� Each of these classes maintain instances of other classes� Various kinds of
class structures are created by applying B new to one of these classes� For the model� this
means that we additional classes can be created for managing types 	additional instances of
C type�class�� for managing collections 	additional instances of C collection�type�� for
managing classes 	additional instances of C class�� and for managing classes that manage
classes 	additional instances of C class�class��

Behavior ��� New Class �B new � T type� "c�� Given an instance of C class�class
	e�g�� C class� and a type T �� the behavior application C class�B new	T �� has the result
of creating a new class object C � such that C � is in the shallow extent of C class and
C � is associated with type T �� If type T � does not exist� or is already associated with
some other class� an error condition is raised because a type may be associated with at most
one class� �

For example� the following behavior application creates a new class C mobileHome as
an instance of C class and associates this class with type T mobileHome created above�

C mobileHome� C class�B new	T mobileHome�

The previous two examples illustrate how the use of specialization and overriding of
implementations 	basic modeling concepts� are used to develop the components of the meta�
system� B new has the same semantics of creating a new object as an instance of a particular
receiver class� but the implementation of this behavior depends on the receiver class to
which it is applied� The �nal specialization is with C collection� which completes the
meta�system�

In the same way as types are associated with classes� types are also associated with
collections� but a type may be the member type of any number of collections� The type
T collection�class is de�ned as a subtype of T class and behavior B new is re�ned for
creating new collections similar to what was done for classes� The class C collection�class

is associated with T collection�class and class C collection is created as an instance
of C collection�class 	see Figure ����� New collections are created by applying B new to
C collection� passing in an appropriate member type�

Behavior ��� New Collection �B new � T type � "c�� Given class C collection and
type T �� the behavior application C collection�B new	T �� creates a new collection object
L � such that L � is in the shallow extent of C collection and L � de�nes T � as its
member type� The type T � may be omitted in which case the member type of the collection
is maintained by the system and derived according to the members in the extent of the
collection� If type T � is given and does not exist� an error condition is raised� Types may
be associated with any number of collections� �

For example� to create a new collection of map objects for mapping moblile home parks�
one applies B new to C collection as follows�

L mobileHomeParks� C collection�B new	T map�

��

The introduction of the m��objects complicates the type lattice and instance structures�
However� the bene�t of this approach is that the entire model is now consistently and uni�
formly de�ned within itself� This de�nes a powerful model for managing all objects� includ�
ing meta�information� in a uniform way� There are several uses for this modeling capability
including the ability to perform re�ection� These features are presented in Chapter ��

����� The Null Primitive

Nulls are introduced to provide a simple null semantics� The model de�nes a primitive type
T null along with its corresponding class C null� This class is de�ned to have as primitive
instance objects null� void� unde�ned� and dontknow� Others� such as error conditions� can
be added as required�

The type T null is de�ned to be the subtype of all other types� which is automatically
maintained by the system� This gives T null the opposite semantics of the type T object�
which is de�ned to be the supertype of all types� The type T null lifts the domain of types
and creates a lattice that is bounded 	or pointed� at both ends� A companion axiom for the
axiom of root type 	Axiom ���� is de�ned to describe the type constraint of the null type�

Axiom �� Null Type� for all types T � � T null
 T � � �

As a subtype of all other types� T null re�nes the implementations of all application
speci�c behaviors 	i�e�� all behaviors except those of the primitive type system� in such a
way that applying a given behavior to one of its instances� always returns back one of its
instances� In this way� nulls represent a �x�point for non�primitive behavior application
over the domain of objects� It is always safe to allow a function to return an instance of
T null because these instances will conform to all non�null types in the lattice� Nulls can
be used as the result of functions when a more meaningful result is not known�

For example� T null is a subtype of the type T person in the GIS example type lattice
of Figure ���� Therefore� T null can re�ne the behaviors of T person to return an instance
of T null 	e�g�� null� unde�ned� etc��� Now� if for a speci�c instance of T person� say Sherry�
the result of a certain behavior� say B age� is not known� it can be assigned an instance
of T null 	e�g�� null�� Then� the application Sherry�B age returns the object null� and all
subsequent behavior applications 	except for those of the primitive type system� also return
some instance of T null�

����� Denition of an Objectbase

With the modeling primitives established� the meaning of an objectbase is now de�ned�

De
nition ��� Objectbase 	OB�� An objectbase OB is a consistent set of objects 	con�
set� such that�

�� O 	 OB�

The elements of the primitive object system O 	which is a conset � Sec�
tion ������ are part of OB�

�� for all objects o � OB� for all behaviors B i � OB� o�B i � OB�

For all general objects and behavior objects in OB� applying a behavior
from OB to an object in OB results in an object that is also in OB�

��

An objectbase de�nes a restricted enclosure of objects that facilitates a consistent� sys�
tematic investigation of other objectbase features such as query processing� query optimiza�
tion� re�ection� dynamic schema evolution� view management� transaction management�
and distributed object management� An objectbase does not de�ne the relationships of its
consistent object set with external objects outside the domain of the objectbase� For now�
these relationships should be considered ill�de�ned and inconsistent� although they may
prove useful in the context of distributed environments�

��� The Structural Model

Beeri�s work on formal structural object models �Bee��� has been chosen as a foundation for
an example TIGUKAT structural model de�nition� In this chapter� Beeri�s framework is
followed to de�ne a structural model that complies with the behavioral model of TIGUKAT
and the integration of the two are shown�

��
�� Objects and Values

The TIGUKAT model considers an objectbase to be a collection of objects� Each object� in
order to exist� must be associated with at least one reference that gives access to the object
in the objectbase� Thus� every object has the universal perception of a reference and the
model has a single uniform representation for objects� In this way� the model resembles the
general naming facility of O� �LR��b� or the
Name� operation of �Osb��� that allow names
	references� to be attached to individual objects� but the TIGUKAT model applies a more
uniform semantics to these features by servicing all access to objects through references�

Beeri makes a strong case in distinguishing between the notions of
object� and
value�
at the structural level� However� he does point out that in the general intuitive sense�
objects and values should have the universal perception of objects� The latter perspective
is de�ned by the behavioral model presented in Section ���� The structural model presented
here introduces a separation of these two notions because there is an inherently dierent
representation and semantics for values at this lower level� These dierences need to be
resolved eventually� and the structural model seems to be the appropriate place for this�

Beeri outlines several arguments that support the distinction of
values� from
objects��
The reasons that most in�uence this separation are�

�� the perception that values represent universally known abstractions 	such as the in�
tegers�� while objects denote application speci�c abstractions�

�� the notion that values are built into the system and are assumed to exist� while objects
need to be de�ned and introduced into the system�

�� the information carried by a value is itself and is immutable� while an object consists
of a separate mutable state that represents the information carried by the object�

Using these distinctions� the following de�nition of a value is formed� These are quali�ed
as atomic values because they are formed from the atomic types and they are immutable�
Atomic values are entirely under the management of the system�

De
nition ��� Atomic Value� An atomic value is any object from the domains of the
atomic types� Atomic values are prede�ned by the atomic types and are managed by the
system� Atomic values are immutable�

��

Each atomic type has a standard representation for references to the atomic values of
their respective domains� The act of specifying one of these references is treated as a request
to return the appropriate atomic object� The system may chose to return and existing
atomic object from the objectbase or may create a new one on the �y� The form of these
standard references is purely syntactic and one interpretation is discussed in Section ������
Since these references are system maintained� they will never be released and will persist
throughout the lifetime of the objectbase� thereby making them immutable�

Recall the de�nition of an object as an 	identity� state� pair 	Section ������� For atomic
values� the value itself serves as identity and state all at once� This property is what makes
values immutable to change� The distinguishing factor between objects and values seems
to be that objects have an immutable identity separate from a mutable state� while values
represent identity and state all at once� both of which are immutable� Beeri makes the
distinction that values are used to describe other things� while objects are the things being
described� From a mathematical perspective� one may consider values to be elements of the
built�in domains� while objects are elements of the uninterpreted domains�

��
�� Abstract Objects

An abstract object is de�ned as an object that has the semantics of an immutable identity
separate from a mutable state� Application speci�c objects and the primitive non�atomic
objects all �t into this category�

For a given abstract object� the values of its behaviors are given as signature speci��
cations with the result type of each signature replaced by the actual resulting object for
that signature� For example� one could specify the name behavior for an object o of type
T person as B name�
joe�� or if the object context was not explicit� this could be quali�ed
as o�B name�
joe��

Beeri uses the semantics of atomic values in the treatment of abstract objects� meaning
that an abstract object is also immutable in a sense� It is true that abstract objects
incorporate a state that may change over time� However� modifying the state does not
change the object as far as its existence in relation to other objects is concerned� For
example� given two objects o� and o� where o� �� o�� no matter how the state of any of
these two objects is modi�ed� the object o� will never be identity equal to the object o��
They are two unique objects within the system and will remain that way throughout their
lifetime� In this respect� abstract objects are also atomic in the structural model� From a
mathematical perspective� attributing abstract object with atomic properties is very useful
since it allows �rst order semantics to be applied to them� This will be useful when de�ning
a query language for the model�

In the TIGUKAT model� there is a commonality between values and objects that cap�
tures their atomicity� When referring to atomic values and abstract objects� essentially
the identities of these objects are being referred� This is separate from the the state of
objects� The dierence between values and abstract objects is that the state of the former
is immutable while the latter has a state that may change over time�

The behavioral model de�nes collection� bag� poset and list types for developing struc�
tured aggregation objects� The instances of these aggregate types are called container
abstract objects 	containers for short� in the structural model� Containers are similar to
the set structured values de�ned by Beeri� However� containers in TIGUKAT are uniformly
managed as abstract objects and may be subtyped to customize their semantics� One ex�
ample is the use of parameterization to de�ne containers whose elements are restricted to

��

a particular type�
Beeri also de�nes tuple structured values� but TIGUKAT does not� The notion of tuple

is cast into the uniform concept of behaviors on types� A tuple in TIGUKAT is just a type
de�nition with the behaviors representing the named slots 	or attributes� of the tuple�

��
�� Object Graph

An objectbase can be structurally represented as a directed graph� The nodes of the graph
represent the atomic forms of objects� atomic values� containers and abstract objects� Di�
rected edges between nodes illustrate relationships 	de�ned as behaviors� from one object
to another�

A graph representation is important in several respects� First� it allows for a pictorial
representation of the attributes and relationships of objects� This can assist in clarifying the
contents and structure of an objectbase� Second� a graph representation has the advantage
that graph theoretic algorithms and proofs may be applied to extract and derive properties
of the graph� There are many examples of graph related applications that can assist in
solving query processing �Yan��� and object management problems such as type inferencing�
optimization strategies for object distribution and dynamic schema evolution�

The graph representation presented in this section de�nes several kinds of nodes that
may be used in an object graph� Figure ���� illustrates the graphical representation of these
nodes and the semantics of each is de�ned as follows�

��� �a� Atomic value nodes consist of a label that represents a standard reference de�ning
their value� Atomic values are terminal nodes of the graph that cannot have any
outgoing edges�

��� �b� Abstract objects consist of a box labeled with an explicit reference for identifying
the object� This label can be thought of as a structural model reference and has
no implications of the other scope speci�c object references that may exist� Abstract
objects have an outgoing edge for each behavior applicable to the object that is labeled
with the name of the behavior and leads to a node resulting from the application of
the behavior to the given abstract object�

��� �c� Container abstract objects consist of an oval labeled with an explicit reference
or the symbols f g if a descriptive reference is immaterial� A container has outgoing
edges labeled with
�� to each member object� These represent the extent of the
container� Containers� like all abstract objects� have other edges to represent the
behaviors speci�c to them�

As with Beeri�s model� each object occurs only once in the graph� meaning each node
represents a unique immutable object in terms of its existence� The nodes of the graph can
be thought of as the object identities of the objectbase and the edges leading to them can
be thought of as object references� Objects and values 	nodes� can be shared by having
multiple edges leading to them�

��
�� Structural Example

Consider the object de�nitions of Figure ����� Each box represents a separate abstract
object where the header speci�es a reference for the object along with the maps to type

��

�a� Atomic value�

Ri

�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�

�
�
��
�
��
�
�
��
�
��
�
�
��
���
��
�
��
��
��
��
��
��
��

���

���������������������
�
��
�
��
��
��
��
��
��
�

���

�
���
����
����
����
������
����
���
����
����
�

�b� Abstract object�

Ri

f� f� fi
���

�
��
�
��
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
���
���
���
�������

����������������������������
���
���
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
��
��
��
��
��
����
�����������������������������������

���
���
���
��
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
�
��

�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�

�
�
��
�
��
�
�
��
�
��
�
�
��
���
��
�
��
��
��
��
��
��
��

���

���������������������
�
��
�
��
��
��
��
��
��
�

���

�
���
����
����
����
������
����
���
����
����
�

f g

� � �
���

�c� Container abstract object�

Figure ����� Graphical representations of nodes in an object graph�

for that object� Following this� the behaviors for each object is listed and their associated
values are given�

Figure ���� illustrates an object graph for the geographic objects SCounty� Notingham
and Forest� of Figure ����� The map object SCounty is an abstract object with several
outgoing behavioral edges as shown� All nodes in the graph have a B self edge that points
back to the node� B self is only shown for SCounty� The B proximity behavior is not de�ned
for the object and therefore points to the abstract object null� The behaviors B resolution�
B orientation and B title point to the atomic valued objects ���� � and
Sherwood County�
respectively� The B region behavior points to a T geometricShape object that de�nes the
geometric structure of the SCounty object� The B origin behavior points to the T location

object loc
 which has B latitude and B longitude behaviors to the appropriate atomic valued
objects ���� and ���� respectively� Finally the B zones behavior points to a container
comprising of the two T zone element abstract objects Notingham and Forest��

There are a few anomalies to note for the zone objects Notingham and Forest�� First�
the B origin behavior for Forest� and SCounty share the same T location object loc
 which
is indicated by its two incoming edges� Second� the B proximity behaviors for the two
zone objects are de�ned and point to function abstract objects that� when given another
zone object as an argument� produce the desired distance measurement representing the
proximity of the argument zone to the zone on which the function is de�ned� For example�
B proximity applied to Forest� results in the function abstract object B proximity	Forest���
This abstraction can be maintained by returning the implementation function object asso�
ciated with B proximity with the �rst argument �xed to Forest�� This is sometimes referred
to as a context� Context�s are used in query optimization as well� The graph further indi�
cates that an invocation of this context� when passed the argument zone Notingham� will
produce the atomic valued object ������ This context execution is represented by the dotted
line attached to Notingham in Figure ����� A similar application is shown on Forest� for
the B proximity behavior of Notingham which shares the same result object as the previous
execution�

The dotted lines do not represent behavior applications on the type T zone in the normal
sense� although they could� Instead� they represent the result of executing a function that
has some arguments �xed 	i�e�� a context� and are included in this example to illustrate the
power and �exibility that the functional approach provides�

��
�
 Schema Objects

The structural model of TIGUKAT diers from Beeri�s model �Bee��� in that Beeri makes
a clear separation between the data of an objectbase and its schema� whereas TIGUKAT
carries the uniformity aspects of the behavioral model into the structural model� This means

��

Person� �� T person
B name� �Robin Hood

B birthDate� null

B age� null

B residence� SForest

B spouse� Person�

B children� B children�Person��
B children�Person��� fPerson�g

Person� �� T person
B name� �Robin Jr�

B birthDate� null

B age� null

B residence� SForest

B spouse� null

B children� null

Person� �� T person
B name� �Maid Marion

B birthDate� null

B age� null

B residence� SForest

B spouse� Person�

B children� B children�Person��
B children�Person��� fPerson�g

Person� �� T person
B name� �Sheri� of Notingham

B birthDate� null

B age� null

B residence� NCastle

B spouse� null

B children� null

SForest �� T dwelling
B address� �Top Secret
B inZone� Forest�

NCastle �� T house
B address� ��� Main Notingham Road
B inZone� Notingham

B mortgage�
�

Forest� �� T forest
B title� �Sherwood Forest

B origin� loc

B region� ��������
��������
���������
��������
���������
��������
��������
���������
��������
������
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
���
��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
����

��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
��

������������������������������������

B proximity � B proximity�Forest��
B proximity�Notingham�� �����

Notingham �� T developed
B title� �City of Notingham

B origin� loc�

B region� ��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
�

��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��

��
�����
������
�����
������
�����
������
�����
�����
���������
����

B proximity � B proximity�Notingham�
B proximity�Forest��� �����

SCounty �� T map
B title� �Sherwood County

B origin� loc

B region� �������
��������
��������
��������
���������
��������
��������
���������
��������
������
�
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
���

���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
���

������������������������������������

��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
�

�
��
�
��
��
��
�
��
��
��
��
�
��
��
�

�������
�������
�������
�������
�������
������
������

B proximity � null

B resolution�
��
B orientation�

B zones� fForest��Notinghamg

Figure ����� Objects of Sherwood County�

��

�
�
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
���
���
����
����������������������������������

����
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
��
���
��
����
����������������������������������

����
���
��
��
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
��
�
�f g

�������
�������
��������
�������
�������
�������
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
���
��
��
��
�
��
��
��
�
��
��
��
�
�����

��
���
��
���
��
��
���
��
������������������������

�������������������

��
��
�
��
��
��
��
��
�

��
��
�
��
��
��
�
�

����
�����
�����
�����
�����
��

��

���������������������
��
�
��
��
��
��
��
��
��

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
��
���
���
��
���
���
�

��
��
��
��
��
��
��
��
��
��������������������

B latitude

����

����

B longitude

�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
�

�
���
��
���
��
��
���
��
��
�
�
��
�
��
�
�
��
�
��
�
��
�

���
������
�����
������

�����
������
������
�����
������
�����
������
�����
������
�����
������
�����
������

�����
������
�����
������
�����
������
���

���
��
��
��
��
��
��
��
����
��
���
��
��
���
��
��
�

���
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
���

���������������������
��
��
��
��
��
��
��
��
�

�������������������������������������� ����
�����
�����
������
����
�����

�����
����

��
�������

���
���
���
���
���
���
���
���
���
���
���
���
��

�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�

�
�
��
�
��
�
��
�
�
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��

����
�����
�����
������
����
�����

�����
��

��
�������

��������������������
��
�
��
�
��
�
��
�
��
�
��
�

��

��
������������������������

�������
�����

��

���
����
����
�����
�������
����
���
����
����

�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��

��
��
��
��
�
��
��
��
��
����
�
��
�
�
��
�
��
�
�
��
�
��

��
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���

��
��
�
��
��
��
�
��
��
�
����
��
��
��
��
��
��
��
��
�

��
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���

�
����������
����������
�
��
��
�
��
��
��
�
��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

����
��������
��������
�������
��������
�������
����
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
���
�
��
��
�
��
��
�
��
��
�
��
��
�
��
����

��
���
���
���
���
���
���
���
������������������������

��������������������

��
��
��
�
��
��
��
��
��
�
��

�
��
�
��
��
�
��
�
��
�

����
�����
�����
�����
�����
��

���
���������������������

��
��
��
��
��
���
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��
�
��
��
�
��
�
��
��
��
��
�
�
��
�
��
�
��
�
�
��
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
��
�
�
��
�
��
�
��
�
�
��
��
��
��
�
��
�
��
��
�
��
��
�

�
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���

��
��
�
��
��
�
��
��
��
�
����
��
��
��
�
��
��
��
��
��

�
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���

����������
�����������
�
��
��
��
�
��
��
�
��
��

��
��
��
���
��
��
���
��
�
��
�
��
��
��
�
��
�
��
��
�
�
���
��
�
��
��
���
��
��
�
���
��
�
��
��
�����
����
���������������

������
�
��
��
���
��
��
�
��
���
�
�
��
��
�
��
�
��
��
��
�
��
�
��
���
��
��
���
��
��
��

��
�����
�����
����
����
��
�
��
�
��
��
�
��
�
��
�
�

� �

Notingham Forest�

SCounty
B title

B origin

B resolution

B orientation

B region

B title

B proximity�Notingham�

�Sherwood Forest
�City of Notingham

null
B proximity

�

�Sherwood County

B origin

B proximity B proximity

B region

B proximity�Forest��

B origin

B title

B zones

B proximity�Notingham�B proximity�Forest��

�����

��	

B region

loc

�� ��
B longitude

loc�

B latitude

B self

Figure ����� Object graph of SCounty� Notingham and Forest� objects in Figure �����

��

that schema objects in TIGUKAT are represented using the same graphical structures as
other objects and may be integrated into a single object graph representing all information�
In this way� the schema objects become part of the objectbase� which allows all database
operations to be performed on them in a consistent manner�

The uniformity of the schema is illustrated in the structural model by means of object
graph links 	relations� between objects� From the de�nition of type T object� all objects
inherit a B mapsto outgoing edge to the type object that represents the declared type of
the object� Furthermore� all objects support the equality behavior between all other objects
although this behavior is specialized for some of the subtypes� Finally� all objects have a
B conformsTo edge to a context that� when executed with a type object argument� results
in a true or false object depending on whether or not the object conforms to the type
argument�

Objects of type T type have B native� B inherited and B interface behavior edges point�
ing to containers of behaviors representing the various interface components of a type� There
are B supertypes and B subtypes edges to containers holding the direct supertypes and di�
rect subtypes of a type� respectively� There are B super�lattice and B sub�lattice edges
to partially ordered containers holding the supertype lattice and subtype lattice of a type�
respectively� A type has a B classof edge that points to the class object that maintains the
instances of the type� Finally� there are B subtype and B specialize edges to contexts that�
when executed with another type object argument� result in a true or false object depending
on whether or not the original type is in the given relationship with the second argument
type�

A class object has the same outgoing edges as containers do� plus an extra edge for its
deep extent behavior 	B deepExtent� to a container node that has an � edge to each object
in the deep extent of the class� Finally� there is an edge for the B new behavior to the
last newly created object of the appropriate type� The side eect of applying B new is to
update itself to create a new object and add the object to the receiver class�

Putting all these components together results in a fairly complex directed graph with
cycles� The advantage of this approach is that the schema has become part of the object
graph� This means that a query model based on the graph can query the schema objects
in a uniform manner� Furthermore� any graph�theoretic proofs or algorithms applicable to
the object graph in general may be consistently applied to the schema objects as well�

For example� consider the partial schema representation of the type T zone as an object
graph shown in Figure ����� The T zone object indicates a B mapsto behavior to the
type object T type of which it is also an instance� There is a B classof edge to the class
C zone� The B conformsTo� B subtype and B specialize behaviors result in contexts that
can be applied to other T type objects and determine the truth or falsity of the relationship�
There is a B supertypes edge to a container holding the direct supertype T object of type
T zone� There is a B super�lattice edge to a container that has element edges to the two
supertypes of T zone 	one of which is itself�� Finally� the B native container of behaviors for
T zone is shown holding four behaviors that are de�ned locally by T zone� The containers
for B inherited and B interface are not shown� The container for B inherited would have
behaviors B mapsto� B equality � B self and B conformsTo that are inherited from T object

and B interface would simply be the union of these two containers�
Due to the complexity of these graphs� many of the relationships are not shown� How�

ever� the previous examples give a �avor of how these links are managed and the inherent
uniformity in their representation�

��

��
�
��
�
��
��
�
��
��
��
��
�
��
�
��
��
��
��
��
��
���
����
�������������������������������

�����
���
��
���
�
��
��
��
�
��
�
��
�
��
�
��
��
�
��
��
��
��
��
���
����
�������������������������������

����
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
�f g T object

T type

��
�
��
�
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
���
����
��������������������������������

����
���
���
��
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
��
��
��
���
�����
������������������������������

����
���
���
��
��
��
��
��
��
�
��
�
��
��
��
��
�
��
��
�
��
�f g���

����
����
����
�����
�����
����
����
����
���
�

��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�
��
�
��
�
�
��
�
��
���
��
�
��
�
��
�
��
��
�
��
�

���

���������������������
��
��
�
��
��
��
��
��
��

��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���
���
��
���
���
���
���
��
�
��
�
�
��
�
��
�
��
�
��

B proximityB origin

B title B region
�

�

�

�

�
�
��
�
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
������

�������������������������������
���
���
��
��
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
��
��
���
����
���������������������������������

����
���
��
���
��
�
��
��
�
��
�
��
�
��
��
��
�
��
�
��
��
�
�f g

�
�
��
�
��
��
��
��
��
�
��
��
�
��
��
��
���
��
��
���
���
���
����
����
����
������

�������
��

������
���
��
��
��
��
�
��
�
��
�
��
��
��
��
��
���
�����
��

���������
������
�����
����
����
���
���
���
���
��
���
��
��
��
��
��
��
��
�
��
��
��
��
�
��
�

���
�����
�����
�����
������
�����
����
�����

����
�����
�����
������
����
�����
�����

����

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�

�
��
��
�
��
��
��
��
��
��
���
��
�
��
�
��
�
��
�
��
�
��

��

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
�

�
��
��
��
��
��
��
��
��
���������������������

��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��

��
��
��
��
�
��
��
��
��
���������������������

���
�����
����
���
����
��
���
���
�
��
��
�
���
�
�
��
�
��
��
�
�
��
�
�
�
��
��
�
�
�
���
�
�
��
��
�
��
��
��
��
��
���
��
��
���
��
���
���
���
�������
���

���������������������
��
���
��
��
��
��
���
�

���������������������������
���
����
�
�
��
�
��
�
��
�
�
�
��
��
�
��
�
�������
�������������

�����
���
��
����
��
��
���
��
��
��
��
�
�
��
�
�
��
��
�
�
��
�
�
�
��
�
�
��
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

T zone

�
�

C zone
B classof

B conformsTo�T zone�

B specialize�T zone�

B subtype�T zone�
B subtype

B specialize

B conformsTo

B native

B mapsto

B super�lattice

B self

B supertypes

�

Figure ����� Object graph of partial schema for type T zone�

��

Chapter �

The Object Query Model

The design of a complete and uniform behavioral object model forms a basis for an extensible
object query model� Following the uniform semantics of the object model� queries are
modeled as type and behavior extensions to the base object model� This incorporates queries
as an extensible part of the model itself� The object query model de�nition presented in
this chapter� includes the type and behavior extensions to the base model� a formal object
calculus with a logical foundation that is closed and incorporates the behavioral paradigm
of the object model� a closed behavioral�functional object algebra with a comprehensive
set of object�preserving and object�creating operators� a rigorous de�nition of safety based
on the evaluable class of queries which is arguably the largest decidable subclass of the
domain independent class� and a notion of completeness that includes reductions between
the algebra and calculus that proves their equivalence� In addition to the formal aspects� a
complete algorithmic translation from calculus to algebra is given�

An SQL�like user language� de�nition language and control language have been devel�
oped for the model and are reported elsewhere �PL�OS��a� PL�OS��b� Lip���� Furthermore�
the uniformity of the object model has been used to de�ne an extensible query optimizer
and execution plan generator� However� these components are outside the scope of this
thesis�

��� Related Work

One reason for the broad acceptance of relational DBMSs is their implementation of a
high level� declarative query facility� which provides an elegant and simple interface to
the underlying model� One of the most popular query languages in those systems is SQL�
which has become an international standard for the de�nition and management of relational
structured data �ISO����

In order to consistently extend the functionality of relational systems� next generation
DBMSs must extend the power of the relational query model and SQL� Therefore� one of the
problems facing object�oriented system designers is the de�nition of an object query model
and its languages� The languages addressed in this thesis include a declarative calculus and
a functional algebra�

�Portions of this chapter are published in the ���	 Proceedings of the Second International Conference
on Information and Knowledge Management �CIKM����
PL�OS�	a� and as a book chapter in Emerging
Landscape of Intelligence in Database and Information Systems
 �OSP����

��

The power and expressiveness of a query model is characterized by its calculus� its
algebra� its notion of safety� and its completeness� In this chapter� some of the recent
literature on these topics is examined� These include�

� framework papers that discuss the qualities of query models and serve as guidelines
for query model development�

� complex object query models that de�ne an object algebra� an object calculus� and
link the two with a proof of equivalence� and

� speci�c complex algebras that introduce object�oriented operators and semantics�
which are exploited and expanded on by the algebra�

����� Query Model Frameworks

Although there is not one single universally accepted object model� a core set of features
has been identi�ed and presented in a number of manifestos �ABD���� SRL����� Similar
guidelines for the design of an object query model have recently appeared as well� They are
summarized below�

Yu and Osborn �YO��� de�ne a framework for evaluating the power and expressibility
of object algebras� A set of categories is proposed for measuring the object�orientedness�
expressiveness� formalness� database support� and performance of an object algebra� The
framework is not meant to be all inclusive� In fact� some of the recommendations are con�
tradictory requiring compromise in a design� To illustrate the practicality of the framework�
four object algebras are compared within its dimensions� The framework serves as a useful
guideline for developing object algebras�

The object query module speci�cation �Bla��� of the DARPA Open OODB project
�WBT��� oers a structured discussion of language features that an object query language
should provide� Some of the more general properties that distinguish object query models
from others are classi�ed into
essential� and
non�essential� categories� This is supple�
mented by a more detailed discussion of speci�c features that are organized into a framework
representing an overall design space for object query languages� This framework is intended
to serve as a reference model and is expected to accommodate a broad spectrum of existing
and future object query model speci�cations� The reference model is similar to that of Yu
and Osborn �YO��� and assists in understanding the dimensions of object query model de�
sign by providing a common foundation for comparing and reasoning about existing object
query language de�nitions� This in turn helps to identify common areas of agreement which
may lead to an eventual standardization of object query model features�

In � �OSP���� several issues relating to design alternatives for an object query model within
the context of knowledge base systems are examined� This work focused on presenting a
general discussion of the key issues concerning query model design� how a particular set of
choices are carried through to an object query model de�nition� and the rami�cations of
the choices made� Several of the alternatives outlined in that report were addressed during
the development of the query model described in this thesis�

����� Complete Object Query Models

Several object query models have been proposed� Many focus on a particular language
aspect such as a calculus� an algebra or a user language� Others de�ne a complete model�

��

but in order to deal with safety they restrict their languages in certain ways� Many query
models are built on the nested set�and�tuple style structural model� The TIGUKAT query
model diers in that it is a purely behavior�theoretic approach that de�nes the query model
as an extensible part of the base object model� Some complete query models in�uencing
the design of the TIGUKAT query model are examined below�

The emphasis of Straube and �Ozsu�s �S�O��a� Str��a� work was to illustrate the viability
of developing a query processor for an object�oriented database system with comparable
power and expressibility available in relational systems� A formal methodology for object�
oriented query processing was developed in line with the relational paradigm� That is�
a high�level declarative calculus is speci�ed� optimization techniques on the calculus are
developed� an object�oriented algebra is de�ned� translation of conjunctive calculus formulas
with limited negation into the algebra is de�ned� algebraic type�checking and optimization
strategies based on traditional and object�oriented transformation rules are developed� and
an execution plan generation mechanism is designed that translates optimized algebraic
expressions into an execution plan consisting of a series of packaged object manager calls�
This approach increases e�ciency of query processing by reducing the number of times the
query processor must cross over to the object manager�

One contribution of their work is the de�nition of an object algebra� an object calculus�
and the linking of the two with translations between them� The algebra�to�calculus trans�
lation is complete while the calculus�to�algebra transformation is not� The algebra de�nes
a comprehensive set of object�preserving operators� but lacks object�creating operators such
as project� product and join�� Furthermore� the classi�cation of
safe� queries is limited to
conjunctive queries without universal quanti�cation and without negated existential quan�
ti�ers� In eect� this means that there is no allowance for universal quanti�cation in the
translation�

Abiteboul and Beeri �AB��� de�ne a query model for complex objects that is based
on a set�and�tuple data model� Their model includes set and tuple type constructors that
relax the common restriction of alternating set and tuple structuring� This allows for
arbitrary structures with the only restriction being that the last constructor used is a set
constructor� Their calculus and algebra have complete de�nitions that include extended set
operations such set�collapse for collapsing sets of sets� powerset for forming the powerset
of a given set� and a higher�order restructuring operator called replace that generalizes
relational projection and provides set�and�tuple restructuring capabilities� Safety in their
model is de�ned constructively similar to the 	range� restricted formulas in �Ull���� They
assume that a partial order on the variables has been de�ned and based on this ordering�
they form range terms for variables� The range terms restrict the domains of the variables�
Constructions are de�ned that build safe formulas from range terms using conjunction�
disjunction� quanti�cation� and negation� With this approach� safety is dependent on how
the formula is constructed from the ground up and does not take advantage of the structure
of the formula to recognize a broader class of queries� The class of safe queries recognizable
by this approach is a strict subset of the evaluable class of queries� which is the basis of
safety in the TIGUKAT query model� Although the formal work of �AB��� is sound� an
algorithmic de�nition of safety and a calculus�to�algebra translation algorithm are not given�
Furthermore� an eective solution for their transformation is not apparent since it requires
the formation of large DOM sets for each variable appearing in the formula� A DOM set

�Object�preserving operators are limited to returning existing objects from an objectbase while object�
creating operators may create new objects during their execution
SS����

��

consists of all possible values from the database 	and the constants in the query� that the
variable can possibly take on� With complex valued variables allowed in their calculus� these
DOM sets can become quite large and impractical to manage in an algorithmic solution�

����� Complex Object Algebras

An algebra is usually one of the �rst components developed for a query model� It de�nes
a set of procedural operators for accessing the database� The design of these operators
in�uences the number of opportunities for optimizing database access� which determines
the e�ciency that data can be retrieved� Several complex object algebras have appeared in
recent years� These have evolved from the nested relational models and functional language
approaches� A select number of proposals related to the algebra of TIGUKAT are discussed
below�

The PROBE Data Model 	PDM� �MD��� builds on the functional model and language
of DAPLEX �Shi���� PDM de�nes an algebra�based query model that is an extension of
the relational algebra� It has a functional algebra that de�nes the traditional relational
operators� plus an
apply�and�append� operator that provides a functional notion of the
join operator� Apply�and�append accepts as arguments a relation 	essentially a function�
and an operator function over this relation� It returns a relation containing the columns of
the original relation� plus an additional column holding the result of applying the operator
function to each tuple of the original relation� Thus� the relation acts as the �rst operand of
a join and the function de�nes the second operand� plus the join term� A similar approach
is described by the OOAlgebra of OODAPLEX �Day���� A variant of these approaches is
de�ned by the TIGUKAT algebra because the uniform functional approach �ts in naturally
with the behavioral nature of the query model�

The object algebra of Shaw and Zdonik �SZ��� SZ��� is based on a set�and�tuple model
and consistently extends the relational algebra with both object�preserving and object�
creating operators� Their algebraic operators work on collections of objects that have pa�
rameterized set types� The algebra de�nes traditional set operations� along with a �atten
operator for collapsing sets of sets� For tuples� nest and unnest operators are de�ned to
restructure the representation of tuples as �at or nested relations� In addition to these�
they de�ne a traditional select operator� an image operator that applies a function to each
object of a collection and returns the results as another collection� a project operator as an
extension of image that returns a newly constructed tuple object for each object of a queried
collection� and an ojoin operator to serve as a Cartesian product between two collections
of objects� The result of an ojoin is a set of object pairs with the elements of each pair
containing objects from the original collections that satisfy the join condition�

Osborn �Osb��� de�nes an algebra for an object�oriented model based on atomic ob�
jects� strongly typed aggregates 	tuples� and both homogeneous and heterogeneous sets� A
fairly comprehensive set of algebraic operators is de�ned� The algebra is multi�sorted since
the operators are de�ned over multiple types 	sorts� of objects and as a consequence are
unde�ned for certain combinations of these types� Operators include traditional set opera�
tions� a combine operator that is equivalent to Cartesian product for sets and has a similar
semantics for aggregates� a partition operator for carving up aggregate objects only� and a
choose operator which is a generalization of the relational select � The objects created by
partition� and the types to which they belong� are all grouped under a
CreatedAggregates�
class� There is no relationship between CreatedAggregates and the classes from which the
new objects are derived� Furthermore� the integration of the results of combine with the

��

existing lattice is not speci�ed�
Kim �Kim��� de�nes the query model for Orion� The simple form of a query in this

model is restricted to a single target class� Queries always return a new class with new
object instances created from the objects in the target class� Thus� the algebra is strictly
object�creating� The integration of new classes into the existing lattice is achieved by
hanging them o the root� Reasoning about the type of the result class to better integrate
it with the existing lattice is not de�ned� Single operand queries are too restrictive because
they do not allow explicit joins� Therefore� the model extends queries over multiple target
classes� However� there is a restriction on the domains of the
join attributes� of a query
in that they must be identical or in a sub�supertype relation with one another� The result
of a multiple�operand query� as with single�operand ones� is a new class with new object
instances that hang o the root of the lattice�

Davis �Dav��� de�nes a formal object algebra that includes both object�preserving and
object�creating operators� The traditional object�preserving set operators� along with an
object�preserving select operator are de�ned and these are closed on sets 	i�e�� classes�� The
operands of a query based on these operators are classes and the result can be a new or
existing class� The relative position in the class lattice of a new class created by a query
is derived from the membership properties of the operand classes� A membership normal
form 	MNF� is de�ned for classes that describes the properties of a class�s member objects�
By combining the MNF formulas of the operand classes� a new MNF formula is created
that describes the new class� along with its relative position in the lattice� A property
restriction operator� similar to select� is used to extract objects with particular properties
and form a class of these objects that is a subclass of the operand class� The algebra also
de�nes object�creating project and cross product operators for
taking apart� and
putting
together� objects� respectively� However� the objects and corresponding classes created by
these operators are not integrated with the classes from which they were formed� Thus� the
results of these operators are not classi�ed as they are with the object�preserving operators�
The TIGUKAT algebra includes a product operator and a form of behavioral projection
that integrates results into the existing lattice� Moreover� every operator of the algebra
does type inferencing on the result and integrates results with the existing lattice�

��� Query Model Overview

An identifying characteristic of the TIGUKAT query model is that it is de�ned as type
and behavior extensions to the base object model� The uniform behavioral paradigm of the
object model is carried through to the query model� Queries are de�ned as a specialization
of functions and the algebraic operators are de�ned as behaviors on the type T collection�
Thus� the query model is a collection of objects 	types� behaviors� functions� etc�� uniformly
integrated with the base model� This approach has several advantages� For example� the
query model is itself queryable� meaning a query may be posed on a collection of query
objects or on the types and behaviors making up the query model de�nition 	i�e�� schema��
Another advantage is that there is a single underlying semantics for both the object and
query models resulting in a clean integration of the two� The mechanics of this integration
is explained in Section ����

A distinction is commonly made �SS��� between object preserving and object creating
operations in object query models� An object preserving operator is one whose result con�
tains only existing objects� That is� it does not create or modify objects in any way� either

��

explicitly or by side eects� The query formalism of Straube and �Ozsu �S�O��a� considered
only operations of the object preserving kind� On the other hand� object creating operators
allow for the
taking apart� and
putting together� of objects into various new structures�
with new identity� that are distinct from any existing objects in the objectbase� The objects
created 	especially persistent objects� must be integrated into the underlying type system�
including any derived types or classes necessary for the consistent existence of these new
objects�

The debate over object preserving versus object creating operators has strong arguments
on both sides� On the one hand� object preserving operators are important because a query
language must support these kinds of queries independent of its support for object creating
operators� On the other hand� object creating operators allow otherwise unrelated objects
to be combined in new ways� which is important for composing new relationships among
objects and reorganizing information� this is applicable� for example� in knowledge base
systems where knowledge is acquired by forming new relationships from the existing facts�
Object creating operators introduce several problems that need to be resolved� First� new
objects require a type that may not exist and must be integrated with the existing type
lattice� Questions on how this type �ts into the existing lattice and the behaviors it supports
must be addressed� Second� the issue of query safety becomes more complex due to the
introduction of new objects during query processing� For example� consider a query that
creates new objects in one of its argument collections with every iteration of its evaluation�
If the semantics were such that the query would continue to process these new objects� then
more objects would be created and the query could go on inde�nitely�

The terms object�preserving and object�creating require further clari�cation in the con�
text of a uniform object model like TIGUKAT in which everything is an object� Queries in
TIGUKAT 	at minimum� always create and return a new collection object that represents
the objects in the result of the query� Furthermore� a query may also create a new type
object to go along with the collection if a proper type does not already exist� Thus� in
TIGUKAT all queries are object�creating in one sense� If the result collection of a query
contains objects created during the execution of the query� it is called a target�creating
query� otherwise it is called a target�preserving query�

The user query language 	TQL� has a syntax based on the SQL select�from�where struc�
ture� and formal semantics de�ned by the object calculus� Thus� it extends the relational
query languages with object�oriented features� The de�nition language 	TDL� provides
functionality to create new types� classes� collections and behaviors� to de�ne new functions
in the query language or an external language� to add and remove behavior de�nitions to
and from types� and to associate functions with behaviors on types� The control language
	TCL� consists of a few simple commands for controlling a session with the query processor�

The object calculus has a logical foundation and its expressive power is outlined by the
following characteristics� It de�nes predicates on collections 	essentially sets� of objects and
returns a collection of objects as a result� This property makes the language closed which is
important for uniformity� It incorporates the behavioral paradigm of the object model and
allows the retrieval of objects using nested behavioral applications� sometimes referred to as
path expressions or implicit joins � It supports both existential and universal quanti�cation
over collections� It has a rigorous de�nition of safety based on the evaluable class of queries
that is compile time checkable� Finally� it supports controlled creation and integration of
new collections� types and objects into the existing schema�

The algebra has a behavioral 	or functional� basis as opposed to the logical foundation
of the calculus� Like the calculus� the algebra is closed on collections� The algebraic

��

operators are modeled as behaviors on the primitive type T collection� Thus� any subtype
of T collection 	such as classes� may be used as an operand of an algebra operator�

A desirable property of an object query model is that the algebra and calculus be
equivalent in expressive power� meaning that all queries expressed in one language can also
be expressed in the other� The theorems and proofs that show the equivalence of algebra
and calculus are given in Section ���� Safety of the languages is addressed in Section ������

��� Queries as Objects

Modeling queries as objects is a natural extension to the TIGUKAT object model� A type
T query is de�ned as a subtype of T function in the primitive type system as illustrated
in Figure ���� This means that queries have the status of �rst class objects and that they
inherit all the behaviors and semantics of objects� Moreover� queries are a specialized
kind of function object� This means they can be used as implementations of behaviors�
they can be compiled� they can be executed and so on� The specialization of function
and query is not opposite 	i�e�� T function a subtype of T query� because functions are
general computationally complete programs and queries have a strict safety condition 	see
Section ������ that functions� in general� do not satisfy� Thus� functions are a more general
form of extracting and manipulating information in an objectbase�

T_object

T_queryT_function

Figure ���� Query type extension to primitive type system�

Table ��� lists the signatures of behaviors de�ned on type T query� The upper half of
the table are the behaviors inherited from T function and the lower half are the native
behaviors de�ned by this type�

For example� functions have source code associated with them and the source code for
a query is a query language statement such as TQL �PL�OS��a� PL�OS��b� Lip���� The
behavior B source retrieves this language statement from the query object� Functions have
a behavior B compile that compiles the code� For a query� this involves translating the
query statement into an algebra expression� optimizing it and generating an execution plan�
Functions have a behavior B execute that executes the compiled code� In general� for a
query this means submitting the execution plan to the object manager for processing� Fur�
thermore� queries have specialized behaviors such as B result� which is a reference to the
materialized query result 	i�e�� the actual result collection itself�� If this result is made
persistent� then the query is said to be stored and does not need to be re�evaluated the next
time it is called upon to B execute itself� Other behaviors relate to the extensible query
optimizer �Mu�n��� and include B initialOAPT and B optimizedOAPT for accessing the
initial and optimized Object Algebra Processing Trees 	OAPTs�� B optimize for initiating
the optimization of a query using a particular search strategy� B searchStrategy for access�
ing the search strategy used during optimization� B costModelType for determining the
cost model used for optimization� B transformations for accessing the list of transformation
rules used during optimization� B genExecPlan for generating an execution plan for the
compiled and optimized OAPT� B argMbrTypes for accessing the membership types of the
argument collections as opposed to B argTypes which are the types of the collection objects

��

Signatures

B name� T string

B argTypes� T listhT typei
B resultType� T type

B description� T string

B source� T string

B compile� T object

B primitiveExecute� T object� T object

B executable� T object

B basicExecute� T listhT objecti � T object

B execute� T list� T object

B basicExecSave� T listhT objecti � T object

B basicExecDontSave� T listhT objecti � T object

B initialOAPT� T algOp

B optimizedOAPT� T collectionhT algOpi
B searchStrategy � T searchStrategy

B transformations� T listhT algEqRulei
B costModelType� T integer

B argMbrTypes� T listhT typei
B resultMbrType� T type

B optimize� T searchStrategy� T algOp� T collectionhT algOpi
B genExecPlan� T algOp� T function

B execPlanFamily � T collectionhT functioni
B budgetOpt� T integer

B lastOpt� T date

B lastExec� T date

B result� T object

Table ���� Behavior signatures for type T query� Upper half are inherited from T function�
Lower half are native to this type�

themselves� B resultMbrType for accessing the membership type of the result collection as
opposed to B resultType� which is the type of the collection� and several other behaviors�
including ones for keeping various statistics about queries� As mentioned earlier� these
behaviors relate to the extensible query optimizer which is reported elsewhere �Mu�n����

Incorporating queries as a specialization of functions is a very natural and uniform way
of extending the object model to include declarative query capabilities� The major bene�ts
of this approach are as follows�

�� Queries are �rst class objects � meaning they support the uniform semantics of objects
and are maintained within the objectbase as just another kind of object�

�� Since queries are objects� they can be queried and can be operated upon by other
behaviors� This is useful for retrieving information about queries� generating statistics
about the performance of queries and in de�ning extensible optimization techniques
on query objects�

�� Queries are uniformly integrated with the operational semantics of the model so that

��

queries can be used as implementations of behaviors 	i�e�� the result of applying a
behavior to an object can trigger the execution of a query��

�� The type T query can be further specialized by subtyping� This can be useful in
extending the general class of queries into additional subclasses� each with its own
unique characteristics� and to incrementally develop the characteristics of new kinds
of queries as they are discovered� For example� in the design of the query optimizer
�Mu�n���� T query is subtyped by T adhocQuery and T productionQuery� and each
de�nes a specialized evaluation strategy for queries� That is� ad hoc queries are
interpreted without incurring high compile�time optimization strategies while� on the
other hand� production queries are compiled once and then executed many times�
Thus� more time is spent on optimizing production queries over ad hoc queries�

��� The Object Calculus

It is well recognized that a declarative query facility is an essential component of any
database management system� object�oriented systems are no exception� In this chapter� a
high�level behavioral object calculus with �rst�order semantics is presented�

In order to maintain the uniformity of the behavioral object model within the query
model� the behavioral abstraction paradigm is carried through into the calculus� The logical
foundation of the calculus includes a function symbol to incorporate the behavioral nature
of the object model� This allows the use of general path expressions in the calculus� The
expressive power of the calculus is equivalent to the �rst�order calculus� but some queries
within this domain may not be safe� The safety of the calculus is based on the evaluable
class of queries �GT���� which is arguably the largest decidable subclass of the domain
independent class �Mak���� The evaluable class is extended in this thesis by making use
of object generators for equality and membership atoms� which relaxes the requirement of
specifying explicit range expressions for each variable�

����� Formal Object Calculus

The �rst�order theory of the object calculus is presented� which establishes the well�formed
formulae of the language� Following this� the augmentations to the theory that form object
calculus expressions 	OCEs� are described� These represent the class of declarative queries
that can be posed on an objectbase�

The alphabet of the object calculus consists of the following symbols�
Object constants� a� b� c� d
Object variables� o� p� q� u� v� x� y� z

Predicate symbols
monadic� C� P�Q�R�S� T
dyadic� �� ����� ��
n�ary� Eval

Function symbols� �

Logical connectives� � �������
Delimiters� 	 � �

Note that the object constants� object variables� monadic predicates and function sym�
bols may be subscripted 	e�g�� a�� oi� Cn� ���etc��� In addition� a vector notation �s is adopted
to denote a countably in�nite list of symbols s�� s�� � � � � sn where n � ��

��

From object constants and object variables the syntax and semantics of the function
symbol � called a behavioral speci�cation 	Bspec� is developed� A term is an object constant�
an object variable or a Bspec� A Bspec is an n���ary function �	s� b��t� where s and each
ti denote terms and where b is an object constant� For n � �� �	s� b� is used without loss
of generality�

The ordered list of terms s� b��t is considered to be behaviorally consistent if and only if
the following properties hold�

�� b is an object constant denoting a behavior� meaning b is not allowed to range over
behaviors 	functions� which ensures a �rst�order semantics when incorporated into a
language with quanti�cation�

�� the type of the object denoted by s de�nes behavior b as part of its interface� meaning
b is applicable to s because it is de�ned on the type of s�

�� �t is compatible with the arity of the argument list for behavior b� meaning the number
of arguments expected by b is equivalent to the number of terms in �t� and

�� the types of the objects denoted by �t are compatible with the argument types of
behavior b� meaning the types of the terms are compatible with the argument types
of b�

A Bspec �	s� b��t� is consistent if and only if s� b��t are behaviorally consistent � In TIGUKAT�
every object knows its type and therefore� the consistency of a Bspec can be determined at
compile time�

The
evaluation� of a consistent Bspec involves applying the behavior b to the object
denoted by term s using objects denoted by terms �t as arguments� The
result� of Bspec
evaluation denotes an object in the objectbase� Since Bspecs denote objects� they have a
type 	and a class� that are in the objectbase as well�

The
evaluation� of Bspecs has the following logical formation� The n���ary predicate
Eval	R� s� b��t� is introduced as an axiom in the language such that Eval	R� s� b��t� is true if
and only if R denotes the
result� of applying behavior b to the object denoted by term s
using terms �t as arguments� The function symbol �	s� b��t� is a logical representation of R�
The Eval predicate also serves as an enforcement of the consistency property of Bspecs� In
the remainder of this thesis� only consistent Bspecs are considered�

Bspecs may be composed� This provides the capability of building path expressions in
queries� For example� given the object constants emp� B department� and B budget with
the obvious semantics� the Bspec �	�	emp�B department��B budget� can be composed�
which denotes the object representing the annual budget of the department that employee
emp works in� Also note that the example Bspec has the properties of a ground term 	see
De�nition ��� below��

For brevity� the syntax of Bspecs is recast into the dot notation as s�b	�t�� which is se�
mantically equivalent to the original speci�cation� If behavior b does not require any argu�
ments� then the notation simpli�es to s�b� The previous example can then be represented as
emp�B department�B budget assuming left�associativity of behavioral applications� Paren�
thesis may be used to change the order of precedence� Some other equivalent syntax� such
as function application b	s��t�� which is popular in other languages� could have been chosen
instead�

As shown by the above example� many path expression formations often include a series
of behaviors with the semantics that the result of the �rst behavior be used as the input to

��

the second and so on� Such a sequence of multiple operations is called a mop �S�O��a� and
is equivalent to a Bspec� The multi�operation dot notation ��s��b��b�� � �bm is introduced to
denote a multi�operation resulting in the application of behavior object constants b��b�� � �bm
using objects denoted by terms �s as arguments� Furthermore� ��s���b is used as a shorthand
to denote a multi�operation where the number and ordering of the behaviors are immaterial�

To illustrate the processing of a mop� consider the following multi�operation�

�s�� s�� � � � � sn��b��b�� � �bm

Let ki denote the number of parameters� de�ned by behavior bi� let ri designate the
intermediate object denoted by the Bspec formation of behavior bi and let r denote the
�nal result of the mop� Procedurely� a mop is processed as follows where
�� denotes
assignment�

r� � s��b�	s�� � � � � sk����

r� � r��b�	sk���� � � � � s�k��k�����

���
���

ri � ri���bi	s�
Pi��

j��
kj���

� � � � � s
�
Pi

j��
kj���

���
���

r � rm � rm���bm	s�
Pm��

j��
kj���

� � � � � sn�

The above sequence of behavioral application making up themop is illustrated in Figure ����

����
�����
����
�����
������

�����
����
�����

� � � � � � � �� � � � � � �

����
�����
����
�����
������

�����
����
�����

����
�����
����
�����
������
�����
����
�����

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
� �

�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
��

�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
� �

�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

����
�����
����
�����
������

�����
����
�����

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
��

�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

����
�����
����
�����
������
�����

����
�����

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
��

�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

r�r� riri�� rm��

s
�
Pi��

j��
kj���

s
�
Pi

j��
kj���

� � �

sk���

sk���

s�k��k����
� � �

s�

� � �

s�

rm

� � �

sn

s
�
Pm��

j��
kj���

b� bi bmb�

Figure ���� Sequence of behavioral applications making up a mop�

Bspecs and mops are equivalent forms of representation� One form can be freely trans�
formed into the other and results established using one form also hold for the other� This
result is important since one can transform between the formal calculus and
simpler�
language notations� The equivalence is formalized by the following lemma�

Lemma �� Bspecs and mops are equivalent representations�
Proof� Trivial� The semantics of Bspecs and mops are de�ned above� Due to the follow�
ing equivalence mappings between Bspecs and mops where s and t represent terms and b
represents behavior constants�

�	s� b��t� � �s��t��b 	����

��t��b��b � ���t��b���b 	����

�Here the parameters refer to the objects supplied to the behavior� not including the initial object to
which the behavior is being applied�

��

The �rst mapping shows that every Bspec can be replaced by an equivalent mop over a single
behavior and vice versa� The second mapping shows the unnesting of mops over multiple
behaviors into an equivalent series of single behavior mops� which can be transformed by
the �rst mapping� �

The notions of constants and variables are generalized to include Bspecs by de�ning
ground terms and variable terms as follows�

De
nition �� Ground Term� A ground term is recursively de�ned as follows�

�� every object constant is a ground term�

�� if �	s� b��t� is a consistent Bspec and all of s��t are ground terms 	note that b must be
a ground term by the de�nition of Bspec�� then �	s� b��t� is a ground term�

�� nothing else is a ground term�

From this point on� symbols de�ned as denoting an object constant� including symbols
a� b� c� d� are extended to include ground terms as well� Any term that is not a ground term
is called a variable term since it must contain at least one object variable� If �o are the object
variables appearing in some term r� then r is called a variable term over �o� The variables
can be thought of as the parameters of the term� If r is the object variable o� then r is
a variable term over o� If r is a term de�ned by Bspec s�b	�t� and �o represents the object
variables appearing in the Bspec� then r is a variable term over �o� The notation rf�og is
used to denote that r is a variable term over �o� This notation is generalized to �f�og when
the form of the term is immaterial� If �o is empty� then �fg denotes a generic ground term�

The atomic formulas or atoms are the building blocks of calculus expressions� Every
atom has an equivalent Bspec 	and hence mop� representation� Atoms are identi�ed be�
cause they represent the fundamental predicates of the calculus and are used in translating
a query to the algebra� which can then be optimized and executed� The atoms of the
TIGUKAT calculus consist of the following�

Range Atom� C	o� is called a range atom for o where C corresponds to a unary predicate
representing a collection and o denotes an object variable� C is called the range of
o� A range atom is true if and only if o denotes an object in collection C� The
semantics of this atom in a query is to have variable o bind to 	or range over� the
objects in the collection denoted by C� When C is de�ned for a class� it denotes the
deep extent of the class and the notation is extended to include C�	o�� which is true
if and only if o denotes an object in the shallow extent of the class� One may think of
C� as a separate monadic predicate for specifying the shallow range of o� The Bspec
representation for the range atom is �	C�B elementOf � o� where B elementOf is the
collection membership behavior as de�ned in Appendix B� Range atom speci�cations
of the form C	s� where s is a term denoting an object constant or Bspec 	i�e�� not an
object variable� are handled by membership atoms de�ned below�

Equality Atom� s � t is a built�in predicate called an equality atom where s and t are
terms� The predicate is true if and only if the object denoted by term s is object
identity equal to the object denoted by term t� The semantics of this atom in a query
is to test the object identity equality of s and t and return true if they are equal or false

otherwise� This atom is type consistent for all objects since all objects must support

��

an object identity equality behavior� Note� as a syntactic convenience� an equality
atom where both terms are boolean and where one of the terms is the object constant
true� say s � true where s is boolean� is simpli�ed to s� If one of the terms is the object
constant false� the atom speci�cation is simpli�ed to �s� The Bspec representation
for the equality atom is �	s�B equal� t� where B equal is the object equality behavior
de�ned in Section ������ The built�in predicate s �� t is the complement of equality�

Membership Atom� s � t is a built�in predicate called a membership atom where s and
t are terms and t is a term denoting a collection� The predicate is true if and only
if the object denoted by s is an element of the collection denoted by t� The Bspec
representation for the membership atom is �	t�B elementOf � s�� The semantics of
this atom in a query is to test if s is an element of t and return true if it is or false

otherwise� Note that a range speci�cation of the form C	s� where s is an object
constant or Bspec 	i�e�� not an object variable� is represented as a membership atom
s � C � where C � is a constant denoting the collection represented by predicate C� The
built�in predicate s �� t is the complement of membership�

Generating Atom� An equality atom of the form o � t or a membership atom o � t� where
o is an object variable� t is an appropriate term for the atom� and o does not appear in
t� are called generating atoms for o� They are so named because the object denotations
for o can be generated from t� o is called the generated variable and t is called the
generator � The Bspec representations for generating atoms are �	o�B equal� t� and
�	t�B elementOf � o�� The semantics of the o � t generating atom in a query is to
bind o to the object denoted by t� The semantics of the o � t generating atom is to
have o bind to 	or range over� the objects in the collection denoted by t� Any atom
that is not a generating atom is called a restriction atom and any variable that is
not generated is called a restriction variable because they are used to restrict objects
returned by a query�

A ground atom is an atom that contains only ground terms� A literal is either an atom
or a negated atom� A ground literal is a literal whose atom is a ground atom�

The choice of atoms may seem restrictive when compared to other calculi such as the
tuple relational calculus that de�nes a greater variety of comparison predicates including
�� ���� �� and �� An identifying characteristic of the TIGUKAT calculus is that it is
strictly behavioral and does not de�ne explicit value�based comparisons of objects or their
subcomponents� Thus� operations such as ������� must be de�ned as behaviors on the
respective types of objects that are to be compared� The only comparison predicates de�ned
are object identity equality and membership� However� type implementors can specialize the
behaviors for these comparison predicates in their own types 	e�g�� value based comparisons�
that are of most utility to them� For example� a form of
structural equality� on Cartesian
product types that compares two product objects based on the pairwise equality of their
respective component objects can be de�ned�

From atoms� the de�nition of a �rst�order well�formed�formula or simply formula 	ab�
breviated WFF� of the object calculus are built� WFFs are de�ned in terms of free and
bound object variables� An object variable is bound in a formula if it has been previously
introduced by the quanti�er or �� If the variable has not been introduced with a quanti�er
it is free in the formula� WFFs are de�ned recursively as follows�

�� Every atom is a formula� All object variables in the atom are free in the formula�

��

�� If 	 is a formula� then �	 is a formula� Object variables are free or bound in �	 as
they are free or bound in 	�

�� If 	� and 	� are formulas� then 	� � 	� and 	� � 	� are formulas� Object variables
are free or bound in 	� � 	� and 	� � 	� as they are free or bound in 	� or 	��

�� If 	 is a formula� then o		� is a formula� Free occurrences of o in 	 are bound to o
in o		��

�� If 	 is a formula� then �o		� is a formula� Free occurrences of o in 	 are bound to �o
in �o		��

�� Nothing else is a formula�

In the remainder of this thesis� A�B� F�G and 	�
 are used to denote formulas and

subformulas� The relation
A
def
� F� means symbol A
is de�ned by� the expression F �

This is used to associate formula symbols with formulas� Furthermore� A	x� denotes that
variable x is free in formula A� Formulas may be enclosed in parenthesis to indicate order
of precedence� In the absence of parenthesis� the following precedence hierarchy is adopted
with the highest precedence at the top�

�� � �
�
�

����� Calculus Queries

Several classi�cations of object�oriented queries have been made� One class of queries deals
only with behaviors that are side�e�ect free� A behavior is said to be side�e�ect free if
it does not modify the state of any object or create new objects during its execution�
This property is too restrictive in the context of the TIGUKAT model since all operations
	including the algebraic operators� are uniformly managed as behaviors� At minimum� a
query always returns a new collection as a result and in certain cases generates a new
type for the collection as well� Thus� there is a small set of prede�ned behaviors that
manage the controlled creation of collections 	and possibly types� as their side eects� These
behaviors include the algebraic operators and the primitive behaviors for collection creation
and construction� The notation newcoll	o�� � � � � on� is used as a shorthand to represent the
creation of a collection containing objects o�� � � � � on� The primitive sequence of behavioral
applications corresponding to this notation is as follows�

C collection�B new �B insert	o�� � � �B insert	on�

That is� a new empty collection is created and then each object oi is added to the collection
in turn� The result is a collection containing objects o�� � � � � on� A compiler could optimize
this series of n�� behavioral applications into a single internal primitive collection creation
operation since collections are part of the primitive model�

All user�de�ned behaviors appearing in calculus expressions are assumed to be side�eect
free� In other words� all user�de�ned behaviors appearing in calculus expressions must be
retrieval oriented�

A target�preserving query is an object calculus expression 	OCE� of the form ft j 	g
where t is a target term consisting of a single variable� say o� possibly indexed by a set of

��

behaviors� 	 is a WFF with o as the only free variable� and all behaviors in the expression
are side�eect free 	or retrieval oriented�� The semantics of a target�preserving query is to
return a collection of existing objects that satisfy the formula 	�

Indexed variables are of the form o�B� where B represents a subset of behaviors de�ned
on the type of variable o� union the behaviors de�ned on type T object� The union with
T object is necessary since every object must support the behaviors of T object� The
semantics of indexed terms is to project over the behaviors in B for variable o creating a
new type for the result� Following a projection� the membership type of the result collection
will be a type that only de�nes the behaviors in B� This restricts the behaviors that can�
in general� be applied to the members of the result collection�

Target�preserving queries may seem to be somewhat simplistic and too restrictive� but
this form supports a wide variety of useful queries� For example� assume �nite classes
C dept and C emp where C emp objects have behaviors B dept and B age de�ned on
them� The following target�preserving query returns a collection of department objects that
have senior citizens working for them�

f o j C dept	o� � p	C emp	p�

� o � p�B dept � �p� ����B age�B greaterThan� g

All queries that are not target�preserving are target�creating� The notation of OCEs
is extended for target�creating queries to include the form ft�� � � � � tk j 	g where the set
of variables appearing in 	possibly indexed� target terms t�� � � � � tk is precisely the set of
free variables� say �o� in the WFF 	� This form is a generalization of the target�preserving
kind by allowing k � � target terms over �o distinct object variables� The semantics of
a target�creating query is to return a collection of product objects created by joining all
permutations of t� through tk that satisfy 	�

Assume in the previous example that 	department� employee� pairs should be returned
instead of just departments� Further assume that the employee objects are projected over
the behavior B age� The target�creating query that produces this result is as follows�

f o� p�B age� j C dept	o� � C emp	p�

� o � p�B dept � �p� ����B age�B greaterThan g

Additional examples of both target�preserving and target�creating queries are given in Sec�
tion ����

����� Expressive Power of Calculus Queries

The general expressive power of the TIGUKAT calculus is de�ned by the following theorem�

Theorem �� Every query expressible in the �rst�order calculus is expressible in the
TIGUKAT calculus�
Proof� An object calculus expression 	OCE� of the TIGUKAT calculus consists of two
components� a list of 	possibly indexed� target terms and a �rst�order well formed formula�
The second component allows an OCE to express any �rst�order calculus expression� Thus�
the general expressive power of the TIGUKAT object calculus is equivalent to the �rst�order
calculus� Any �rst�order calculus formula can be translated to an OCE by simply adding
target terms for every free variable in the formula� Conversely� an OCE is translated to
a �rst�order calculus formula by dropping the target terms� There may be an additional

��

translation between the predicate and atom representations of the �rst�order calculus for�
mula and the �rst�order formula of an OCE� but this can be represented with a trivial
naming mapping� �

The restriction that OCEs must include only side�eect free behaviors does not pose
problems since this is a universal assumption that cannot� in general� be tested and must
be accepted axiomatically�

Some statements that can be expressed in a �rst�order language may not have any rea�
sonable interpretation and� therefore� cannot be eectively executed by the query processor�
The unreasonable statements should be identi�ed and rejected with an indication that they
cannot be processed� This raises the issue of safety � which involves de�ning a subset of the
�rst�order statements that can be identi�ed and processed in polynomial time� Safety and
the de�nition of a safe subset of the TIGUKAT calculus are topics of Section ������

����� Safety of Object Calculus Expressions

A traditional notion in relational database systems is that
reasonable� queries are ones
whose correct answers contain values that are limited to the constants that appear in the
query or the database relations that appear in the query� A corresponding notion in an
object model is that reasonable queries produce correct answers that contain objects which
are limited to the objects appearing the query or in the collections that appear in the
query� Unary predicates C	o� are de�ned for the �nite collections and classes appearing in
the objectbase� These are used to range over the elements of a collection� The collection
represented by the complement of a predicate is assumed to be in�nite 	i�e�� �C	o� is in�nite
for all predicates C��

The object calculus is very expressive and allows for the formation of queries that have
no
reasonable� interpretation� For example� the complement of a predicate �C	o� holds
for arbitrary objects o that are not in the collection C� Another problematic query is the
one that adds objects to collections over which it is ranging� This has the eect of updating
the predicate on each iteration� These kinds of queries are considered
unreasonable� and
an implementation should strictly avoid processing such constructs� Therefore� a criterion
of safety is de�ned that consists of tests based on the structure of the formula 	i�e�� its
syntax� to check if a formula is reasonable� Only safe queries are processed and all others
are rejected� The general notion of safety is de�ned as follows�

De
nition �� Safety� An expression is considered safe if it can be evaluated in �nite
time and produces �nite output �OW����

The above de�nition is a semantic one that raises the problem of �nding an e�cient
solution for determining whether an arbitrary expression is safe or not� In other words�
there is a need for a syntactic check that can be performed on any arbitrary formula and can
determine� in polynomial time� whether the given formula is safe or not� The safe formulas
are the ones translated to an algebra� optimized and executed� Since the implementations
of behaviors can be arbitrary code� safety can only be guaranteed up to Bspec evaluation�
That is� there are no mechanisms to guarantee the termination of a function that may be
called as part of a behavior being applied to an object�

The �rst safety check is on the calculus formula and determines the domain indepen�
dence of the formula� The second check is based on the operators of an equivalent algebra
expression for the formula and determines the operand �niteness of a query� meaning it

��

checks that objects aren�t being added to operand collections or classes of the operator�
If the query fails either test� it is rejected� The domain independence form of
safety� is
discussed �rst� followed by a discussion of operand �niteness in queries�

The class of domain independent formulas �Mak��� Fag��� is recognized as being the
largest class of
reasonable� queries� However� the undecidability of this class is well known�
Nicolas and Demolombe �ND��� have shown domain independence to be equivalent to the
class of de�nite formulas de�ned by Kuhns �Kuh���� which has been shown to be not
recursive by DiPaola �DiP����

Many decidable subclasses of the domain independent class have been proposed� The
class of conjunctive queries are those that include only and � connectives and represents
one of the simplest
reasonable� subclasses shown to be decidable �Ull���� Larger decidable
subclasses augment conjunctive queries with negation and disjunction� Several object calculi
proposals have de�ned safety in the context of conjunctive queries with disjunction and
restricted forms of negation �S�O��a� Cha���� These proposals de�ne a broader range of
safe queries� however� more general classes have been identi�ed� The class of evaluable
queries as �rst proposed by Demolombe �Dem��� and later examined by van Gelder and
Topor �GT��� GT��� is argued to be the largest decidable subclass of domain independent
queries� In the TIGUKAT query model� the evaluable class is used as the base set of safe
queries that can be translated into the object algebra� The class of range restricted queries
�Dem��� has been shown to be equivalent to the evaluable class �GT���� A strict subclass
of the range restricted class 	hence the evaluable class� is essentially the basis of safety in
the structural query model of Abiteboul and Beeri �AB���� Furthermore� their de�nition
assumes the existence of a partial order on the variables in a calculus formula such that all
variables are restricted � An indication of how to construct a proper partial ordering from a
given formula is not presented� The safety model of TIGUKAT also de�nes a partial order
and the �rst part of the translation from calculus to algebra 	see Section ������ constructs
this ordering�

The class of evaluable queries can be de�ned in terms of the two relations gen and con
	see Figure ���� between variables and 	sub�formulas� These relations were introduced by
Gelder and Topor �GT��� GT��� in the form of logical rules�

Intuitively� gen	x�A� means that formulaA can generate all the needed values of variable
x that contribute to making A true and that there are only a �nite number of these values�
In other words� if gen	x�A	x� �y�� holds and A	c� �d� is true for some variable assignment
x � c and �y � �d� then one can conclude that c is an element of a �nite collection of objects
derivable from the formula A itself� If con	x�A	x� �y�� holds� then the variable x is said to
be constrained in A� meaning that x is generated in every disjunct of A in which x appears�
The con rules subsume the gen rules� Thus� it is clear that gen	x�A� implies con	x�A�� but
con	x�A� does not imply gen	x�A��

These rules are extended by adding a gdb relation that makes use of generating atoms
in formulas� The gdb relation relies on a globally accessed partial order denoted �F � This
partial order consists of pairs 	x�N� where x is a variable and N is a positive integer or
the symbol �� The symbol �F is used in the gdb rules as an in�x dyadic predicate on the
variables appearing in the partial order �F � This predicate is de�ned as follows�

De
nition �� Ordering Predicate 	�F �� For any two elements 	x�Nx� and 	y�Ny� ap�
pearing in the partial order �F � the predicate x �F y is de�ned by the following table

��

where n and m denote positive integers and m is greater than zero�

Nx Ny x �F y

� � false

� n false

n � true

n n�m true

n�m n false

n n false

Figure ��� shows the rules for the gdb relation and the extended gen and con relations�
The partial order used by the gdb relation is built from the atoms in a calculus formula F
during the �rst step in the translation from the calculus to the algebra� The partial order
is constructed to produce a representation of the generating atom dependencies between
variables in a formula F � If predicate x �F y holds for the partial order �F � this means
that variable x is not dependent on variable y and that x potentially generates values for y
in formula F � For example� the partial order for the formula�

F
def
� x	C emp	x� � y � x�B name�

is �F
def
� f	x� ��� 	y� ��g since x is generated independently of y from C emp and y is gen�

erated using x in y � x�B name� The reason x
potentially� generates y is clear from the
following example� Consider the formula�

F � def
� xw	C emp	x� � y � x�B name �C emp	w� � z � w�B age�

The partial order for this formula is �F �
def
� f	x� ��� 	w� ��� 	y� ��� 	z� ��g� Now� x �F � z holds

and x is not dependent on z� but x does not generate objects for z in F �� Thus� x is only a
potential generator for z�

The additional predicates and functions that appear within the rules of Figure ��� are
de�ned as follows�

� Predicate edb	A� holds if one of the following conditions is met�

�� formula A is a range atom of the form C	x� where predicate symbol C represents
a �nite collection�

�� formula A is an equality atom of the form x � c where c is a ground term� or

�� formula A is a membership atom of the form x � c where c is a ground term
representing a �nite collection�

� Predicate free	x�A� holds if variable x appears as a free variable in formula A�

� Predicate notfree	x�A� holds if variable x is bound in formula A or if x does not
appear in A�

� Predicate distinct	x� y� holds if x and y are dierent variables�

��

gdb	x� x� y� if y �F x
gdb	x� x� �f�yg� if �y �F x
gdb	x� x � y� if y �F x

gdb	x� x � �f�yg� if �y �F x

gen	x�A� if edb	A� and free	x�A�
gen	x�A� if gdb	x�A�

gen	x��A� if gen	x� pushnot	�A��
gen	x� yA� if distinct	x� y� and gen	x�A�
gen	x� �yA� if distinct	x� y� and gen	x�A�
gen	x�A�B� if gen	x�A� and gen	x�B�
gen	x�A�B� if gen	x�A�
gen	x�A�B� if gen	x�B�

con	x�A� if edb	A� and free	x�A�
con	x�A� if gdb	x�A�
con	x�A� if notfree	x�A�

con	x��A� if con	x� pushnot	�A��
con	x� yA� if distinct	x� y� and con	x�A�
con	x� �yA� if distinct	x� y� and con	x�A�
con	x�A�B� if con	x�A� and con	x�B�
con	x�A�B� if gen	x�A�
con	x�A�B� if gen	x�B�
con	x�A�B� if con	x�A� and con	x�B�

Figure ���� Logical rules that de�ne the gen and con relations�

� Function pushnot	�A� represents a formula B 	provided edb	A� does not hold� that
is evaluated as follows�

�A B

�	A� �A�� 	�A�� � 	�A��
�	A� �A�� 	�A�� � 	�A��
�xA� �x�A�

��xA� x�A�

��A� A�

�	s � t� s �� t

�	s �� t� s � t
�	s � t� s �� t

�	s �� t� s � t

If edb	A� holds� then pushnot	�A� represents a formula� say �� that causes the cor�
responding gen or con predicate to fail�

From the relations of gen and con� the class of evaluable �GT��� formulas is de�ned

��

below� The class of formulas satisfying this de�nition 	or which can be rewritten to satisfy
the de�nition� is exactly the class of
safe� formulas of the calculus�

De
nition �� Evaluable� A formula F is evaluable or has the evaluable property if the
following conditions are met�

�� For every variable x that is free in F � gen	x� F � holds�

�� For every subformula xA of F � con	x�A� holds�

�� For every subformula �xA of F � con	x��A� holds�

This de�nition provides an e�cient� syntactic approach for determining whether a given
formula is evaluable or not� simply apply the appropriate gen and con rules to the formula
and subformulas� This de�nition is extended to object calculus expressions 	OCEs� by
stating that an OCE f�t j 	g where �t contains at least one target term� is evaluable if the
formula 	 is evaluable in the sense of De�nition ���� This establishes the decision mechanism
for accepting or rejecting any arbitrary query posed as an OCE� For example� assuming all
range predicates represent �nite collections� the following OCE is evaluable�

fo j C	o� � p	P 	p� � �Q	o��g

while�
fo j C	o� � p	�P 	p� � p�B something � o�B something�g

is not because con	p��P 	p� � p�B something � o�B something� does not hold� Note that
the evaluable OCE above as given is an example of a formula that is safe in the evaluable
class� but is unsafe in the 	range� restricted class as de�ned by �AB����

Without a partial order de�ned 	i�e�� we cannot make use of the gdb predicate�� formulas
satisfying De�nition ��� are known as strict�sense evaluable �GT��� because of the conserva�
tive approach taken towards the built�in equality and membership predicates� gen	x� x�y�
and con	x� x�y� where � is one of ��� never hold� The strict�sense evaluable queries are the
class considered in �GT���� However� they realized that many formulas are evaluable despite
this conservative approach� They presented transformations that remove some instances of
equality 	�� and yield an
equality reduced� form� However� a more general solution was
needed for the TIGUKAT query model to deal with Bspecs and generating atoms that were
not part of their work� The introduction of the gdb predicate and the formation of the par�
tial order �F consistently extends the class of evaluable queries to a larger class recognized
in �GT���� Formulas that fail strict�sense evaluability� but can be made evaluable through
transformations or rule extensions are known as wide�sense evaluable�

This concludes the de�nition of the syntactic based check for recognizing the domain
independence of a formula based on the evaluable class of queries� Once it is known that an
OCE is evaluable� there are a �nite number of steps 	described in Section ��� by the calculus
to algebra reduction Theorem ���� that translates any evaluable OCE into an equivalent
object algebra expression 	OAE��

The second test for
safety� determines whether a query adds objects to the collections
and classes that it is ranging over and to reject it if it does� This form of safety is called the
check for operand �niteness � An example calculus expression that exhibits this problematic
operation is as follows�

fo j p	C collection	p� � o � newcoll	p��g

��

This query ranges over the entire class of collections 	i�e�� all collections� and for each
collection p it creates a new collection containing the collection p� The problem is that the
new collections are created as instances of C collection� thereby increasing the cardinality
of C collection for every object in C collection� Since the semantics of the query is to
range over all members of C collection� the newly created collections should be included
in the range of p� This results in the creation of more collections that should be included in
the range and so on� The check for operand �niteness is deferred until after the generation
of an equivalent algebraic expression and the check is performed on algebraic operators 	see
Section ������� This is done because an algebraic expression de�nes the procedural structure
of a query and a recursive process is de�ned that goes through and tests each operator in
turn�

��� The Object Algebra

An algebraic expression represents a typed collection of objects� The operands and re�
sult of algebraic operators are typed collections� Collections can be heterogeneous� When
combining collections with certain algebra operators 	e�g�� product� union� intersection�� a
collection with a dierent type from those of the operand collections 	or any type in the
lattice� may be created� Thus� in order to integrate these new types into the existing lattice
a type inferencing mechanism is introduced and used by the algebra�

There are two types to consider here� the type of the container 	i�e�� the type of the
collection object� and the type of the objects in the container 	i�e�� the membership type
of the collection�� The types referred to in the inferencing mechanism are the membership
types of collections�

��
�� Semantics of Type Inferencing

A query returns a collection as a result and every collection must have a single member type
	Section ������� Thus� the algebraic operators may have to create a new type when forming a
query result that contains objects of heterogeneous types or contains newly created objects�
Therefore� type creation and type inferencing semantics are developed for the TIGUKAT
model� Type creation and type inferencing are topics also related to schema evolution�
Only the generic type creation and inferencing mechanisms are presented in this section�
The complete discussion of schema evolution is presented in Chapter ��

Let Ti 	� � i � n� denote types� Then� the behavioral application Ti�B interface denotes
the collection of behaviors applicable to objects of type Ti� The type inferencing mechanism
is based on type construction operations that are modeled as behaviors on the primitive
type T type� They are de�ned as follows�

T� u T� 	B tmeet� produces the meet type of the argument types� The result type� say T �
de�nes the behaviors that are common to types T� and T�� The interface set of T is
de�ned as T��B interface � T��B interface� If T� is a subtype of T�� then T�uT� is T��
The converse is true if T� is a subtype of T�� The B tmeet behavior produces a result
type that is integrated into the type lattice as a direct supertype of the argument
types and a direct subtype of types forming the most speci�c set conformance of the
argument types 	i�e�� all the common direct supertypes of the argument types before
the integration is done��

��

T� t T� 	B tjoin� produces the join type of the argument types� The result type� say T �
de�nes all the behaviors of T� together with all the behaviors of T�� The interface
set of T is de�ned as T��B interface � T��B interface� If T� is a subtype of T�� then
T� t T� is T�� The converse is true if T� is a subtype of T�� The B tjoin behavior
produces a result type that is integrated as a direct subtype of the argument types
and a direct supertype of all the common direct subtypes of the argument types before
the integration is done�

T� � T� 	B tproduct� produces the product type of the two argument types� The result
type� say T � de�nes product behaviors 	see below� and is integrated as a subtype of
other product types according to the product behaviors de�ned� That is� the name
and result type of product behaviors determines subtyping on product types� Objects
of type T are pairs with the �rst component being an object of type T� and the
second component an object of type T�� The B tproduct behavior produces a product
of types that does not have a sub�supertype relationship with the argument types� but
is integrated with other product types� Instances of a product type are called product
objects � They are created from objects in the extents of the types that contributed to
the product type� The components of a product object are the original objects from
which it was created�

The binary u�t�� behaviors can be naturally extended by de�ning them over multiple
types in the following way 	where n � ���

un
i��Ti � T� u T� u � � � u Tn

tn
i��Ti � T� t T� t � � � t Tn

�n
i��Ti � T� � T� � � � � � Tn

Parentheses may be used with the above operators� Each parenthesized subexpression
represents the creation of a new type� With respect to the behaviors de�ned on the �nal type
created� operators u and t are commutative and associative while � is neither� Parentheses
aect the semantics of the product operator in the following way� Product types de�ne inject
behaviors 	�i� that return the ith component of a product object� With this in mind� the
following product types are all dierent types that de�ne dierent inject behaviors with
dierent result types�

	T� � T��� T�
T� � 	T� � T��
T� � T� � T�

The �rst type de�nes two inject behaviors� �� that returns a product object of type T��T�
and �� that returns an object of type T�� The second one de�nes two inject behaviors that
dier from the �rst� �� that returns an object of type T� and �� that returns a product
object of type T� � T�� The third type de�nes three inject behaviors� �� that returns an
object of type T�� �� that returns an object of type T� and �� that returns an object of type
T��

The de�nition and integration of product types into the existing lattice and the creation
of product objects is designed to be an automated process� A request is made through
the application of a behavior to create a product object from a given list of objects� This
may spawn the creation of a new product type and a class for the object if they don�t
already exist� In order to support these semantics� the following extensions are made to the
primitive type system�

��

� T product is de�ned as a subtype of T type� T product de�nes the following native
behavior�

B compTypes � T listhT typei

This behavior returns the list of component types that make up a product type�
Intuitively� T product is the type that describes the semantics of product types� The
class C product for this type is created as an instance of T type�class so that the
primitive type creation behavior 	de�ned as new on this type� can be applied and
passed a list of component types� The semantics of applying this creation behavior to
C product with a list of argument types is to create a product type 	if one doesn�t
already exist� whose component types are the argument types passed� and to integrate
the new type with existing product types� The behavior B tproduct 	�� applies the
type creation behavior to C product passing along its arguments types� This de�nes
the creation of new product types as instances of C product�

� T product�class is de�ned as a subtype of T class� A product object creation
behavior

B new � T listhT objecti � T object

is de�ned on T product�class� Intuitively� this type de�nes the semantics for the
classes of product types� The class C product�type is created as an instance of
C class�class� The type T class�class de�nes a class creation behavior 	new� that
accepts a type 	the type to associate a class to� as an argument� By applying this
behavior toC product�class and passing a product type� a class for the product type
is created 	if one does not already exist�� Now� product objects can be created through
the resulting class by applying the B new behavior de�ned on T product�class to
the class and passing a list of objects�

For example� the following series of behavioral applications create a new product type
called T person�dwelling� a product class called C person�dwelling and a product object
o as an instance of this class� The �rst component of o is the person object joe and second
component is the dwelling object apt���� The
�� symbol denotes assignment and ��
denotes a list of objects�

T person�dwelling � C product�B new	�T person� T dwelling��
C person�dwelling � C product�class�B new	T person�dwelling�

o � C person�dwelling�B new	�joe� apt�����
Finally� a behavior B newprod is de�ned on T object that accepts as arguments a list

of objects and a list of corresponding behavioral projection sets� The result of applying this
behavior with these arguments is as follows�

�� A product type is created 	if one does not already exist� using the type of the receiver
object and the types of the objects in the �rst argument list� The types are projected
over the behavioral projections in the second argument list before the product type
is formed�

�� A class for the product type is created 	if one does not already exist��

�� A product object formed from the receiver and the objects in the �rst argument list
is created as an instance of the 	possibly new� product type and a reference to this
object is returned�

��

For a given list of objects o�� o�� � � � � on and list of behavioral projection sets B��B�� � � � �Bn�
the notation newprod	o��B��� � � � � on�Bn�� is used to denote a Bspec that represents the ap�
plication of the product creating behavior with the given argument lists as�

o��B newprod	�o�� � � � � on���B�� � � � �Bn��

The result is a product object 	o�� � � � � on� whose ith component is the original object oi
from which it was formed� The type of each oi component object in the product type is
the type of the original oi object projected over the behaviors in Bi� When the behavioral
projection list is immaterial� the notation is simpli�ed to newprod	o�� � � � � on��

In order to extract and operate on the original component objects of a product object�
every product type de�nes an inject behavior for each of its component types� Product
types are integrated into the type lattice according to the names and return types of these
behaviors 	more generally� their semantics�� The behaviors de�ned on product types are
the following�

Inject� For every product type T� � � � � � Tn� there are n inject behaviors de�ned �i� � �
i � n such that for a given object of this type� say o� the behavioral application o��i
returns the object of type Ti that represents the i

th component of o�

A product type T��� � ��Tn is integrated as a subtype of a product type T �
��� � ��T �

m

if m � n and Ti is a subtype of T �
i for � � i � m� It is integrated as a supertype of

T ��
� � � � � � T ��

k if n � k and Ti is a supertype of T ��
i for � � i � n� If the product type

cannot be integrated as a subtype of some other type� it is de�ned as a subtype of
T object�

Equality� The object equality behavior for T product is re�ned to be based on pairwise
identity equality of the component objects� That is� for two product objects o and o�

of types T� � � � � � Tn and T �
� � � � � � T �

n� o � o� is true if and only if o��i � o���i for
� � i � n�

��
�� Algebra Expressions

The underlying framework of the object algebra and calculus are essentially the same� How�
ever� an important dierence is that the algebra can be viewed as having a functional basis as
opposed to the logical foundation of the calculus� This perspective was described by Backus
�Bac��� and has been exploited by several complex object models �MD��� Day��� AB����
In the algebra� names are used as placeholders for collections with the appropriate types�
The predicates �� ����� �� and connectives ����� are handled as boolean�valued functions�
The object creating behaviors newcoll	 � and newprod	 � are variadic functions� There is a
small set of well�de�ned algebraic operators 	viewed as functions� that provide meaningful
iterations over collections and can be composed to form more complicated queries 	exis�
tential and universal quanti�cation are handled by composing these operators�� Thus� an
algebraic query is a functional expression to be evaluated and the algebra is a functional
language�

The basic algebra expression consists of a single collection speci�cation� In the al�
gebra� a base algebra expression is either a collection name or the function application
newcoll	c�� � � � � cn� where each ci denotes a constant 	i�e�� a ground term�� The latter is
called a collection constant � Other algebra expressions can be constructed from the base
expressions using the algebraic operators�

��

The basic constructs of the calculus 	object constants� object variables� and Bspecs�
have a functional interpretation that abstracts over the free variables in the constructs�
The interpretation of these constructs is called a functional expression�

De
nition �� Functional Expression� A functional expression is a functional abstraction
of an object constant� an object variable or a Bspec de�ned as follows�

�� For every constant c� there is a unary functional expression �x�c that returns the
constant c�

�� For every variable x� there is a unary functional expression �x�x that is the identity
function�

�� For every Bpsec �f�xg� there is a functional expression ��x��f�xg that represents a
functional abstraction of the Bspec� If the Bspec is a ground term 	i�e�� is not free
over any variables�� then its functional expression is �x��fg with the same semantics
as for constants�

The variables appearing after the � symbol and before the �rst dot are called the parameters
of the functional expression�

Since Bspecs can be abstracted into functional expressions� all behaviors have this ab�
straction� This means that predicates �� ����� �� and connectives ����� are boolean�valued
functional expressions� The object creating behaviors newcoll	 � and newprod	 � are vari�
adic functional expressions that produce the appropriate collection or product object� The
algebraic operators 	de�ned below� are functional expressions that operate on collections
and produce collections as results�

In general� mop is used to denote a functional expression and is called a mop function�
Given a mop function 	mop� with parameters �x and given objects �o that are type compatible
with �x� mop	�o� is used to denote the application of the mop function to the objects� That
is� each oi is substituted for an xi to form a context� the context is evaluated and the result
object is produced�

Operands and results of the object algebra operators are typed collections of objects�
Thus� the algebra is closed since the result of any operator may be used as the operand of
another� Let # represent an operator in the algebra� The notation P # hQ�� � � � � Qni is
used for expressions where P and each Qj are names for typed collections of objects� They
represent the arguments to #� When n � � P # Q is used� and when n � � P # is used
without loss of generality� The collections represented by P and Qj may be names for base
collections� a collection constant creation request or the result of an algebraic subexpression�
Since the model supports substitutability� any specialization of collection� including classes�
may be used as the operand� Similar to the range predicates of the calculus� P� is de�ned
to denote the shallow extent when P is the name for a class�

Certain algebraic operators require a functional expression 	mop function� as an ar�
gument� The operator applies the mop function to permutations of elements from its
operand collections and takes appropriate action on the result� Some operators require
a boolean�valued functional expression 	a predicate� denoted F � Evaluating F for particu�
lar permutation of arguments produces a boolean result upon which the operator takes an
appropriate action� The membership types of the operand collections must be consistent
with the types expected by the mop function� Mop function quali�ed operators are writ�
ten as P #mop hQ�� � � � � Qni where mop is a mop function 	or predicate� with parameters�

��

say p� q�� � � � � qn� that range over the elements of collections P�Q�� � � � � Qn� respectively� To
make the identi�cation of arguments with parameters simpler and more explicit in algebraic
operators� the ��x speci�cation is dropped from mop functions and replaced by subscripting
operand collections with the parameters of the mop function as Pp� This explicitly indicates
that the range of variable p 	in the mop function� are the elements of the operand collection
P � For example� Pp #mop�p�q� Qq is used instead of the abstract notation P #�p�q�mop�p�q� Q�
For operands consisting of product objects with components �x� the operands are subscripted
with all the components as P�x� This means that some combination of inject behaviors on
the elements of P will retrieve the original xi components� This is only a notational conve�
nience to identify the ranges of variables and the components of product objects in algebra
expressions�

For a collection P � the notation "P denotes the membership type of the objects in P �
Furthermore� the behavioral application "P �B interface denotes the behaviors applicable to
objects of this type� This notation and the results of Section ����� are used to infer a new
membership type for the result collection produced by the operators�

The object algebra de�nes both target�preserving and target�creating operators� The
target�preserving operators are as follows�

Di�erence 	denoted P � Q�� Dierence is a binary operator that produces a collection
containing objects that are in P and not in Q� The membership type of the result
collection is exactly the type of P 	i�e� "P ��

Union 	denoted P �Q�� Union is a binary operator that produces a collection containing
objects that are in P � in Q or in both� The membership type of the result collection
is "P u "Q� This type de�nes behaviors common to both "P and "Q�

Intersection 	denoted P �Q�� Intersection is a binary operator that produces a collection
containing objects that are both in P and in Q� The membership type of the result
collection is "P t "Q� This type de�nes all behaviors of both "P and "Q� Note that
P �Q is derivable from dierence as P � 	P �Q� or Q� 	Q�P �� Even though these
three operations produce result collections with identical extents� the membership
type of each result may dier� The intersection operator is preferred over dierence
because it has the potential to produce more type information�

Collapse 	denoted P ��� Collapse is a unary operator accepting a collection of collections
P as an argument and produces the extended union of the collections in P �

P � �
�
fx j x � Pg

The membership type of the result collection is the extended meet over the member�
ship types of the collections in P �

uf"x j x � Pg

Select 	denoted P �F hQ�� � � � � Qni�� where F is a predicate over the elements of collec�
tions P�Q�� � � � � Qn� meaning F expects arguments p� q�� � � � � qn and that they are type
consistent with the membership types of the collections� Select is a higher order opera�
tion accepting a mop function� the predicate F � and the n�� collections P�Q�� � � � � Qn

as arguments� The select operation produces a collection containing objects from P
corresponding to the p component of each permutation �p� q�� � � � � qn� that satis�es

��

F 	p� q�� � � � � qn�� The membership type of the result collection is exactly the type of
P 	i�e� "P ��

Example �� Return the persons that are senior citizens�

C personp �p�B age���

Example �� Return the maps that contain water zones�

C mapp �q�p�B zones C waterq

Project 	denoted P $B�� where B is a behavioral projection set with the restriction that
it be a subset of the behaviors de�ned by the membership type of P � 	i�e�� a subset
of "P �B interface�� The B collection is automatically unioned with the behaviors of
type T object before the project is performed in order to ensure consistency with the
object model 	i�e�� everything is an object and therefore must support the behaviors
of T object�� Project produces a collection containing the objects of P � but with a
membership type coinciding with the behaviors in B�

The new type is integrated into the sublattice rooted at T object and with the base
"P � An abstract type de�nition is created that has all the behaviors de�ned by
B� The implementations of these behaviors are unde�ned� but this doesn�t cause
problems because no class is created and therefore no objects of this type exist� This
new type has no special properties� meaning it can be subtyped� implementations for
its behaviors can be de�ned� a class can be associated with it and objects of this type
can be created�

The B projection set has no impact on which objects appear in the result collection
of the query� It is only important during the �nal type assignment that occurs at
type inferencing time after the extent of the query has been produced� This form of
project diers from the traditional one in that it does not project over the structure
of objects� but rather over their behavioral speci�cation� The project operator is a
behavioral�theoretic notion of projection that has no structural implications�

Example �� Project over behaviors B name and B age for class C person�

C person $B name�B age

The full object algebra includes target�creating operators in order to provide necessary
object formation and restructuring operators� The result of these operations is always a
collection of new objects that are object identity distinguishable from the objects in the
argument collections� The primary target�creating operator is product �

Product 	denoted Q� � � � � � Qn�� where n � �� Product produces a collection con�
taining product objects of the form 	q�� q�� � � � � qn� created from each permutation
�q�� q�� � � � � qn� such that component qi is an object from Qi� Product may initiate
the creation of a new type along with a new class to maintain the product objects�
The membership type of the result collection is "Q�

� � � � � "Qn� Although this op�
erator seems structural in nature� Section ����� de�nes a behavioral�theoretic notion
of product that is commensurate with the uniformity of the object model�

��

There is an additional operator that �ts into both the target�preserving and target�
creating classi�cation� The map operator produces a collection of new or existing objects
depending on the mop function argument passed to it� That is� if the mop function is
target�creating� the operator is target�creating� otherwise it is target�preserving� Map is
de�ned as follows�

Map 	denoted Q� �mop hQ�� � � � � Qni�� where mop is a mop function over the elements of
collections Q�� Q�� � � � � Qn� meaning it expects arguments q�� q�� � � � � qn and that they
are type consistent with the membership types of the collections� Map is a higher
order operation accepting the mop function mop and the n collections Q�� Q�� � � � � Qn

as arguments� For each permutation of objects �q�� q�� � � � � qn� formed from the
elements of the argument collections� mop	q�� q�� � � � � qn� is applied and the resulting
object is included in the result collection� The membership type of the result collection
is the type of the mop function� Map is a generalized version of the same operator
de�ned in �S�O��a� and is similar to the replace restructuring operator in �AB����
However� replace operates over a single set�valued relation in contrast to map� which
is variadic over the number of argument collections� Map is also similar to the image
operator of �SZ��� except that theirs is restricted to the application of single behaviors
while the mop in a map operator is a general functional expression�

Example �� Return the zones that have people living in them�

C personp �p�B residence �B inZone

Example �� Return the proximities of water zones to the City of Edmonton�

C waterp �p�B proximity�edmonton�

Example �	 Return 	person� person� children� triples for all combinations of people�

C personp �newprod�p�q�p�B children�q�� C personq

The operators de�ned above form the primitive algebra 	some refer to this as a physical
algebra�� They are fundamental in supporting the expressive power of the calculus and the
subsequent operators can be de�ned in terms of them� The following operators are added to
the primitive algebra and this is called the extended algebra 	some call this a logical algebra��
These operators are derived from the primitive algebra� they support a useful functionality�
they generalize the expressive power of the algebra and some are important for higher�level
optimizations �S�O��a�� Note that the following operators are target�creating�

Join 	denoted P �F hQ�� � � � � Qni�� where n � � and F is a predicate over the elements
of collections P�Q�� � � � � Qn� Join produces a collection containing product objects of
the form 	p� q�� � � � � qn� created from each permutation �p� q�� � � � � qn� that satis�es
F 	p� q�� � � � � qn�� The membership type of the result collection is "P �"Q�

�� � ��"Qn�
This type and its associated class may be created if they don�t already exist�

The join operator can be expressed in terms of product and selection as follows�

Ex� �F hEx� � � � � � Exni � 	Ex� �Ex� � � � � �Exn�o �F �

where F is a predicate over variables �x and F � is F except that every occurrence of
xi is replaced with o��i� the inject of component xi from product object o�

��

Example �� Return married couples that don�t live together�

C personp �p�B spouse�q � q�B residence ��p�B residence C personq

Example �� Return 	map� water zone� water zone� triples where the given map
contains two dierent water zone that are within ��� units from each other�

C mapm �x�m�B zones�y�m�B zones�x��y�x�B proximity�y�	�

 hC waterx�C wateryi

Generate Join 	denoted Q�
o
g hQ�� � � � � Qni�� g is a generating atom of the form o � mop

where � is either � or � and mop is a mop function over the elements of collections
Q�� Q�� � � � � Qn� Generate join produces a collection of product objects created from
each permutation of the qi�s and extended by an object o in the following way� If � is
�� the result contains product objects of the form 	q�� q�� � � � � qn� mop	q�� q�� � � � � qn��
for each permutation of the qi�s 	i�e�� each product object is a permutation of the qi�s
extended by the result of applying the mop function to that permutation�� If � is ��
the result contains product objects of the form 	q�� q�� � � � � qn� o� for each permutation
of the qi�s and each o � mop	q�� q�� � � � � qn� 	i�e�� for a permutation of the qi�s and for
each member o of the collection resulting from the application mop	q�� q�� � � � � qn�� a
product object with components 	q�� q�� � � � � qn� o� is created as a member of the result
collection�� Generate Join is similar to PDM�s apply�append operator except theirs
works on a single tuple while generate join is over an arbitrary number of collections�

The equality atom based generate join can be expressed by map as follows�

Ex�
o
o�mop hEx�� � � � � Exni � Ex� �newprod�x� �x������xn�mop��x�� hEx� � � � � � Exni

The membership atom based generate join can be expressed by the following series of
algebraic operations�

A
def
� Ex� �Ex� � � � � � Exn

B
def
� Ax �newprod�x�mop�x����x��������x��n��

C
def
� 	Bx �newcoll�x����
x��� � �

Ex�
o
o�mop hEx� � � � � � Exni � Cx �newprod�x�������x�����������x�����n�x����

Example �� Return 	zone� proximity� pairs of each zone extended with its proxim�
ity to all water zones�

C zonep
o
o�p�B proximity�q� C waterq

Example ��� Return 	map� zone� pairs of each map extended with the zones con�
tained in that map�

C mapp
o
o�p�B zones

Reduce 	denoted P��i�� where P is a collection of product objects and �i is an inject
behavior de�ned on the membership type of P � The reduce operator has the eect of

��

discarding the ith component of the product objects in P � That is� product objects
of the form�

	p�� � � � � pi��� pi� pi��� � � � � pn�

with inject behaviors�
��� � � � � �i��� �i� �i��� � � � � �n

are mapped to product objects of the form�

	p�� � � � � pi��� pi��� � � � � pn�

with inject behaviors�
��� � � � � �i� �i��� � � � � �n��

This is similar to the relational projection operator except that the speci�ed compo�
nents are removed� If P is not a product object� the empty collection is returned�

The reduce operator can be expressed by map as follows�

E��i � Eo �newprod�o��������o��i���o��i�������o��n�

The eect of the map is to produce product objects that contain all the original
components of o� minus the ith component� Map� together with the product object
creation behavior� is a generalization of the relational projection on product objects�

As a notational convenience� a series of reduce operators is coalesced into a single one
and the � symbol is dropped from the speci�cation� The equivalence is de�ned as
follows�

P��x� ���
��xn � P�x������xn

Example ��� Let E be the result of Example ��� above� Reduce E by excluding
the �rst water zone of the result�

E�x

The functional nature of queries is twofold� On the one hand� a query may be thought
of as a function where collection names serve as variables representing the arguments� By
associating these names with collections in an instantiation of an objectbase� a substitution
is formed and can be evaluated� On the other hand� for a given 	static� objectbase� a query
denotes a constant because it will produce the same answer over and over� Thus� a query
is a function only when all possible objectbases are considered� For a given objectbase
	i�e�� interpretation�� a query is an expression resembling a ��ary function� In contrast�
behavioral compositions such as Bspecs 	mops� are functions even within the instantiation
of a objectbase� When they are composed with algebraic operators select� map� join and
generate join� they denote functions that are applied to permutations of the elements from
the operand collections�

The powerset operator has not been included in the TIGUKAT algebra because one of
the primary concerns of the TIGUKAT project is to produce an e�cient implementation
of the query model� Use of powerset causes exponential growth of collections and the costs
that this could incur is unacceptable for the implementation of the model�

The foundations of powerset and recursive query capability are present in the TIGUKAT
query model� and since the model is extensible� they can be added by type and behavior

��

extensions� One extension is the addition of a primitive powerset algebraic operator 	i�e��
behavior� that accepts a collection and produces the powerset of the collection as output�
Using this� a form of generate join could be derived that creates a collection of product
objects % one for each element in the powerset of the mop function evaluation % whose
components are the operand collections appended with the element from the powerset�
Since a B containedBy behavior 	analogous to 	� already exists on T collection� only
a predicate s 	 t needs to be added in the calculus for this behavior� If the term s is a
variable� then this becomes another kind of generating atom in the calculus�

A clean de�nition of safety with respect to powerset that complies with the e�cient
translation of evaluable formulas 	i�e�� without forming large DOM sets� is not apparent�
The powerset property has a logical derivation as follows�

s 	 t � �x	x � s �� x � t�

� �x	x �� s � x � t�

� �x	x � s � x �� t�

This derivation does not satisfy the evaluable property unless s and t are further re�
stricted outside the formula� This means that s 	 t can not in general be used to generate
objects for s from t and its only consistent use would be as a restriction atom� However�
this is already handled in TIGUKAT because the derivation is a valid formula of the cal�
culus and is safe if s and t are restricted outside the formula� Thus� without being able
to generate values for s from the derivation� no additional power is added by including a
	 predicate and a powerset operator� On the contrary� it would make the algebra more
expressive than the calculus� since the translation of the powerset operator to the calculus
	i�e�� the derivation above� would result in an unsafe calculus formula�

A clean incorporation of powerset capability that complies with the feasible translation
properties of the evaluable class is part of the future research of the TIGUKAT project� If a
compatible derivation can be found� extending the proofs of completeness will be straight�
forward� From algebra to calculus it is simply a matter of stating the derivation of the
powerset operator and from calculus to algebra it involves carrying the 	 predicate through
the translation�

��
�� Safety of Algebra Expressions

Recall from the discussion in Section ����� that there are two forms of safety to consider�
The �rst form checks the domain independence of the query and was de�ned in that section�
The second form checks the safety of a query with respect to operand �niteness � meaning
it checks that the query does not add objects to any collections or classes that it is ranging
over� This check is de�ned on algebraic expressions and determines the operand �niteness
of each operator in the expression�

Since object creation and insertion occurs through the application of behaviors� the
check for operand �niteness could be combined with an algebraic type checking mechanism
such as the one de�ned in �S�O��b� that goes through an algebraic expression and examines
the behaviors being applied in algebraic operators for type consistency�

The
problematic� operators of the algebra that can violate operand �niteness by adding
objects to their operands are select � map� join and generate join because they contain mop
functions that are general behavioral applications� The only side eect behaviors allowed

��

in mop functions are insertion into a collection 	i�e�� B insert on a collection� and creation
of a new object 	i�e�� B new on a class�� This is further restricted in that the insertion or
creation behavior must be applied to a constant reference of a collection or a class 	i�e�� not
to a variable or the result of a behavioral application� or must not occur at all�

All other behaviors in a mop function are assumed to be side�eect free 	i�e�� they do not
create new objects or modify existing objects in any way�� The reason for this assumption
is that the implementations of behaviors are not examined to determine their safety with
respect to operand �niteness� The exceptions to this assumption are the primitive de�ned
newcoll	� and newprod	� behaviors and the algebraic operators� They can occur in mop
functions� but their use is restricted as de�ned below�

An algebraic expression is rejected if it contains an algebraic operator that is unsafe with
respect to operand �niteness� An algebraic operator # is unsafe with respect to operand
�niteness if it is a select � map� join or generate join operator which has a mop function
that contains one of the following�

� an application of B new on a class that is an operand of #�

� an application of B new on a class that is a subclass of an operand of # and the
operand is a class ranging over its deep extent�

� an application of B insert on a collection that is an operand of #�

� an application of newcoll	� and one of the operands of # is the class C collection�

� an application of newprod	� that creates an object in a class that is an operand of #�

� an application of newprod	� that creates an object in a subclass of an operand of #
and the operand is a class ranging over its deep extent�

� an algebraic operator and one of the operands of # is C collection�

� an algebraic operator and this algebraic operator is unsafe with respect to operand
�niteness�

��� Example Queries

An SQL�like language called TQL 	TIGUKAT Query Language� �PL�OS��b� Lip��� has been
developed for the model� The select�from�where clause of the language is an object�oriented
extension of SQL� The basic structure of this clause is used to present some queries that
illustrate the properties of the calculus and algebra� The queries are �rst expressed in TQL�
followed by the corresponding object calculus expression and then the equivalent algebraic
expression� In the algebraic expressions� operand collections are subscripted by the variables
that ranges over them� If the operand consists of product objects� the variables that make
up the components of these objects are listed� The indexed variables are used as a symbolic
reference to the elements of the collection as described in Section ������ Furthermore� the
arithmetic notation for operations like o�greaterthan�p�� o�elementof�p�� etc�� is used instead
of their boolean Bspec equivalents� The execution of the algebraic expression is from left�
to�right� except that parenthesized expressions have higher priority and are executed �rst�

Example ��� Return land zones valued over &������� or that cover an area over ����
units�

��

TQL� select o
from o in C land

where 	o�B value	� � ������� or 	o�B area	� � �����
Calculus� f o j C land	o� � 	o�B value � ������ � o�B area � �����g
Algebra� C lando ��o�B value��

 � o�B area��

�

Example ��� Return all zones that have people living in them 	the zones are generated
from person objects��

TQL� select o
from q in C person

where 	o � q�B residence	��B inzone	��
Calculus� f o j q	C person	q� � o � q�B residence �B inzone�g

Algebra�
�
C personq o

o�q�B residence �B inzone

�
q�o
�q

Example ��� Return the maps with areas where senior citizens live�

TQL� select o
from o in C map

where exists 	 select p
from p in C person� q in C dwelling

where 	p�B age	� � �� and q � p�B residence	�
and q�B inzone	� � o�B zones	���

Calculus� f o j C map	o� � p	C person	p� � q	C dwelling	q�
� p�B age � �� � q � p�B residence � q�B inzone � o�B zones��g

Algebra�

�
C mapo �F hC dwellingq�

�
C personp �p�B age���

�
p
i

�
o�q�p

�p�q

where F is the predicate 	q � p�B residence � q�B inzone � o�B zones�

Example ��� Return all maps that describe areas strictly above ���� feet�

TQL� select o

from o in C map
where forAll p in 	 select q

from q in C altitude
where q � o�B zones	��

p�B low	� � ����
Calculus� f o j C map	o� � �p	�C altitude	p� � �	p � o�B zones� � p�B low � �����g�

Algebra� C map �

��
C mapo �p�o�B zones

�
C altitudep ��p�B low��

�

�
p

�
o�p

�p

�

Example ��	 Return the dollar values of the zones that people live in�

TQL� select p�B residence	��B inzone	��B value	�
from p in C person

Calculus� f o j p	C person	p�� o � p�B residence �B inzone �B value�g�

Algebra�
�
C personp o

o�p�B residence �B inzone�B value

�
p�o
�p

Note that this has a simplier form using the map operator as follows�
C personp �p�B residence �B inzone�B value

��

Example ��� Return the zones that are part of some map and are within �� units from
water� Project the result over B title and B area�

TQL� select o�B title�B area�
from p in C map� o in p�B zones� q in C water
where o�B proximity	q� � ��

Calculus� f o�B title�B area� j pq	C map	p� �C water	q�
�o � p�B zones � o�B proximity	q� � ���g�

Algebra�

��
C mapp o

o�p�B zones

�
p�o
�o�B proximity�q���
 C waterq

�
p�o�q

�q�p $B title�B name

Example ��� Return pairs consisting of a person and the title of a map such that the
person�s dwelling is in the map�

TQL� select p� q�B title	�
from p in C person� q in C map
where p�B residence	��B inZone	� � q�B zones	�

Calculus� fp� o j q	C person	p� �C map	q�
� o � q�B title � p�B residence �B inZone � q�B zones�g

Algebra�

�
C personp �p�B residence�B inZone�q�B zones

�
C mapq o

o�q�B title

�
q�o

�
p�q�o

�q

Example ��� Return 	person� spouse� child� triples of all couples and their children where
the �rst parent is homeless� The children set of a couple is
�attened� by grouping each
child with their parents�

TQL� select p� s� c
from p� s in C person� c in p�B children	s�
where s � p�B spouse	� and

not p�B residence	� in 	 select h

from h in C house�
Calculus� fp� s� c j C person	p� �C person	s� � c � p�B children	s�

� s � p�B spouse � p�B residence �� C houseg

Algebra�

��
C personp �p�B residence��C house

�
p
�s�p�B spouse C persons

�
p�s

c
c�p�B children�s�

��� Completeness of Calculus and Algebra

A desired property of the languages of a query model is that they be equivalent in expressive
power� That is� any expression formed in one language has an equivalent formation in the
other� In the calculus it was shown that certain queries are not
reasonable� because there
is no e�cient way to process them� Thus� in de�ning the completeness of the languages�
only the
reasonable� or
safe� expressions are considered�

In this chapter� the completeness of the reduction from the algebra to the calculus and
from the calculus to the algebra is shown� This is su�cient to prove the equivalence of
the formal languages� A reduction of the TIGUKAT Query Language 	TQL� to the formal
calculus has been reported elsewhere �PL�OS��b� Lip����

��

����� Theorems and Proofs

Theorem �� The reduction from the object algebra to the object calculus is complete�
Proof� It must be shown that if E is an expression in the object algebra� then there is an
object calculus expression 	OCE� equivalent to E� The proof is by structural induction on
the number of operators in E�

Basis Zero Operators� Then E consists of a single collection name C or a collection
creating behavior application newcoll	c�� � � � � cn� where each ci is a constant� An
equivalent OCE for E in the �rst case is fo j C�	o�g where C� is the predicate for col�
lection C� In the second case an equivalent OCE for E is fo j o � newcoll	c�� � � � � cn�g�

Induction� Assume E has at least one operator and that the theorem is true for expressions
with fewer operators than E�

Case �� E
def
� E� $B � Since E� is an object algebra expression with fewer operators than

E� an OCE fo j 	�	o�g equivalent to E� can be found� Then E is equivalent to
fo�B� j 	�	o�g�

Case �� E
def
� E� � E�� By renaming of variables if necessary� OCEs fo�B�� j 	�	o�g and

fo�B�� j 	�	o�g equivalent to E� and E� can be found 	the behavioral projections B�

and B� may be empty�� Then E is equivalent to fo�B�� j 	�	o� � �	�	o�g�

Case �� E
def
� E� � E�� OCEs for E� and E� can be found as in Case �� Then E is

equivalent to fo�B� � B�� j 	�	o� � 	�	o�g� Note that B� � B� denotes the intersection
of the two component behavioral projections� This intersection represents the proper
behavioral projection of the result collection�

Case �� E
def
� E��E�� E� and E� have equivalent OCEs as in Case �� Then E is equivalent

to fo�B� �B�� j 	�	o��	�	o�g� Here B� �B� denotes the union of the two component
behavioral projections�

Case �� E
def
� E� �� There is an equivalent OCE for E� as in Case �� Then E is equivalent

to fo j o�		�	o�� � o � o��g�

Case 	� E
def
� E� �F hE�� � � � � Eni� There are n OCEs equivalent to E�� E�� � � � � En� Then

E is equivalent to fo�B�� j 	�	o��o� � � �on		�	o��� � � ��	n	on��F 	o� o�� � � � � on��g�

Case �� E
def
� E� � � � � � En� There are n OCEs equivalent to E�� � � � � En� Then E is

equivalent to fo j o� � � �on		�	o���� � ��	n	on��o � newprod	o��B��� � � � � on�Bn���g�
Here newprod	o��B��� � � � � on�Bn�� denotes the behavioral application that creates a
product object constant whose ith component is the object denoted by oi that is
typed according to the behavioral projection set Bi�

Case �� E
def
� E� �mop hE�� � � � � Eni� There are n OCEs equivalent to E�� E�� � � � � En�

Then E is equivalent to fo j o�o� � � �on		�	o�� � 	�	o�� � � � � � 	n	on� � o �
mop	o�� o�� � � � � on��g�

The other algebraic operators can be written in terms of the primitive ones above and
this completes the proof� �

��

����
�����
�����
������
�����
����
�����
����

����
�����
�����
������
�����
����
�����
����

����
�����
�����
������
�����
����
�����
����

�
��
�
��
�
��
�
��
�
�
��
�
����
�
��
�
�
��
�
��
�
��
�
��
�

����
�����
�����
������
�����
����
�����
����

����
�����
�����
������
�����
����
�����
����evalify

REJECT

Calculus
Formula

Evaluable
Formula

ANFify Transform
OAE

genify

Allowed
Formula Formula

ANF

Figure ���� Translation steps from object calculus to object algebra�

Theorem �� The reduction from the the object calculus to the object algebra is complete�
Proof� The reduction from the calculus to the algebra is proven by a translation algorithm
that follows the steps illustrated in Figure ���� The �rst step� called evalify � determines the
evaluability 	De�nition ���� of a given object calculus formula� Recall from Section ����� that
evaluability is enough for safety� this is proved by the translation algorithm in Section ������
Moreover� the class of evaluable queries being translated are wide�sense evaluable with
respect to equality and membership� meaning a broader class of safe queries are recognized
by the approach� If the input formula is not evaluable� it is rejected�

From a database point of view� only those queries considered to be safe are candidates
for translation to algebra� For evaluable formulas� the rest of the translation is similar to
that presented in �GT���� except that the extended de�nitions of the approach in this thesis
are carried through�

The genify step converts an evaluable formula into an allowed form 	De�nition ���� that
rewrites the formula to include range
generators� for variables in each subformula� The
ANFify step places an allowed formula into Allowed Normal Form 	ANF� 	De�nition �����
that makes each constructive subformula independent of atoms outside the quanti�er for
the subformula� The ANFify step makes use of Existential Normal Form 	ENF� 	De�ni�
tion ����� and simpli�ed form 	De�nition ����� The advantage of ANF is that the transfor�
mation from this form to the algebra is straightforward� The �nal step of the translation
involves simple pattern matching to transform the ANF formula into a 	safe� object alge�
bra expression 	OAE� that is equivalent to the original formula� The complete translation
algorithm is presented in Section ������ �

����� Calculus to Algebra Translation

In this section� the complete translation algorithm for converting safe object calculus ex�
pressions into equivalent algebraic expressions is presented� The algebra expressions should
be checked for type consistency before they are optimized and prior to an execution plan
being generated� Since every object knows its type� this step may be performed during
compilation of the query� Query optimization and execution plan generation are reported
elsewhere �Mu�n����

To help understand the translation process� the following query is given as a running
example� Throughout this section� the calculus expression in Example ���� is translated
into an equivalent algebra expression with the intermediate steps shown along the way�

Example ��� Return zones that are transport zones or that have people living in them�
Consider the query expressed in the following way�

f o j p		C person	p� � o � p�B residence �B inZone� � C transport	o�� g

��

For brevity� predicate C person is mapped to P � C transport to T � and the behavior
application p�B residence �B inZone to p��� The query can then be written as�

f o j p		P 	p� � o � p��� � T 	o�� g

Let the formula part of the query be F
def
� p		P 	p� � o � p��� � T 	o�� �

First the gen and con rules of Figure ��� are extended by adding the notion of
gener�
ators� as described in �GT���� The extended rules are shown in Figure ���� The technique
adds a third argument G	x� that serves as a
generator� of sorts for the variable x� A G	x�

generator� is a disjunction of edb and gdb atoms 	possibly including a placeholder �� that
generates all the needed objects for x in the given formula and possibly more 	i�e�� G	x�
is a range for x that is at least as large as the values that x can take on in the formula��
Moreover� the atoms in G	x� were the ones used to prove that the gen or con relation holds
for variable x in some formula A	x�� The placeholder
�� is used when x is not free in the
formula A� it may be thought of as a ��ary predicate that always fails�

Evalify� Syntactic Safety Check

The evalify algorithm 	Algorithm ���� syntactically determines whether a given input for�
mula F is evaluable or not and returns an indicator SAFE or REJECT� respectively� Recall
from the discussion in Section ����� that the evaluable property 	De�nition ���� is su�cient
for safety� A side�eect of the algorithm is that the partial order �F for formula F is
de�ned� When evalify is �rst called� the partial order is initialized as unde�ned� The algo�
rithm incrementally builds the partial order on each pass through the repeat loop� the �rst
pass orders variables that are generated from edb atoms� the second pass orders variables
that are generated from variables in the �rst pass and so on� The gdb predicate for the gen
and con rules uses the
partially de�ned� partial order in each intermediate pass through
the repeat loop� Thus� the results of the previous pass are used to update the partial order
on the current pass� The temporary set V is used to temporarily store unde�ned elements
of the partial order that are updated after the gen and con application� This is done to
avoid misorderings since the partial order is incrementally built and always used by the
gdb predicate� If all variables in �F become ordered� the input formula is evaluable and
therefore SAFE� A �xpoint of the algorithm is reached when no changes are made to the
partial order� At this point the formula is REJECTed since there are variables in �F that
cannot be ordered� meaning they have no
reasonable� range de�ned and they cannot be
generated from the other variables�

The result of applying evalify to the formula F from Example ���� is the indicator
SAFE and the instantiation of the partial order f	p� ��� 	o� ��g for �F � Two passes are
made through the repeat loop� The �rst pass updates element 	p� �� of the partial order
and the second pass updates 	o� ���

Genify� Adding Range Expressions to Subformulas

The next step of the translation process converts an evaluable formula into an allowed form�
The de�nition of allowed is as follows�

De
nition �	 Allowed� A formula F is allowed or has the allowed property if the following
conditions are met�

��

gdb	x� x� y� if y �F x
gdb	x� x� �f�yg� if �y �F x
gdb	x� x � y� if y �F x

gdb	x� x � �f�yg� if �y �F x

gen	x�A�A� if edb	A� and free	x�A�
gen	x�A�A� if gdb	x�A�

gen	x��A�G� if gen	x� pushnot	�A�� G�
gen	x� yA�G� if distinct	x� y� and gen	x�A�G�
gen	x� �yA�G� if distinct	x� y� and gen	x�A�G�
gen	x�A�B�G� �G�� if gen	x�A�G�� and gen	x�B�G��
gen	x�A�B�G� if gen	x�A�G�
gen	x�A�B�G� if gen	x�B�G�

con	x�A�A� if edb	A� and free	x�A�
con	x�A�A� if gdb	x�A�
con	x�A��� if notfree	x�A�

con	x��A�G� if con	x� pushnot	�A�� G�
con	x� yA�G� if distinct	x� y� and con	x�A�G�
con	x� �yA�G� if distinct	x� y� and con	x�A�G�
con	x�A�B�G� �G�� if con	x�A�G�� and con	x�B�G��
con	x�A�B�G� if gen	x�A�G�
con	x�A�B�G� if gen	x�B�G�
con	x�A�B�G� �G�� if con	x�A�G�� and con	x�B�G��

Figure ���� Extended rules of gen and con that produce
generators��

�� For every variable x that is free in F � gen	x� F � holds�

�� For every subformula xA of F � gen	x�A� holds�

�� For every subformula �xA of F � gen	x��A� holds�

The allowed property is stronger than evaluable since every formula satisfying the al�
lowed property satis�es the evaluable property 	because gen	x� F � implies con	x� F ��� but
the converse does not hold� Every evaluable formula can be translated into an equivalent
allowed formula� The desired properties of allowed formulas are that all variables� free
and bound� are generated from the formula and allowed formulas are more robust under
certain transformations than evaluable ones� Gelder and Topor �GT��� de�ne conservative
transformations that include � and � distribution that do not always preserve the evalu�
able property� but do preserve the allowed property� These transformations are used in
subsequent steps of the translation to algebra and for this reason evaluable formulas are
converted into an equivalent allowed form�

��

Algorithm ��� evalify�

Input� An object calculus formula F

Output� SAFE indicating that F is evaluable or REJECT

Comments� The algorithm incrementally builds the global partial order �F with each pass through
the repeat loop� A temporary set V is used to store elements of �F that need to be updated
after each pass�

Initialization

�� For every variable xi appearing in F � initialize a pair �xi��� in �F � This indicates that
the order for xi is unde�ned�

�� order � 	

Procedure�

repeat

V � f g
foreach unde�ned element �xi��� in �F do

if free�xi� F � then
apply gen�xi� F �

else if xi is � bound as �xA then

apply con�xi� A�
else xi must be � bound as �xA

apply con�xi��A�
if gen or con application succeeded then

V � V � f�xi���g
endfor

foreach element �xi��� in V do

update element �xi��� in �F to �xi� order� which de�nes its order
endfor

if no more unde�ned elements �xi��� in �F then return SAFE
increment order

until no changes made to �F

return REJECT

��

As an example of allowed vs� evaluable� consider the formula�

P 	p� � q	Q	q� � 	R	q� � p�� � q����

which is allowed and the formula�

P 	p� � q	Q	q�� 	�R	p� � p�� � p����

which is evaluable� but not allowed because gen	q� Q	q� � 	�R	p� � p�� � p���� does not
hold�

Algorithm ��� 	genify� follows the con�to�gen algorithm presented in �GT��� and trans�
lates an evaluable formula into one that is allowed� The basic procedure of the algorithm
is to identify the subformulas xA such that con	x�A� holds� but gen	x�A� fails and then
to rewrite these formulas as an equivalent formula� say A�� so that gen	x�A�� holds� From
this point on� unless otherwise noted� it is assumed that all occurrences of �xA in a formula
have been replaced with the logical equivalent �x�A� The genify algorithm is general in
the sense that if the input formula is not evaluable� it can identify this and returns an error�
It is necessary before applying the genify algorithm to check that gen	xi� F � holds for all
free variables xi in F � The algorithm relies on the following de�nitions paraphrased from
�GT����

De
nition �� Truth Value Simpli�cation� The operation of truth value simpli�cation
consists of applying the following simpli�cations to a formula for as long as possible�

�false �� true �true �� false

A � false �� false A � true �� true

A � false �� A A � true �� true

x false �� false x true �� true

�x false �� false �x true �� true

Simpli�cations that depend on the law of the excluded middle� such as A��A �� true�
are not part of this de�nition because� in general� A is a formula and this part of the
translation does not expend resources on recognizing formula equivalences�

De
nition �� Formula Substitution� Let G
def
� P� � � � � � Pm where Pi are atoms in A�

Then A�G�false� denotes a formula in which each occurrence of Pi in A is replaced by false�

Steps ��� of the algorithm traverse the structure of the input formula and step � performs
the transformations into allowed form on the subformulas that violate the gen property� If
step �a holds� then there is nothing to do here and the formula can continue to be traversed�
Step �b must hold in order for the formula to be evaluable and if it does not then an error
is produced� If variable x is not free in subformula A� this means that x must not appear
in A and� therefore� the existential quanti�er for x can be dropped and the formula can
continue to be traversed� The key step of the algorithm is �	b�ii where F is rewritten
into the equivalent 'F form� The purpose of this step is to form a conjunction of the
original subformula A with a generator G for the constrained variable x� in eect making
gen	x�G � A� hold� The role of R is to act as the
remainder� of the subformula which
moves copies of subformulas that are independent of x 	i�e�� don�t contain x� outside the
existential quanti�er for x� This is necessary to make F and 'F equivalent because the
conjunction of G with A changes the meaning of the subformula�

��

Algorithm ��� genify�

Input� An evaluable formula F with universal quanti�ers replaced�

Output� An allowed formula equivalent to F �

Procedure�

�� if F is an atom then return F

�� if F has the form �A then return �genify�F �

� if F has the form A �B then return genify�A� � genify�B�

�� if F has the form A �B then return genify�A� � genify�B�

�� if F has the form �xA then

�a� if gen�x�A�x�� G�x�� holds then return �x genify�A�x��

�b� if con�x�A�G� holds then

i� if notfree�x�A� and hence G � � then return genify�A�

ii� else free�x�A� holds and G � P��x� � 	 	 	 � Pm�x� where m
 � and some of
the disjuncts may be �� Let R be the truth value simpli�cation of AG�false��
De�ne�

�F
def
� �x �G�x� �A�x�� �R

and return genify� �F �

�c� Note that if con�x�A�G� does not hold� then F is not evaluable and an error is
returned�

The result of applying genify to the example formula F from Example ���� is the formula�

F � def
� p	P 	p� � 		P 	p� � o � p��� � T 	o��� � T 	o�

which is allowed� The steps that produce this formula are as follows�

� The algorithm falls through to step � since F has the form xA where�

A
def
� 	P 	p� � o � p��� � T 	o�

� Step �a fails� but step �b succeeds with con	p� A�G� where G
def
� P 	p� � ��

� Thus� the algorithm proceeds to step �	b�ii and the result of applying this step to the
example formula de�nes the following�

R
def
� T 	o�

'F
def
� p		P 	p� � �� � 		P 	p� � o � p��� � T 	o��� � T 	o�

'F is in allowed form� and replacing all occurrences of � with false and carrying out
truth value simpli�cation produces the output formula F ��

ANFify� Making Subformulas Independent

The next step of translation is to normalize an allowed formula by putting it into Allowed
Normal Form 	ANF�� The reason for converting a formula into ANF is that every proper

��

constructive subformula 	see De�nition ���� below� can generate objects for all the free
variables in the subformula� This� in eect� makes every constructive subformula indepen�
dent of atoms that appear outside the quanti�er for the subformula� This means that the
�nal translation to the algebra can translate subformulas independent of the atoms outside
the quanti�er for the subformula� The transformation of an ANF formula into an object
algebra expression is straightforward by simple pattern matching starting with the inner
subformulas and moving to the outer formula� At times the following discussion assumes
a tree structured representation for a formula� where the leaves represent atoms from the
calculus and the internal nodes are the connectives ������� Algorithm ��� 	ANFify� and
the de�nition of ANF depend on the following de�nitions that extend those presented in
�GT��� by including a notion for membership�

De
nition �� Simpli�ed Form� A formula 	with universal quanti�ers replaced� is call
simpli�ed if the following conditions are met�

�� There is no occurrence of ��A� It is replaced by the logical equivalent A�

�� There are no occurrences of �	s � t���	s �� t���	s � t���	s �� t�� They are replaced
by their logical equivalents 	s �� t�� 	s � t�� 	s �� t�� 	s � t�� respectively�

�� The operators ���� are made polyadic and are �attened� meaning�

	a� in a subformula A� � � � � � An� n � � and no operand Ai is itself a conjunction�

	b� in a subformula A� � � � � � An� n � � and no operand Ai is itself a disjunction�

	c� in a subformula �xA� operand A does not begin with �

�� In a subformula �xA� free	xi� A� holds for every variable xi�

An algorithm to translate a formula into simpli�ed form follows immediately from the
de�nition� A function simplify is assumed to exist and transforms an arbitrary formula
into its equivalent simpli�ed form satisfying De�nition ���� The following three de�nitions
formalize the notion of Existential Normal Form 	ENF��

De
nition ��� Negative	Positive Formulas� A simpli�ed formula is negative if its root
is
��� otherwise� it is positive� An arbitrary formula is negative 	resp� positive� if its
simpli�ed form is negative 	resp� positive�� Atoms of a simpli�ed formula of the form
s �� t� s �� t are negative and atoms of the form s � t� s � t are positive�

De
nition ��� Restrictive	Constructive Subformulas� A subformula A of a simpli�ed
formula F is restrictive if the parent of A is
�� and either A is negative or A is an atom
and edb	A� does not hold� otherwise A is constructive�

De
nition ��� Existential Normal Form� A formula is in Existential Normal Form 	ENF�
if the following conditions hold�

�� The formula is simpli�ed�

�� For each disjunction in the formula�

	a� the parent of the disjunction� if it has one� is
��� and

	b� each operand of the disjunction is a positive formula�

��

�� The parent� if any� of a conjunction of negative formulas is �

The existential normal form prohibits certain parent�child combinations illustrated by
the nonblank entries in Figure ���� These entries specify rewrite rules that convert the
prohibited combinations into permitted ones� The s along the diagonal indicates a call to
simplify on the formula and has the highest priority� The de�nition of ENF in �EMHJ��a�
EMHJ��b� points to a shortcoming in �GT��� that does not properly transform conjunctions
of negated formulas with a disjunctive parent into the algebra� For this reason� condition �
is included in the de�nition of ENF and rule R�B is added as a rewrite rule in Figure ����

Parent

Child � � �

� s R� R�

� R�B s R�

 s

� R�A s

R� � �	�A� � � � � � �An� �� A� � � � � � An

Only if every conjunct of � is negative�
R�A � �A �B� � � � � � Bn �� �	A � �B� � � � � � �Bn�
R�B � 	�A� � � � � � �An� � B� � � � � � Bm �� �		A� � � � � �An� � �B� � � � � � �Bm�

Only if every conjunct of � in the formula on the left is negative�
R� � �	A� � � � � �An� �� 	�A� � � � � � �An�
R� � �x	A�	�x� � � � � �An	�x�� �� 	 �x�A

�
�	 �x�� � � � � � �xnA

�
n	 �xn��

Where variables �xi do not appear in the formula on the left and
A�
i is the result of renaming �x with �xi�

Figure ���� Prohibitive parent�child combinations in ENF formulas and rewrite rules to
correct the violations� The s entry indicates a call to simplify on the formula and has
highest priority�

De�ning an algorithm for converting any arbitrary formula into ENF is straightforward
from Figure ���� Algorithms are presented in both �GT��� and �EMHJ��b�� Furthermore�
Lemmas are provided stating that if the input formula to the ENF algorithm is allowed�
then so is the output formula� This means that an allowed formula can be converted to
ENF without losing the allowed property� ENF is important for the �nal translation into
ANF� Let ENFify be a function that performs ENF normalization�

The following two de�nitions formalize the notion of allowed normal form�

De
nition ��� genall� The property genall	F � holds for a formula F if and only if
gen	xi� F � holds for every free variable appearing in F �

De
nition ��� Allowed Normal Form� A formula F is in Allowed Normal Form 	ANF�
if it is in ENF� genall	F � holds� and every constructive subformula A of F is in ANF�

Algorithm ��� 	ANFify� transforms an allowed ENF formula into an equivalent ANF
formula� The algorithm is based on the repeated application of the rewrite rules in Fig�
ure ���� Application of rules for Case � and Case � require the resulting formula to be

��

simpli�ed before recursing on the formula� Case � may produce a non�ENF formula 	e�g��
D � �		A� � A�� � B�� and so a call to ENFify is necessary before recursing� A �xpoint
of the algorithm is reached when no changes are made to the input formula F and at this
point F is in allowed normal form�

The purpose of the ANFify algorithm is to rewrite every proper constructive subformula
so that all free variables in the subformula are generated by the subformula itself� This
ensures that every constructive subformula is allowed and therefore can be
evaluated�
independently of the atoms outside the quanti�er for this formula� This motivates the
following Lemma that removes the recursion in De�nition ����� but yields the same class of
ANF formulas�

Lemma �� An ENF formula F is in ANF if and only if F is allowed and every constructive
subformula A of F is allowed�
Proof� Immediate from the de�nition of ANF and structural induction on F � The reader
is referred to �GT��� for the formal proof�

The result of applying ANFify to the allowed formula F � produced by the genify algo�
rithm in the previous section is the formula�

F �� def
� p	P 	p� � o � p��� � p	P 	p� � T 	o�� � T 	o�

which is in ANF� The steps that produce this formula are as follows�

� The algorithm matches on Case � with the following being de�ned from the formula
F ��

F�
def
� P 	p� � 		P 	p� � o � p��� � T 	o��

B�
def
� P 	p�

G
def
� 		P 	p� � o � p��� � T 	o��

A�
def
� 	P 	p� � o � p���

A�
def
� T 	o�

Carrying out the distribution of B� over G produces two Gi formulas that are in ANF
and de�ne the �nal result formula as follows�

G�
def
� 	P 	p� � P 	p� � o � p���

� 	P 	p� � o � p���

G�
def
� 	P 	p� � T 	o��

F�
def
� 	P 	p� � o � p��� � 	P 	p� � T 	o��

F �F��F��
def
� p		P 	p� � o � p��� � 	P 	p� � T 	o��� � T 	o�

The call to ENFify on F distributes the p over the disjunct� The resulting formula
is in ANF and is the output of ANFify as formula F ���

��

Algorithm ��� ANFify�

Input� An allowed formula F in ENF�

Output� An ANF formula equivalent to F �

Comments�

The algorithm assumes a tree structure representation of formulas� The notation F A�B�
where A is a subtree �subformula� of F denotes an operation that replaces the subtree of A
in F by the tree representation of formula B�
In each of the cases below� F� is an allowed �not necessarily proper� subformula of F to be

replaced and F� is the equivalent allowed formula that replaces F�� The notation �F�
def
� 	 	 	�

means that F� matches the allowed formula pattern on the right�hand side� If none of the
patterns can be matched to some subformula of F � the algorithm falls through to the otherwise
clause which causes the procedure to terminate�

Procedure�

Case �� F�

def
� ��yA �B� � 	 	 	 �Bn� and genall�A� does not hold�

� Let �x be the set of variables that are free in A such that gen�xi� A� fails �since F�

is allowed� this set is disjoint from �y��

� Let B� � 	 	 	 �Bk be a pre�x �possibly after rearrangement� of B� � 	 	 	 � Bn such
that genall�A �B� � 	 	 	 �Bk� holds �at worst k � n because genall�F�� holds��

� Let F�

def
� ��y�A �B� � 	 	 	 �Bk� �Bk�� � 	 	 	 �Bn

� return ANFify�simplify�F F��F����

Case �� F�

def
� �A �B� � 	 	 	 �Bn� and genall�A� does not hold�

� Let �x be the set of variables that are free in A such that gen�xi� A� fails�

� Let B� � 	 	 	 �Bk be a pre�x �possibly after rearrangement� of B� � 	 	 	 � Bn such
that all �x are free in B� � 	 	 	 �Bk and genall�B� � 	 	 	 �Bk� holds �at worst k � n
because genall�F�� holds��

� Let G
def
� ANFify�B� � 	 	 	 �Bk�

� Let F�
def
� ��A �G� �B� � 	 	 	 �Bn

� return ANFify�simplify�F F��F����

Case �� F�

def
� G �B� � 	 	 	 �Bn� where G

def
� A� � 	 	 	 �Am and genall�G� does not hold�

� Let B� � 	 	 	 �Bk be a pre�x �possibly after rearrangement� of B� � 	 	 	 � Bn such
that genall�G �B� � 	 	 	 �Bk� holds �at worst k � n because genall�F�� holds��

� Distribute B� � 	 	 	 �Bk over G�

� For � � i � m do� let Gi

def
� ANFify�Ai �B� � 	 	 	 �Bk�

� Let F�
def
� �G� � 	 	 	 �Gm� �Bk�� � 	 	 	 �Bn

� return ANFify�ENFify�F F��F����

Otherwise� return F

��

Transform� Translating into Algebra

The �nal step of translation involves the transformation of an ANF formula into an equiv�
alent series of object algebra operations� This step follows immediately from the structure
of an ANF formula� Every range atom C	x� is translated into a name C� that represents
the collection of the range predicate� Atoms x � c and x � c are translated as part
of appropriate select or generate operations 	see below� or into appropriate collections as
follows�

x � c �� newcoll	c�x

x � c �� cx

The �rst case creates a collection containing the single constant c and the second case uses c
as the name for the collection� Recall that the subscript x is the notation from Section �����
indicates that the result collection is a range for variable x�

Next� the transformations shown in Figure ��� are applied to the remaining proper
constructive subformulas and then the subformulas are combined� In the �gure� A and B

refer to subformulas� A� and B� refer to the algebraic equivalents of A and B respectively�
F refers to a predicate� mop refers to a mop function� and � is one of � or �� Algebraic
expressions are subscripted with the variables that they represent 	or that their components
represent in the case of product objects�� Furthermore� A	�x� is used to denote that �x are
the only free variables in A� The same applies to F 	�x� and mop	�x�� For join terms of the
form �x � �x� it is assumed that one set of �x refer to components of A� while the other set
refers to components of B��

Transformation 	���� is known as a generalized set di�erence �HHT��� and could be
de�ned as a primitive derived operator in the algebra so that e�cient join techniques could
be de�ned to process it�

Transformation 	���� de�nes a join between the common variables 	components� of A
and B� Transformation 	����� de�nes a join using a predicate 	general mop function� over
the components ofA and B� Transformation 	����� is a general case of 	���� and 	����� which
de�nes a join between an A and a B that have some variables in common 	namely� �w� �x��
some variables not in common 	A has �u��v and B has �y� �z�� and a predicate over some of
the common and uncommon variables of A and B 	namely� �u� �w� �y�� Transformation 	�����
de�nes a generate join over an A and a B that have no variables in common� and have
a generating atom over some of the variables of A and B� The reason A and B cannot
have common variables is that the relationship between these variables would be lost in
the operation� If A and B have common variables� then they should be joined instead�
Transformation 	����� is a special case of 	����� where there is only one formula generating
the result�

Transformations of join and generate join over two operands can be generalized over
multiple operands� For example� there is the opportunity to perform the following trans�
formations on the given formula�

A	�x� �B	�y� � C	�z� � F 	�x� �y� �z� �� 	A�x �F hB�y � C�zi��x��y��z

A	�x� �B	�y�� C	�z� � o � mop	�x� �y� �z� �� 	A�x oo�mop hB�y � C�zi��x��y��z�o

This groups the collections involved in the operation with the operator and may provide
some opportunities for optimization such as grouping together collections that may be
clustered on disk�

��

A	�x� � B	�x� �� 	A�
�x �B

�
�x��x 	����

A	�x� � B	�x� �� 	A�
�x �B

�
�x��x 	����

A	�x� � B	�y� �� 	A�
�x �B�

�y��x��y 	����

A	�x� � �B	�x� �� 	A�
�x �B�

�x��x 	����

A	�x� �y� � �B	�y� �� 	A�
�x��y � 	A�

�x��y ��y��y B
�
�y��x��y��x��y 	����

A	�x� �y� � F 	�x� �� 	A�
�x��y �F ��x��y 	����

A	�x� �y� �B	�x� �z� �� 	A�
�x��y ��x��x B

�
�x��z��x��y��z 	����

A	�x� �y� � B	�w� �z� � F 	�y� �z� �� 	A�
�x��y �F B�

�w��z��x��y� �w��z 	�����

A	�u��v� �w� �x� � B	�w� �x� �y� �z�� F 	�u� �w� �y� �� 	A�
��w��w��x��x�F B���u��v� �w��x��y��z 	�����

A	�x� �y� � o�mop	�x� �� 	A�
�x��y

o
o	mop ��x��y�o 	�����

A	�x� �y� �B	�w� �z� � o�mop	�y� �z� �� 	A�
�x��y

o
o	mop B

�
�w��z��x��y� �w��z�o 	�����

�yA	�x� �y� �� 	A�
�x��y��y��x 	�����

Figure ���� Transformations from object calculus to object algebra�

The last stage of the transformation is to apply the necessary project operation using
behavioral projections in the target list of the object calculus expression� This operation
does not change the extent of the result collection� Rather� it has the eect of generalizing
a new membership type for the collection that only includes the behaviors speci�ed in the
projection�

The result of applying the transformations to the ANF formula F �� output by the ANFify
algorithm in the previous section is the algebraic expression��

	Pp
o
o�p�
 �p�o�p

�
o
� 		Pp � To�p�o�p�o � To

Written using the constructs of the original query it is��
	C person o

o�p�B residence�B inZone ��p

�
� 		C person �C transport��p� � C transport

There are opportunities for optimization on this expression� but the importance of this
section was to show the correct translation from calculus to algebra� The expression should
also be type checked to ensure that the behaviors used in the expression are actually de�ned
for the objects to which they�re being applied� During type checking the test for operand
�niteness can also take place� The resulting example query is safe in all respects that have
been considered in this thesis�

A formal complexity analysis of the entire algorithm remains open� The completion of
this task may yield improvements to the algorithm� Termination of the algorithm is proven
in both �GT��� and �EMHJ��b�� The object generation extension to the algorithm described
in this thesis does not inhibit termination� First� only non�recursive gdb logical rules are
added to the original gen and con rules� Second� the evalify algorithm is extended with
a repeat loop with two embedded mutually exclusive foreach loops� The foreach loops
are always guaranteed to terminate since the partial order �F and the intermediate set V
that they range over must be �nite� The repeat loop must eventually terminate because
it exits when no changes are made to the partial order �F and every iteration through

���

the loop only changes unde�ned elements in the partial order to de�ned elements� Thus�
the number of unde�ned elements in the partial order 	and hence possible changes to the
partial order� can only decrease with every iteration� eventually reaching the �xpoint when
no changes are made and terminating� The last if statement in the algorithm may cause
earlier termination if the formula being evaluated in safe� Finally� the algorithms genify �
ENFify � and ANFify are virtually the same as those presented in �GT��� with the ENF
extension outlined in �EMHJ��b� incorporated into the ENFify algorithm� The interested
reader is referred to those papers for the formal proofs�

The main contribution of the approach presented in this thesis is the extension of the
evaluable class 	and hence the allowed class� to incorporate the notion of object generation
through equality and membership atoms� A second contribution is the calculation of the
partial order that de�nes the steps in which the object generation can be performed� Fur�
thermore� a prototype of a calculus to algebra translator based on the given algorithms has
been implemented �Lip��� and the initial indications of its performance on sample queries
are quite positive�

���

Chapter �

The Meta�Model and Re�ection

In this chapter�� the features of the TIGUKAT meta�model 	Section ������ are described
and how it provides re�ective capabilities is shown� Re�ection is the ability of a system
to manage information about itself and to access 	or reason about� this information using
the regular access primitives of the model� The ability of a model to manage information
about itself is a strength because meta�information 	like schema� is modeled as �rst�class
components of the objectbase and the access primitives of the model can be uniformly used
to access all information� including the meta�information like the schema� The uniformity
built into the TIGUKAT object model is used to represent the meta�model and gives a
clean semantics for re�ection�

��� Related Work

In recent years� work on re�ection in object�oriented languages 	OOLs� has resulted in the
identi�cation of two basic models of re�ection �Fer����

�� The �rst is called structural re�ection and was advocated by Cointe �Coi��� in the
design of ObjVlisp� The model is based on a uniform instance�class�meta�class archi�
tecture where everything is an object and meta�classes are proper classes in the sense
that they can have a number of instances and can be subclassed� The discrimination
between meta�classes� classes and other instances is only a consequence of inheritance
and not a type distinction� This is in contrast to Smalltalk��� �GR��� where meta�
classes are anonymous objects and there is a one�to�one correspondence between a
class and its meta�class�

�� The second is called computational re�ection and was pursued by Paes �Mae��� in
the development of ��KRS� This approach essentially introduces a meta�object for
each object to handle the structural and computational aspects of the object� This
work was done within the context of a model that does not support the traditional
class�instance structure of Smalltalk� ObjVlisp� TIGUKAT� etc�� and so the structural
aspects of objects are represented by the meta�objects as well� In a class�instance
model� the structural aspects can be handled by the type 	class� of the object and so
meta�objects are only useful for computational aspects in these systems�

�Portions of this chapter are published in the ���	 Proceedings of the Twelfth International Conference
on Entity�Relationship Approach �ERA����
P�O�	��

���

Three models of computational re�ection have been identi�ed for object�oriented sys�
tems�

	a� the meta�class model � where the meta�object for an object is the class of the
object�

	b� the speci�c meta�object model � where in addition to classes� objects also have
speci�c meta�objects� and

	c� the meta�communication model � which is based on the rei�cation� of messages
sent to objects�

Some work has been done on adding computational re�ection to Smalltalk��� �FJ���
and work on the ABCL�R� language �MMWY��� is striving towards an e�cient im�
plementation of a re�ective OOL with concurrency�

The TIGUKAT model supports structural re�ection similar to 	�� and computational
re�ection is handled by a meta�class model as in 	�a��

A meta�object model 	�b� was not chosen because of the additional overhead involved�
One overhead is the introduction of a meta�object for 	potentially� each object in the
system� Another� more important one in light of an implementation� is the additional
dispatch processing required for every behavior applied to an object� The application
of behaviors to objects is the fundamental information access primitive of TIGUKAT� In
the implementation of TIGUKAT �Ira���� measures were taken to speed up the execution of
behavior application and even a trade�o of space for execution speed was made� In a meta�
object approach� every behavior application needs to perform an additional check to see if
the object has a meta�object and to dispatch the behavior to the meta�object if it exists�
This overhead was unacceptable because we believe there are only a few occasions where
objects need to support the semantics of meta�objects and the additional costs for every
behavior application is too great� Besides� the semantics of meta�objects can be supported
through subtyping and schema evolution 	features required of an OBMSs anyway�� Another
anomaly with the meta�object approach is that some information is at the type level and
some information is at the object level� The distribution of type information on a per object
basis has implications for persistent object management 	e�g�� where to store the meta�
object� with the type� with the object� or somewhere else(�� Finally� since behaviors are
objects in TIGUKAT� some form of the meta�communication model 	�c� could be integrated
with the system� Part of the future research is to investigate the incorporation of these
semantics into TIGUKAT�

��� Overview

Re�ection is the ability of a system to manage information about itself and to access 	or
reason about� this information through the regular
channels� of information retrieval� It
is natural for an OBMS to manage information about itself since an OBMS is nothing more
than a complex application de�ned by a model�

�Reication deals with the re�packaging and passing of messages on to other objects� It is based on the
premise that messages are objects that can be sent messages to process themselves� Behaviors in TIGUKAT
adhere to this semantics�

���

Instance edges to
person objects

C_collection

C_object

C_class-classC_class

C_person

Superset

Class Instance
Instance edge

Subset

Figure ���� A
normal� class and instance structure for C person�

There are several advantages in managing information within a model� One advantage is
that the primitives of the model are used to manage all forms of information including meta�
information as �rst�class components 	uniformity of representation�� Another advantage is
that information retrieval is uniformly handled by the model�s access primitives regardless
of the information�s type or
status� 	uniformity of access and manipulation�� With these
two abilities� a system is capable of re�ection� Relational systems provide re�ective ca�
pabilities by using relations to store information 	i�e�� schema� about relations� However�
the attributes of relations are restricted to the atomic domains of a particular system 	i�e��
integers� strings� dates� etc��� which limits the semantic richness of the meta�information
and makes it awkward to model� With the richer type structures of object models� self
management and re�ection is more natural and easier to manage�

In a uniform object model like TIGUKAT� the same structures used to manage infor�
mation about
normal� real�world objects such as persons� houses� maps� or complex appli�
cations 	e�g�� a geographic information system� are also used to manage meta�information
like types� classes� behaviors� and functions� Furthermore� the access primitives to all these
forms of information are uniform� meaning there is no distinction� for example� between ac�
cessing information about persons and accessing information about types� The uniformity
of TIGUKAT is the basis for its re�ective capabilities�

��� Features of the Meta�Model

One feature of the meta�model is that it can be used to uniformly de�ne an m��class whose
associated type includes behaviors for creating default objects of a particular type� For
example� consider the GIS objectbase of Section ��� and assume that type T person and
class C person are de�ned� The
normal� class and instance structure for this scenario is
shown in Figure ����

Instances of T person are created by applying B new to class C person� However�
the B new behavior used in this case is the one de�ned on T class which has a generic
implementation of creating a new
empty� object as an instance of the receiver class 	i�e��
a new
empty� person instance of C person�� Most existing models allow some form of
specialized new behavior on classes� However� they are usually de�ned in a roundabout and
non�uniform way by stating that a class can have a new behavior de�ned that is applicable to
itself 	e�g�� C�� �Str��b��� This is non�uniform since a class de�nes some behaviors that are
applicable to its instances and some that are applicable to itself� Other models get around
this by stating that every class is an instance of itself 	e�g�� Modular Smalltalk �WBW��b���
but in a uniform model this approach raises the question� is the class of persons a person(

���

Instance edges to
person objects

C_collection

C_object C_person-class

C_class-classC_class

C_person

Superset

Class Instance
Instance edge

Subset

Figure ���� An m� class and instance structure for C person�

What is needed is a uniform way of de�ning a behavior B new for C person that creates
new objects of type T person with some default information� It would not make sense to
de�ne this behavior on type T class� since then it would be applicable to all classes and it
should only be applicable to C person� The solution lies in the m��objects�

First� a new type called T person�class is created as a subtype of T class and will
specialize B new � The following behavior application performs this task�

T person�class� C type�B new	fT classg�f g�

Following this� the implementation of the inherited behavior B new is rede�ned to cre�
ate person objects with some default information 	i�e�� age set to �� birthdate set to cur�
rent date� etc��� To accomplish this� a new function is created with the appropriate code
that performs the necessary actions� and this function is associated with B new on type
T person�class� In the following discussion� this task is assumed to be completed� Next�
an m��class C person�class is created and associated with type T person�class so that
an instance of this type can be created� The following step creates the m��class�

C person�class � C class�class�B new	T person�class�

Now� it is semantically consistent for the instance C person�class to have the behavior
B new 	the one de�ned on T class�class� applied to it� Thus� the �nal step is to create
a class� called C person� as an instance of C person�class and associate it with the type
T person�

C person � C person�class�B new	T person�

This series of behavior applications results in a class and instance structure shown in
Figure ���� Now� the class C person is an instance of C person�class and thus the B new
behavior 	the one de�ned on T person�class� may be applied to it to create a new person
with default information 	i�e�� C person�B new	� creates a new person with defaults as
dictated by the particular implementation�� This gives a uniform semantics for the creation
and management of objects� Furthermore� the example meta�system for persons was created
in a uniform way using the primitives of the TIGUKAT object model�

Another feature of the meta�model is that the m��classes support a uniform de�nition
of class behaviors 	i�e�� behaviors that are applicable to classes�� For example� a behavior
B averageAge can be de�ned on type T person�class that computes the average age of
persons in a class� Now� this behavior is applicable to the class C person and applying

���

it as C person�B averageAge	� yields the average age of the persons in the objectbase� If
T person is subtyped by a T student and the same semantics should be associated with
class C student� then C student is created as an instance of C person�class�� Then
B averageAge is applicable to C student and computes the average age of the students in
the objectbase� Any number of
person�like� classes 	employee� teaching assistant� etc�� can
be created in this way and have these semantics attached to them� A similar approach can
be used to generalize this concept to collections� That is� de�ne collection behaviors � such
as B averageAge� which are applicable to collections and can be used to compute various
results from the elements of collections�

The meta�system architecture of TIGUKAT is similar to the meta�class structure in
ObjVlisp �Coi��� and it is a generalization of the Smalltalk��� �GR��� parallel one�to�one
class�meta�class lattice because it is entirely uniform� Every class� including the m� classes
is a proper class which� in general� have multiple instances and can be subclassed 	i�e��
their associated types can be subtyped�� Furthermore� the TIGUKAT meta�architecture is
closed� unlike the TAXIS �MBW��� LM��� and Telos �KMSB��� models which handle meta
modeling by allowing the de�nition of an arbitrary number of meta�class levels where each
subsequent meta�class level models the level below it� The uppermost meta�class level is
not modeled within these models since that would require another meta�class level to be
added which would not be modeled in the model� and so on�

One advantage of this approach is that there is less overhead for those classes that don�t
need additional class behaviors or don�t need to specialize class behaviors� For example� both
C person and C student can be de�ned as instances of C person�class if C student

doesn�t require additional class behaviors or specialization of existing ones� Furthermore�
those classes that don�t require any class behaviors can be instances of the general C class�
This illustrates that m� classes are classes in general whose instances are class objects�

A 	potential� disadvantage is that the schema needs to be reorganized if at a later time
it is decided that additional class behaviors are needed for certain classes that were grouped
as instances of one meta�class 	e�g�� if additional behaviors are needed which are applicable
to C student� but not applicable to C person�� This kind of
evolution� can be viewed
as correcting design problems of an application 	i�e�� it was a design mistake to create
C student as an instance of C person�class�� The problem is corrected by subtyping
T person�class with T student�class� de�ning the new behaviors and specializations on
this type� creating an associated class C student�class� and migrating C student as an
instance of C student�class� This reorganization is necessary because both structural and
computational re�ection are handled by the type� The frequency of this kind of schema
reorganization in existing systems seems to be low� Nonetheless� with the development of
the schema evolution policies in Chapter �� these kinds of changes follow naturally since
some form of them must be supported in a full�featured OBMS anyway�

Another approach is to introduce a meta�object for each object to handle the object�s
computational aspects �Mae��� Fer���� This avoids schema reorganization by allowing be�
haviors to be rede�ned in the meta�objects instead of the type� However� it requires some
additional dispatch processing to determine if an object has a meta�object and if it does� to
tell the meta�object to handle the behavior� If the object doesn�t have a meta�object� then
the regular type dispatch should occur� Furthermore� there are additional space require�

�Alternatively� a type T student�class could be created as a subtype of T person�class� a class
C student�class could be created and associated with T student�class� and C student could be cre�
ated as an instance of C student�class� This approach requires the creation of additional objects� but has
the benet of allowing the behaviors applicable to C student to be specialized�

���

ments since every object can potentially have a meta�object� The drawback in an OBMS
application environment is that e�cient query processing is a must and the overhead of the
additional dispatch processing for every behavior application can become quite signi�cant
in queries where many behaviors are being applied� Thus� the �exibility of meta�objects
	that can be supported through subtyping instead� is traded for speed�

The goal of uniformity is that the representation and semantics of the meta�system 	and
beyond� should be no dierent than it is for the
normal� real�world objects� TIGUKAT
achieves this goal through the meta�system architecture described in this chapter�

It is now easy to see how the tenet of uniformity carries through for all objects� For
example� the object joe is a person� joe is in the extent of class C person� the associated
type of C person is T person� the behaviors de�ned by T person are applicable to joe�
The object C person is a class� C person is in the extent of class C class 	or C person�
class in the m� example�� the associated type of C class is T class 	or T person�class��
the behaviors de�ned by T class 	or T person�class� are applicable to C person� The
same line of reasoning can be applied to T person� T person�class� C class� T type and
uniformly to all objects in TIGUKAT� The base 	�xpoint� of the type chain is T type and
the base of the class chain is C class�class� This de�nes the closure of the lattice and
instance structure�

In the same way as dierent
�avors� of object equality can be de�ned� dierent kinds of
new behaviors form��objects can also be de�ned� For example� T person�class can de�ne
several dierent kinds of new behaviors that accept variations of arguments 	such as name�
age� address� etc�� and create person objects with the given arguments as initial information
Furthermore� a variety of default new behaviors can be de�ned that create person objects
with various defaults 	e�g�� B newBorn� B newYouth� B newSenior� etc��� This illustrates
another feature of the uniform meta�system architecture�

The beauty of a uniform approach is that the results of this chapter generalize over all
objects in TIGUKAT� including the meta�system architecture and beyond�

��� Re	ective Capabilities

Recall that re�ection is the ability of a system or model to manage information about itself
and to access this information using the regular
channels� of information retrieval in a
uniform way� The architecture of the meta�system described in Chapter � is consistent with
the modeling capabilities of the TIGUKAT object model and therefore the meta�system
is uniformly de�ned within the model itself� The access primitives of the model 	which
in TIGUKAT is the application of behaviors to objects� can be uniformly applied to all
objects in the system� including the meta�system� to retrieve information about objects�
Thus� uniformity in TIGUKAT is a support mechanism for re�ection�

The select�from�where clause of TQL is used to present some queries that illustrate
the re�ective capabilities of TIGUKAT� First� to recap its syntax� some example queries
on
normal� real�world objects are given� These examples also serve to show that the
method of querying real�world objects is uniform with the method for querying schema and
meta�information 	i�e�� the syntax of the clause does not change with schema objects��

Example �� Return land zones valued over &������� or that cover an area over ����
units�

���

select o
from o in C land
where 	o�B value	� � ������� or 	o�B area	� � �����

Example �� Return all zones that have people living in them 	the zones are generated
from person objects��

select o
from p in C person

where o � p�B residence���B inZone��

Example �� Return all maps that describe areas strictly above ���� feet�
select o
from o in C map

where forAll p in 	select q
from q in C altitude� q in o�B zones���

p�B low�� � ����

Example �� Return pairs consisting of a person and the title of a map such that the
person�s dwelling is in the map�

select p� q�B title	�
from p in C person� q in C map

where p�B residence	��B inZone	� in q�B zones	�

The above queries introduce variables 	i�e�� o�p�q� that range over classes and collec�
tions� The queries apply behaviors to the variables and other object references to extract
information about the objects and return the information 	in the form of objects� as part of
the query� Since everything in the model has the status of a �rst�class object� the paradigm
of applying behaviors to objects carries through to all objects which provides the re�ective
capabilities of the model�

The behavior application paradigm can be uniformly used on meta�objects� For example�
information about types can be retrieved by querying the classC type� This follows directly
from the tenet of uniformity� Types are objects that are instances of the class C type� The
classC type is associated with type T type� The behaviors de�ned on T type are applicable
to types� Some example re�ective queries on types are given below�

Example �� Return the types that have behaviors B name and B age de�ned as part of
their interface�

select t
from t in C type

where B name in t�B interface	�
and B age in t�B interface	�

Example �	 Return the types that de�ne behavior B age with the same implementation
as one of the supertypes�

select t
from t in C type� r in t�B supertypes	�
where B age in t�B interface	�

and B age in r�B interface	�
and B age�B implementation	t� � B age�B implementation	r�

���

Example �� Return all types that inherit behavior B age� but de�ne a dierent imple�
mentation from all types in the super�lattice that de�ne behavior B age�

select t
from t in C type

where B age in t�B inherited	�
and forall r in t�B super�lattice	� 	not r � t

or not B age in r�B interface	�
or not B age�B implementation	t� � B age�B implementation	r��

Example �� Return all subtypes of T person�
select r
from r in T person�B sub�lattice	�

Example �� Return pairs consisting of a subtype of T person and the native behaviors
that the subtype de�nes�

select r� r�B native	�
from r in T person�B sub�lattice	�

Example ��� Return pairs consisting of an object in collection L stu� together with the
type of the object� but only if it is a subtype of T zone�

select o� o�B mapsto	�
from o in L stu�

where o�B mapsto	� � T zone�B sub�lattice	�

Carrying through the uniformity to class and collection objects� the following queries
are re�ective on classes and collections�

Example ��� Return all the classes in the objectbase�
select o
from o in C class

Example ��� Return the classes that make up the meta�meta�system�
select o
from o in C class�class

Example ��� Return the collections that contain the object David� Furthermore� restrict
the result to collections with a membership type of T person or one of its subtypes�

select o
from o in C collection

where o�B memberType	� in T person�B sub�lattice	� and David in o

Example ��� Return the classes that have a greater cardinality than any collection in
the system without considering other classes�

select o
from o in C class
where forall p in C collection

		not p in C class� or o�B cardinality	� � p�B cardinality	��

Example ��� Return pairs consisting of an m��class and the collection of native class
behaviors de�ned by the m��class�

select c� c�B memberType	��B native	�
from c in C class�class

���

Example ��	 Return the objects in L things that exist in at least one other collection
without considering their existence in a class�

select o
from o in L things� p in C collection

where 	not p � L things� and 	not p in C class� and 	o in p�

The uniform paradigm of behavioral application can be consistently applied to all objects
in TIGUKAT since every object belongs to the extent of some class and every class is
associated with a type and every type de�nes behaviors that are applicable to the objects
in the extent of the associated class� Notice that some of the examples intermix access to

normal� objects with access to schema objects like types� classes and collections within the
same query� Accessing information about any object� regardless of its
status�� �is simply a
matter of applying behaviors de�ned by a type to the objects of that type�

The object model approach diers from relational systems that use relations to store
information about relations in that the attributes of relations are limited to the atomic
domains of a particular system 	i�e�� integers� strings� dates� etc�� while the object model has
a rich type system for representing complex objects and a sophisticated execution model for
applying behaviors to objects� Thus� representing schema information in a uniform object
model is more natural and easier to manage� As a consequence� the access primitives apply
naturally to all forms of information as well� In this chapter� it is shown how TIGUKAT
supports this uniform semantics and how it is used to provide re�ection�

���

Chapter �

Schema Evolution and Versioning

In this chapter� the schema evolution policies and version control management in TIGUKAT
are presented� A time domain is proposed as a foundation for managing schema changes and
for tracking versions of objects� Temporality has been introduced into the TIGUKAT object
model �G�O��� and is founded on behaviors� A behavior is created to be either temporal
or snapshot oriented� If a type de�nes a temporal behavior� then the type is temporal and
all of its instances are temporal on the temporal behaviors� Thus� temporality of objects
is dependent on the temporality of their type� In this chapter� only a brief overview of
temporality in TIGUKAT is presented since it is part of another doctoral thesis �Gor���� The
focus of this chapter is how the temporal extensions are used to manage schema evolution
and version control in TIGUKAT�

Typical client applications of OBMSs experience changes to the way in which information
is organized 	i�e�� evolving schema�� Moreover� historical tracking of the changes is usually a
requirement for these applications� For example� in an engineering design application many
components of an overall design may go through several modi�cations in order to produce a
�nal product� Furthermore� each intermediate version of the component may have certain
properties that need to be retained as a historical record of that particular component
	e�g�� the dierent versions may have been used in other products�� The inter�connection
of the various versions of components also gives rise to versions of an overall design� and
the resulting designs may be part of others and so on� E�ciency considerations is another
example of why an application may be modi�ed to change the way in which it organizes
information� The evolutionary characteristic of these applications requires sophisticated
dynamic schema evolution policies for managing changes in schema and ensuring the overall
consistency of the system�

��� Issues of Schema Evolution

Typical schema changes include adding and dropping types� adding and dropping subtype
relationships between types� adding and dropping behaviors de�ned on a type� and� in the
context of TIGUKAT� adding and dropping classes� A typical schema change can aect
many aspects of a system� There are two fundamental problems to consider�

�� the eects of the change on the overall way in which the system organizes information
	i�e�� the eects on the schema�� and

���

�� the eects of the change on the consistency of the underlying objects 	i�e�� the prop�
agation of the changes to the existing instances�� The object migration problem can
also be considered in this context� Object migration deals with properly updating
objects that change their type 	i�e�� migrate from one type to another�� This can be
perceived as a change in the object�s type 	i�e�� a schema change� that only aects
the single object� Object migration is not speci�cally addressed in this thesis� An
additional problem to consider is the eects of the change on behaviors that access
migrated instances� For example� if a behavior is dropped and the aected objects no
longer respond to that behavior� then other behaviors that use the dropped behavior
in their implementation will no longer work on those objects� This secondary problem
has received some attention �SZ���� but more work is required� Version control based
on temporality as described in this chapter is a good basis for providing solutions to
this problem�

Some particular systems that have proposed solutions to these problems are examined
in more detail in Section ���� For the �rst problem� the basic approach has been to de�ne
a number of invariants that must be satis�ed by the schema and then to de�ne rules and
procedures for maintaining these invariants for each schema change that can occur�

For the second problem� one solution is to explicitly coerce objects to coincide with
the new de�nition of the schema� This technique updates the aected objects� changing
their representation as dictated by the new schema� Unless a versioning mechanism is used
in conjunction with coercion� the old representations of the objects are lost� Screening
and conversion are two techniques for de�ning when coercion actually takes place� Orion
�BKKK��� KC��� is a system that uses the screening approach and GemStone �PS��� uses
conversion� Other systems are discussed in Section ����

In screening � schema changes generate a conversion program that is independently ca�
pable of converting objects into the new representation� The coercion is not immediate�
but rather is delayed until an instance of the modi�ed schema is accessed� That is� object
access is monitored by the system� and whenever an outdated object is accessed� the system
invokes the conversion program to coerce the object into the newer de�nition� Conversion
programs resulting from multiple independent changes to a type are composed� meaning
access to an object may invoke the execution of multiple conversion programs where each
one handles a particular change to the schema� Screening causes delays during access to
objects�

In conversion� each schema change initiates an immediate conversion of all objects
aected by the change� In contrast to screening� this approach causes delays during the
modi�cation of schema� but no delays are incurred during access to objects�

A second solution for handling change consistency of instances is to introduce a new
version of the schema with every modi�cation and to supplement each schema version with
additional de�nitions that handle the semantic dierences between versions� These addi�
tional de�nitions are known as �lters and the technique is called �ltering � Error handlers
are one example of �lters � They can be de�ned on each version of the schema to trap in�
consistent access and produce error and warning messages� The Encore model �SZ��� SZ���
uses type versioning with error handlers as a �ltering mechanism�

In the �ltering approach� changes are never propagated to the instances� Instead� objects
become instances of particular versions of the schema� When the schema is changed� the old
objects remain with the old version of the schema and new objects are created as instances
of the new schema� The �lters de�ne the consistency between the old and new versions of

���

schema and handle the problems associated with behaviors written according to one version
accessing objects of a dierent version� For example� if a behavior is dropped from a type�
then a �lter can be de�ned on the new version of the schema that produces a default value
if a behavior written according to the old version applies the dropped behavior to an object
created according to the new version�

A hybrid model combines two or more of the above methods� For example� a system
could use �ltering as the underlying mechanism and allow explicit coercion to newer versions
of types� either through screening or conversion� Another example is a system that takes
a more active role by using screening as the default and switching to conversion whenever
the system is idle�

��� Issues of Version Control

Version control is the ability to manage dierent versions of objects� Usually� this is a
selective feature that may be set to only track versions of certain objects� In a uniform
model like TIGUKAT� where everything is an object� all forms of information are candidates
for versioning� The selectivity of versioning in TIGUKAT is based on the behaviors de�ned
on types� Basically� the temporal behaviors de�ned on a type are the aspects of all instances
of that type that are versioned over time� The non�temporal behaviors are not versioned�
Thus� entire objects are not versioned in TIGUKAT� but only the components relating to
temporal behaviors�

Several approaches to versioning have been identi�ed and explored� These include the
versions of objects 	VOO�� versions of types 	VOT�� versions of schema 	VOS�� and views
of schema 	WOS� approaches�

In the versions of objects approach� it is the individual objects that are versioned� This
approach has been explored in the context of models that do not carry uniformity to the
extent that TIGUKAT does� Thus� the schema in these models are not objects and are not
versioned�

The inability to version the schema means that objects that existed before a schema
change are irreversibly modi�ed when updated to coincide with the new schema� This
shortfall has led to the development of techniques for versioning individual types 	or classes�
�SZ��� and a broader approach of versioning the entire schema �KC���� The former manages
schema changes on a per type basis� while the latter treats the entire schema as an object
that is versioned�

In the views of schema approach� there is a single underlying schema and objects are
instances of this schema� Any number of views can be de�ned on the schema and a schema
view de�nes the visibility of objects and their properties under that view�

The version control mechanism described in this chapter introduces another way of
managing versions called the versioned behaviors 	VDB� approach� This approach stems
directly from the temporality of the object model in that temporal objects are exactly the
versioned objects� An object is temporal if its type de�nes at least one temporal behavior�
Temporal and non�temporal behaviors are primitive elements of the temporal model� One
advantage of this approach is that entire objects are not versioned % only the components
de�ned by the temporal behaviors are versioned� Another advantage is that temporality is
selective on a behavioral basis� This means temporality can be turned on or o for behaviors
by de�ning the appropriate temporal or non�temporal behaviors� respectively� Furthermore�
objects can be coerced to newer versions of the schema one behavior at a time� This means

���

that dierent temporal behaviors of an object can correspond to dierent versions of the
schema� This provides great �exibility in managing versions�

With the VDB approach� objects are instances of a single type� This is in contrast to
the VOT and VOS approaches where objects are instances of a version of a type� Using
VDB� subtype relationships between types can be modeled over time by de�ning behav�
iors B subtypes and B supertypes as being temporal behaviors� Now� at a given time of
interest�� the sub�supertypes of all types can be found� and by combining these results� a
version of the entire schema can be constructed at that time of interest�

Since everything is uniformly an object in TIGUKAT� the VDB approach is similar
to VOO with schema support� but diers in that entire objects are not versioned % only
the temporal behaviors of objects are versioned� By de�ning temporal behaviors on type
objects� VOT is supported� and by specifying a particular time of interest� a version of the
schema can be generated and� thus� VOS is supported as well�

��� Related Work

In recent years� several researchers have addressed the problem of de�ning schema evolution
policies and version control for OBMSs� Some systems are described below in relation to
the concepts introduced in the previous section�

The Orion �BKKK��� KC��� model is the �rst system to introduce the invariants and
rules approach as a more structured way of describing schema evolution in OBMSs� Orion
de�nes a complete set of invariants and a set of twelve accompanying rules for maintaining
the invariants over schema changes� The allowed schema changes are classi�ed into several
categories� each of which aects dierent parts of the schema� These changes represent the
typical schema modi�cations allowed in most systems today� The changes supported in
TIGUKAT are similar to those of Orion� but vary to deal with uniformity� which is not part
of Orion� For example� stored properties and computed methods are separate concepts in
Orion and need to be handled separately� while in TIGUKAT they are treated uniformly
as behaviors and� therefore� a single mechanism su�ces for both�

Schema evolution in GemStone �PS��� is similar to Orion in its de�nition of a number of
invariants� The GemStone model is less complex than Orion in that multiple inheritance and
explicit deletion of objects are not permitted� As a result� the schema evolution policies
in GemStone are simpler and cleaner� For example� while Orion de�nes twelve rules for
disambiguating the eects of schema modi�cation� GemStone requires no such rules� It is
now generally accepted that multiple inheritance is a necessity in advanced OBMSs and�
therefore� is part of the TIGUKAT model and is considered in schema evolution� Explicit
deletion is another operation that is typical in database systems� In TIGUKAT� deletion is
addressed in the context of the temporal model extensions� The existence of an object in
its class is managed by a behavior B lifespan that returns the interval in which the object is
valid� When an object is
deleted�� it is not removed from the system� Instead� the lifespan
of the object in its class is timestamped with the deletion time and this
eectively deletes�
the object from subsequent time� Conversion is used in GemStone to propagate changes
to the instances� Literature on GemStone mentions the possibility of a hybrid approach

�Note that the time reference used to specify a �time of interest� is determined by the structure of the
temporal behaviors� This is �exible and could be an absolute time point� a relative time point� a version
number� or some other relevant time reference� Only the generic �time of interest� reference is used in
this thesis� but one may replace this with �version number� to bring additional meaning to the concepts
introduced�

���

that allows both conversion and screening� but it is not clear if such a system has yet been
developed� The emphasis of GemStone is to provide schema evolution without the use of
versioning� Thus� version control is not part of the system�

Skarra and Zdonik �SZ��� SZ��� de�ne a framework for versioning types in the Encore
object model as a support mechanism for evolving type de�nitions� A generic type consists
of a collection of individual versions of that type� This is known as the version set of
the type� Every change to a type de�nition results in the generation of a new version of
that type� Since a change to a type can also aect its subtypes because of specialization
requirements� new versions of the subtypes may also need to be generated� By default�
objects are bound to a speci�c type version and must be explicitly coerced to a newer
version in order to be updated� Since objects are bound to a speci�c type version� a problem
of missing information can arise if programs 	i�e�� methods� written according to one type
version are applied to objects of a dierent version� For example� if a property is dropped
from a type� programs written according to an older type version may no longer work on
objects created with the newer version because the newer object is missing some information
	i�e�� the dropped property�� Similarly� if a property is added to a type� programs written
with the newer type version in mind may not work on older objects because of missing
information� For this reason� type versions include additional de�nitions� called handlers �
that manage the semantic dierences between versions % such as the missing information
problem� This approach is one of the �rst to address the issue of maintaining behavioral
consistency between versions of types�

One result of Skarra and Zdonik�s work is a design methodology for de�ning handlers�
A handler is de�ned on a type version and speci�es an
on condition� that traps read and
write access to a particular property that is unde�ned or invalid in that particular type
version� but is valid in the generic type� Furthermore� a handler de�nes an appropriate
action to take if such an access occurs� Consider the missing information example above�
A handler can be de�ned on the type version that is the missing property so that it returns
a default value� a nil value� or simply generates an error� Using this approach� a handler
can be de�ned for each semantic dierence between type versions in order to �lter object
access and to trap any inconsistent accesses that may occur� This is the �ltering approach
to change propagation� A �ltering approach is also used in TIGUKAT� but the temporality
of the object model� instead of handlers� is used to manage behavioral consistency between
versions�

Skarra and Zdonik go a long way towards maintaining the semantics of behaviors be�
tween dierent versions of types� However� it is clear that de�ning handlers on various
type versions can become confusing and unmanageable in systems with a large number of
types that change often� In response to this problem� a more fundamental approach that
uses temporal behaviors to model versions of objects is proposed in this thesis� Since the
TIGUKAT model is uniform� types are objects with well�de�ned behavior and by de�ning
appropriate temporal behaviors of types 	e�g�� subtype and supertype relationship behav�
iors�� types are naturally versioned in TIGUKAT� Versions of the schema extend naturally
from this by simply specifying a particular time of interest and then using this time reference
to index the correct versions of types� The temporal subtype and supertype relationship
behaviors at the given time reference de�ne the structure of the particular version of the
schema at this time� Semantic consistency of behaviors between old and new versions of
types is also supported in TIGUKAT� Instead of de�ning handlers on the various versions
of types� pre�existence and post�existence implementations can be de�ned for the temporal
behaviors on these types� These implementations can return� similar to Encore� a default

���

value� a nil value� or generate an error�
Nguyen and Rieu �NR��� discuss schema evolution in the Sherpa model and compare

their work to Encore� Gemstone� Orion� and one of their earlier models for CAD systems
called Cadb� The emphasis of this work is to provide equal support for evolving schema
de�nitions and for propagating changes to instances� The schema changes allowed in Sherpa
follow those of Orion� Schema changes are propagated to instances through conversion or
screening� which is selected by the user� However� only the conversion approach is discussed�
Change propagation is assisted by the notion of relevant classes � A relevant class is a
semantically consistent partial de�nition of a complete class and is bound to the class� A
relevant class is similar to a type version in �SZ��� and a complete class resembles a version
set�

The properties of relevant classes are characterized automatically by selecting from the
powerset of instance variables and constraints de�ned in a complete class de�nition� The
selection is restricted to only those combinations that are meaningful with respect to certain
semantic rules �NR���� Objects are instances of exactly one relevant class� which charac�
terizes a partial de�nition of that object� The purpose of relevant classes is to evaluate the
side�eects of propagating schema changes to the instances and to guide this propagation�

Relationships between relevant classes can be characterized as a graph where the nodes
are relevant classes and the edges are labeled with schema changes that take one relevant
class de�nition to another� As the schema evolves� relevant classes are used to evaluate the
changes and test their semantic consistency� Objects are migrated between relevant classes
to eect the changes made to them� This migration is essentially object coercion� The
propagation of objects within a set of relevant classes can have a large overhead� but it is
argued that relevant classes group objects into smaller sub�classi�cations so that the number
of objects aected by a change within a class is reduced� thereby increasing performance�
This approach is valid in systems that consider partial de�nitions of objects within a class�

In the Farandole � model �ALP���� a structure called a context and the maintenance
of versions within contexts are proposed as a basis for schema evolution and versioning�
A context is a partial view of the overall schema that serves a dual purpose� it de�nes a
subset of objects in the database� and a subset of operations that can be performed on these
objects� Versions can be derived from the visible schema within a given context� Thus� a
views of schema approach is used to de�ne contexts 	views� and this is combined with a
versions of schema approach for each context to de�ne versions of the schema within the
scope of a given context� Thus� the approach is close to managing versions of views� A
global database schema can be derived from the set of all contexts� The typical schema
changes are allowed� A context is represented by a connected graph where the nodes are
classes and the edges are attributes denoting relationships between classes� Thus� contexts
are similar to entity�relationship diagrams� Schema changes are characterized into graph
operations and rules for maintaining graph integrity are de�ned�

Elements of versions and contexts can be shared by other versions and contexts� Thus�
objects must maintain information about the contexts and versions in which they partici�
pate� One must consider the amount of extra space needed to store this information in the
objects rather than the types� The focus of the work is on managing changes to schema and
no propagation technique is explicitly stated� although it seems that conversion or screening
could be used� There is a brief discussion on how the model improves independence between
programs and changing schema� which suggests a �ltering approach� but it is unclear how
the model achieves this feature� Like relevant classes� it is argued that a context provides
a smaller group of objects that need to be modi�ed as a result of schema changes� which is

���

intended to improve performance�
Osborn �Osb��� describes an algebra that utilizes inclusion polymorphism to de�ne

equivalence of queries on dierent versions of schema� The work does not describe how
schema changes are propagated to the instances� Two kinds of schema modi�cations are
considered� The �rst involves changing simple atomic attributes like strings and integers to
more complex aggregates of these simple types 	the opposite direction of changing aggre�
gates to simple types is also discussed�� Only one level of aggregation is considered� That
is� the aggregation of aggregate types is not discussed�

The second modi�cation considered is that of specializing aggregate types 	the opposite
direction of generalizing aggregate types is also discussed�� Several example queries using
strings and integers are presented� The schema is modi�ed by specializing previous types
and it is shown how the equivalence of queries are preserved 	or not preserved� through
polymorphism� The results are interesting� but the full scope of schema evolution is not
considered�

In OTGen �LH���� the focus shifts from dynamic schema evolution to database reorga�
nization� The invariants and rules approach is used� and the typical schema changes are
allowed� The invariants are used to de�ne default transformations for each schema change�
Schema changes produce a transformation table that describes how to modify aected in�
stances� Multiple schema changes are usually grouped and released as a package called
a transformer � Screening is used to apply the transformer and propagate changes to the
instances� Multiple releases are composed and� thus� access to an older object can invoke
multiple transformers to bring the object up to date� One result of the database reorganiza�
tion approach is that multiple changes are packaged into a single release and this is expected
to reduce the number of screening operations that need to be invoked for each object access�
Another result is that transformers are represented as tables that are initialized by OTGen�
A simple language is provided to describe transformations� Before releasing a transformer�
a database administrator can edit the entries in the table to override the default trans�
formations� Each release can be thought of as a separate version of the entire database�
Thus� this is similar to the versions of schema approach� Since the focus of the paper is
on database reorganization� the details of invoking and accessing individual versions is not
discussed�

Reiter �Rei��� discusses a formal approach to de�ning database updates using techniques
from arti�cial intelligence� A situational calculus� for a transaction model is de�ned and a
solution to the frame problem� within this model is described� This requires the introduction
of second�order operations and details are not given� In a uniform model like TIGUKAT�
the schema is part of the objectbase and thus can be part of updates to the objectbase� It
seems likely that Reiter�s formal model could be adapted to describe schema evolution in
a uniform model� A form of versioning is already part of his model since he describes how
a transaction modi�es a database within a particular state taking it to a new state� Thus�
old states are preserved and each state is like a version of the database� This approach
is appealing because it moves from the traditional procedural treatment of updates to a
declarative one�

In the systems discussed above� if an object is coerced to coincide with a new de�nition

�The situational calculus
McC��� is a rst order language designed to represent dynamically changing
worlds in which changes are the result of applying named actions within a particular state taking the world
to a new state�

�The frame problem stems from the need for specifying the invariants of a particular action or update
within a world of which there are usually a large number�

���

of the schema� the entire object must be converted� In systems that don�t de�ne versioning�
the old state of the object is lost� The approach in TIGUKAT diers in that the granularity
of object coercion is based on individual behaviors� That is� individual behaviors de�ned on
the type of an object can be coerced to a new de�nition for that object� leaving the other
behaviors to retain their old de�nitions� Furthermore� a historical record of the coerced
behaviors is maintained for each object so that older de�nitions of the behaviors can still
be accessed for each object� Complete object coercion can be done by explicitly coercing
all the behaviors of an object�

Substantial research has been ongoing in the past decade to support the notion of time
in various systems �Soo��� TCG����� Time has been introduced recently in the context of
object models �RS��� KS��� DW��� WD���� These studies have concentrated on extending
the object model to facilitate various notions of time� Furthermore� query models have
been extended by adding new operators and constructs that range over time values and
allow for the execution of queries on temporal and non�temporal objects to be carried out
in a uniform manner� Using time to model schema evolution in an object model has not
received much attention� Given the application domains that TIGUKAT is expected to
support� temporal extensions to the TIGUKAT object model have been introduced �G�O����
In this thesis� it is show how time is used to model temporal behaviors� which is turn models
versions of objects� types� and schema�

��� Overview of Schema Evolution and Versioning

In this thesis� a linear model of time is proposed as a foundation for managing schema
evolution and version control� Temporality is based on behaviors and is consistently ex�
tended to include schema information like types� plus all forms of objects as well� Since
temporality is behavior based� an object is temporal if and only if it�s type de�nes at least
one temporal behavior� Otherwise� the object is non�temporal� Therefore� temporal and
non�temporal objects co�exist in the model� Temporal behaviors are a specialization of the
primitive� non�temporal behaviors� Thus� temporality is transparent in the model 	i�e�� if
the user is not concerned with temporality� then the temporal behaviors act just as regular�
non�temporal behaviors do��

Temporal behaviors manage histories of changes to objects and therefore a version of a
temporal object can be constructed at any time of interest by indexing into these histories�
By de�ning appropriate temporal behaviors on the meta�architecture� versions of types and
versions of schema are supported� That is� changes to the schema involve updating the
history of certain behaviors� For example� adding a new behavior to a type changes the
history of the type�s interface to include the new behavior� The old interface of the type
is maintained and can be accessed through temporal language features that allow behavior
applications to be quali�ed by a time reference point� One need only specify a time reference
in the past when applying the B interface behavior to get an older version of the interface
of a given type� This is eectively versions of types� Similarly� the subtype relationship
behavior is de�ned to be temporal and� therefore� the structure of the type lattice can be
reconstructed at any time of interest� This is eectively versions of schema�

Coercion of objects to a newer version of a type is optional in TIGUKAT� Since dierent
versions of types are maintained through temporality� all the schema information of older
objects is available and can be used to continue processing these objects in the old way� If
coercion is desired� the entire object does not need to be updated� Objects can be coerced

���

to a newer version one behavior at a time� This means that some behaviors of the object
may work with newer versions� while others may work with older ones� This is in contrast
to other models where an object is converted in its entirety to a newer version� thereby
losing the old information of the object� Since the old information of the object is available�
even if objects are coerced to a newer version� historical queries can be run by giving an
appropriate time point in the past history of the object�

Even though this work is within the context of the TIGUKAT object model� the results
reported here extend to any system that uses time to model histories of behaviors� Currently�
we are unaware of any other systems that use this approach�

��� Temporality of the Object Model

Most of the applications that OBMSs are expected to support exhibit some form of tem�
porality� Some examples are the following� in engineering databases� there is a need to
identify dierent versions of a design as it evolves� in multimedia systems� the video images
are timed and synchronized with audio� in o�ce information systems� documents are or�
dered based on their temporal relationships� Thus� a temporal domain is a very natural part
of an OBMS and in many cases simpli�es advanced management facilities such as schema
evolution and version control�

Temporality has been introduced into the TIGUKAT object model �G�O���� A brief
overview is presented in this section to establish the foundation for using time to manage
schema evolution and versioning�

Time is added to TIGUKAT by extending the base model with time�related types and
behaviors� Figure ��� shows the types added by the temporal extensions� Some of the
time�related behaviors de�ned on these types are discussed below�

T_object

T_linear

T_instant

T_interval

T_span

Supertype Subtype

T_timemodel

T_branching

T_timescale

T_continuous

T_dense

T_discrete

Figure ���� The abstract time types�

Two aspects of modeling time are considered� the structural models of time and the
density of these models� Two structural models are represented in TIGUKAT� The �rst is
a linear model where time �ows from past to future in a totally ordered manner� The second
is a branching model where time �ows linearly until a certain point where it can branch
into several independent� parallel linear models that can go on branching inde�nitely� The

���

structure of a branching model is a directed tree with the root being the start of time� the
leaves being the current time at the various branches� the nodes being the branch points�
and the edges being linear models that connect nodes� The type T timemodel represents
structural models in general and the types T linear and T branching represent the two
speci�c structural models considered in TIGUKAT� Linear models are further specialized
into instantaneous models 	T instant� consisting of a single time point 	e�g�� ��� t��� interval
models 	T interval� consisting of speci�c lower and upper bound time points 	e�g�� �������
�t� � t	��� and spanning models 	T span� that consist of durations 	e�g�� � days� � months�
annually� quarterly��

The density of a structural model de�nes the domain over which time is perceived or
referenced in that model� In other words� it de�nes a scale for time in the model� Three
basic scales 	i�e�� domains� of time are considered in TIGUKAT� The general density of time
models is represented by the type T timescale� The subtypes T continuous� T dense� and
T discrete represent the three basic time scales� Discrete domains map time to the set of
integers� dense domains map time to the set of rational numbers� and continuous domains
map time to the set of real numbers�

For the purpose of developing schema evolution and versioning� this thesis concentrates
on the T interval and T discrete types� which su�ce for its design�

Since temporality is integrated with the base object model� it can be extended� Addi�
tional structural models and densities can be easily introduced by building on the established
types� This is a direct result of the uniformity of the model� For example� to model dates �
a type T date can be de�ned as a subtype of T instant� To model years� months� or day
spans 	i�e�� durations�� appropriate subtypes of T span can be created� These can be further
subtyped to model a �ner granularity of time�

Tomanage temporal information about the behaviors of objects� the type T temporalBhv

is introduced as a subtype of T behavior� This type de�nes additional functionality for
representing the semantics of temporality on behaviors� An instance of T temporalBhv is
called a temporal behavior � Temporal behaviors are pre�xed by BT � The associated class
C temporalBhv is introduced to manage the temporal behavior instances�

The additional functionality of T temporalBhv allows its instances to maintain a history
of updates with respect to objects they are applicable to� The history of updates is modeled
by the B history behavior de�ned on T temporalBhv�� The signature is B history is as
follows�

B history � T object� T collectionhT timemodel� T objecti

B history requires a temporal behavior as the receiver� It accepts an object as an
argument� and returns a collection of �T timemodel� T object� pairs as a result� The
result represents the history of the receiver behavior with respect to the given argument
object� If the receiver behavior is not de�ned on the type of the argument object� an
error condition is raised� For example� assume theArctic is an instance of T land and
B value is de�ned as a temporal behavior 	denoted BT value�� The behavior application
theArctic�BT value returns the current value of the land and BT value�B history	theArctic�
returns the entire history of the land value as it has changed over time�

The following de�nitions formally establish the semantics of temporal and non�temporal
objects according to behaviors and types�

�Note that B history is an instance of T behavior and not T temporalBhv�

���

De
nition �� Temporality of Behaviors� A behavior b is temporal if and only if it is an
instance of T temporalBhv 	i�e�� b � C temporalBhv��

De
nition �� Temporality of Types� A type t is temporal if and only if it de�nes at least
one behavior in its interface� That is� the following condition is met�

b j b � t�B interface � b � C temporalBhv

De
nition �� Temporality of Objects� An object o is temporal if and only if the type of
o 	i�e�� o�B mapsto� is temporal�

From these de�nitions it is clear that� in TIGUKAT� temporality of objects is not
orthogonal to their type� In other words� if a type is temporal� then all of its instances
are temporal� and if a type is non�temporal� then none of its instances are temporal� This
approach is reasonable since certain aspects 	i�e�� behaviors� of a similar group of objects
	i�e�� of a particular type� are usually temporally maintained� For example� to track the
value of land zones 	i�e� objects of type T land�� B value would be de�ned as a temporal
behavior� According to the de�nitions� this means that a value history would be kept for
each land zone� This is reasonable since a land value history is something that would
typically be tracked for all units of land or for none�

To demonstrate the notion of timestamping objects� the type T DiscInterval is intro�
duced as a subtype of T interval� The behaviors of T DiscInterval are specialized by
�xing the time scale to be discrete� In the following discussion� the term interval is used to
mean an instance of C DiscInterval� Intervals are represented as pairs of the form �l� u�
where l and u are time instants that denote the lower and upper bounds of the interval�
respectively� An interval is closed on l and open on u� Occasionally� such as with history
termination� an interval will be closed on both ends in which case it is represented as �l� u��
The interval � � denotes the empty interval and can be used in time comparison operations�
The time instant now is introduced as the marking symbol for the current time� An interval
whose upper bound is now expands as the clock ticks� The speci�cation of particular units
of time is left to the user or application� This is �exible and could be given by speci�c time
points� relative time points� version numbers� and so on�

The time model component of the �T timemodel� T object� pairs is assumed to be
the interval in which the object is valid� Consequently� the history of temporal behaviors
is represented by sets of pairs of the form ��l� u�� o� where �l� u� is an interval as described
above and o is the object that is valid 	or exists� over the given interval� The interval serves
as a timestamp for the validity of object o�

Now� the result of B history is a collection of �T DiscInterval� T object� pairs 	that
is� T collectionhT DiscInterval� T objecti�� In other words� the result collection consists
of objects whose type is T DiscInterval�T object� This type is automatically created as
a subtype of T product 	see Chapter �� and thereby inherits all its native behaviors� Recall
that the inject behavior 	�i� of T product returns the ith component of a product object�
Hence� if e is an element from a history collection� then e��� returns the T DiscInterval

component of e and e��� returns T object component�
Another important behavior introduced by the temporal extensions is the B lifespan

behavior de�ned on T object� The signature of B lifespan in the context of the model
discussed above is as follows�

B lifespan � T collection� T DiscInterval

���

This behavior is applied to an object� accepts a collection as an argument� and returns
a discrete interval representing the time in which the object exists in the given collection�
For example� the following behavior application returns the lifespan of the object theArctic

in class C land�

theArctic�B lifespan	C land�

Rules are de�ned in �G�O��� to ensure the semantic consistency of lifespans in the context
of classes and inclusion polymorphism� For example� the lifespan of an object in a class is
contained within the lifespan of that object in any superclass� That is� if an object ceases to
exist in a certain class� then it must also cease to exist in the subclasses� This is reasonable
since� for example� if a certain house is demolished and ceases to be a dwelling� then it
should also cease to be a house�

An object is eectively deleted from a collection 	or class� by timestamping its lifespan
in that collection with the current time� Objects that currently exist in a collection have
the upper bound of their lifespan interval set to now �

A noteworthy point is the temporal transparency built into the model� The distinction
between temporal and non�temporal behaviors is based on type�� The speci�cation of a
signature for a temporal behavior and its application to objects is no dierent from a non�
temporal one� This is important from the user�s perspective since the utilization of temporal
and non�temporal behaviors is transparent� The history of a temporal behavior with respect
to a certain object can be retrieved by applying the B history behavior to it�

Two basic aspects of time are considered in databases that incorporate temporality�
These are the valid and transaction times� The former denotes the time when an object
becomes eective 	begins to model reality�� while the latter represents the time when a
transaction was posted to the database� The need to distinguish between valid and trans�
action times arises when an update to an object is posted to the database at a time that
is dierent from the time when the update becomes valid� In this work� only valid times
are considered� however� the concepts introduced also apply to transaction times and can
easily be carried through to them as well�

��� Semantics of Schema Evolution

���� Denition of Schema

There are dierent kinds of objects modeled by TIGUKAT� some of which are classi�ed as
schema objects� All objects managed by TIGUKAT can be placed into one of the following
categories� type� class� behavior� function� collection or other � These characterizations are
used to de�ne the
schema� of the model and the changes that aect the schema� First� the
de�nition of what constitutes schema objects is proposed� This is followed by the de�nition
of the
schema��

De
nition �� Schema Objects� The following classi�cations of schema objects are prim�
itive to the model�

� The class C type forms the collection of type schema objects denoted TSO�

�The prex BT was introduced to denote temporal behaviors� but this is only a notational convenience
to improve readability and could be dropped�

���

� For all types t � TSO� the extended union over the behavior application t�B interface�
that is� �

t�B interface

forms the collection of behavior schema objects denoted BSO� Only those behaviors
de�ned in the interface of some type are considered to be behavior schema objects�
Note that BSO 	 C behavior�

� For all behaviors b � BSO� for all types t � TSO� the extended union over the
behavior application b�B implementation	t�� that is��

b�B implementation	t�

forms the collection of function schema objects denoted FSO� Only those functions
de�ned as the implementation of some behavior for some type are considered to be
function schema objects� Note that FSO 	 C function�

� The class C collection forms the collection of collection schema objects denoted
LSO�

� The class C class forms the collection of class schema objects denoted CSO� Note
that CSO 	 LSO�

De
nition �� Schema� The schema of a TIGUKAT objectbase is equivalent to the
union of all schema object collections� That is�

schema � TSO �BSO � FSO � LSO � CSO

Note that CSO is included for completeness� It is unnecessary since CSO is a subset of
LSO�

There are three basic operations that can be performed on objects� add� drop and
modify � In the context of the temporal model� adding refers to creating an object and
beginning its lifespan in its class� dropping refers to terminating the lifespan of an object
in its class� and modifying refers to updating the object� which in turn leads to versioning
the temporal aspects 	i�e�� temporal behaviors� of the object�

Table ��� shows the combinations between the various object categories and the dierent
kinds of operations that can be performed� The bold entries represent combinations that
implicate schema evolution modi�cations� while the emphasized entries denote other changes
that are not considered to be part of the schema evolution problem�

For the purpose of performing the operations in the Drop 	D� column of Table ���� a
generic drop behavior B drop is added to type T object� The signature of B drop is as
follows�

B drop � T object

The implementation of the behavior is rede�ned in the types of the various schema
objects aected by the operation� The details of each re�nement are given in the sections
that follow�

Before considering each schema change in turn� the invariants of schema evolution that
must be maintained over schema modi�cations are presented�

���

Operation
Objects Add �A� Drop �D� Modify �M�
Type �T� subtyping type deletion add behavior�AB�

drop behavior�DB�
add supertype link�ASL�
drop supertype link�DSL�

Class �C� class creation class deletion extent change

Behavior �B� behavior de�nition behavior deletion change association�CA�
Function �F� function de�nition function deletion implementation change

Collection �L� collection creation collection deletion extent change

Other �O� instance creation instance deletion instance update

Table ���� Classi�cation of schema changes�

���� Invariants of Schema

The following invariants have been identi�ed for maintaining the semantics of schema modi�
�cations in TIGUKAT� The invariants are used to gauge the consistency of a schema change
in that the invariants must be satis�ed both before and after a schema change is performed�
The type lattice� full inheritance� domain compatibility� and distinct behavior

invariants are similar to those presented in other models such as Orion and GemStone� The
full implementation and direct supertype invariants are unique to the design of this
approach� and the temporal invariant is required due to the introduction of temporality
into the model�

Type Lattice Invariant� The type lattice is a connected� directed acyclic graph �DAG��
The nodes of the lattice are types and the directed edges are subtype relationships
with tail of the edge being the subtype of the type pointed to by the head� The lattice
has the single system de�ned type T object as its root and the system de�ned type
T null is its base� Since the lattice is connected� there are no isolated types and all
types are a subtype of the root T object�

A chain in the type lattice is a collection of types� totally ordered by subtyping� such
that they form a single connected path through the lattice� A chain is identi�ed as a
collection of types that are connected by sub�supertypes relationships such that they
form a connected path through the lattice� A chain of length one from a type T a to
a supertype T b is called a direct supertype link from T a to T b or a direct subtype
link from T b to T a� For example� in Figure ��� the types fT pond� T water� T zoneg
form a chain and so do fT land� T zoneg which is a direct supertype link from T land

to T zone� A single type such as fT mapg forms a chain of length zero� On the other
hand� fT map� T land� T zoneg does not form a chain because T map and T land are
not in a sub�supertype relationship with one another� As well� fT forest� T zoneg is
not a chain because its connectivity is broken by the exclusion of type T land�

Full Inheritance Invariant� A type inherits all behaviors de�ned by its supertypes� The
behaviors inherited by a type are called the inherited behaviors of the type� A type
can de�ne additional behaviors that are not part of its inherited behavior set� These
are called the native behaviors of the type� The union of the inherited and native
behaviors is called the interface of the type� A type�s interface is a superset of the
union of interfaces of its supertypes�

���

Full Implementation Invariant� A type that has an associated class must have functions
associated with all its behaviors� If a type has an associated class� then objects of that
type may already exist and new objects can be created� In order for these objects to
have their full meaning� all behaviors de�ned on the type must have functions 	i�e��
implementations� associated with them�

Direct Supertype Invariant� A direct supertype link between two types is the only chain
linking the types� If another chain links the types� the direct supertype link is dropped�
This means that for any two types� say T a and T b� if there exists a chain from T a

to T b greater than length one� then there are no direct supertype links 	i�e�� chains
of length one� from T a to T b� Furthermore� this implies that there is at most one
direct supertype link between any two types�

Domain Compatibility Invariant� The result type of a behavior in a type must gener�
alize the result type of that behavior in all subtypes� That is� the result type of a
behavior de�ned on a type� say T a� must generalize the result type of that behavior
in all subtypes of T a� Note that the result types may be the same� This invariant
ensures substitutability�

Distinct Behavior Invariant� The behaviors in the interface of a type are unique� That
is� the semantics of the behaviors must be unique� Since a name is part of a behavior�s
semantics� the names of behaviors in the interface of a type must be unique�

Temporal Invariant� The behaviors de�ned in the interface of a type at a given time are
applicable to all instances of that type that exist at that time� That is� if a behavior
exists in the interface of a type at a given time t� and t is within the lifespan of
an object of that type� then the behavior is applicable to the object� The temporal
invariant is managed automatically by temporal model through the timestamping of
temporal behaviors�

���� Semantics of Change

In this section the modi�cations that aect the schema 	i�e�� the bold entries of Table ����
are described� The basic operations aecting the schema include adding behaviors to a
type de�nition� dropping behaviors from a type de�nition� changing the implementation of
a behavior in a type� and adding and dropping classes� The other schema changes� namely�
adding and dropping types� adding and dropping supertype links� dropping behaviors and
dropping functions can be de�ned in terms of the type�related basic operations�

Type modi�cations are separated into changes aecting the behaviors de�ned on a type
and changes aecting the relationships between types such as adding and dropping direct
supertype links� The semantics of these changes are discussed in the following sections�

Modify Type � Add Behavior �MT�AB�

This operation adds a native behavior to a type� In order to satisfy the distinct behavior in�
variant� the operation is rejected if the behavior is already de�ned on the type either natively
or through inheritance� The full inheritance invariant requires that the added behavior is
inherited by all subtypes of the type to which it is added� Behavior B addBehavior de�ned
on T type performs this schema change� The signature of B addBehavior is as follows�

���

B addBehavior � T behavior� T function� T type

B addBehavior is applied to a type object and accepts a behavior and a function as
arguments� The behavior argument is the behavior to add to the receiver type and the
function argument is the implementation to associate with the behavior for that type� For
example� the following behavior application adds a behavior B PHlevel to the type T water

	see Table ���� page ��� and associates this behavior with a stored function�

T water�B addBehavior	B PHlevel� STORED�

The function argument may be omitted if the receiver type does not have an associated
class and if all subtypes of the receiver type that have an associated class already de�ne
the behavior being added� This restriction is imposed to satisfy the full implementation
invariant�

In order to satisfy the domain compatibility invariant� the result type of the behavior
in the type to which it is added must generalize the result type of the behavior in all the
subtypes of that type� All other invariants are satis�ed�

Modify Type � Drop Behavior �MT�DB�

This operation drops a native behavior from a type� The operation is rejected if the behavior
is not de�ned on the type or if it is inherited by the type� Thus� only native behaviors can
be dropped� Dropping an inherited behavior would mean that the behavior must also be
dropped from all the supertypes� otherwise the behavior would be re�inherited because of
the full inheritance invariant� With the restriction of only dropping native behaviors� the
supertypes of a type retain all their original behaviors and are unaected by the change�

Behavior B dropBehavior de�ned on T type performs this operation� The signature of
B dropBehavior is as follows�

B dropBehavior � T behavior� T type

B dropBehavior is applied to a type and accepts the behavior to be dropped as an
argument�

When a native behavior is dropped� its native de�nition is propagated to all the subtypes�
unless the behavior is inherited by the subtype through some other chain in which case
the behavior will be inherited instead of native� With this approach� the interface of the
subtypes retain all their original behaviors and only the single type directly involved in the
operation actually drops the native behavior�

The reason for using this approach is that it is a fundamental approach in the sense
that other forms of behavior dropping can be de�ned in terms of it� For example� in
ORION the semantics of behavior dropping 	i�e�� attribute and method dropping in their
model� is to recursively drop the behavior from all the subtypes as well� With the approach
taken in TIGUKAT� a behavior can be de�ned 	e�g�� B dropBhvDeep� that recursively
performs B dropBehavior on all the subtypes� which eectively drops the behavior from
the subtypes 	unless the behavior is inherited through some other chain�� Other forms
of behavior dropping can be de�ned in terms of the fundamental B dropBehavior� An
interesting approach would be to allow behaviors in a type to be �agged as being semi�
native in the sense that they should not be dropped by a recursive decent drop process i�e��
by B dropBhvDeep�� but instead should persist as native de�nitions in those types�

���

Modify Type � Add Supertype Link �MT�ASL�

This operation eectively adds a subtyping relationship between two types� The addition
of a type� say S� as a direct supertype of another type� say T is rejected if 	a� it introduces
a cycle into the lattice� 	b� T is already linked to S through some chain� or 	c� there exists
a behavior� say b� de�ned on both S and T and the result type of the behavior in S does
not generalize the result type in T � Behavior B addSupertype de�ned on T type performs
this operation� The signature of B addSupertype is as follows�

B addSupertype � T type� T type

B addSupertype is applied to a type and accepts a type as an argument� Its semantics
is to add the argument type as a supertype of the receiver� To add S as a supertype of T we
apply T�B addSupertype	S�� The behaviors of S are inherited by T and all the subtypes
of T � This is equivalent to propagating the inheritance of added behaviors de�ned above
and follows all the rules established for that operation�

Modify Type � Drop Supertype Link �MT�DSL�

This operation drops a direct supertype link between two types� A direct supertype link to
T object cannot be dropped� Behavior B dropSupertype de�ned on T type performs this
operation� The signature of B dropSupertype is as follows�

B dropSupertype � T type� T type

The receiver of B dropSupertype is a type and a direct supertype of the receiver is
passed as an argument� The semantics of this operation is to drop the direct supertype
link between the receiver and the argument� reestablish links between the receiver and the
supertypes of the argument� and reestablish links between the subtypes of the receiver and
the argument�

Formally� let Ri be the state of the receiver type before the change and Rj be its state
after the supertype link has been dropped� Similarly� let Ti and Tj be the before and after
states of other general types� Furthermore� let A denote the argument type 	the before and
after states are not important for the argument�� The following super�lattice properties
hold as a result of dropping a direct supertype link��

Rj �B super�lattice � Ri�B super�lattice � fAg

�Ti � 	Ri�B super�lattice � fRig�� Tj�B super�lattice � Ti�B super�lattice

�Ti � 	Ri�B sub�lattice � fRig�� Tj �B super�lattice � Ti�B super�lattice

The semantics of this operation is clari�ed by the example lattice shown in Figure ����
Assume that the direct supertype link from T to S is to be removed� The behavior ap�
plication T�B dropSupertype	S� removes the direct supertype link between T and S and
modi�es the type lattice in the following way�

�The corresponding sub�lattice� supertypes and subtypes properties are also updated accordingly� Only
the super�lattice properties are given� but these are su�cient for describing the e�ects of the schema change�

���

Before dropping link
between T and S between T and S

After dropping link

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

�
��
��
��
��
��
��
��
��
���������������������

��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��

�
��
��
��
��
��
�
��
��
��
��������������������

���
���
���
����
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
�

�����
��������

�������������������������

��
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
�

�����
������

������
���������
�����������
�

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

��
��
���
��
��
��
���
��
���
��
��
��
��
��
��
��
��
�

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

��
��
���
��
��
��
���
��
���
��
��
��
��
��
��
��
��
�

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

�
��
��
��
��
��
��
��
��
���������������������

��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��

�
��
��
��
��
��
��
��
��
���������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�

���
��
���
���
��
���
��
��
��
��
���
��
���
��
���
�

��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��

�
��
��
��
��
��
�
��
��
��
��������������������

��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

��
��
���
��
��
��
���
��
���
��
��
��
��
��
��
��
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��
��
��
��
��
��
��
���������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
�
��
�
��
�
��
�
��
��
��������������������

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
� �

��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�
��
�
��
��
�
��
�
���������������������

��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
�

��
��
��
��
��
��
��
��
��
��������������������

C

B

A�

D�

B

A�

D� D�

S

D�

A� A�

S

CT T

Figure ���� Eects of dropping a direct supertype link from type T to type S�

� It adds a supertype link from T to every supertype of S� unless T is linked to the
supertype	s� through another chain� In Figure ���� T is re�linked to A�� but not to
A� since T is already linked to A� through the chain containing B� This ensures that
the interface of T does not change by more than the native behaviors de�ned on S�

� It adds a supertype link from each subtype of T to S� unless the subtype is linked to
S through another chain� In Figure ���� D� is re�linked to S� but D� is not since it is
already linked to S through the chain containing C� This ensures that the interface
of T �s subtypes are not aected by the change�

� It drops the native behaviors of S from the interface of T � These behaviors are not
dropped from the subtypes of T because the subtypes are re�linked to S by the step
above and therefore inherit its behaviors� Furthermore� the behaviors inherited by S
are not dropped from T because T was re�linked to the supertypes of S and therefore
inherits these behaviors�

With this approach� only the interface of T is aected by losing the native behaviors of
S� The interfaces of all other types remain unchanged�

The remaining type�related operations of adding and dropping types are discussed in
the following sections� Since the temporal model is used for the dropping operation� types
are not actually deleted� Instead� the lifespan of a dropped type in the class C type is
timestamped with the current time� This
eectively deletes� the type from subsequent
time�

Add Type �AT�

This operation creates a new type and integrates it with the existing lattice� Creating a
type adds it to TSO� which is turn adds it to the schema� Type creation is supported
through regular subtyping which is an operation provided by the primitive model�

Chapter � describes the behavior B new as part of the meta�system and how it can be
applied to the system supplied class C type to create a new type� The B new behavior
accepts a collection of types as the �rst argument and a collection of behaviors as the second
one� The result of applying the behavior is that a new type is created as a subtype of the
types in the �rst argument collection and the behaviors in the second argument collection

���

��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�

��
��
��
��
��
�
��
��
��
���������������������

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�

��
��
��
���
��
��
��
���
���
��
��
��
���
��
��
��
��

��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�

��
��
��
���
��
��
��
���
���
��
��
��
���
��
��
��
��

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

�
��
��
��
��
��
��
��
��
���������������������

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

��
��
���
��
��
��
���
��
���
��
��
��
��
��
��
��
��
�

��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
�

��
��
��
��
��
��
��
��
��
��������������������

T

A�

S

A�

B�B�

�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
�

�
�
��
��
��
��
��
��
��
�
���������������������

��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��

��
��
���
��
��
��
���
��
���
��
��
��
��
��
��
��
��
�

�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
�

��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��

��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�

��
��
��
��
��
�
��
��
��
���������������������

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

A�

S

A�

B�B�

After dropping TBefore dropping T

Figure ���� Eects of dropping a type T �

are de�ned natively on the new type� unless they are inherited from one of the argument
types�

Subtyping 	and thus the AT operation� can be de�ned in terms of creating a new type
with the given behaviors de�ned natively� adding appropriate supertype links from the type
to each argument type 	which will update the native de�nitions appropriately�� followed by
adding a supertype link from T null to the new type�

Drop Type �DT�

This operation drops a given type� removing it from TSO and� therefore� removing it from
the schema as well� Dropping a type from the lattice terminates the lifespan of the type
in the class C type� This eectively deletes the type from subsequent time� The general
B drop behavior de�ned on T object is re�ned in type T type to perform type dropping�

The primitive types of the model 	i�e�� those in the primitive type system T � cannot
be dropped� When a type is dropped� the type�s associated class and all the instances in
the shallow extent of the class are dropped as well� If object migration techniques were
introduced into the model� the instances could be ported to some other type prior to being
dropped in order to preserve their existence� Object migration is outside the scope of this
thesis�

Every direct subtype Bj of a dropped type T is re�linked to every direct supertype Ai

of T unless there is a chain from Bj to Ai that does not include T � Furthermore� the
native behaviors of T are propagated to the direct subtypes so that they become native
in the subtypes unless the behavior is inherited through some other chain� For example�
Figure ��� shows the eect of dropping a type T � The subtype B� is re�linked to both
supertypes A� and A�� while B� is re�linked to A� but not A� because it is already linked
to A� through the chain that includes S� If T and S both de�ne a native behavior b� then
a native de�nition of b would be propagated to B�� but not to B� because B� inherits the
behavior from S�

The implementation of B drop can be de�ned in terms of other operations� For example�
to drop the type T � the following sequence of operations can be performed�

�� Drop supertype links from each subtype Bj to T 	i�e�� apply Bj �B dropSupertype	T ���

�� Add supertype links from each Bj to each supertype Ai of T % if not already linked
through some other chain 	i�e�� apply Bj �B addSupertype	Ai���

�� Drop supertype links from T to each Ai 	i�e�� apply T�B dropSupertype	Ai���

���

�� Eectively delete the type T � its associated class C� and all instances in the shallow
extent of C by timestamping their lifespan in the appropriate class�

Using this approach� dropping a type does not aect the interface of any other type
and the operation is uniform in the sense that a series of type drops will produce the same
resulting lattice regardless of the order in which the types are dropped� In contrast to this
approach� Orion only links a subtype of a dropped type to the supertypes if the subtype
becomes isolated� As a result� a series of type drops may produce a dierent resulting lattice
depending on the order in which the types are dropped� For example� in Figure ��� consider
dropping T followed by dropping S as opposed to �rst dropping S and then dropping T � In
Orion� the resulting lattices are dierent in both cases� In the �rst case� B� has supertype
links to both A� and A� while B� is linked only to A�� In the second case� B� and B� have
links to both A� and A�� With our approach� the two resulting lattices are the same with
B� and B� linked to both A� and A��

The semantics of schema changes aecting classes is described in the following sections�
The only two changes considered are adding and dropping classes�

Add Class �AC�

Class addition is class creation as de�ned by the primitive model� Creating a class adds it
to CSO� which in turn adds it to the schema� The behavior B new de�ned for classes can
be applied to C class to create a new class object� The B new behavior accepts a type
argument to be associated with the new class� The operation is rejected if the type already
has an associated class or if the type de�nes a behavior that does not have an associated
implementation % a class can only be created if the type has implementations de�ned for
all its behaviors� A class manages the instances of a type� The creation of a class allows
instances of its associated type to be created�

Drop Class �DC�

This operation drops a given class removing it from CSO and� therefore� removing it from
the schema as well� Dropping a class terminates its lifespan in the class C class� The
B drop behavior de�ned on T object is re�ned in type T class to perform class dropping�

The instances of a dropped class are also dropped� As mentioned above� if the model
includes object migration techniques� instances can be migrated to another class before
dropping the class in order to preserve their existence before dropping the class�

Drop Behavior �DB�

Since explicitly dropping behaviors from a type de�nition 	operation MT�DB� is a schema
change� dropping a behavior in its entirety is also a schema change because the behavior
may be de�ned on one or more types�

The DB operation drops a given behavior� which could possibly remove it from BSO

and� therefore� remove it from the schema as well� Dropping a behavior terminates its
lifespan in the class C behavior� The B drop behavior de�ned on T object is re�ned in
type T behavior to perform behavior dropping�

A dropped behavior is also dropped from all types that de�ne the behavior either natively
or through inheritance� The semantics of this operation follows dropping behaviors from
types 	operation MT�DB� de�ned above� Therefore� the implementation of B drop in type

���

Old Implementation New Implementation

computedi computedj

computedi storedj

storedi storedj

storedi computedj

unde�ned storedj

unde�ned computedj

Table ���� Valid implementation changes of a behavior in a type�

T behavior can be de�ned in terms of dropping the given behavior from all types that
de�ne it� followed by timestamping the lifespan of the behavior in class C behavior�

Modify Behavior � Change Association �MB�CA�

The modi�cation to a behavior that is considered to be a schema change is re�associating
a dierent function with a behavior in a particular type� Behavior B associate de�ned
on T behavior is provided as part of the primitive system to perform user�level behav�
ior�function association changes� The signature of B associate is as follows�

B associate � T type� T function� T behavior

B associate is applied to a behavior and accepts a type and a function as arguments�
The behavior must be de�ned on the type argument and the result is to associate the
function argument as the implementation of the behavior in the given type�

Recall that stored and computed functions represent the implementations of behaviors�
The valid association changes are shown in Table ���� The notation computedi and storedi

refer to computed and stored functions respectively� The subscripts i and j are used to
denote distinct functions� The term unde�ned is for the case when the behavior is not asso�
ciated with any function� The combinations computedi to computedi and storedi to storedi

are not included in the table because these do not re�ect changes in function association�
The emphasized rows represent user�level changes and the bold row is a system�level change
for reorganizing the internal representation of objects�

A system de�ned primitive function called F STORED is provided to associate a be�
havior with a stored function� The details of the stored location that the function accesses
	e�g�� slot number in the object� is transparent to the user and is handled internally by the
system� One example of using the bold entry in the table is during multiple inheritance� It
is usually necessary to reorganize the order of slots in the subtype because of slot number
con�icts between the multiple supertypes� Changing a behavior from accessing one slot to
accessing another is conceptually a change in implementation� This approach is uniform
and is easily perceived to be the case if one considers each slot to have a separate stored
function de�ned for it� Obviously� it is not implemented in this way 	see �Ira��� for details
on implementation�� but it serves as a uniform framework for characterizing implementation
changes�

Since changing the association of a function with a behavior is considered a schema
change� dropping a function in its entirety must also be a schema change because the
function may be associated as the implementation of a behavior in some type�

���

Drop Function �DF�

This operation drops a given function� which could possibly remove it from FSO and� there�
fore� from the schema� Dropping a function terminates its lifespan in the class C function�
The B drop behavior de�ned on T object is re�ned in type T function to perform function
dropping�

Only user�de�ned computed functions can be dropped� The operation is rejected if the
function is associated as the implementation of a behavior in a type that has an associated
class� These behaviors must be re�associated to other functions prior to dropping the
given function� For those behaviors associated to the function in types that don�t have
an associated class� the behaviors become unde�ned in these types when the function is
dropped�

Drop Collection �DL�

This operation drops a given collection removing it from LSO and� therefore� removing
it from the schema as well� Dropping a collection terminates its lifespan in the class
C collection� The B drop behavior de�ned on T object is re�ned in type T collection

to perform collection dropping which simply drops the collection and nothing else� That is�
the instances of a dropped collection are not aected because of their existence in a class�

Add Collection �AL�

Collection addition is collection creation as de�ned by the primitive model� Creating a
collections adds it to LSO� which in turn adds it to the schema� The behavior B new
de�ned classes can be applied toC collection to create a new collection object� The B new
behavior accepts a type argument that denotes the membership type of the new collection�
A collection is a user�de�ned and user�managed grouping of objects� Thus� modi�cation of
collections is left to the user and is not considered as part of schema evolution�

Other changes

The remaining entries in Table ��� represent changes that are not considered part of the
schema evolution problem� Each is discussed in this section to describe why it is not included
as part of schema evolution�

Creating� dropping� and updating object instances 	operations AO� DO� and MO� other
than the schema instances discussed above clearly are operations concerned with the real�
world concepts modeled in the objectbase and� therefore� do not have an aect on the
schema� De�ning a new behavior 	operation AB� does not aect the schema because be�
haviors don�t become part of the schema until after they are added to the interface of some
type� De�ning a new function 	operation AF� does not aect the schema because functions
don�t become part of the schema until after they are associated as the implementation of
a behavior de�ned on some type� Modifying a function 	operation MF� does not aect the
semantics of the behaviors it may be associated with and� therefore� this operation does not
aect the schema�

Collections are groupings of objects that are de�ned and maintained by the user� Mod�
ifying a collection involves changing the membership of its extent and changing its mem�
bership type� These are operations related to the contents of the collection and� therefore�
are not part of the schema evolution problem�

���

���
�����
�����
�����
�����
�����

�����
�����

t
 t� t�

b�

b�

�b� �b�

Interface history of type T

f��t
� t��� fb�� b�g�� ��t�� t�
�� fb�� b�� b�g�� ��t�
� now�� fb�� b�g�g

Figure ���� History of the interface of type T �

��� Versions of Types with Time

In this section� the incorporation of time to model versions of a type interface and imple�
mentation histories of behaviors is presented� The various changes that can occur on types�
how these changes are re�ected in the time model to manage type versions� and how the
changes aect the instances of the type are described� The changes considered include�
adding a behavior to a type� dropping a behavior from a type� and changing the implemen�
tation of a behavior for a particular type� These three changes were shown in the previous
section to be the basis of most other schema changes�

���� Adding�Dropping Behaviors

As speci�ed in Chapter �� every type has an interface� which is the collection of behaviors
that are applicable to the objects of that type� Recall that an interface consists of both
native and inherited behaviors� Also recall that there are three behaviors de�ned on T type

that return the various components of a type�s interface� B native returns the collection of
native behaviors� B inherited returns the inherited behaviors� and B interface returns the
entire interface of a type�

In order to version the aspects of schema evolution that deal with adding behaviors to
a type and dropping behaviors from a type� the three interface behaviors are rede�ned to
be temporal behaviors� Thus� to keep with naming conventions� they will be referred to as
BT native� BT inherited� and BT interface�

Note that separate histories for each of these behaviors need not be explicitly maintained�
For example� in an implementation one can choose to only maintain the native behaviors
of a type� The entire interface of a type can be derived by unioning the native behaviors
of all the supertypes of the type� The inherited behaviors can be derived by taking the
dierence of the interface and the native behaviors of the type� As another alternative�
one may choose to maintain the interface of a type and derive the native and inherited
behaviors� In this approach� the native behaviors of a type can be derived by unioning
the interfaces of the direct supertypes and subtracting the result from the interface of the
type� The inherited behaviors can be derived in the same way as above� Throughout the
remainder of this thesis� histories of interfaces in the abstract sense are considered and the
actual maintenance of them is left as an implementation detail�

���

With the time�varying interface extensions� the various aspects of a type�s interface can
be determined at any time of interest� For example� Figure ��� shows the history of the entire
interface for a type T � A timeline representation and the result of T�B interface are shown�
The notation �bi and �bi are used to indicate the adding and dropping of some behavior bi�
respectively� At time t
� behaviors b� and b� are de�ned on T and the initial history of T �s
interface is f��t
� now�� fb�� b�g�g� At time t�� a behavior b� is added to T � To re�ect this
change� the interface history is updated to f��t
� t��� fb�� b�g�� ��t�� now�� fb�� b�� b�g�g�
This shows that between t
 and t� only behaviors b� and b� are de�ned and between t�
and now behaviors b�� b� and b� exist� Next� at time t�
� behavior b� is dropped from type
T � The �nal history of the interface of T is shown in Figure ���� The dierence from the
previous history is that the second entry is timestamped with the open time of t�
 and a
third entry � �t�
� now �� fb�� b�g� is added to re�ect the change of dropping behavior b��
The native and inherited behaviors would contain similar histories� Using this information�
the interface of a type at any time of interest can be reconstructed� For example� at time
t� the interface of type T was fb�� b�g� at time t� it was fb�� b�� b�g� and at time now it is
fb�� b�g�

���� Changing Implementations of Behaviors

Each behavior de�ned on a type has a particular implementation for that type� The
B implementation behavior de�ned on T behavior accepts a type as an argument and
returns the implementation 	function� of the receiver behavior for the given type� In order
to model the aspect of schema evolution that deals with changing the implementations of
behaviors on types� the implementation behavior is rede�ned to be a temporal behavior
BT implementation�

With this behavior being temporal� the implementation of a behavior on a particular
type at any time of interest can be determined� For example� Figure ��� shows the history of
the implementations for behaviors b� and b� on type T � A timeline representation and histo�
ries of BT implementation�B history	b�� and BT implementation�B history	b�� are shown�
The interface history of T is also shown for clarity� The notation ci denotes a computed
function� si a stored function� and bj�ci or bj �si denotes the association of a computed or
stored function with behavior bj � Moreover� for stored functions� the subscript i refers to a
location 	e�g�� a slot number� in an object representation that the stored function accesses�
An object representation 	i�e�� the state of an object� consists of a number of slots for
holding information carried by the object� The representations of objects at dierent times
according to the stored functions associated with behaviors at those times are depicted by
the boxes labeled with behaviors� For example� at time t�� the object representation consists
of two slots % the �rst slot is for the stored implementation of behavior b� and the second
is for b�� At time t�� the object representation consists of only one slot which is for b��

Figure ��� is used to describe how the implementation changes in Table ��� are main�
tained by implementation histories� At time t�� the implementation of b� changed from
the computed function c� to the computed function c�� At time t�� the implementation
of b� changed from the computed function c� to the stored function s�� At time t�� the
implementation of b� changed from the stored function s� to the stored function s�� At the
same time� b� changed from s� to s�� At time t�� the implementation of b� changed from
the stored function s� to the computed function c�� All these changes are re�ected in the
implementation histories of behaviors b� and b��

Note that at time t�� the behavior b� was changed from the stored behavior s� to the

���

b� b�
b�

b�
b�

b� b�
b�

b�

���
�����
�����
�����
�����
�����

�����
�����

t

b�
c�
b�
s�

t�

b�
c�

t�

b�
s�

t�

b�
s�
b�
s�

t�

b�
c�

t�

b�
s�

t��

b�
c�
b�
s�

Implementation history of behavior b� for type T

f��t
� t��� c��� ��t�� t��� c��� ��t�� t��� s��� ��t�� t���� s��� ��t��� now�� c��g

Implementation history of behavior b� for type T

f��t
� t��� s��� ��t�� t��� s��� ��t�� t�
�� c��� ��t�
� t���� s��� ��t��� now�� s��g

Interface history of type T

f��t
� now�� fb�� b�g�g

Figure ���� Implementation histories of behaviors b� and b� for type T and object represen�
tations

computed behavior c�� Since all object representations at time t�� require only one slot� the
change to b� implies a change to b� so that at time t�� behavior b� accesses slot one instead
of slot two� Furthermore� note that the implicit implementation change of b� was from a
stored function to a stored function which is a system managed change and therefore is
transparent to the user� The implicit implementation change of b� is re�ected in its history
by the two entries ��t�
� t���� s�� and ��t��� now�� s��� In general� the slots of an object
representation are reorganized 	meaning an implicit change occurs� whenever a stored to
computed implementation change removes a slot other than the last slot of an object�s
representation� The system can also rearrange slots as part of an implementation change�

By tightly integrating temporal aspects of the TIGUKAT object model with schema
changes� the behaviors� their implementations� and the object representations for any type
can be reconstructed at any given time t� For example� the interface of type T at time
t� is given by the behavior application T��t��B interface� which results in the collection
fb�� b�g� The syntax o��t�b denotes the application of behavior b to object o at time t�
The implementation of b� at time t� is given by b���t��B implementation	T �� which is s��
Similarly� the implementation of b� at time t� is given by b���t��B implementation	T �� which
is s�� Since there are two stored functions� this implies a two slot representation for objects
at time t�� That is� b� accesses slot one using stored function s� and b� accesses slot two
using stored function s��

��
 Change Propagation

Propagation of changes in TIGUKAT uses a �ltering approach with explicit coercion of
behaviors� That is� when a change is made to the schema� the change is not automatically

���

propagated to the instances� Instead� the old version of the schema is maintained and the
change is recorded in the proper behavior histories� The objects continue to maintain the
characteristics of the older schema� New objects correspond to the semantics of the newer
schema� Objects from the older schema can be coerced to the newer schema one behavior at
a time� Thus� portions of an object 	i�e�� some behaviors� may correspond to older schema�
while other portions correspond to newer schema� This is a novel characteristic of the
approach� Note that an object can be coerced to a newer version in its entirety by coercing
all the behaviors of that object�

When coercing an object to a newer version� if the object has temporal characteristics
	i�e�� there are temporal behaviors de�ned on it�� the old version of these temporal aspects
are maintained� In this case historical queries can be run on the object�

Recall that an object is created as an instance of a particular type� The creation time
of every object is recorded by the behavior B created de�ned on T object� Applying the
behavior returns the time that the object was created� The signature of B created is as
follows�

B created � T instant

Note that B created is not a temporal behavior� Also note that the behavior is intro�
duced for convenience and is equivalent to the lower bound of the lifespan of an object in
its class� That is� for a given object o� the following equivalence holds� where B lb is a
behavior de�ned on intervals that returns the lower bound of an interval�

o�B created � 	o�B lifespan	o�B mapsto�B classof ���B lb

The behaviors applicable to an object are those that exist in the interface of its type
at the creation time of the object� The implementations of these behaviors are those that
exist in the implementation histories for the type at the creation time of the object� The
stored functions at the creation time of the object determine the representation of the the
initial state of the object�

As time progresses and types evolve� the interface of a type and the implementations of
its behaviors may change� Any behavior applicable to an object can be explicitly coerced to
a newer implementation of the behavior� The change is recorded in the B changes behavior
de�ned on T object� The signature for B changes is as follows�

B changes � T listhT timemodel� T behaviori

The result of B changes is a list of 	time� behavior� pairs� When a behavior for a
particular object is coerced into a newer implementation� the time of the coercion and the
behavior coerced is recorded in the B changes list of the object�

The B changes list is used in the behavior dispatch routine 	de�ned in Section ���� to
determine the most recent coercion time of a behavior being applied to an object� This time
is used as a reference point for determining the appropriate implementation of the behavior
at that time�

An object can be coerced to a behavior with a newer implementation that changes from
computed to stored� stored to computed� computed to computed� and stored to stored�
The �rst three are user�level changes� while the last is a system�level change that is strictly
internal and not accessible to the user� The change from computed to stored and vice versa
require a change to the state of an object by either adding or dropping a slot represent�
ing the stored information� A system managed change that requires state changes is the

���

reorganization of slots 	i�e�� stored to stored�� In order to maintain the old state versions
of temporal objects� the notion of an object as an 	identity� state� pair is extended to one
where an object is an 	identity� state�history� pair� Since states are not objects� the state�
history of an object is managed internally by the system� It is similar to other histories
in that time�intervals are used to record changes in the state� Whenever a change to the
representation of an object occurs due to the coercion of one of its temporal behaviors� the
change is recorded in the state�history of the object� Thus� a temporal object is generic
in the sense that it consists of all its representations over time� This is called the generic
instance of the object� The default representation of a generic instance is the most current
representation in the state�history� The individual representations of an object denote how
the object existed at certain times in the past� Each of these representations is called a
version instance of the object� Thus� the generic instance is the most current version in�
stance of an object� Each version instance is an object in its own right in that it contains
the state�history of the object up until the given version representation�

The primitive behavior B self de�ned on T object is re�ned to accept a time argument
and returns the version instance of an object at the given time� That is� for an object o

and a time t� the behavior application o�B self 	t� returns the the version instance o� of o
such that the most current representation 	i�e�� default� representation is the one at time
t� which includes the entire history prior to t� Using this construct� historical states of an
object�s
self� can be retrieved�

��� Temporal Behavior Dispatch

The previous sections established the mechanism for versioning behaviors of a type� the
implementations of behaviors for a type� and the states of objects� In this section� the
behavior dispatch process for applying a behavior b to an object o at given time t is described�
The syntax o��t�b is used to denote this application� The time component is optional and if
left out� the current time now is assumed�

���� Overview

Figure ��� provides an overview of the dispatch process� A behavior application is �rst
checked for validity� It is considered valid if the object o exists at time t and behavior b
is de�ned in the interface of o�s type at time t� An invalid behavior application produces
an error� For a valid application� an appropriate time reference point r is found� The time
reference point is either the time component of the most recent coerced entry for b in the
B changes list of o going back in the history starting from time t or it is the B created
time of o if there is no appropriate entry in B changes� The time reference point r is
used as an index into the B implementation history of b for the type of o to retrieve the
appropriate implementation f � If there is no implementation de�ned at time r� then o
is coerced to the �rst de�ned implementation of b� The implicit coercion is an internal
operation that may or may not be transparent to the user� In an interactive environment�
the system could ask the user to choose an appropriate implementation for the behavior� If
the implementation is a computed function� then the function is simply applied to object
o� However� if the implementation is a stored function� then the time reference point r is
used to retrieve the object o that has the appropriate state representation at time r� We
denote this representation of the object by o�� The object o� is the same object as o� but
the state of o� is the state at time r� The stored function f is applied to o� and accesses

���

Is f defined?

Use B_implementation history

Find Implementation f

o.[t]b

Validity Check

Use B_changes and B_created

Ensure object o exists at time t

Ensure type of o defines b at time t

Invalid
Error

Is f stored?

Find Reference Point r

Find Representation o’
Use state-history

of b as a default for f
Pick first implementation

YES

NO

YES

NO

o, b

o, b, r

o, b, t

o, b, t
Valid

o, r

Apply f(o) Apply f(o’)

Figure ���� Dispatch process for applying a behavior b to an object o at time t�

the appropriate state of o� The implicit coercion and representation retrieval operations are
grayed in Figure ��� to highlight that they are internal system operations�

���� Dispatch Semantics

In order for a behavior application to be valid� object o must exist at time t and the behavior
b must be de�ned in the interface of the type of o at time t� The validity check algorithm�
Algorithm ��� 	Validity� performs this test in the form of a logical expression�

The �rst part of the expression 	���� checks that o exists at time t by testing whether
time t lies within the lifespan of o in the class of its associated type� In the second part
of the expression 	����� B interface�B history	o�B mapsto� returns the interface history for
the type of object o� This history is searched for an entry x that satis�es the third part
	���� of the expression� which checks that time t lies within the time interval of entry x� and
the fourth part 	����� which checks that behavior b is part of the interface of the type at this
time� If all conditions are satis�ed� the behavior application is valid and true is returned�

���

Algorithm �� Validity�

Input� An object o� a behavior b and a time t

Output� True if the application is valid� false otherwise

Procedure�

return 	t�B within	o�B lifespan	o�B mapsto�B classof �� 	����

� x	x � BT interface�B history	o�B mapsto� 	����

� t�B within	x���� 	����

� b � x����� 	����

Otherwise� the behavior application is invalid and false is returned�
If the validity test is satis�ed� the next step is to determine the proper time reference

point so that the appropriate implementation can be retrieved� Algorithm ��� 	Reference�
Point� performs this operation and returns the proper time reference point�

Algorithm ��� indexes into the B changes list of the argument object o for the most
recent entry containing behavior b with a time point less than or equal to the time t� If an
entry is found� the time component of the entry is returned as the time reference point� If
an entry is not found� the created time of o is returned�

Using the time reference point r� the proper implementation of the behavior is found�
Algorithm ��� 	Implementation� �nds and returns this implementation� Note that an im�
plementation may not be de�ned at the given reference point r� This can occur if a behavior
has been added to the interface of the type at a time later than r and older objects have not
been coerced to the new interface� In this case� the object is implicitly coerced to the �rst
implementation of the behavior and this implementation is returned� The user can later
coerce the behavior to a newer implementation if desired� In an interactive environment�
the system could give the user the option of choosing which implementation to coerce the
behavior to or may allow the user to leave the behavior�s implementation unde�ned� This
gives the user the �exibility to coerce the behavior to any implementation desired�

If the function returned by Algorithm ��� is a stored function� the representation of
object o at reference point r must also be found since the stored function was de�ned for
the representation at this time� Algorithm ��� 	Representation� performs the simple task
of returning the version instance of object o at time reference point r� This is done using
the B self behavior and passing the time point r as an argument�

If the function returned by Algorithm ��� is a computed function� then there is no need
to determine a speci�c representation since computed functions apply behaviors to other
objects and do not depend on any particular representation� The behavior applications
inside computed functions go through the same behavior dispatch process and therefore
appropriate version instances will be determined as required�

As the �nal step� if the function returned from Algorithm ��� is stored� then it is
applied to the version instance returned from Algorithm ���� Otherwise� the function must
be computed and is simply applied to generic instance o� The relationships between the
algorithms are shown in Algorithm ��� 	Dispatch��

���

Algorithm �� ReferencePoint�

Input� An object o� a behavior b and a time t

Output� A time reference point

Procedure�
Index into the B changes list of o for an entry E that satis�es the following conditions�

� the behavior element of E matches b�

� the time element of E is � t�

� there does not exist another entry E � satisfying the above two conditions whose
time element is greater than the time element of E�

if an entry E found then

return time element of E
else

return o�B created

Algorithm �� Implementation�

Input� An object o� a behavior b and a time reference point r

Output� The function that implements behavior b for object o at time r

Procedure�

if b�B implementation	o�B mapsto� has an entry at time r then

return the implementation element associated with this entry
else

return the �rst implementation of b as a default

Algorithm �� Representation�

Input� An object o and a time reference point r

Output� An object with its representation at time reference point r

Procedure�

return o�B self 	r�

���

Algorithm �� Dispatch�

Input� An object o� a behavior b and a time t

Output� An object resulting from the application o��t�b

Procedure�

if Validity	o� b� t� then
r� ReferencePoint	o� b� t�
f � Implementation	o� b� r�
if f is a stored function then

o� � Representation	o� r�
return f	o��

else

return f	o�
else

INVALID� object o does not exist at time t

or behavior b not de�ned in the interface of o�s type at time t

���� Examples

For the following examples� consider Figure ���� which extends the timeline of type T in
Figure ��� by adding a behavior b� with the computed implementation c� at time t�� and
dropping the behavior b� at time t��� Note that the object representation will not change
by adding behavior b� and the representations will be empty after behavior b� is dropped�

Furthermore� consider Figure ���� which contains two example objects created as in�
stances of type T � The �gure shows the created time� the changes list and the internal
state�history of the objects� For the state�histories the notation rep ti is used to denote
the version instance of an object at time ti� Object o� was created at time t
� The default
behaviors and implementations for this object are those that exist at time t
� Namely� b� � c�
and b� � s� 	see Figure ����� The behavior b� for this object was coerced to a version at time
t	� behavior b� was coerced to a version at time t�� and behavior b� was coerced to time
t��� The internal state�history of o� has three dierent version instances that correspond to
the entries in the changes list� Object o� was created at time t�� Its default behaviors and
implementations are b� � s� and b� � s�� It has no entries in its changes list and� therefore�
has only one version instance in its state history�

Several example behavior applications using time are presented to show how the dispatch
process is followed in order to determine the proper implementation and version instance
that are appropriate at the given time of interest�

Example �� Behavior application o���t��b�

Validity� Object o� was created at time t
 and exists at time now � Therefore� the lifespan
of o� is the time interval �t
� now �� Since t� in within this interval 	i�e�� lifespan�� the
object part of the behavior application is valid�

���

b� b�
b�

b�
b�

t�

b�
s�
b�
s�

b�

t�

b�
c�

b�
b�

t�

b�
s�

b�

b�
c�
b�
s�

t��

����
����
�����
�����
������

�����
����
�����

t

b�
c�
b�
s�

t�

Implementation history of behavior b� for type T

f��t
� t��� s��� ��t�� t��� s��� ��t�� t�
�� c��� ��t�
� t���� s��� ��t��� t���� s��g

Implementation history of behavior b� for type T

f��t��� now�� c��g

Interface history of type T

f��t
� t���� fb�� b�g�� ��t��� t���� fb�� b�� b�g�� ��t��� now�� fb�� b�g�g

b�
c� b�
s�

t� t��

�b�
c�

t��

�b�

Figure ���� Example showing eects on implementation histories of �rst adding and then
dropping a behavior�

Object o�
B created � t

B changes � f�t	� b����t��� b����t��� b��g

state�history � f��t
� t	�� rep t
����t	� t���� rep t	��
��t��� now �� rep t���g

Object o�
B created � t�
B changes � f g

state�history � f��t�� now �� rep t��g

Figure ���� Two example objects of type T �

The type of o� is T � The interface of T at time t� is fb�� b�g� Since b� is part of this
interface� the behavior part of the application is valid and thus the validity test is
satis�ed�

Reference Point� The next step is to �nd an appropriate time reference point with respect
to t�� Searching through the B changes list of o�� we �nd there is no entry that satis�es
the criteria in Algorithm ���� Thus� the B created time t
 is returned as the reference
point�

Implementation� Using the time reference point t
� we pick out the appropriate imple�
mentation of b� for type T at time t
� which is the computed function c��

Representation� Since the function returned in the previous step is a computed function�
this step is skipped�

Dispatch� To complete the dispatch of the behavior� the computed function c� is executed

���

using object o as an argument�

Example �� Behavior application o���t�
�b�
The validity test is satis�ed� There is an entry �t	� b�� in the changes list of o� that satis�es
the criteria of Algorithm ���� Thus� we use t	 as the time reference point for �nding the
appropriate implementation of b� for type T � The implementation chosen is the stored
function s�� Since this is a stored function� we also get the object o�

� with the appropriate
representation at time t	 which is rep t	� We can now apply s� to o�

�� The function and
representation are correct for o� since behavior b� was coerced to the new version at time
t	 for this object�

Example �� Behavior application o���t�
�b�
The validity test is satis�ed� There is no entry in the changes list for b� with a lesser time
than t�
� Therefore� we use the created time t
 as the time reference point� This gives the
implementation s� and the object o

�
� with representation rep t
� We can now apply s� to o

�
��

Note that this example and the previous one both apply s� for dierent behaviors 	namely�
b� and b��� The reason they are valid is that they are applied to dierent representations
of object o� as well�

Example �� Behavior application o���t���b�
The validity test is satis�ed� Since there is an appropriate entry �t��� b�� in the changes
list of o�� we use t�� as the time reference point which gives the implementation c�� Since
this is a computed function� we simply apply c� to o�� This is correct for o� since behavior
b� was coerced to the new version at time t�� for this object�

Example �� Behavior application o���now �b�
This fails the validity test because behavior b� is not part of the interface of T at time now �

Example �	 Behavior application o���t��b�
The validity test is satis�ed� There are no entries in the changes list for o� so we use the
created time t� as the time reference point� This gives the implementation s� and the object
o�
� with representation rep t��

Example �� Behavior application o���t���b�
The validity test is satis�ed� Again� because there are no entries in the changes list for o�
we use the created time t� as the time reference point� This gives the implementation s�
and the object o�

� with the representation rep t��

Example �� Behavior application o��b�
Since no time point is speci�ed� the default time now is assumed� The validity test is
satis�ed� There are no entries in the changes list for o� so we use the created time t� as the
time reference point� This gives the implementation s� and the object o

�
� with representation

rep t��

Example �� Behavior application o��b�
The validity test is satis�ed� There are no entries in the changes list for o� so we use
the created time t� as the time reference point� There is no implementation de�ned for
b� on type T at time t�� Therefore� we implicitly coerce o� to the �rst implementation of
b� which is at time t��� This adds the entry �t��� b�� to the changes list of o�� Now� the
implementation chosen is c�� Since this is a computed function� no particular representation
is required and we simply apply it to o�

���

Chapter �

Conclusions

��� Summary and Contributions

The �rst result of the thesis is the de�nition of a uniform behavioral object model with
su�cient power and expressibility for supporting the data and information management
requirements of advanced applications such as geographic information systems� engineering
databases� o�ce information systems� knowledge base systems� and multi�media databases�
These applications require the management of complex objects with complex relationships�
User access to such systems is characterized by long�running� interactive transactions that
involve large and semantically diverse units of data� Thus� the functionality required of
objectbase management systems 	OBMSs� subsumes the functionality of their predecessors�

A high�level abstract behavioral object model is integrated with a formal structural
counterpart to form a complete model de�nition� The reconciling of these two compo�
nents helps in understanding the semantics of the model and is a favorable basis for an
implementation�

The fundamental contributions of the object model are the following�

�� A precise speci�cation and integration of both the behavioral and structural aspects
of an object model with su�cient power for handling advanced database functionality�

�� A clean separation and precise de�nition of many object model features which are
usually bundled and only intuitively de�ned in other studies�

�� A uniform approach to objects which models all information as �rst�class objects
with well�de�ned behavior� The result is an extensible model capable of de�ning
other components of an OBMS within itself� It is shown in this thesis how uniformity
is used to de�ne an object query model� provide re�ection and de�ne schema evolution
strategies� all within the model itself� Other work has extended this approach to an
extensible query optimizer �Mu�n��� and this could be extended to the view manager
as well�

In keeping with the uniformity aspects of the object model� the query model is de�ned in
a consistent way as type and behavior extensions to the base object model� Thus� queries are
objects with well�de�ned behavior� This is a uniform object�oriented approach to developing
an extensible query model that is seamlessly integrated with the object model� This kind
of natural extension is possible due to the uniformity built into the object model which
treats everything as a �rst�class object and allows the consistent abstraction of an object�s

���

attributes� into the uniform semantics of behaviors� This speci�cation has been used as a
foundation for implementing the query model and its user language�

The formal object calculus is a powerful declarative object creating language that in�
corporates the behavioral paradigm of the object model� Safety is based on the evaluable
class of queries �GT��� which is arguably the largest decidable subclass of the domain in�
dependent class �Mak���� The class of evaluable queries de�ned is wide�sense evaluable
with respect to equality and membership atoms� meaning a broader class of safe queries is
recognized by the approach� The object algebra includes a powerful� complete set of the
behavioral�functional operators that fully support the object�creating nature of the calcu�
lus� A novel operator is behavioral projection� which is a form of type generalization and
has applications in view support� Other notable operators include a generalized map for
applying behaviors to elements of collections� a select and the derived join and generate
join operators� The calculus and algebra are proven to be equivalent in expressive power�
Furthermore� a feasible translation algorithm from calculus to algebra is presented that
does not depend on the formation of 	potentially� large DOM domains� Object creating
languages require the ability to perform type inferencing because newly created objects may
not correspond to any type in the lattice� As part of the algebra� the relationship of the
operators to the schema in terms of the creation and integration of new types is de�ned�

The contributions and novelty of the query model are the following�

�� It incorporates a formal and powerful object calculus and object algebra with a proven
equivalence in expressive power and a complete feasible algorithmic translation from
calculus to algebra�

�� Its safety criterion is based on the evaluable class of queries �GT��� which is arguably
the largest decidable subclass of domain independent queries �Mak���� An additional
form of safety with respect to the closure of a query is also de�ned� The class of safe
queries de�ned in this thesis is the largest class of any object model to date�

�� It exploits object�oriented features to extend the evaluable class by introducing notions
of object generation on equality and membership atoms which relaxes range speci��
cation requirements� The result is that a broader class of safe queries are recognized
by the approach�

�� It uniformly models queries as �rst class objects by directly de�ning them as type
and behavior extensions to the TIGUKAT object model� This makes for an exten�
sible query model that has a consistent uniform underlying semantics commensurate
with the object model� It is the most complete model that has de�ned the database
functionality of a query model and temporal schema evolution as a uniform extension
to the base object model� The uniformity extends to other components such as the
query optimizer� view manager and object manager�

�� The extensible algebra speci�cation forms a uniform basis for processing queries and
is exploited by an extensible algebraic query optimizer and execution plan generator
which are reported elsewhere �Mu�n��� Ira����

�� It is the most advanced extensible� uniform� behavioral object query model to formally
bring together the components of an object calculus� an object algebra� proofs of
completeness between the languages� and an eective algorithmic translation from
the calculus to the algebra�

���

The uniform meta�architecture of the TIGUKAT object model is capable of managing
information about itself and the access primitive of applying behaviors to objects is uniform
over all forms of information� including the meta�information� Another result of this thesis
is how the model�s uniformity provides a basis for re�ective capabilities� Types in the model
support both structural and computational re�ection which are seen as the two major forms
of re�ection�

The tenet of uniformity is de�ned to describe the basic property that applies to all
objects in a uniform model� behaviors de�ned on a type are applicable to the objects in
the extent of the class associated with the type� Since all objects are in the extent of
some class� and every class is associated with a type� and every type de�nes behaviors
applicable to objects in its associated class� the paradigm of applying behaviors to objects
carries uniformly to all objects in the system� including types� classes� collections� behaviors�
functions� and so on�

Using an SQL�like query language� several
regular� queries on real�world objects are
compared with queries on meta�information and it is shown that in a uniform model� there is
no distinction between
normal� objects and meta�objects because everything has the status
of a �rst�class object� Queries can access information about types� classes and collections
	parts of the schema� by applying behaviors to objects in a uniform way� Queries can even
mix regular and meta�objects in a single query�

The meta�system design has similarities to ObjVlisp �Coi��� and is a uniform extension
to the Smalltalk��� �GR��� meta�class architecture� It is more general in the sense that it can
mimic the parallel meta�class structure of Smalltalk���� but does not force this semantics�
Other dierences are that any class in TIGUKAT can have many instances and any type
can be subtyped� Thus� the metaness of an object is a consequence of inheritance and gives
rise to a uniform model� One advantage is reduced overhead since not all classes require
a meta�class� However� some subtype reorganization is required if later it is decided that
a particular class needs to specialize some other meta�class� These changes can be seen as
application design corrections and the schema evolution policies make these changes natural
since some form of them must be supported in a full��edged OBMS anyway� Since behaviors
are objects in TIGUKAT� some form of the meta�communication model of computational
re�ection could be integrated with the system� This is part of the future research of the
TIGUKAT project�

The novelty and contributions of the meta�model design in TIGUKAT are as follows�

�� The meta�model is a uniform component that is integrated with the design of the base
model� This means that the meta�objects such as types� classes� collections� behaviors�
and functions are uniformly objects in TIGUKAT�

�� The uniformity of the meta�model provides a basis for re�ective capabilities� which
emerge naturally out of its uniform design� It was shown that the existing primitive
features of TQL and the formal query model were su�cient for performing re�ective
queries� and that both
regular� and meta objects could be retrieved by these queries�

�� Types in TIGUKAT provide support for both structural and computational re�ection�
which are regarded as the two major forms of re�ection� This thesis focused mainly
on structural re�ection�

�� The meta�model provides support for other features such as multiple new behaviors
for creating various default forms of new objects and class behaviors for de�ning

���

behaviors that are applicable to an entire class of objects and perform an operation
on certain properties of all objects in the class 	e�g�� average volume� total age� etc�� �

Schema evolution in the TIGUKAT model consists of a number of invariants that must
be maintained over schema changes� A classi�cation of all schema changes was made and the
semantics of each change was de�ned� Since the model is uniform� schema evolution is the
result of updating certain behaviors and its development was just a matter of identifying the
semantics of these updates� By adding temporality to these behaviors� a history of schema
changes is easily maintained and the entire schema can be reconstructed at any time of
interest� This lays the foundation for developing versions of types� versions of schema� and
versions of instances within the single framework of temporality�

A unique feature of the version model is that a temporal domain is introduced to implic�
itly manage histories for behaviors� Behavior histories are used to manage the properties of
objects over time� Since everything in TIGUKAT is uniform� the schema are objects with
well�de�ned behavior� By maintaining histories for appropriate behaviors of types� a model
for versioning types is developed� This model is extended to behavior objects and object
representations 	state� as well� Since versioning occurs implicitly through the management
of behavior histories� objects are instances of a type and not instances of a version of a type�
This means that objects support the full semantics of a type instead of just a portion 	ver�
sion� of the type� This approach has the major bene�t of maintaining semantic consistency
between old and new versions of types and the programs that operate on their instances�

By using time to implicitly model versions of types and objects� the schema and its
instances can be reconstructed at any time of interest� That is� the type lattice� type
interfaces� behavior implementations and object representations can be recreated as they
existed at a particular time of interest� One bene�t of this approach is that historical queries
can be run on the objectbase�

Another unique feature of the version model is that object coercion occurs on a
behavior
at a time� basis instead of on the entire object� This means that objects can update certain
behaviors to use those de�ned by a newer version of a type while allowing other behaviors to
use older versions� This means that a history of the object�s semantics is maintained which
helps in maintaining semantic consistency between old and new versions of types and the
programs that use them� Complete object coercion is possible by coercing all the behaviors
of an object�

The novelty and contributions of the design of schema evolution and version control in
TIGUKAT are as follows�

�� The integration of schema evolution and version control using a temporal domain is
a new approach in object management�

�� Temporality based on behaviors� together with the uniformity of the model� uni�es
the various approaches of versioning proposed in the past� That is� by versioning
behaviors 	i�e�� de�ning temporal behaviors on types in general� one gets versions
of objects� by versioning behaviors on T type one gets versions of types� and by
versioning behaviors on type relationships such as B subtypes� B supertypes� etc��
one gets versions of schema�

�� The temporal framework supports a �ltering approach where objects are not updated
to newer versions of the schema� but rather the semantic dierences between the
versions are maintained through interface and implementation histories of the schema�

���

Objects can be explicitly coerced to newer versions of the schema one behavior at a
time� This means that an object may have some characteristics of older schema�
some characteristics of newer schema� and may
skip� certain generations of schema
changes� This is in contrast to other approaches where an object must be converted
in its entirety to a newer version of the schema in a stepwise fashion from generation
to generation�

��� Future Research

The work presented in this thesis suggests a number of interesting directions for future
research� The uniformity of the model makes it an excellent candidate for developing an
extensible view manager that is seamlessly integrated with the base model� As with the
query model� views are objects whose semantics are de�ned by type and behavior extensions
to the base model� This brings views into the model� meaning they can be operated on
by behaviors� they can be queried� and they can be uniformly used to derive other views�
The de�nition of a view restricts the objects that an application or user can see� Each
view must consistently maintain all the properties of the model� Therefore� a view is like
a sub�objectbase of the overall system that de�nes a conset of objects� A view de�nition
may contain other views so that applications can easily switch from one view to another�
De�ning the semantics of a consistent view manager and developing a design methodology
for creating views are major areas of research that can extend the functionality of the
TIGUKAT objectbase management system�

One interesting direction to explore in the context of views relates to extending the
temporal model to include a branching model of time and investigate how this can be used
to support views� For example� each branch of time could be seen as a separate view of
the objectbase with dierent objects� types� behaviors� collections� etc�� visible along the
various lines� The semantics of how these lines split� interact� and possibly merge are very
interesting topics of future research�

The object�oriented approach is a suitable candidate for facilitating an integration of the
data abstraction and computation model of object�oriented programming languages with
the performance and consistency of an object query model� Traditionally� these two areas
have developed orthogonally to one other� An integration would alleviate many problems
	e�g�� impedance mismatch� associated with embedded languages in use today� An interest�
ing direction for future research lies in investigating how a uniform behavioral model like
TIGUKAT could lead to a merger of these two disciplines� The de�nition of a uniform
programming language is one possibility for bridging this gap in a seamless fashion�

Developing an object manager is another important area of research� An object manager
design must address many related issues including object representation� physical partition�
ing of logical entities such as classes and their extents� clustering of complex objects� object
caching� indexing� and how and when functions are bound to objects� The design is also
aected by the underlying hardware architecture 	e�g�� uni�processor vs� multi�processor��
and the available operating system services�

The issues related to object storage management are quite complex and require a sig�
ni�cant amount of research� The advent of distributed object management complicates
matters� Current approaches rely on simple client�server type architectures where there is
	usually� only one server and many clients� With interoperability of autonomous hetero�
geneous systems becoming a big issue is database systems research� the development of an

���

OBMS with an architecture that is
open� to other systems is an active area of research
and is a direction that this research could take� The uniformity of TIGUKAT could be of
great help in this area since it may be possible to de�ne other models as type and behavior
extensions to the base model� This would give a seamless integration with these systems�
The research opportunities along these lines are very promising�

In this thesis� signatures were de�ned and used as a partial semantics for behaviors� The
development of a speci�cation technique for de�ning the complete semantics of behaviors
is left for future research� This is currently an open research topic with several candidate
approaches being identi�ed� including the use of denotational semantics and predicative
speci�cation techniques� Much research is required in this area� The extensible design of
the TIGUKAT object model makes it primed and ready to incorporate any advancement
in this area� Once de�ned� a full speci�cation technique can easily be incorporated as part
of the B semantics behavior of type T behavior�

The development of the TIGUKAT object model is more precise and formal than other
object model de�nitions in order to clarify its properties and the semantics of its operations�
However� an interesting and challenging exercise would be to de�ne the features of the model
using a formal mathematical theory of functions such as category theory or typed lambda
calculus� This is sure to provide insight into the semantics of modeling objects and the
eects on other database functionality such as view management� transaction management�
distribution� and so on� It may also provide a theoretical foundation for object models in
the same way as relational theory did for the relational model� An advancement in this
area would clearly strengthen the object modeling approach and assert the limitations of
its modeling capability�

���

Bibliography

�AB��� S� Abiteboul and N� Bidoit� Non First Normal Form Relations to Represent
Hierarchically Organized Data� In Proc� of the
rd ACM SIGACT�SIGMOD
Symposium on the Principles of Database Systems� pages ���%���� April �����

�AB��� S� Abiteboul and C� Beeri� On the Power of Languages for the Manipulation
of Complex Objects� Technical report� INRIA� France� �����

�ABD���� M� Atkinson� F� Bancilhon� D� DeWitt� K�Dittrich� D� Maier� and S� Zdonik�
The Object�Oriented Database System Manifesto� In Proc� of the �st Int�l�
Conf� on Deductive and Object�Oriented Databases� pages ��%��� �����

�AC��� G� Ariav and J� Cliord� Database Research and Systems� Key Issues in
Perspective� In G� Ariav and J� Cliord� editors� New Directions for Database
Systems� pages �%�� Ablex Pub� Corp�� �����

�AH��� S� Abiteboul and R� Hull� IFO� A Formal Semantic Database Model� In Proc�
of the
rd ACM SIGACT�SIGMOD Symposium on the Principles of Database
Systems� pages ���%���� April �����

�All��� L� Allison� A Practical Introduction to Denotational Semantics� Cambridge
University Press� �����

�ALP��� J� Andany� M� L)eonard� and C� Palisser� Management of Schema Evolution
in Databases� In Proc� of the �th Int�l Conf� on Very Large Databases� pages
���%���� September �����

�Aro��� S� Arono� Geographic Information Systems� A Management Perspective�
WDL Publications� �����

�Bac��� J� Backus� Can Programming be Liberated from the von Neumann Style(A
Functional Style and it�s Algebra of Programs� Communications of the ACM�
��	������%���� �����

�Bar��� H�P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�
Holland� �����

�BBB���� F� Bancilhon� G� Barbedette� V� Benzaken� C� Delobel� S� Gamerman�
C� Lecluse� P� Pfeer� P� Richard� and F� Velez� The Design and Implemen�
tation of O�� An Object�Oriented Database System� In Proc� of the �nd Int�l
Workshop on Object�Oriented Database Systems� pages �%��� Springer Verlag�
September �����

���

�BBKV��� F� Bancilhon� T� Briggs� S� Khosha�an� and P� Valduriez� FAD� a Powerful
and Simple Database Language� In Proc� of the �
th Int�l Conf� on Very Large
Databases� pages ��%���� September �����

�BBMR��� A� Borgida� R�J� Brachman� D�L� McGuinness� and L�A� Resnick� CLASSIC�
A Structural Data Model for Objects� In Proc� of the ACM SIGMOD Int�l�
Conf� on Management of Data� June �����

�BCD��� F� Bancilhon� S� Cluet� and C� Delobel� A Query Language for the O� Object�
Oriented Database System� In Proc� of the �nd Int�l Workshop on Database
Programming Languages� pages ���%���� June �����

�BCG���� J� Banerjee� H�T� Chou� J�F� Garza� W� Kim� D� Woelk� N� Ballou� and H�J�
Kim� Data Model Issues for Object�Oriented Applications� ACM Transactions
on O�ce Information Systems� �	����%��� January �����

�BCMS��� R� Backhouse� P� Chisholm� G� Malcolm� and Erik Saaman� Do�it�Yourself
Type Theory� Formal Aspects of Computing� ����%��� �����

�BDK��� F�A� Bancilhon� C� Delobel� and P� Kanellakis� editors� Building and Object�
Oriented Database System� The Story of O�� Morgan Kaufmann Publishers�
�����

�Bee��� C� Beeri� A Formal Approach to Object�Oriented Databases� Data � Knowl�
edge Engineering� �����%���� �����

�BHJ���� A� Black� N� Hutchinson� E� Jul� H� Levy� and L� Carter� Distribution and
Abstract Types in Emerald� IEEE Transactions on Software Engineering� SE�
��	�����%��� January �����

�BK��� F� Bancilhon and W� Kim� Object�Oriented Database Systems� In Transition�
ACM SIGMOD Record� ��	�����%��� �����

�BKKK��� J� Banerjee� W� Kim� H�J� Kim� and H�F� Korth� Semantics and Implementa�
tion of Schema Evolution in Object�Oriented Databases� In Proc� of the ACM
SIGMOD Int�l� Conf� on Management of Data� pages ���%���� May �����

�Bla��� J�A� Blakeley� DARPA Open Object�Oriented Database Preliminary Module
Speci�cation� Object Query Module� Technical report� Texas Instruments�
December �����

�BMO���� R� Bretl� D� Maier� A� Otis� J� Penney� B� Schuchardt� J� Stein� E�H� Williams�
and M� Williams� The GemStone Data Management System� In W� Kim and
F�H� Lochovsky� editors� Object�Oriented Concepts� Databases� and Applica�
tions� Addison Wesley� �����

�Bun��� M� Bunge� Treatise on Basic Philosophy� Vol
� Ontology I� The Furniture of
the World� Reidel� Boston� �����

�Bun��� M� Bunge� Treatise on Basic Philosophy� Vol �� Ontology II� A World of
Systems� Reidel� Boston� �����

���

�Car��� L� Cardelli� A Semantics of Multiple Inheritance� In Int�l Symposium on
Semantics of Data Types� pages ��%��� June �����

�Car��� L� Cardelli� A Polymorphic ��calculus with Type�Type� Research Report ���
DEC Systems Research Center� May �����

�CCCR���� F� Cacace� S� Ceri� S� Crespi�Reghizzi� L� Tanca� and R� Zicari� Integrating
Object�Oriented Data Modeling with a Rule�Based Programming Paradigm�
In Proc� of the ACM SIGMOD Int�l� Conf� on Management of Data� pages
���%���� June �����

�CDF���� M� Carey� D�J� DeWitt� D� Frank� G� Graefe� M� Muralikrishna� J�E� Richard�
son� and E�J� Shekita� The Architecture of the EXODUS Extensible DBMS� In
M� Stonebraker� editor� Readings in Database Systems� pages ���%���� Morgan
Kaufmann Publishers� �����

�CDLR��� S� Cluet� C� Delobel� C� L)ecluse� and P� Richard� RELOOP� An Algebra Based
Query Language for an Object�Oriented Database System� Data � Knowledge
Engineering� �����%���� �����

�CDV��� M� Carey� D�J� DeWitt� and S�L� Vandenberg� A Data Model and Query
Language for EXODUS� In Proc� of the ACM SIGMOD Int�l� Conf� on Man�
agement of Data� pages ���%���� September �����

�Cha��� E�P�F� Chan� Containment and Minimization of Positive Conjunctive Queries
in OODB�s� In Proc� of the ��th ACM Symposium on Principles of Database
Systems� pages ���%���� June �����

�Che��� P�P�S� Chen� The Entity%Relationship Model� Towards a Uni�ed View of Data�
ACM Transactions on Database Systems� �	����%��� March �����

�CM��� G� Copeland and D� Maier� Making Smalltalk a Database System� In Proc� of
the ACM SIGMOD Int�l� Conf� on Management of Data� pages ���%���� June
�����

�Cod��� E�F� Codd� A Relational Model for Large Shared Data Banks� Communications
of the ACM� ��	������%���� �����

�Cod��� E�F� Codd� Extending the Database Relational Model to Capture More Mean�
ing� ACM Transactions on Database Systems� �	������%���� December �����

�Coi��� P� Cointe� Metaclasses are First Class� the ObjVlisp Model� In Proc� of
the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� October �����

�CP��� W� Cook and J� Palsberg� A Denotational Semantics of Inheritance and its
Correctness� In Proc� of the Int�l Conf� on Object�Oriented Programming� Sys�
tems� Languages� and Applications� pages ���%���� October �����

�CW��� L� Cardelli and P� Wegner� On Understanding Types� Data Abstraction� and
Polymorphism� ACM Computing Surveys� ��	������%���� December �����

���

�Dav��� K�C� Davis� A Formal Foundation for Object�Oriented Algebraic Query Pro�
cessing� PhD thesis� University of Southwestern Louisiana� �����

�Day��� U� Dayal� Queries and Views in an Object�Oriented Data Model� In Proc� of
the �nd Int�l Workshop on Database Programming Languages� pages ��%����
June �����

�Dem��� R� Demolombe� Assigning Meaning to Ill�De�ned Queries Expressed in Rela�
tional Calculus� In Advances in Database Theory� Plenum Press� �����

�Dem��� R� Demolombe� Syntactical Characterization of a Subset of Domain Indepen�
dent Formulas� Technical report� ONERA�CERT� �����

�Deu��� O� Deux� et� al� The Story of O�� IEEE Transactions on Knowledge and Data
Engineering� �	�����%���� March �����

�Deu��� O� Deux� et� al� The O� System� Communications of the ACM� ��	������%���
October �����

�DiP��� R�A� DiPaola� The Recursive Unsolvability of the Decision Problem for the
Class of De�nite Formulas� Journal of the ACM� ��	��� �����

�DKA���� P� Dadam� K Kuespert� F� Anderson� H� Blanken� R� Erbe� J� Guenauer�
V� Lum� P� Pistor� and G� Walch� A DBMS Prototype to Support Extended
NF� Relations� An Integrated View on Flat Tables and Hierarchies� In Proc�
of the ACM SIGMOD Int�l� Conf� on Management of Data� pages ���%����
May �����

�DW��� U� Dayal and G� Wuu� A Uniform Approach to Processing Temporal Queries�
In Proc� of the �th Int�l� Conf� on Data Engineering� pages ���%���� August
�����

�EMHJ��a� M� Escobar�Molano� R� Hull� and D� Jacobs� Safety and Translation of Calculus
Queries with Scaler Functions 	Extended Abstract�� In Proc� of the ��th ACM
SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems�
pages ���%���� May �����

�EMHJ��b� M� Escobar�Molano� R� Hull� and D� Jacobs� Safety and Translation of Calculus
Queries with Scaler Functions� Technical report� Computer Science Depart�
ment� University of Southern California� March �����

�FAC���� D�H� Fishman� J� Annevelink� E� Chow� T� Connors� J�W� Davis� W� Hasan�
C�G� Hoch� W� Kent� S� Leichner� P� Lyngbaek� B� Mahbod� M�A� Neimat�
T� Risch� M�C� Shan� and W�K� Wilkinson� Overview of the Iris DBMS� In
W� Kim and F�H� Lochovsky� editors� Object�Oriented Concepts� Databases�
and Applications� Addison Wesley� �����

�Fag��� R� Fagin� Horn Clauses and Database Dependencies� Journal of the ACM�
��	��� �����

�FBC���� D�H� Fishman� D� Beech� H�P� Cate� E�C� Chow� T� Connors� J�W� Davis�
N� Derrett� C�G� Hoch� W� Kent� P� Lyngbaek� B� Mahbod� M�A� Neimat�

���

T�A� Ryan� and M�C� Shan� Iris� An Object�Oriented Database Management
System� ACM Transactions on O�ce Information Systems� �	�����%��� Jan�
uary �����

�Fer��� J� Ferber� Computational Re�ection in Class Based Object�Oriented Lan�
guages� In Proc� of the Int�l Conf� on Object�Oriented Programming� Systems�
Languages� and Applications� pages ���%���� October �����

�FJ��� B� Foote and R�E� Johnson� Re�ective Facilities in Smalltalk���� In Proc�
of the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� October �����

�FKMT��� E� Fong� W� Kent� K� Moore� and C� Thompson� The X��SPARC DB�
SSG�OODBTG Final Report� Technical report� NIST� September �����

�G�O��� I� Goralwalla and M�T� �Ozsu� Temporal Extensions to a Uniform Behavioral
Object Model� In Proc� of the ��th Int�l Conf� on Entity�Relationship Ap�
proach� pages ���%���� December �����

�Gor��� Iqbal Goralwalla� A Temporal Active OBMS� PhD thesis� Department of
Computing Science� University of Alberta� Edmonton� Alberta� Canada� �����
Forthcoming�

�GR��� A� Goldberg and D� Robson� Smalltalk���� The Language and its Implemen�
tation� Addison�Wesley� �����

�GR��� A� Goldberg and D� Robson� Smalltalk���� The Language� Addison�Wesley�
�����

�GT��� A�V� Gelder and R�W� Topor� Safety and Correct Translation of Relational
Calculus Formulas� In Proc� of the �th ACM SIGACT�SIGMOD�SIGART
Symposium on the Principles of Database Systems� pages ���%���� ACM Press�
March �����

�GT��� A�V� Gelder and R�W� Topor� Safety and Translation of Relational Calculus
Queries� ACM Transactions on Database Systems� ��	������%���� June �����

�Haa��� L�M� Haas� et� al� Starburst Mid�Flight� As the Dust Clears� IEEE Transac�
tions on Knowledge and Data Engineering� �	������%���� March �����

�HHT��� P� Hall� P� Hitchcock� and S� Todd� An Algebra of Relations for Machine
Computation� In Proc� of the ACM Symposium on Principles of Programming
Languages� pages ���%���� �����

�HK��� R� Hull and R� King� Semantic Database Modeling� Survey� Applications� and
Research Issues� ACM Computing Surveys� ��	������%���� September �����

�HM��� M� Hammer and D� McLeod� The Semantic Data Model� A Modeling Mech�
anism for Database Applications� In Proc� of the ACM SIGMOD Int�l� Conf�
on Management of Data� pages ��%��� May�June �����

�HM��� M� Hammer and D� McLeod� Database Description with SDM� A Seman�
tic Database Model� ACM Transactions on Database Systems� �	������%����
September �����

���

�Hud��� S�E� Hudson� CACTIS� A Database System for Specifying Functionally�De�ned
Data� In ���� Int�l Workshop on Object�Oriented Database Systems� pages ��%
��� September �����

�Ira��� B� Irani� Implementation Design and Development of the TIGUKAT Object
Model� Master�s thesis� Department of Computing Science� University of Al�
berta� Edmonton� Alberta� Canada� ����� Available as University of Alberta
Technical Report TR������

�ISO��� ISO� Information Technology � Database Languages � SQL� International
Organization for Standardization� ����� ISO�IEC ��������� 	E��

�JGF���� D� Jagannathan� R�L� Guck� B�L� Fritchman� J�P� Thompson� and D�M� Tol�
bert� SIM� A Database System Based on the Semantic Data Model� In Proc� of
the ACM SIGMOD Int�l� Conf� on Management of Data� pages ��%��� Septem�
ber �����

�JS��� G� Jaeschke and H� Schek� Remarks on the Algebra of Non First Normal Form
Relations� In Proc� of the �st ACM SIGACT�SIGMOD Symposium on the
Principles of Database Systems� pages ���%���� March �����

�KBC���� W� Kim� N� Ballou� H�T� Chou� J�F� Garza� and D� Woelk� Features of the
ORION Object�Oriented Database System� In W� Kim and F�H� Lochovsky�
editors� Object�Oriented Concepts� Databases� and Applications� Addison Wes�
ley� �����

�KC��� S�N� Khosha�an and G�P� Copeland� Object Identity� In Proc� of the Int�l
Conf� on Object�Oriented Programming� Systems� Languages� and Applica�
tions� pages ���%���� September �����

�KC��� W� Kim and H�T� Chou� Versions of Schema for Object�Oriented Databases�
In Proc� of the ��th Int�l Conf� on Very Large Databases� pages ���%���� �����

�Ken��� W� Kent� Limitations of Record�Based Information Models� ACM Transactions
on Database Systems� �	������%���� March �����

�Ken��a� W� Kent� A Framework for Object Concepts� Technical Report HPL�������
Hewlett Packard Labs� April �����

�Ken��b� W� Kent� A Rigorous Model of Object Reference� Identity and Existence�
Technical Report HPL������� Hewlett Packard Labs� April �����

�KGBW��� W� Kim� J�F� Garza� N� Ballou� and D� Wolek� Architecture of the ORION
Next�Generation Database System� IEEE Transactions on Knowledge and
Data Engineering� �	������%���� March �����

�Kim��� W� Kim� A Model of Queries for Object�Oriented Databases� In Proc� of the
��th Int�l Conf� on Very Large Databases� pages ���%���� August �����

�Kim��a� W� Kim� Object�Oriented Databases� De�nition and Research Direc�
tions� IEEE Transactions on Knowledge and Data Engineering� �	������%����
September �����

���

�Kim��b� W� Kim� Research Directions in Object�Oriented Databases� In Proc� of the
�th ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database
Systems� pages �%��� April �����

�Kin��� R� King� My Cat is Object�Oriented� In W� Kim and F�H� Lochovsky� editors�
Object�Oriented Concepts� Databases� and Applications� Addison Wesley� �����

�KMSB��� M� Koubarakis� M� Mylopoulos� M� Stanley� and A� Borgida� Telos� Features
and Formalization� Technical Report KRR�TR������ University of Toronto�
February �����

�KS��� W� Kafer and H� Schoning� Realizing a Temporal Complex�Object Data Model�
In Proc� of the ACM SIGMOD Int�l� Conf� on Management of Data� pages
���%���� June �����

�Kuh��� J�L� Kuhns� Answering Questions by Computer� A Logical Study� Technical
Report RM������PR� Rand Corp�� �����

�KW��� M� Kifer and J� Wu� A Logic for Object�Oriented Programming 	Maier�s O�
Logic Revisited�� In Proc� of the �th ACM SIGACT�SIGMOD�SIGART Sym�
posium on the Principles of Database Systems� March �����

�LH��� B�S� Lerner and A�N� Habermann� Beyond Schema Evolution to Database
Reorganization� In ECOOP	OOPSLA ��� Proceedings� pages ��%��� October
�����

�Lip��� A� Lipka� The Design and Implementation of TIGUKAT User Languages�
Master�s thesis� Department of Computing Science� University of Alberta� Ed�
monton� Alberta� Canada� ����� Available as University of Alberta Technical
Report TR������

�LLOW��� C� Lamb� G� Landis� J� Orenstein� and D� Weinreb� The ObjectStore Database
System� Communications of the ACM� ��	������%��� October �����

�LM��� H� Levesque and J� Mylopoulos� A Procedural Semantics for Semantic Net�
works� In N� Findler� editor� Associative Networks� Academic Press� �����

�LR��a� C� L)ecluse and P� Richard� Modeling Complex Structures in Object�Oriented
Databases� In Proc� of the �th ACM SIGACT�SIGMOD�SIGART Symposium
on the Principles of Database Systems� pages ���%���� March �����

�LR��b� C� L)ecluse and P� Richard� The O� Database Programming Language� In Proc�
of the ��th Int�l Conf� on Very Large Databases� pages ���%���� August �����

�LRV��� C� Lecluse� P� Richard� and F� Velez� O�� an Object�Oriented Data Model�
In Proc� of the ACM SIGMOD Int�l� Conf� on Management of Data� pages
���%���� September �����

�LS��� J� Lambek and P�J� Scott� Introduction to Higher Order Categorical Logic�
Cambridge University Press� �����

�Mae��� P� Maes� Concepts and Experiments in Computational Re�ection� In Proc�
of the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� October �����

���

�Mai��� D� Maier� Why isn�t there an Object�Oriented Data Model� In Proc� of the
IFIP ��th World Computer Conference� August�September �����

�Mak��� J�A� Makowsky� Characterizing Data Base Dependencies� In Proc� of the �th

Colloquium on Automata� Languages and Programming� pages ��%��� Springer
Verlag� �����

�MB��� F� Manola and A�P� Buchmann� A Functional�Relational Object�Oriented
Model for Distributed Object Management� Technical Memorandum TM������
���������� GTE Laboratories Incorporated� December �����

�MBW��� J� Mylopoulos� P�A� Bernstein� and H�K�T� Wong� A Language Facility for
Designing Database�Intensive Applications� ACM Transactions on Database
Systems� �	������%���� June �����

�McC��� J� McCarthy� Programs with Common Sense� In Semantic Information Pro�
cessing� pages ���%���� MIT Press� �����

�MD��� F� Manola and U� Dayal� PDM� An Object�Oriented Data Model� In K�R�
Dittrich and U� Dayal� editors� Proc� of the �st Int�l Workshop on Object�
Oriented Database Systems� pages ��%��� IEEE Computer Science Press� �����

�ML��� P� Martin�L�of� Constructive Mathematics and Computer Programming� In
Proc� of the Sixth Int�l Conf� for Logic� Methodology and Philosophy of Science�
pages ���%���� �����

�MMWY��� H� Masuhara� S� Matsuoka� T� Wantanabe� and A� Yonezawa� Object�Oriented
Concurrent Re�ective Languages can be Implemented E�ciently� In Proc� of
the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� October �����

�Mu�n��� A� Mu�noz� �an extensible query optimizer architecture for the tigukat object�
base management system�� Master�s thesis� Department of Computing Science�
University of Alberta� Edmonton� Alberta� Canada� ����� Available as Uni�
versity of Alberta Technical Report TR������

�MZO��� D� Maier� J� Zhu� and H� Ohkawa� Features of the TEDM Object Model� In
Proc� of the �st Int�l� Conf� on Deductive and Object�Oriented Databases� pages
���%���� �����

�ND��� J�M� Nicolas and R� Demolombe� On the Stability of Relational Queries� Tech�
nical report� ONERA�CERT� �����

�Nie��� O� Nierstrasz� A Survey of Object�Oriented Concepts� In W� Kim and F�H�
Lochovsky� editors� Object�Oriented Concepts� Databases� and Applications�
pages �%��� Addison Wesley� �����

�NR��� G�T� Nguyen and D� Rieu� Expert Database Support for Consistent Dynamic
Objects� In Proc� of the �
th Int�l Conf� on Very Large Databases� pages ���%
���� September �����

�NR��� G�T� Nguyen and D� Rieu� Schema Evolution in Object�Oriented Database
Systems� Data � Knowledge Engineering� ����%��� �����

���

�OH��� S� Osborn and T�E� Heaven� The Design of a Relational Database System
with Abstract Types for Domains� ACM Transactions on Database Systems�
��	������%���� �����

� �OPI���� M�T� �Ozsu� R�J� Peters� B� Irani� A� Lipka� A� Mu�noz� and D� Szafron�
TIGUKAT Object Management System� Initial Design and Current Direc�
tions� In Proc� of the Centre for Advanced Studies Conference �CASCON��
pages ���%���� October �����

�Osb��� S�L� Osborn� Identity� Equality and Query Optimization� In Proc� of the �nd
Int�l Workshop on Object�Oriented Database Systems� pages ���%���� Springer
Verlag� September �����

�Osb��� S�L� Osborn� The Role of Polymorphism in Schema Evolution in an
OODB� IEEE Transactions on Knowledge and Data Engineering� �	������%
���� September �����

� �OSP��� M�T� �Ozsu� D�D� Straube� and R�J� Peters� Query Processing Issues in Object�
Oriented Knowledge Base Systems� In F�E� Petry and L�M� Delcambre� editors�
Emerging Landscape of Intelligence in Database and Information Systems� JAI
Press� ����� In press�

�OW��� G� Ozsoyoglu and H� Wang� A Relational Calculus with Set Operators� Its
Safety� and Equivalent Graphical Languages� IEEE Transactions on Software
Engineering� SE���	�������%����� September �����

�OY��� Z�M� Ozsoyoglu and L�Y� Yuan� A New Normal Form for Nested Relations�
ACM Transactions on Database Systems� ��	������%���� March �����

�Pie��� B�C� Pierce� A Taste of Category Theory for Computer Scientists� Technical
Report CMU�CS�������� Carnegie Mellon University� �����

�PL�OS��a� R�J� Peters� A� Lipka� M�T� �Ozsu� and D� Szafron� An Extensible Query Model
and Its Languages for a Uniform Behavioral Object Management System� In
Proc� of the Second Int�l� Conf� on Information and Knowledge Management�
pages ���%���� November ����� A full version of this paper is available as
University of Alberta Technical Report TR������

�PL�OS��b� R�J� Peters� A� Lipka� M�T� �Ozsu� and D� Szafron� The Query Model and
Query Language of TIGUKAT� Technical Report TR������ Department of
Computing Science� University of Alberta� Edmonton� Alberta� Canada� June
�����

�PM��� J� Peckham and F� Maryanski� Semantic Data Models� ACM Computing
Surveys� ��	������%���� September �����

�P�O��� R�J� Peters and M�T� �Ozsu� Re�ection in a Uniform Behavioral Object Model�
In Proc� of the ��th Int�l Conf� on Entity�Relationship Approach� pages ��%���
December �����

�PS��� D�J� Penney and J� Stein� Class Modi�cation in the GenStone Object�Oriented
DBMS� In Proc� of the Int�l Conf� on Object�Oriented Programming� Systems�
Languages� and Applications� pages ���%���� October �����

���

�Rei��� R� Reiter� On Formalizing Database Updates� Preliminary Report� In Proc�
of the
rd Int�l Conf� on Extending Database Technology� pages ��%��� March
�����

�Rev��� G�E� Revesz� Lambda�Calculus� Combinators� and Functional Programming�
Cambridge University Press� �����

�RK��� M�A� Roth and H�F� Korth� The Design of ��NF Relational Databases into
Nested Normal Form� In Proc� of the ACM SIGMOD Int�l� Conf� on Manage�
ment of Data� pages ���%���� May �����

�RK��� N� Roussopoulos and H�S� Kim� ROOST� A Relational Object Oriented Sys�
tem� In Proc� of the
rd Int�l Conf� on Foundations of Data Organization and
Algorithms� pages ���%���� June �����

�RS��� L�A� Rowe and M�R� Stonebraker� The POSTGRES Data Model� In Proc� of
the �
th Int�l Conf� on Very Large Databases� pages ��%��� September �����

�RS��� E� Rose and A� Segev� TOODM � A Temporal Object�Oriented Data Model
with Temporal Constraints� In Proc� of the ��th Int�l Conf� on Entity�
Relationship Approach� pages ���%���� October �����

�SB��� M� Ste�k and D� Bobrow� Object�Oriented Programming� Themes and Vari�
ations� The AI Magazine� pages ��%��� �����

�Sch��� H� Schek� Toward a Basic Relational NF� Algebra Processor� In Proc� of the
Int�l Conf� on Foundations of Data Organization� pages ���%���� May �����

�Sch��� D�A� Schmidt� Denotational Semantics� A Methodology for Language Devel�
opment� Wm� C� Brown Publishers� �����

�Shi��� D�W� Shipman� The Functional Model and the Data Language DAPLEX�
ACM Transactions on Database Systems� �	������%���� March �����

�SK��� M� Stonebraker and G� Kemnitz� The POSTGRES Next�Generation Database
Management System� Communications of the ACM� ��	������%��� October
�����

�Sny��� A� Snyder� An Abstract Object Model for Object�Oriented Systems� Technical
Report HPL������� Hewlett Packard Labs� April �����

�S�O��a� D�D� Straube and M�T� �Ozsu� Queries and Query Processing in Object�
Oriented Database Systems� ACM Transactions on Information Systems�
�	������%���� October �����

�S�O��b� D�D� Straube and M�T� �Ozsu� Type Consistency of Queries in an Object�
Oriented Database System� In ECOOP	OOPSLA ��� Proceedings� pages ���%
���� October �����

�Soo��� M�D� Soo� Bibliography on Temporal Databases� ACM SIGMOD Record�
��	�����%��� �����

���

�SR��� M� Stonebraker and L�A� Rowe� The Design of POSTGRES� In Proc� of
the ACM SIGMOD Int�l� Conf� on Management of Data� pages ���%���� May
�����

�SRH��� M� Stonebraker� L�A� Rowe� and M� Hirohama� The Implementation of POST�
GRES� IEEE Transactions on Knowledge and Data Engineering� �	������%����
March �����

�SRL���� M� Stonebraker� L� Rowe� B� Lindsay� J� Gray� M� Carey� M� Brodie�
P�Bernstein� and D� Beech� Third�Generation Data Base System Manifesto�
ACM SIGMOD Record� ��	�����%��� September �����

�SS��� J�M� Smith and C�P� Smith� Database Abstractions� Aggregation and Gener�
alization� ACM Transactions on Database Systems� �	������%���� June �����

�SS��� H� Schek and M� Scholl� The Relational Model with Relation�Valued At�
tributes� Information Systems� ��	������%���� �����

�SS��� M� Scholl and H� Schek� A Relational Object Model� In Proc� of the
rd Int�l
Conf� on Database Theory� pages ��%���� December �����

�Sto��� J�E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Program�
ming Language Theory� MIT Press� �����

�Sto��� M� Stonebraker� Inclusion of New Types in Relational Data Base Systems� In
M� Stonebraker� editor� Readings in Database Systems� pages ���%���� Morgan
Kaufmann Publishers� �����

�Str��� D�D� Straube� An Introduction to Object�Oriented Databases� In Proc� of the
��th Simposium Internacional de Sistemas Computacionale� March �����

�Str��a� D�D� Straube� Queries and Query Processing in Object�Oriented Database
Systems� PhD thesis� Department of Computing Science� University of Alberta�
Edmonton� Alberta� Canada� �����

�Str��b� B� Stroustrup� The C�� Programming Language� Addison Wesley� �����
Second edition�

�SZ��� A�H� Skarra and S�B� Zdonik� The Management of Changing Types in an
Object�Oriented Database� In Proc� of the Int�l Conf� on Object�Oriented Pro�
gramming� Systems� Languages� and Applications� pages ���%���� September
�����

�SZ��� A�H� Skarra and S�B� Zdonik� Type Evolution in an Object�Oriented Database�
In Research Directions in Object�Oriented Programming� pages ���%���� MIT
Press� �����

�SZ��� G� Shaw and S� Zdonik� An Object�Oriented Query Algebra� In Proc� of the
�nd Int�l Workshop on Database Programming Languages� pages ���%���� June
�����

�SZ��� G� Shaw and S� Zdonik� A Query Algebra for Object�Oriented Databases� In
Proc� of the �th Int�l� Conf� on Data Engineering� pages ���%���� February
�����

���

�TCG���� A� Tansel� J� Cliord� S� Gadia� S� Jajodia� A� Segev� and R� Snodgrass� Tem�
poral Databases� Theory� Design� and Implementation� Benjamin�Cummings�
�����

�Tom��� C�D� Tomlin� Geographic Information Systems and Cartographic Modeling�
Prentice�Hall� �����

�Ull��� J�D� Ullman� Principles of Database Systems� Computer Science Press� �����
�nd� Edition�

�Ull��� Jerey D� Ullman� Database Theory� Past and Future� In Proc� of the �th
ACM SIGACT�SIGMOD�SIGART Symposium on the Principles of Database
Systems� pages �%��� ACM Press� March �����

�Ull��� J�D� Ullman� Principles of Database and Knowledge�Base Systems� Computer
Science Press� ����� Volume ��

�Wan��� Y� Wand� A Proposal for a Formal Model of Objects� In W� Kim and F�H�
Lochovsky� editors� Object�Oriented Concepts� Databases� and Applications�
pages ���%���� Addison Wesley� �����

�WBT��� D� Wells� J�A� Blakeley� and C�W� Thompson� Architecture of the Open
Object�Oriented Database Management System� IEEE Computer� ��	������%
��� October �����

�WBW��a� A� Wirfs�Brock and B� Wilkerson� An Overview of Modular Smalltalk� In Proc�
of the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� September �����

�WBW��b� A� Wirfs�Brock and B� Wilkerson� An Overview of Modular Smalltalk� In Proc�
of the Int�l Conf� on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� October �����

�WBW��a� A� Wirfs�Brock and B� Wilkerson� Object�Oriented Design� A Responsibility�
Driven Approach� In Proc� of the Int�l Conf� on Object�Oriented Programming�
Systems� Languages� and Applications� pages ��%��� October �����

�WBW��b� A� Wirfs�Brock and B� Wilkerson� Variables Limit Reusability� Journal of
Object�Oriented Programming� �	�����%��� May�June �����

�WD��� G� Wuu and U� Dayal� A Uniform Model for Temporal Object�Oriented Data�
bases� In Proc� of the �th Int�l� Conf� on Data Engineering� pages ���%����
Tempe� USA� February �����

�Weg��� P� Wegner� Dimensions of Object�Based Language Design� In Proc� of the
Int�l Conf� on Object�Oriented Programming� Systems� Languages� and Appli�
cations� pages ���%���� October �����

�Weg��� P� Wegner� Concepts and Paradigms of Object�Oriented Programming� OOPS
Messenger� �	����%��� August �����

�WLH��� K� Wilkinson� P� Lyngbaek� and W� Hasan� The Iris Architecture and Imple�
mentation� IEEE Transactions on Knowledge and Data Engineering� �	�����%
��� March �����

���

�WSSH��� P�F� Wilms� P�M� Schwarz� H�J� Schek� and L�M� Haas� Incorporating Data
Types in an Extensible Database Architecture� In Proc� of the
rd Int�l Conf�
on Data and Knowledge Bases� Improving Usability and Responsiveness� pages
���%���� June �����

�Yan��� M� Yannakakis� Graph�Theoretic Methods in Database Theory� In Proc� of the
�th ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database
Systems� pages ���%���� April �����

�YO��� L� Yu and S�L� Osborn� An Evaluation Framework for Algebraic Object�
Oriented Query Models� In Proc� of the th Int�l� Conf� on Data Engineering�
pages ���%���� April �����

�ZM��� S� Zdonik and D� Maier� Fundamentals of Object�Oriented Databases� In
S� Zdonik and D� Maier� editors� Readings in Object�Oriented Database Sys�
tems� pages �%��� Morgan Kaufmann Publishers� �����

�ZW��� S� Zdonik and P� Wegner� Language and Methodology for Object�Oriented
Database Environments� In Proc� of the ��th Annual Hawaii Int�l Conference
on System Sciences� January �����

���

Appendix A

Primitive Type System

Table A�� shows the signatures of the behaviors for the non�atomic types 	except the con�
tainer types�� Table A�� shows the signatures of the behaviors for the container types�
Table A�� shows the signatures of the behaviors for the atomic types� The receiver type of
a behavior is excluded because the receiver must be an object of a type that is compatible
with the type de�ning the behavior� The notation T collectionhTi is used to de�ne a
collection type whose members are of type T � The type speci�cations for the behaviors are
the most general types� Types for some of the behaviors are revised in the subtypes that
inherit them� For example� the result type of B self is always the type of the receiver object
and the result type of B new is always the membership type of the receiver class�

���

Type Signatures

T object B self � T object

B mapsto� T type

B conformsTo� T type� T boolean

B equal� T object� T boolean

B notequal� T object� T boolean

B drop� T object

T type B interface� T collectionhT behaviori
B native� T collectionhT behaviori

B inherited� T collectionhT behaviori
B specialize� T type� T boolean

B subtype� T type� T boolean

B subtypes� T collectionhT typei
B supertypes� T collectionhT typei
B sub�lattice� T posethT typei

B super�lattice� T posethT typei
B classof � T class

B addBehavior� T behavior� T function� T type

B dropBehavior� T behavior� T type

B addSupertype� T type� T type

B dropSupertype� T type� T type

T behavior B name� T string

B argTypes� T type� T listhT typei
B resultType� T type� T type

B description� T string

B semantics� T object

B associate� T type� T function� T behavior

B implementation� T type� T function

B primitiveApply � T object� T object

B apply � T object� T list� T object

B de�nes� T posethT typei
T function B name� T string

B argTypes� T listhT typei
B resultType� T type

B description� T string

B source� T object

B compile� T function

B primitiveExecute� T object� T object

B executable� T object

B basicExecute� T list� T object

B execute� T list� T object

Table A��� Behavior signatures of the non�atomic types of the primitive type system�

���

Type Signatures

T collection B memberType� T type

B cardinality � T natural

B elementOf � T object� T boolean

B insert� T object� T collection

B remove� T object� T collection

B containedBy � T collection� T boolean

B setEqual� T collection� T boolean

B isEmpty � T boolean

B union� T collection� T collection

B di�erence� T collection� T collection

B intersect� T collection� T collection

B collapse� T collection

B select� T string� T listhT collectioni � T collection

B project� T collectionhT behaviori � T collection

B map� T string� T listhT collectioni � T collection

B product� T listhT collectioni � T collection

B reduce� T collectionhT naturali � T collection

B join� T string� T listhT collectioni � T collection

B genjoin� T string� T string�
T listhT collectioni � T collection

T bag B occurrences� T object� T natural

B count� T natural

B dropAll� T object� T bag

Behaviors from T collection re�ned to preserve duplicates
T poset B ordered� T object� T object� T boolean

B ordering � T function

Behaviors from T collection re�ned to preserve ordering
T list B insertAt� T object� T natural� T list

B dropAt� T natural� T list

B append� T object� T list

B getAt� T natural� T list

B setAt� T object� T natural� T list

B positions� T object� T listhT naturali
B currPosn� T natural

B current� T object

B �rst� T object

B last� T object

B next� T object

B previous� T object

B dropCurr� T list

B outOfBounds� T boolean

Behaviors re�ned to preserve duplicates and ordering
T class B new � T object

B deepExtent� T collection

T class�class B new � T type� T class

T type�class B new � T collectionhT typei �
T collectionhT behaviori � T type

T collection�class B new � T type� T collection

Table A��� Behavior signatures of the container types of the primitive type system�

���

Type Signatures

T atomic

T boolean B not� T boolean

B or� T boolean� T boolean

B if � T object� T object� T object

B and� T boolean� T boolean

B xor� T boolean� T boolean

T character B ord� T natural

B stringOf � T string

T string B car� T character

B cdr� T string

B concat� T string� T string

T real B succ� T real

B pred� T real

B add� T real� T real

B subtract� T real� T real

B multiply � T real� T real

B divide� T real� T real

B trunc� T integer

B round� T integer

B lessThan� T real� T boolean

B lessThanEQ� T real� T boolean

B greaterThan� T real� T boolean

B greaterThanEQ� T real� T boolean

T integer Behaviors from T real re�ned to work on integers
T naturals Behaviors from T integer re�ned to work on naturals

Table A��� Behavior signatures of the atomic types of the primitive type system�

���

Appendix B

Behavior De�nitions

In this appendix� we de�ne the full behavioral speci�cation of the primitive type system of
TIGUKAT� The primitive type lattice is shown in Figure ��� on page ��� A summary of
the behaviors is shown in Appendix A�

In the following speci�cations� we use variables o� p and q in examples as references
to objects of various particular types� We use the dot notation o�B something	a�� � � � � an�
for the behavior application where o is the receiver of behavior B something that uses
arguments a� through an� Behavior applications assume left associativity in the absence of
qualifying parenthesis� That is� the following two behavior applications are equivalent�

o�B one	p��B two	q� � 	o�B one	p���B two	q�

The type speci�cations are divided into the following components� the name of the
type� its corresponding class� its supertypes� its subtypes� the native behaviors de�ned by
the type and the derived behaviors de�ned by the type� Native behaviors are those which
are introduced by the type 	i�e�� they are not inherited�� Derived behaviors are those which
are de�ned in terms of existing behaviors 	i�e�� they are not primitive to the type system�
but are de�ned for brevity and ease of use�� The implementations for some of the inherited
behaviors are re�ned in the subtypes and their extended semantics are given in the re�ned
behaviors section�

���

T object
Supertypes� none
Subtypes� T type� T collection� T behavior� T function� T atomic

Native Behaviors�
self B self � T object

Example� o�B self
Symbol� Io
Returns the receiver object o� This is the mathematical identity
operation for objects�

mapsto B mapsto� T type

Example� o�B mapsto
Symbol� o ��

Returns the type of the reciever object o 	i�e�� the most de�ned
type�� Every object in the system has a mapsto type�

conformsTo B conformsTo� T type� T boolean

Example� o�B conformsTo	p�
Symbol� o� p

If the receiver o conforms to the type argument p� the object true

is returned� otherwise false is returned�

equal B equal� T object� T boolean

Example� o�B equal	p�
Symbol� o � p

If the receiver o is identity equal to the argument object p� the
object true is returned� otherwise false is returned�

drop B drop� T object

Example� o�B drop
Symbol�

Drops the receiver object o� which
eectively deletes� the object�
The object is dropped from its class and all collections in which
it appears� All references to the object become invalid� When
considering the temporality of the object model� the lifespan of
the object in its class� and all collections� is termintated�

Derived Behaviors�
notequal B notequal� T object� T boolean

Example� o�B notequal	p�
Symbol� o �� p

Derivation� �	o � p�

This is the complement of B equal�

���

T type
Supertypes� T object

Subtypes� none
Native Behaviors�
classof B classof � T class

Example� o�B classof
Symbol� Co
Returns the class object that has been associated with the re�
ceiver o� Types are associated with at most one class� For those
types not associated with a class� the object unde�ned is returned�

native B native� T collectionhT behaviori
Example� o�B native
Symbol�

Returns the set of behaviors that are de�ned by the receiver o

and not de�ned by any supertypes of o� The set is empty if o
doesn�t de�ne any native behaviors�

inherited B inherited� T collectionhT behaviori
Example� o�B inherited
Symbol�

Returns the collection of behaviors that are inherited by the re�
ceiver o� This set is a superset of the interface set of T object�

subtypes B subtypes� T collectionhT typei
Example� o�B subtypes
Symbol�

Returns the set of type objects that are a direct subtype of the
receiver o� The result set does not include the object o itself�
For the types that do not have any subtypes� the empty set is
returned�

supertypes B supertypes� T collectionhT typei
Example� o�B supertypes
Symbol�

Returns the set of type objects that are a direct supertype of the
receiver o� The result set does not include the object o itself�
Every type object except T object has a non�empty supertype
set� The supertype set for T object is the empty set�

addBehavior B addBehavior� T behavior� T function� T type

Example� o�B addBehavior	p� q�
Symbol�

Adds the behavior object p as a native behavior of the receiver
type o� The operation is rejected if o already de�nes p� If o has
an associated class or if any subtype of o has an associated class
and does not already de�ne p� then a function q must be given
as the implementation of the p in these types�

dropBehavior B dropBehavior� T behavior� T type

Example� o�B dropBehavior	p�
Symbol�

���

Drops the native behavior p from the receiver type o� The op�
eration is rejected if p is not natively de�ned on o� The native
de�nition of p is propogated to the subtypes� unless inherited
from some type other than o�

addSupertype B addSupertype� T type� T type

Example� o�B addSupertype	p�
Symbol�

Adds the type argument p as a supertype of o� The operation
is rejected if it introduces a cycle into the type lattice or if p is
already an element of the super�lattice of o�

dropSupertype B dropSupertype� T type� T type

Example� o�B dropSupertype	p�
Symbol�

Drops the type argument p as a supertype of o� Type o is relinked
to the supertypes of p and type p is relinked to the subtypes of
o�

Derived Behaviors�
interface B interface� T collectionhT behaviori

Example� o�B interface
Symbol�
Derivation� o�B native � o�B inherited

Returns the set of behavior objects resulting from the union of
the native and inherited behaviors of receiver o� This set is a
superset of the interface set of T object�

super�lattice B super�lattice� T posethT typei
Example� o�B super � lattice
Symbol�
Derivation� Derived by recursively applying B supertypes until

T object is reached� partially ordering the interme�
diate results� and adding the receiver type object o�

Returns the set of all type objects� partially ordered by
� that
are supertypes of the receiver o� The result set includes the type
object o itself� The result lattice has T object as the root and o

as the base� Every type object has a non�empty super�lattice�

sub�lattice B sub�lattice� T posethT typei
Example� o�B sub � lattice
Symbol�
Derivation� Derived by recursively applying B subtypes until

T null is reached� partially ordering the intermedi�
ate results� and adding the receiver type object o as
the root�

Returns the set of all type objects� partially ordered by
� which
are subtypes of the receiver o� The result set includes the type
object o itself� The result lattice has o as the root and T null as
the base� Every type object has a non�empty subtype�lattice�

specialize B specialize� T type� T boolean

Example� o�B specialize	p�

���

Symbol� o v p
Derivation� p�B interface 	 o�B interface

Returns true if the receiver o specializes of the type argument
object p� false otherwise�

subtype B subtype� T type� T boolean

Example� o�B subtype	p�
Symbol� o
 p
Derivation� o � p�B sub � lattice

Returns true if the receiver o is a subtype of the type argument
object p� false otherwise�

���

T behavior
Supertypes� T object

Subtypes� none
Native Behaviors�
name B name� T string

Example� o�B name
Symbol�

Returns the signature name of the receiver o�

argTypes B argTypes� T type� T listhT typei
Example� o�B argTypes	p�
Symbol�

Returns the list of types that are the argument types of the sig�
nature for the behavior o in the type p�

resultType B resultType� T type � T type

Example� o�B resultType	p�
Symbol�

Returns the type that is the result type of the signature for the
behavior o in the type p�

description B description� T string

Example� o�B description
Symbol�

Returns a short description of behavior o�

semantics B semantics� T object

Example� o�B semantics
Symbol� ��o��

Returns the full semantics of the behavior o�
associate B associate� T type� T function� T behavior

Example� o�B associate	p� q�
Symbol�

Associates the function object of the argument q with the behav�
ior o for the given type object p� The behavior has the side�eect
of modifying the behavior o so that it executes the associated
function q when applied to an object of type p�

implementation B implementation� T type� T function

Example� o�B implementation	p�
Symbol�

Returns the function object associated with the behavior o for
the argument type object p�

primitiveApply B primitiveApply � T object� T object

Example� o�B primitiveApply 	p�
Symbol�

Applies the behavior object o to the argument object p� One of
the requirements is that the type of p must de�ne behavior o as
part of its interface�

de
nes B de�nes� T posethT typei
Example� o�B de�nes

���

Symbol�

Returns the partially ordered set of type objects 	i�e�� lattice�
that de�ne the behavior o as part of their interface�

Derived Behaviors�
apply B apply � T object� T list� T object

Example� o�B apply	p� q�
Symbol�
Derivation� If the argument list q is empty� the apply works the

same as the primitive apply� If there are arguments�
they are passed directly to the execution of the func�
tion associated with this behavior�

Applies the behavior object o to the object p using the objects
in the list q as arguments� The requirements are that the type
of p must de�ne behavior o as part of its interface and the type
of the objects in q must conform to the argument types de�ned
by the signature of behavior o in the type of p�

���

T function
Supertypes� T object

Subtypes� none
Native Behaviors�
name B name� T string

Example� o�B name
Symbol�

Returns the name of the function object o�

argTypes B argTypes� T listhT typei
Example� o�B argTypes
Symbol�

Returns a list of types that denote the types and ordering of the
argument objects for the function o�

resultType B resultType� T type

Example� o�B resultType
Symbol�

Returns the result type of the function o�

description B description� T string

Example� o�B description
Symbol�

Returns a description of the function object o�

source B source� T string

Example� B source	o�
Symbol�

Returns the source code of the function o�
compile B compile� T function

Example� o�B compile
Symbol�

Compiles the function o and produces an executable that is re�
turned by B executable below�

primtiveExecute B primtiveExecute� T object� T object

Example� o�B primitiveExecute	p�
Symbol�

Executes the function o using the object p as an argument and
returns a result object� This requires that the argument p is
compatible with the argument type of the function o�

executable B executable� T object

Example� o�B executable
Symbol�

Returns the executable of the function o�
Derived Behaviors�
basicExecute B basicExecute� T list� T object

Example� o�B basicExecute	p�
Symbol�
Derivation� Function currying of the B primitiveExecute is ab�

stracted as a list of arguments�

���

Executes the function o using the list of objects in p as argu�
ments and returns a result object� This requires that the list of
arguments in p is compatible with the argument type list for the
function o�

execute B execute� T list� T object

Example� o�B execute	p�
Symbol�
Derivation� Function currying is abstracted as a list of arguments�

For this general function type the behavior performs the same
operation as B basicExecute above�

���

T collection
Supertypes� T object

Subtypes� T class

Native Behaviors�
memberType B memberType� T type

Example� o�B memberType
Symbol� "o

Returns the type of the members in the collection o� Every col�
lection is associated with exactly one member type� but a type
object may be associated with many collections�

cardinality B cardinality � T natural

Example� o�B cardinality
Symbol� joj

Returns the number of elements in collection o�
elementOf B elementOf � T object� T boolean

Example� o�B elementOf 	p�
Symbol� p � o

Returns true if the object p is a member of collection o� false

otherwise�
insert B insert� T object� T collection

Example� o�B insert	p�
Symbol�

Adds the object p to the collection o if p is not already a member
of o� This cannot be de�ned in terms of union since union returns
a new collection and this behavior modi�es the extent of o�

remove B remove� T object� T collection

Example� o�B remove	p�
Symbol�

Removes the object p from the collection o� This cannot be
de�ned in terms of dierence since dierence returns a new col�
lection and this behavior modi�es the extent of o�

union B union� T collection� T collection

Example� o�B union	p�
Symbol� o � p

Returns the set union of collections o and p�

di�erence B di�erence� T collection� T collection

Example� o�B di�erence	p�
Symbol� o� p

Returns the set dierence of collections o and p�

intersect B intersect� T collection� T collection

Example� o�B intersect	p�
Symbol� o � p

Returns the set intersection of collections o and p�

collapse B collapse� T collection

Example� o�B collapse
Symbol� o �

���

Receiver o is a collection of collections� The result is to take the
extended union of the element collections in o�

select B select� T string� T listhT collectioni �
T collection

Example� o�B select	p� q�
Symbol� o �p q

The argument p is a predicate over the collections in q and the
receiver collection o� The result is to return objects from o that
satisfy the predicate p�

project B project� T collectionhT behaviori � T collection

Example� o�B project	p�
Symbol� o $p

The argument p is a collection of behaviors de�ned by the mem�
bership type of o� The result is a new collection containing all the
objects of o� but with a membership type that only de�nes the
behaviors in p� plus those de�ned on T object� In other words�
the operator projects over the behaviors in p�

map B map� T string� T listhT collectioni �
T collection

Example� o�B map	p� q�
Symbol� o�p q

The argument p is a mop function over the collections in q and the
receiver collection o� The result consists of the objects returned
by applying the mop function p to the objects in o using the
objects in the collections of q as arguments�

product B product� T listhT collectioni � T collection

Example� o�B product	p�
Symbol� o� p� � � � � � pn
The argument p is a list of n collections� The result collection
contains product objects drawn from each permutation of objects
in o and objects in the collections of p� The �rst component is
an object from o� the second is an object from the �rst collection
in p 	i�e�� p��� the third from the second collection in p 	i�e�� p���
and so on�

Derived Behaviors�
containedBy B containedBy � T collection� T boolean

Example� o�B containedBy	p�
Symbol� o 	 p
Derivation� �x	x � o �� x � p�

Returns true if all elements in collection o are also members of
collection p� false otherwise�

isEmpty B isEmpty � T boolean

Example� o�B isEmpty
Symbol�
Derivation� o � C collection�B new

���

Returns true if o is an empty collection� The application of B new
in the derivation ensures that a new empty collection is created�
This is only done to demonstrate one derivation of the behavior�
Any known empty collection would su�ce�

setEqual B setEqual� T collection� T boolean

Example� o�B setEqual	p�
Symbol� o �fg p

Derivation� o 	 p � p 	 o

Returns true if collections o and p contain the same elements�
false otherwise�

reduce B reduce� T collectionhT naturali � T collection

Example� o�B reduce	p�
Symbol� o�p

Derivation� Derived in terms of B map as shown in Chapter �

The receiver o is a collection of product objects and the argument
p is a list of naturals denoting components of the product objects�
The result is the objects of o with the components speci�ed by p

removed�
join B join� T string� T listhT collectioni �

T collection
Example� o�B join	p� q�
Symbol� o �p q
Derivation� Derived in terms of B product and B select as shown

in Chapter �
The argument p is a predicate over the collections in q and the
receiver collection o� The result is to return product objects
formed 	i�e�� joined� from the objects in o and the objects in
the collections of q such that the predicate p is satis�ed by the
component objects�

genjoin B genjoin� T string� T string� T listhT collectioni �
T collection

Example� o�B genjoin	g� p� q�
Symbol� o g

p q

Derivation� Derived in terms of B map as shown in Chapter �

The argument g is the variable to be generated and p is a generat�
ing atom 	i�e� mop function� that generates g� The mop function
p operates over the collections in q and the receiver collection o�
The result is to return product objects formed 	i�e�� joined� from
the objects in o and the objects in the collections of q� and to
append to each product object the result of applying the gen�
erating atom to the corresponding component objects� In other
words� new objects are generated and joined to each permutation
of product objects formed from the objects in o and the objects
in the collections of q�

���

T bag
Supertypes� T collection

Subtypes� T list

Native Behaviors�
occurrences B occurrences� T object� T natural

Example� o�B occurrences	p�
Symbol� �op

Returns the number of times that argument object p appears in
the bag o�

count B count� T natural

Example� o�B count
Symbol�

Returns the total number of elements contained within the bag
o� Each duplicate is counted separately�

Derived Behaviors�
dropAll B dropAll� T object� T bag

Example� o�B dropAll	p�
Symbol�
Derivation� for all p � o� o�B drop	p�

Drops all occurrences of p in o�

Re�ned Behaviors�
cardinality B cardinality � T natural

Example� o�B cardinality
Symbol� joj

Returns the cardinality of the bag o� The cardinality of a bag
does not take duplicates into account� Cardinality returns the
total number of unique elements in a bag�

���

T poset
Supertypes� T collection

Subtypes� T list

Native Behaviors�
ordered B ordered� T object� T object� T boolean

Example� o�B ordered	p� q�
Symbol� p �o q

This behavior uses the ordering relation de�ned on the receiver
poset o that returns true if the argument object p occurs before
the argument object q in the poset o or if p and q are equal in
the poset� The behavior returns false if p does not occur before q
or is not equal to q� The behavior returns unknown if no ordering
of p and q is known�

ordering B ordering � T function

Example� o�B ordering
Symbol� �o

Returns the ordering relation de�ned on the receiver poset o�
An ordering relation is a function of the form T object �
T object � T boolean and returns true if the two argument
objects are ordered� false if they are not� or unknown if no order�
ing of the arguments is known�

The behaviors inherited from T collection are re�ned to always maintain the ordering of
objects in a poset� The behaviors that returned a collection are re�ned to return a poset�

���

T list
Supertypes� T bag� T poset

Subtypes� none
Native Behaviors�
insertAt B insertAt� T object� T natural� T list

Example� o�B insertAt	p� q�
Symbol�

Inserts the object p into the list o at position q�

dropAt B dropAt� T natural� T list

Example� o�B dropAt	p�
Symbol�

Drops the object at position p from list o�

append B append� T object� T list

Example� o�B append	p�
Symbol�

Append the object p to the end of list o�

getAt B getAt� T natural� T list

Example� o�B getAt	p�
Symbol�

Return the object at position p in list o�

setAt B setAt� T object� T natural� T list

Example� o�B setAt	p� q�
Symbol�

Set position q in list o to the object p�

positions B positions� T object� T listhT naturali
Example� o�B positions	p�
Symbol�

Return a list containing the positions where object p occurs in
list o�

currPosn B currPosn� T natural

Example� o�B currPosn
Symbol�

Returns the current list position for list processing�

current B current� T object

Example� o�B current
Symbol�

Returns the object at the current list position�

rst B �rst� T object

Example� o�B �rst
Symbol�

Returns the �rst object in the list and sets the current list posi�
tion to the beginning of the list�

last B last� T object

Example� o�B last
Symbol�

���

Returns the last object in the list and sets the current list position
to the end of the list�

next B next� T object

Example� o�B next
Symbol�

Returns the object that follows the current object and increments
the current list position� If the behavior proceeds past the end
of the list� an
out of bounds� condition is raised�

previous B previous� T object

Example� o�B previous
Symbol�

Returns the object that precedes the current object and decre�
ments the current list position� If the behavior proceeds past the
beginning of the list� an
out of bounds� condition is raised�

dropCurr B dropCurr� T list

Example� o�B dropCurr
Symbol�

Drop the current object of list o�

outOfBounds B outOfBounds� T boolean

Example� o�B outOfBounds
Symbol�

Returns true if an
out of bounds� condition has been raised�
false otherwise�

The behaviors inherited from T poset and T bag are re�ned to maintain the ordering and
duplication of objects in a list�

���

T class
Supertypes� T collection

Subtypes� T class�class� T type�class� T collection�class

Native Behaviors�
new B new � T object

Example� o�B new
Symbol�

Creates and returns a new object with a unique identity from all
other objects in the system� The object is created in accordance
with the member type of the class o and becomes part of the
shallow extent of this class� This has the eect of also including
the object in the deep extent of the class�

Derived Behaviors�
deepExtent B deepExtent� T collection

Example� o�B deepExtent
Symbol� o�

Derivation� This is the union of the class with all its subclasses

Returns a collection containing the objects in the deep extent
of class o� The deep extent of a class consists of the objects
created using the associated member type of the class or any of
its subtypes�

Re�ned Behaviors�
memberType B memberType� T type

Example� o�B memberType
Symbol� "o

Returns the type object associated with the class o� Every class
is associated with exactly one type and every type is associated
with at most one class�

���

T class�class
Supertypes� T class

Subtypes� none
Re�ned Behaviors�
new B new � T type� T class

Example� o�B new	p�
Symbol�

B new is re�ned from T class to create a new instance of the
class o and associate the new instance with the type object p� If
the type p does not exist� or it is already associated with another
class object� an error condition is raised� The type of the resulting
instance is the type associated with the receiver of the behavior�
The receiver o is a class object that manages other class objects�

���

T type�class
Supertypes� T class

Subtypes� none
Re�ned Behaviors�
new B new � T collectionhT typei �

T collectionhT behaviori � T type

Example� o�B new	p� q�
Symbol�

B new is re�ned from T class to create a new instance of the
class o� The class o manages type objects� thus a new type is
created� The argument p represents a non�empty collection of
supertypes for the newly created type� The newly created type
inherits all the behaviors of these supertypes� The argument q is
a collection 	possibly empty� of behaviors to be de�ned natively
on the newly created type� The type of the resulting instance is
the member type associated with the receiver o�

���

T collection�class
Supertypes� T class

Subtypes� none
Re�ned Behaviors�
new B new � T type� T collection

Example� o�B new	p�
Symbol�

B new is re�ned from T class to create a new instance of the
class o and associate the new instance with the type object de�
noted by the argument p� If the type argument p is omitted� the
type of the collection is derived and maintained by the system
according to the member objects of the collection� If the type
object p is given and does not exist� an error condition is raised�
The type of the resulting instance is the member type associ�
ated with the receiver o� The argument o is a class object which
manages collection objects�

���

T atomic
Supertypes� T object

Subtypes� T boolean� T character� T string� T real

���

T boolean
Supertypes� T atomic

Subtypes� none
Native Behaviors�
not B not� T boolean

Example� o�B not
Symbol� �o

Returns the boolean complement of the receiver o�

or B or� T boolean� T boolean

Example� o�B or	p�
Symbol� o � p

Returns the boolean OR of the receiver o and argument p�

if B if � T object� T object� T object

Example� o�B if 	p� q�
Symbol� o �� p�q

If the receiver o is true� the argument p is returned� otherwise the
argument q is returned�

Derived Behaviors�
and B and� T boolean� T boolean

Example� o�B and	p�
Symbol� o � p
Derivation� �	�o � �p�

Returns the boolean AND of the receiver o and argument p�

xor B xor� T boolean� T boolean

Example� o�B xor	p�
Symbol� o� p

Derivation� 	o � �p� � 	�o � p�

Returns the EXCLUSIVE OR of the receiver o and arugment
p�

���

T character
Supertypes� T atomic

Subtypes� none
Native Behaviors�
ord B ord� T natural

Example� o�B ord
Symbol�

Returns the ordinal value of the receiver character o�
stringOf B stringOf � T string

Example� o�B stringOf
Symbol�

Returns the string representation of the receiver character o�

���

T string
Supertypes� T atomic

Subtypes� none
Native Behaviors�
car B car� T character

Example� o�B car
Symbol�

Returns the �rst character of the string o� If o is the empty
string� null is returned�

cdr B cdr� T string

Example� o�B cdr
Symbol�

Returns the remainder of the string o with the �rst character
removed� If o is the empty string� null is returned� The resulting
string is always dierent from the receiver string�

concat B concat� T string� T string

Example� o�B concat	p�
Symbol� o jj p

Returns the concatenation of the receiver string o and argument
string p� If one of the strings is the empty string� the other string
is returned� The result string is always dierent from the receiver
and argument strings unless one of them is the empty string�

Derived Behaviors�
substr B substr� T natural� T natural� T string

Example� o�B substr	p� q�
Symbol�
Derivation� Apply B cdr p number of times to skip over the �rst

p characters of the string� Then� beginning with an
empty string� apply B car q number of times and
B concat the string representation of the resulting
characters to the result�

Returns the substring of o starting at position p and continuing
for q number of characters� The �rst character is at position zero�

Other string related behaviors can be easily de�ned in terms of the primitve ones�

���

T real
Supertypes� T atomic

Subtypes� T integer

Native Behaviors�
succ B succ� T real

Example� o�B succ
Symbol�

Returns the �oating point number that follows o� The successor
is rounded up to the precision of a particular system�

pred B pred� T real

Example� o�B pred
Symbol�

Returns the �oating point number that precedes o� The prede�
cessor is truncated to the precision of a particular system�

add B add� T real� T real

Example� o�B add	p�
Symbol� o� p

Returns the �oating point addition of the two reals o and p�

subtract B subtract� T real� T real

Example� o�B subtract	p�
Symbol� o� p

Returns the �oating point subtraction of the two reals o and p�

multiply B multiply � T real� T real

Example� o�B multiply	p�
Symbol� o � p

Returns the �oating point multiplication of the two reals o and
p�

divide B divide� T real� T real

Example� o�B divide	p�
Symbol� o� p

Returns the �oating point division of the two reals o and p�

trunc B trunc� T integer

Example� o�B trunc
Symbol�

Returns the integer resulting from the truncation of the fractional
part of the real o�

round B round� T integer

Example� o�B round
Symbol�

Returns the integer resulting from rounding the fractional part
of the real o�

lessThan B lessThan� T real� T boolean

Example� o�B lessThan	p�
Symbol� o � p

Returns true if the o is less than the p and false otherwise� This
behavior de�nes a total ordering on the domain of reals�

���

Derived Behaviors�
lessThanEQ B lessThanEQ� T real� T boolean

Example� o�B lessThanEQ	p�
Symbol� o � p
Derivation� 	o � p� � 	o � p�

Returns true if the real o is less than or equal to the real p� false

otherwise�
greaterThan B greaterThan� T real� T boolean

Example� o�B greaterThan	p�
Symbol� o � p

Derivation� �		o � p� � 	o � p��

Returns true if the real o is greater than the real p� false otherwise�

greaterThanEQ B greaterThanEQ� T real� T boolean

Example� o�B greaterThanEQ	p�
Symbol� o � p
Derivation� �	o � p�

Returns true if the real o is greater than or equal to the real p�
false otherwise�

���

T integer
Supertypes� T real

Subtypes� T natural

Native Behaviors�
The behaviors inherited from T real are re�ned to produce integer results when both of
the arguments are integer objects�

���

T natural
Supertypes� T integer

Subtypes� none
Native Behaviors�
The behaviors inherited from T integer are re�ned to produce results of type T natural

when both of the arguments are naturals and results of type T integer when the argument
is an integer�

���

Appendix C

Object Model Analysis

In this chapter� a brief discussion of TIGUKAT�s conformance with the guidelines outlined
in the two manifesto papers �ABD���� and �SRL���� is given� Futhermore� TIGUKAT�s
compliance with the recommendations n �FKMT��� is considered� These references are
slightly outdated in terms of current object technology� Nevertheless� they contain many
core concepts important to the development of an object model�

C�� Conformance to Manifestos

Following �MB���� the discussion is organized along the structure of �ABD���� and refers
to �SRL���� periodically� The characteristics of an OBMS are separated in �ABD���� into
mandatory and optional sections� There are also a number of features that the authors
were unable to agree on a classi�cation at the time� Furthermore� they specify several open
design decisions that they thought were best handled by the model designer because no
consensus had been reached on them by the scienti�c community and it was uncertain at
the time which of the alternatives were more or less object�oriented� Each of their issues
are considered in turn�

C���� Mandatory requirements

Complex objects The TIGUKAT model supports complex objects� TIGUKAT is func�
tional in that objects 	and their properties� are only accessible through the applica�
tions of behaviors� The model is uniform in that everything is an object including
behaviors and their implementations� Since behaviors are mappings from objects into
other objects� every object may be considered as a complex object� The TIGUKAT
model does not explicitly incorporate the notion of constructors� Instead� a type that
exhibits the behavior of a desired constructor is de�ned� which is uniform� For exam�
ple� the TIGUKAT model de�nes an atomic integer type whose instances are integers
and whose behaviors are the typical operations on integers�

Object identity The TIGUKAT model supports strong object identity� meaning objects
have a unique� immutable� system managed identity� This contrasts �SRL����� which
emphasizes the importance of user�speci�ed identities� The notion of user identities
are always supportable through behaviors� which are de�ned and managed by the
user� regardless of whether system identities are de�ned or not�

���

Encapsulation The TIGUKAT model fully encapsulates the state of objects whose only
access is through a set of public behaviors de�ned on its type� Objects may be viewed
as instances of abstract data types that de�ne an interface for the objects�

Types and Classes The notions of type and class are separated in TIGUKAT and a
dierent semantics is attached to each one� A type is de�ned as a speci�cation tool
	template� for objects� whereas a class as a grouping construct for instances of a type�
A class has a number of restrictions de�ned on it that imposes a subset inclusion
structure on the groupings of objects� Futhermore� TIGUKAT de�nes collections� not
mentioned in �ABD����� that serve as a general user�speci�ed grouping mechanism�
We feel that the clear separation of these concepts clari�es their roles in an object
model�

Class or Type Hierarchies First of all� the term
hierarchy� is inappropriate here since
not only strict hierarchies are supported� but general directed acyclic graph structures
such as lattices as well� The TIGUKAT model de�nes two categories of
inheritance��
The �rst refers to the inheritance of behavior speci�cations on types 	called behavioral
inheritance� and is de�ned by subtyping relationships on types� The second is an
inheritance mechanism for the methods 	functions in TIGUKAT� that implement
behaviors 	called implementation inheritance�� We are careful to attach individual
semantics to each one� The reason being that behaviors and functions represent two
dierent aspects of a type and their inheritance semantics is orthogonal�

Overriding� overloading and late binding These notions are supported in TIGUKAT
through the separation of the behavioral and implementation inheritance hierarchies�
The semantics of behaviors are separated from their possible implementations 	i�e��
functions�� This means that behaviors may be de�ned on many types 	i�e�� overload�
ing� and that the implementation of the behavior may be dierent 	rede�ned� for each
type 	i�e�� overriding�� Late binding is more a language support issue and is not part
of the formal model de�nition� Whether an implementation is bound to a behavior
for a particular application is up to a compiler for a particular access language� In
general� late binding support is a necessity and is a good idea� However� in certain
cases a compiler may choose to bind implementations to behaviors at compile time
for e�ciency reasons�

Computational completeness Since the TIGUKAT model is functional and uniform�
any computable function can be de�ned and attached to any behavior of a type in
the system� Furthermore� a database programming language for the model is being
developed� We feel that this satis�es the computational completeness requirement�

Extensibility The TIGUKAT model is fully extensible through the operations provided
by the meta�system as described in Chapters � and �� The additional bene�t is that
these operations are uniformly provided as behaviors on primitive types� thus the
same behavior application principles are used to apply them and create new types�
classes� behaviors� functions and so on�

Persistence The TIGUKAT model integrates persistent and transient objects� Persistent
is a characteristic of individual objects� meaning persistence is orthogonal to type� The
manner in which objects can be made persistent or transient is a language issue that is
considered to be part of the database language methodology� The dierent storage and

���

management requirements of persistent and transient objects is an implementation
issue that is outside the object model considerations�

Secondary storage management This is an implementation design issue and is not
part of the object model speci�cation� �SRL���� explicitly states that these kinds of
issues should not be addressed in the data model and we refrain from doing so in the
TIGUKAT model�

Concurrency and recovery This is a consideration for an object transaction model and
is not part of this proposal�

Ad hoc query facility The query model of TIGUKAT is de�ned as a uniform extension
to the object model� thus cleanly integrating the two� The algebraic operations are
developed as behavior extension to the model� A calculus is de�ned for declarative
access to objects and has a complete translation to the algebra for processing from
within the model itself� An SQL�like query language� TQL� has been developed �Lip���
for user�level declarative access to objects� This satis�es the query facility requirement
and provides the unique contribution of a uniform� integrated query model�

C���� Optional Features

Multiple inheritance The TIGUKAT model provides multiple inheritance as explained
in the manifesto papers� However� it is called multiple subtyping in this thesis� A
dierent meaning is attached to the term inheritance� which refers to the reuse of
behaviors and implementations� The general consensus at present is that multiple
subtyping is a mandatory feature of an OBMS and� thus� we feel this feature should
be included as part of the previous section�

Type checking and type inferencing It has already been proven �S�O��a� that much of
the type checking involved in query processing can be performed at compile time�
The query model de�nition supports type inferencing and dynamic schema creation
for deriving type information of queries that return objects of heterogeneous types�

Distribution Distribution is an issue related to the implementation of the model and
should be transparent within the model de�nition itself� The problems associated
with distributed OBMSs are part of the future research�

Design transactions Design transactions are part of a transaction model for the system
which is not considered in this proposal�

Versions A versioning mechanism using time as a supplement of schema evolution has been
developed in this thesis 	see Chapter ��� The results of behaviors are de�ned by their
histories as they change over time� These histories allow us to version objects and
since the model is uniform� it allows us to version types� classes� behaviors� functions
and so forth� The contribution in this area is that the versions of behaviors approach
is new and gives a better integration of versions with other objects�

C���� Undetermined Mandatory or Optional

View de
nition and derived data Views are part of the future work of this research�
A view mechanism with update semantics is being developed for the object model�

���

Database administration utilities This is an implementation consideration and is not
part of the core model de�nition� However� any computable function can be de�ned as
a behavior on objects in the system� Thus� required database administration utilities
may be supplied as behaviors on the primitive types or the type system may be
extended to include objects that facilitate these utilities�

Integrity constraints We have not included integrity constraints in our model de�ni�
tion� Again� it is questionable if these should be part of the core model de�nition�
However� our model has the notion of predicates de�ned on collections� These may
be helpful in easily supporting certain integrity constraints 	e�g��
the salary of all
employees in this collection should be under &��������� Nevertheless� these predicates
are not su�ciently powerful enough to specify constraints over multiple collections
	e�g�� referential integrity�� Furthermore� using the functional nature of our model�
behaviors may be de�ned to automatically maintaining the integrity of objects� That
is� the type implementor de�nes an update interface of behaviors that must be used
to modify objects and maintains the integrity of objects�

Schema Evolution A complete classi�cation of schema changes has been identi�ed and
developed for the model in Chapter �� Time is used to record schema changes� which
helps us to maintain semantic integrity of behaviors and provide versions�

C���� Open Choices

Programming paradigm The TIGUKAT model separates behavior speci�cations from
their possible implementations� which provides implementation independence� Since
functions are a separate primitive in the model� their implementation may be speci�ed
in practically any language� The only requirement is that they must adhere to the
semantics de�ned by their associated behavior�

Representation system The TIGUKAT model de�nes a basic primitive type system
that includes the functionality to uniformly extend all parts of the type system� This
makes for a powerful and fully functional representation system�

Type system As indicated in the point above� the primitive model de�nition includes a
basic type system that is fully extensible�

Uniformity The TIGUKAT model uniformly treats all entities as objects� This includes
all the primitives such as object� type� class� collection� behavior and function� Uni�
formity is an important feature in several respects� From the modeling perspective�
a clean� self�contained description of the model with no dependence on external meta
information can be de�ned 	see Chapter ��� From a language point of view� a single
uniform approach in accessing and manipulating all information in the system can be
de�ned 	see Chapters � and ��� In the query model this means the e�cient query
operators may be uniformly applied to the modeling primitives� thereby providing a
powerful� ad�hoc access mechanism to what is essentially meta�information� In Chap�
ter �� it is shown how this provides re�ection in the model� Uniformity has also been
used to extend the base model with a query optimizer �Mu�n���� temporality �G�O����
schema evolution and version control 	see Chapter ��� and work has begun on an
extensible transaction manager� I feel uniformity is a major contribution of this work�

���

C�� Conformance to OODB Task Group Recommendations

Many of the notions covered by the manifestos are repeated in the ODM reference model
�FKMT���� For this reason� we only point out those recommendations which dier from
the manifestos and which are applicable to the object model component of an OODBMS�

� We use the
classical or messaging object model� paradigm where the recipient of a
behavior is always explicit�

� We de�ne exactly the notion of identity given in the report and use object references
as the
logical identi�ers� of objects�

� We de�ne a much clearer separation of type and class than given�

� As a consequence of the previous point� our de�nitions of subtyping� behavioral inher�
itance and implementation inheritance have a much cleaner separation and semantics�

� We use the notion of
literals� to refer to atomic objects which encapsulate reference�
identity and state�

� We support the argument that the only equality needed in a model de�nition is that
of
identity equal��

The other components of the ODM reference model comply with those covered in Sec�
tion C�� or are related to non�data model issues such as storage management� query models�
transaction management and programming languages�

���

