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TIL: A Type-Directed Optimizing Compiler for MLD. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. LeeSchool of Computer ScienceCarnegie Mellon University5000 Forbes AvenuePittsburgh, PA 15213-38911 IntroductionWe are investigating a new approach to compiling StandardML (SML) based on four key technologies: intensional poly-morphism [23], nearly tag-free garbage collection [12, 46, 34],conventional functional language optimization, and loop op-timization. To explore the practicality of our approach, wehave constructed a compiler for SML called TIL, and arethus far encouraged by the results: On DEC ALPHA work-stations, programs compiled by TIL are roughly three timesfaster, do one-�fth the total heap allocation, and use one-half the physical memory of programs compiled by SML ofNew Jersey (SML/NJ). However, our results are still pre-liminary | we have not yet investigated how to improvecompile time; TIL takes about eight times longer to compileprograms than SML/NJ. Also, we have not yet implementedthe full module system of SML, although we do provide sup-port for structures and separate compilation. Finally, weexpect the performance of programs compiled by TIL to im-prove signi�cantly as we tune the compiler and implementmore optimizations.Two key issues in the compilation of advanced languagessuch as SML are the presence of garbage collection and typevariables. Most compilers use a universal representation forvalues of unknown or variable type. In particular, values areforced to �t into a tagged machine word; values larger thana machine word are represented as pointers to tagged, heap-allocated objects. This approach supports fast garbage col-lection and e�cient polymorphic functions, but can result inine�cient code when types are known at compile time. Evenwith recent advances in SML compilation, such as Leroy'srepresentation analysis [28], values must be placed in a uni-versal representation before being stored in updateable dataThis research was sponsored in part by the Advanced ResearchProjects Agency CSTO under the title \The Fox Project: AdvancedLanguages for Systems Software", ARPA Order No. C533, issued byESC/ENS under Contract No. F19628-95-C-0050, and in part by theNational Science Foundation under Grant No. CCR-9502674, and inpart by the Isaac Newton Institute for Mathematical Sciences, Cam-bridge, England. David Tarditi was also partly supported by anAT&T Bell Labs PhD Scholarship. The views and conclusions con-tained in this document are those of the authors and should not be in-terpreted as representing o�cial policies, either expressed or implied,of the Advanced Research Projects Agency, the U.S. Government, theNational Science Foundation or AT&T.

structures (e.g., arrays) or recursive data structures (e.g.,lists).Intensional polymorphism and tag-free garbage collectioneliminate the need to use a universal representation whencompiling polymorphic languages. TIL uses these technolo-gies to represent many data values \naturally". For ex-ample, TIL provides tag-free, unallocated, word-sized in-tegers; aligned, unboxed oating-point arrays; and unallo-cated multi-argument functions. These natural representa-tions and calling conventions not only improve the perfor-mance of SML programs, but also allow them to interoperatewith legacy code written in languages such as C and Fortran.When types are unknown at compile time, TIL may producemachine code which is slower and bigger than conventionalapproaches. This is because types must be constructed andpassed to polymorphic functions, and polymorphic functionsmust examine the types at run-time to determine appropri-ate execution paths. However, when types are known atcompile time, no overhead is incurred to support polymor-phism or garbage collection.Because these technologies make polymorphic functionsslower, it becomes important to eliminate as many polymor-phic functions at compile time as is possible. Inlining anduncurrying are well-known techniques for eliminating poly-morphic and higher-order functions. We have found thatfor the benchmarks used here, these techniques eliminate allpolymorphic functions and all but a few higher-order func-tions when programs are compiled as a whole.We have also found that applying traditional loop op-timizations to recursive functions, such as common sub-expression elimination and invariant removal, is important.In fact, these optimization reduce execution time by a me-dian of 39%.An important property of TIL is that all optimizationsand the key transformations are performed on typed inter-mediate languages (hence the name TIL). Maintaining cor-rect type information throughout optimization is necessaryto support both intensional polymorphism and garbage col-lection, both of which require type information at run time.By using strongly-typed intermediate languages, we ensurethat type information is maintained in a principled fash-ion, instead of relying upon ad hoc invariants. In fact, us-ing the intermediate forms of TIL, an \untrusted" compilercan produce fully optimized intermediate code, and a clientcan automatically verify the type integrity of the code. Wehave found that this ability has a strong engineering bene�t:type-checking the output of each optimization or transfor-mation helps us identify and eliminate bugs in the compiler.



In the remainder of this paper, we describe the technolo-gies used by TIL in detail, give an overview of the structureof TIL, present a detailed example showing how TIL com-piles ML code, and give performance results of code pro-duced by TIL.2 Overview of the TechnologiesThis section contains a high-level overview of the technolo-gies we use in TIL.2.1 Intensional PolymorphismIntensional polymorphism [23] eliminates restrictions on datarepresentations due to polymorphism, separate compilation,abstract datatypes, and garbage collection. It also supportse�cient calling conventions (multiple arguments passed inregisters) and tag-free polymorphic, structural equality.With intensional polymorphism, types are constructedand passed as values at run time to polymorphic functions,and these functions can branch based on the types. Forexample, when extracting a value from an array, TIL uses atypecase expression to determine the type of the array andto select the appropriate specialized subscript operation:fun sub[�](x:� array, i: int) =typecase � ofint => intsub(x, i)| oat => floatsub(x, i)| ptr(�) => ptrsub(x, i)If the type of the array can be determined at compile-time,then an optimizer can eliminate the typecase:sub[oat](a, 5) ,! floatsub(a, 5)However, intensional polymorphism comes with two costs.First, we must construct and pass representations of types topolymorphic functions at run time. Furthermore, we mustcompile polymorphic functions to support any possible rep-resentation and insert typecase constructs to select the ap-propriate code paths. Hence, the code we generate for poly-morphic functions is both bigger and slower, and minimizingpolymorphism becomes quite important.Second, in order to use type information at run time, forboth intensional polymorphism and tag-free garbage collec-tion, we must propagate types through each stage of compi-lation. To address this second problem, almost all compila-tion stages, including optimization and closure conversion,are expressed as type-directed, type-preserving translationsto strongly-typed intermediate languages.The key di�culty with using typed intermediate lan-guages is formulating a type system that is expressive enoughto statically type check terms that branch on types at runtime, such as sub. The type system used in TIL is basedon the approach suggested by Harper and Morrisett [23, 33].Types themselves are represented as expressions in a simply-typed �-calculus extended with an inductively generatedbase kind (the monotypes), and a corresponding inductionelimination form. The induction elimination form is es-sentially a \Typecase" at the type level; this allows us towrite type expressions that track the run-time control owof term-level typecase expressions. Nevertheless, the typesystem used by TIL remains both sound and decidable. Thisimplies that at any stage during optimization, we can auto-matically verify the type integrity of the code.

2.2 Conventional and Loop-Oriented Opti-mizationsProgram optimization is crucial to reducing the cost of in-tensional polymorphism,improving loops and recursive func-tions, and eliminating higher-order and polymorphic func-tions. TIL employs optimizations found in conventionalfunctional language compilers, including inlining, uncurry-ing, dead-code elimination, and constant-folding. In addi-tion, TIL does a set of generalized \loop-oriented" optimiza-tions to improve recursive functions. These optimizations in-clude common-subexpression elimination, invariant removal,and array-bound check removal. In spite of the large num-ber of di�erent optimizations, each optimization producestype-correct code.TIL applies optimizations across entire compilation units.This makes it more likely that inlining and uncurrying willeliminate higher-order functions, which are likely to interferewith the loop-oriented optimizations. Since the optimiza-tions are applied to entire compilation units (which may bewhole programs), we paid close attention to algorithmic e�-ciency of individual optimization passes. Most of the passeshave an O(N logN) worst-case asymptotic complexity (ex-cluding checking types for equality), where N is programsize.2.3 Nearly Tag-Free Garbage CollectionNearly tag-free garbage collection uses type information toeliminate data representation restrictions due to garbagecollection. The basic idea is to record enough represen-tation information at compile time so that, at any pointwhere a garbage collection can occur, it is possible to deter-mine whether or not values are pointers and hence must betraced by the garbage collector. Recording the informationat compile time makes it possible for code to use untaggedrepresentations. Unlike so-called conservative collectors (seefor example [10, 14]), the information recorded by TIL issu�cient to collect all unreachable objects.Collection is \nearly" tag-free because tags are placedonly on heap-allocated data structures (records and arrays);values in registers, on the stack, and within data structuresremain tagless. We construct the tags for monomorphicrecords and arrays at compile time. For records or arrayswith unknown component types, we may need to constructtags partially at run time. As with other polymorphic oper-ations, we use intensional polymorphism to construct thesetags.Registers and components of stack frames are not tagged.Instead, we generate tables at compile time that describethe layout of registers and stack frames. We associate thesetables with the addresses of call sites within functions atcompile time. When garbage collection is invoked, the col-lector scans the stack, using the return address of each frameas an index into the table. The collector looks up the lay-out of each stack-frame to determine which stack locationsto trace. We record additional liveness information for eachvariable to avoid tracing pointers that are no longer needed.This approach is well-understood for monomorphic lan-guages requiring garbage collection [12]. Following Tolmach[46], we extended it to a polymorphic language as follows:when a variable whose type is unknown is saved in a stackframe, the type of the variable is also saved in the stackframe. However, unlike Tolmach, we evaluate substitutions



of ground types for type variables eagerly instead of lazily.This is due in part for technical reasons (see [33, Chapter7]), and in part to avoid a class of space leaks that mightresult with lazy substitution.3 Compilation Phases of TILFigure 1 shows the various compilation phases of TIL. Thephases through and including closure conversion use a typedintermediate language. The phase after closure conversionuse an untyped language where variables are annotated withgarbage collection information. The low-level phases of thecompiler use languages where registers are annotated withgarbage collection information.The following sections describe the phases of TIL andthe intermediate languages they use in more detail.3.1 Front-endThe �rst phase of TIL uses the front-end of the ML Kitcompiler [8] to parse and elaborate (type check) SML sourcecode. The Kit produces annotated abstract syntax for all ofSML and then compiles a subset of this abstract syntax toan explicitly-typed core language called Lambda. The com-pilation to Lambda eliminates pattern matching and variousderived forms.We extended Lambda to support signatures, structures(modules), and separate compilation. Each source moduleis compiled to a Lambda module with an explicit list ofimported modules and their signatures. Imported signa-tures may include transparent de�nitions of types de�ned inother modules; hence TIL supports a limited form of translu-cent [22] or manifest types [29]. Currently, the mapping toLambda does not handle signatures, nested structures, orfunctors. In principle, however, all of these constructs aresupported by TIL's intermediate languages.3.2 Lmli and Type-Directed OptimizationsLmli, which stands for �MLi [23], is an intensionally polymor-phic language that provides explicit support for construct-ing, passing, and analyzing types at run-time. We use theseconstructs in the translation of Lambda to Lmli to providee�cient data representations for user-de�ned datatypes, multi-argument functions, tag-free polymorphic equality, and spe-cialized arrays.After the conversion from Lambda to Lmli, TIL performsa series of type-directed optimizations. SML provides onlysingle-argument functions; multiple arguments are passed ina record. The �rst optimization, argument attening, trans-lates each function which takes a record as an argument toa function which takes the components of the record as mul-tiple arguments. These arguments are passed in registers,avoiding allocation to create the record and memory op-erations to access record components. If a function takesan argument of variable type �, then we use typecase todetermine the proper calling convention, according to theinstantiation of � at run time.As with functions, datatype constructors in SML takea single argument. For example, the cons data construc-tor (::) for an � list takes a single record, consisting ofan � value and an � list value. Naively, such a construc-tor is represented as a pair consisting of a tag (e.g., cons),

and a pointer to the record containing the � value and the� list value. The tag is a small integer value used to distin-guish among the constructors of a datatype (e.g., nil vs.::). Constructor attening rewrites all constructors thattake records as arguments so that the components of therecords are attened. In addition, constructor atteningeliminates tag components when they are unneeded. Forexample, cons applied to (hd,tl) is simply represented as apointer to the pair (hd,tl), since such a pointer can alwaysbe distinguished from nil. If the constructor takes an argu-ment of unknown type, then we use typecase to determinethe proper representation, according to the instantiation of� at run time.Because lists are used often in SML, the SML/NJ com-piler also attens cons cells (and other constructors). How-ever, in violation of the SML De�nition [31], SML/NJ pre-vents programmers from abstracting the type of these con-structors, in order to prevent representation mismatches be-tween de�nitions of abstract datatypes and their uses [3]. Incontrast, TIL supports fully abstract datatype components,but uses intensional polymorphism to determine representa-tions of abstract datatypes, potentially at run time.In addition to specializing calling conventions and datatypes,the conversion from Lambda to Lmli makes polymorphicequality explicit as a term in the language. Also, arrays arespecialized into one of three cases: int arrays, oat arrays,and pointer arrays. Intensional polymorphism is used toselect the appropriate creation, subscript, and update oper-ations for polymorphic arrays.Finally, TIL boxes all oating point values, except forvalues stored in oating-point arrays. We chose to boxoats to make record operations faster, since typical SMLcode manipulates many records but few oats. The is-sue is that oating-point values are 64 bits, while otherscalars and pointers are 32 bits. If oats were unboxed, thenrecord o�set calculations could not always be done at com-pile time. Fortunately, the optimizer later eliminates un-ecessary box/unbox operations during the constant-foldingphase, so straight-line oating point code still runs fast.In all, the combination of type-directed optimizations re-duce running times by roughly 40% and allocation by 50%[33, Chapter 8]. However, much of this improvement canbe realized by other techniques; For example, SML/NJ usesLeroy's unboxing technique to achieve comparable improve-ments for calling conventions [42]. The advantage of ourapproach is that we use a single mechanism (intensionalpolymorphism) to specialize calling conventions, atten con-structors, unbox oating-point arrays, and eliminating tagsfor both polymorphic equality and garbage collection.3.3 OptimizationsTIL employs an extensive set of optimizations. The opti-mizations include most of those typically done by compilersfor functional languages. They also include loop-orientedoptimizations, such as invariant removal, applied to recur-sive functions.TIL �rst translates Lmli to a subset of Lmli called Bform.Bform, based on A-Normal-Form [18], is a more regular in-termediate language than Lmli that facilitates optimization.The translation from Lmli names all intermediate computa-tions and binds them to variables by a let-construct. Italso names all potentially heap-allocated values, includingstrings, records and functions. Finally, it allows nested
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let expressions only within switches (branch expressions).Hence, the translation from Lmli to Bform linearizes andnames nested computations and values.After translation to Bform, TIL performs the followingconventional transformations:� alpha-conversion: Bound variables are uniquely re-named.� dead-code elimination: unreferenced, pure expres-sions and functions are eliminated.� uncurrying: Curried functions are transformed tomulti-argument functions, when possible.� constant folding: Arithmetic operations, switches,and typecases on constant values are reduced, as wellas projections from known records.� sinking: Pure expressions used in only one branch ofa switch are pushed into that branch. However, suchexpressions are not pushed into function de�nitions.� inlining: Non-escaping functions that are called onlyonce are always inlined. Small, non-recursive functionsare inlined in a bottom-up pass. Recursive functionsare never (directly) inlined.� inlining switch continuations: The continuation ofa switch is inlined when all but one branch raises anexception. For example, the expressionlet x = if y then e2 else raise e3in e4endis transformed toif y then let x = e2 in e4 end else raise e3.This makes expressions in e2 available within e4 foroptimizations like common sub-expression elimination.� minimizing �x: Mutually-recursive functions are bro-ken into sets of strongly connected components. Thisimproves inlining and dead code elimination, by sepa-rating non-recursive and recursive functions.In addition to these standard functional language trans-formations, TIL also applies loop-oriented optimizations torecursive functions:� common subexpression elimination (CSE): Givenan expressionlet x = e1in e2endif e1 is pure or the only e�ect it may have is to raise anexception, then all occurrences of e1 in e2 are replacedwith x. The only expressions that are excluded fromCSE are side-e�ecting expressions and function calls.� eliminating redundant switches: Given an expres-sionlet x = if z thenlet y = if z then e1 else e2in ...

the nested if statement is replaced by e1, since z isalways true at that point.� invariant removal: Using the call graph, we calcu-late the nesting depth of each function. (Nesting-depthis analogous to loop-nesting depth in languages like C.)TIL assigns a let-bound variable and the expressionit binds a nesting depth equal to that of the nearestenclosing function. For every pure expression e, if allfree variables of e have a nesting depth less than e, TILmoves the de�nition of e right after the de�nition ofthe free variable with the highest lexical nesting depth.� hoisting: All constant expressions are hoisted to thetop of the program. An expression is a constant ex-pression if it uses only constants or variables bound toconstant expressions.� eliminating redundant comparisons: A set of sim-ple arithmetic relations of the form x < y is propagatedtop-down through the program. A \rule-of-signs" ab-stract interpretation is used to determine signs of vari-ables. This information is used to eliminate array-bounds checks and other tests.TIL applies the optimizations as follows: �rst, it per-forms a round of reduction optimizations, including dead-code elimination, constant folding, inlining functions calledonce, CSE, eliminating redundant switches, and invariantremoval. These optimizations do not increase program sizeand should result in faster code. It iterates these optimiza-tions until no further reductions occur. Then it performsswitch-continuation inlining, sinking, uncurrying, compar-ison elimination, �x minimizing, and inlining. The entireprocess, starting with the reduction optimizations, is iter-ated two or more times.3.4 Closure conversionTIL uses a type-directed, abstract closure conversion in thestyle suggested by Minamide, Morrisett, and Harper [32] toconvert Lmli-Bform programs to to Lmli-Closure programs.Lmli-Closure is an extension of Lmli-Bform that providesconstructs for explicitly constructing closures and their en-vironments.For each escaping Bform function, TIL generates a closedpiece of code, a type environment, and a value environment.The code takes the free type variables and free value vari-ables of the original function as extra arguments. The typesand values corresponding to these free variables are placed inrecords. These records are paired with the code to form anabstract closure. TIL uses a at environment representationfor type and value environments [5].For known functions, TIL generates closed code but avoidscreating environments or a closure. Following Kranz [27], wemodify the call sites of known functions to pass free variablesas additional arguments.TIL closes over only variables which are function argu-ments or are bound within functions. The locations of other\top-level" variables are resolved at compile-time throughtraditional linking, so their values do not need to be storedin a closure.



3.5 Conversion to an untyped languageTo simplify the conversion to low-level assembly code, TILtranslates Lmli-Closure programs to an untyped languagecalled Ubform. Ubform is a much simpler language thanLmli, since similar type-level and term-level constructs arecollapsed to the same term-level constructor. For exam-ple, in the translation from Lmli-Closure to Ubform, TILreplaces typecase with a conventional switch expression.This simpli�es generation of low-level code, since there aremany fewer cases.TIL annotates variables with representation informationthat tells the garbage collector what kinds of values variablesmust contain (e.g., pointers, integers, oats, or pointers tocode). The representation of a variable x may be unknownat compile time, in which case the representation informa-tion is the name of the variable y that will contain the typeof x at run time.3.6 Conversion to RTLNext TIL converts Ubform programs to RTL,a register-transferlanguage similar to ALPHA or other RISC-style assemblylanguage. RTL provides an in�nite number of pseudo-registerseach of which is annotated with representation informa-tion. Representation information is extended to includelocatives, which are pointers into the middle of objects.Pseudo-registers containing locatives are never live across apoint where garbage collection can occur. RTL also providesheavy-weight function call and return mechanisms, and aform of interprocedural goto for implementing exceptions.The conversion of Ubform to RTL decides whether Ub-form variables will be represented as constants, labels, orpseudo-registers. It also eliminates exceptions, inserts tag-ging operations for records and arrays, and inserts garbagecollection checks.3.7 Register allocation and assemblyBefore doing register allocation, TIL converts RTL programsto ALPHA assembly language with extensions similar tothose for RTL. Then TIL uses conventional graph-coloringregister allocation to allocate physical registers for the pseudo-registers. It also generates tables describing layout andgarbage collection information for each stack frame, as de-scribed in Section 2.3. Finally, TIL generates actual ALPHAassembly language and invokes the system assembler, whichdoes instruction scheduling and creates a standard object�le.4 An exampleThis section shows an ML function as it passes through thevarious stages of TIL. The following SML code de�nes a dotproduct function that is the inner loop of the integer matrixmultiply benchmark:val sub2 : 'a array2 * int * int -> 'afun dot(cnt,sum) =if cnt<bound thenlet val sum'=sum+sub2(A,i,cnt)*sub2(B,cnt,j)in dot(cnt+1,sum')endelse sum

The function sub2 is a built-in 2-d array subscript functionwhich the front end expands tofun sub2 (fcolumns,rows,vg, s :int, t:int) =if s <0 orelse s>=rows orelse t<0 orelset>=columns then raise Subscriptelse unsafe sub1(v,s * columns + t)Figures 2 through 7 show the actual intermediate codecreated as dot and sub2 pass through the various stagesof TIL. For readability, we have renamed variables, erasedtype information, and performed some minor optimizations,such as eliminating selections of �elds from known records.Figure 2 shows the functions after they have been con-verted to Lmli. The sub2 function takes a type as an ar-gument. A function parameterized by a type is written as�t., while a function parameterized by a value is written as�i. In the dot function, the sub2 function is �rst applied toa type and then applied to its actual values. Each functiontakes only one argument, often a record, from which �eldsare selected. The quality of code at this level is quite poor:there are eight function applications, four record construc-tions, and numerous checks for array bounds.Figure 3 shows the Lmli fragment after it has been con-verted to Lmli-Bform. Functions have been transformed totake multiple arguments instead of records and every inter-mediate compuation is named.Figure 4 shows the Lmli-Bform fragment after it has beenoptimized. All the function applications in the body of theloop have been eliminated. psub ai(av,a) is an applica-tion of the (unsafe) integer array subscript primitive. All ofthe comparisons for array bounds checking have been safelyeliminated, and the body of the loop consists of 9 expres-sions. This loop could be improved even further; we have yetto implement any form of strength reduction and inductionvariable elimination.Figure 5 shows the Lmli-Bform fragment after it has beenconverted to Ubform. Each variable is now annotated withrepresentation information, to be used by the garbage col-lector. INT denotes integers and TRACE denotes pointers totagged objects. The function is now closed, since it wasclosure converted before converting to Ubform.Figure 6 shows the Ubform fragment after it has beenconverted to RTL. Every pseudo-register is now annotatedwith precise representation information for the collector.The representation information has been extended to in-clude LOCATIVE, which denotes pointers into the middle oftagged objects. Locatives cannot be live across garbage-collection points. The (*) indicates points where the psub aiprimitive has been expanded to two RTL instructions. Thisindicates that induction-variable elimination would also bepro�table at the RTL level. The return instruction's operandis a pseudo-register containing the return address.Figure 7 shows the actual DEC ALPHA assembly lan-guage generated for the dot function. The code betweenL1 and L3 corresponds to the RTL code. The other codeis epilogue and prologue code for entering and exiting thefunction. Note that no tagging operations occur anywherein this function.5 PerformanceIn this section, we compare the performance of programscompiled by TIL against programs compiled by the SML/NJ



sub2 =let fix f = �ty.let fix g = �arg.let a = (#0 arg)s = (#1 arg)t = (#2 arg)columns = (#0 a)rows = (#1 a)v = (#2 a)check =let test1 = plst i(s,0)in Switch enum test of1 => �.enum(1)| 0 => �.let test2 = pgte i(s,rows)in Switch enum test2 of1 => �.enum(1)| 0 => �.let test3 = plst i(t,0)in Switch enum test3 of1 => �.enum(1)| 0 => �.pgte i(t,columns)endendendin Switch enum check of1 => �.raise Subscript| 0 => �.unsafe sub1 [ty] fv,t + s * columnsgendin gin fendfix dot=�i.let cnt = (#0 i)sum = (#1 i)d = plst i(cnt,bound)in Switch enum dof 1 => �.let sum' = sum +((sub2 [int]) fA,i,cntg) *((sub2 [int]) fB,cnt,jg)in dotfcnt+1,sum'gend| 0 => �.sumend Figure 2: After conversion to Lmlisub2 = ...fix dot = �cnt,sum.let test = plst i(cnt, bound)r =Switch enum test of1 => �.let a = sub2[int]b = a(A,i,cnt)c = sub2[int]d = c(B,cnt,j)e = b*df = sum+eg = cnt+1h = dot(g,f)in hend| 0 => �.sumin rendFigure 3: Lmli-Bform before optimization

fix dot =�cnt,sum.let test = plst i(cnt,bound)r = Switch enum test of1 =>�.let a = t1 + cntb = psub ai(av,a)c = columns * cntd = j + ce = psub ai(bv,d)f = b*eg = sum+fh = 1+cnti = dot(h,g)in iend| 0 => �.sumin rendFigure 4: Lmli-Bform after optimization
fix dot =�bound:INT,columns:INT,bv:TRACE,av:TRACE,t1:INT,j:INT,cnt:INT,sum:INT.let test:INT = pgtt i(bound,cnt)r:INT =Switchint test of1 =>let a:INT = t1 + cntb:INT = psub ai(av,a)c:INT = columns * cntd:INT = j + ce:INT = psub ai(bv,d)f:INT = b*eg:INT = sum+fh:INT = 1+cnti:INT = dot(bound,columns,bv,av,t1,j,h,g)in iend| 0 => sumin rend : INTFigure 5: After conversion to Ubform



dot(([bound(INT),columns(INT),bv(TRACE),av(TRACE),t1(INT),j(INT),cnt(INT),sum(INT)],[]))f L0: pgt bound (INT) , cnt(INT) , test(INT)bne test(INT),L1mv sum(INT),result (INT)br L2L1: addl t1(INT) , cnt(INT) , a(INT)(*) s4add a(INT) , av(TRACE) , t2(LOCATIVE)(*) ldl b(INT) , 0(t2(LOCATIVE))mull columns(INT) , cnt(INT) , c (INT)addl j(INT) , c(INT) , d (INT)(*) s4add d (INT) , bv(TRACE) , t3(LOCATIVE)(*) ldl e (INT) , 0(t3 (LOCATIVE))mull/v b (INT) , e (INT) , f(INT)addl/v sum(INT) , f (INT) , g (INT)addl/v cnt(INT) , 1 , h (INT)trapbmv h (INT),cnt(INT)mv g (INT),sum(INT)br L0L2: return retreg(LABEL) gFigure 6: After conversion to RTLcompiler. Wemeasure execution time, heap allocation, phys-ical memory requirements, executable size, and compile time.We also measure the e�ect of loop optimizations. Furtherperformance analysis of TIL appears in Morrisett's [33] andTarditi's theses [45].5.1 BenchmarksTable 1 describes the benchmark programs, which range insize from 62 lines to about 2000 lines of code. Some of theseprograms have been used previously for measuring ML per-formance [5, 16]. The benchmarks cover a range of appli-cation areas including scienti�c computing, list-processing,systems programming, and compilers.We compiled the programs as single closed modules. ForLexgen and Simple, which are standard benchmarks [5], weeliminated functors by hand because TIL does not yet sup-port the full SML module language. Because whole pro-grams were given to the compiler, we found that the opti-mizer naturally eliminated all polymorphic functions. Con-sequently, for this benchmark suite, there was no run-timecost to support intensional polymorphism.We extended the built-in ML types with safe 2-dimensionalarrays. The 2-d array operations do bounds checking on eachdimension and then use unsafe 1-d array operations. Arraysare stored in column-major order.5.2 Comparison against SML/NJWe compared the performance of TIL against SML/NJ inseveral dimensions: execution time, total heap allocation,physical memory footprint, the size of the executable, andcompilation time.For TIL, we compiled programs with all optimizationsenabled. For SML/NJ, we compiled programs using the de-fault optimization settings. We used a recent internal releaseof SML/NJ (a variant of version 1.08), since it produces codethat is about 35% faster than the current standard release(0.93) of SML/NJ [41].

.ent Lv2851 dot 205955# arguments : [$bound,$0] [$columns,$1] [$bv,$2]# [$av,$3] [$t1,$4] [$j,$5]# [$cnt,$6] [$sum,$7]# results : [$result,$0]# return addr : [$retreg,$26]# destroys : $0 $1 $2 $3 $4 $5 $6 $7 $27Lv2851 dot 205955:.mask (1 << 26), -32.frame $sp, 32, $26.prologue 1ldgp $gp, ($27)lda $sp, -32($sp)stq $26, ($sp)stq $8, 8($sp)stq $9, 16($sp)mov $26, $27L1: cmplt $6, $0, $8bne $8, L2mov $7, $1br $31, L3L2: addl $4, $6, $8s4addl $8, $3, $8ldl $8, ($8)mull $1, $6, $9addl $5, $9, $9s4addl $9, $2, $9ldl $9, ($9)mullv $8, $9, $8addlv $7, $8, $7addlv $6, 1, $6trapbbr $31, L1L3: mov $1, $0mov $27, $26ldq $8, 8($sp)ldq $9, 16($sp)lda $sp, 32($sp)ret $31, ($26), 1.end Lv2851 dot 205955Figure 7: Actual DEC ALPHA assembly language



Program lines DescriptionChecksum 241 Checksum fragment from the Foxnet [7], doing 5000 checksums on a 4096-bytearray.FFT 246 Fast fourier transform, multiplying polynomials up to degree 65,536Knuth-Bendix 618 An implementation of the Knuth-Bendix completion algorithm.Lexgen 1123 A lexical-analyzer generator [6], processing the lexical description of StandardML.Life 146 The game of Life implemented using lists [39].Matmult 62 Integer matrix multiply, on 200x200 integer arrays.PIA 2065 The Perspective Inversion Algorithm [47] deciding the location of an object in aperspective video image.Simple 870 A spherical uid-dynamics program [17], run for 4 iterations with grid size of 100.Table 1: Benchmark ProgramsTIL always pre�xes a set of operations on to each mod-ule that it compiles, in order to facilitate optimization. This\inline" prelude contains 2-d array operations, commonly-used list functions, and so forth. To avoid handicappingSML/NJ, we created separate copies of the benchmark pro-grams for SML/NJ, and placed equivalent \prelude" codeat the beginning of each program by hand.Since TIL creates stand-alone executables, we used theexportFn facility of SML/NJ to create stand-alone programs.The exportFn function of SML/NJ dumps part of the heapto disk and throws away the interactive system.We measured execution time on DECALPHAAXP 3000/-300LX workstations, running OSF/1, version 2.0, using theUNIX getrusage function. For SML/NJ, we started timingafter the heap had been reloaded. For TIL, we measured theentire execution time of the process, including load time. Wemade 5 runs of each program on an unloaded workstationand chose the lowest execution time. Each workstation had96MBytes of physical memory, so paging was not a factor inthe measurements.We measured total heap allocation by instrumenting theTIL run-time system to count the bytes allocated. We usedexisting instrumentation in the SML/NJ run-time system.We measured the maximum amount of physical memoryduring execution using getrusage. We used the size pro-gram to measure the size of executables for TIL. For SML/NJ,we used the size program to measure the size of the run-time system and then added the size of the heap createdby exportFn. Finally, we measured end-to-end compilationtime, including time to assemble �les produced by TIL.Figures 8 through 11 present the measurements. Foreach benchmark, measurements for TIL were normalized tothose for SML/NJ and then graphed. SML/NJ performanceis the 100% mark on all the graphs.Figure 8 presents relative running times. On average,programs compiled by TIL run 3.3 times faster than pro-grams compiled by SML/NJ. In fact, all programs exceptKnuth-Bendix and Life are substantially faster when com-piled by TIL. We speculate that less of a speed-up is seenfor Knuth-Bendix and Life because they make heavy use oflist-processing, which SML/NJ does a good job of compiling.Figure 9 compares the relative amounts of heap alloca-tion. On average, the amount of data heap-allocated by theTIL program is about 17% of the amount allocated by theSML/NJ program. This is not surprising, because TIL usesa stack while SML/NJ allocates frames on the heap.Figure 10 presents the relative maximum amounts of

25%50%75%100%125%
Cksum FFT KB lexgen Life Mmult PIA SIMPLEFigure 8: TIL Execution Time Relative to SML/NJphysical memory used. On average, TIL programs use halfthe memory used by SML/NJ programs. We see that oating-point programs use the least amount of memory relative tocomparable SML/NJ programs. We speculate that this isdue to TIL's ability to keep oating values unboxed whenstored in arrays.TIL stand-alone programs are about half the size of stand-alone heaps and the runtime system of SML/NJ. The di�er-ence in size is mostly due to the di�erent sizes of the runtimesystems and standard libraries for the two compilers. (TIL'sruntime system is about 100K, while SML/NJ's runtime isabout 425K.) The program sizes for TIL con�rm that gener-ating tables for nearly tag-free garbage collection consumesa modest amount of space, and that the inlining strategyused by TIL produces code of reasonable size.Figure 11 compares compilation times for TIL and SML/NJ.SML/NJ does much better than TIL when it comes to com-pilation time, compiling about eight times faster. However,we have yet to tune TIL for compilation speed.5.3 Loop-Oriented OptimizationsWe also investigated the e�ect of the loop-oriented optimiza-tions (CSE, invariant removal, hoisting, comparison elimi-nation, and redundant switch elimination). For each bench-mark, we compared performance with the loop optimiza-tions against performance without the loop optimizations.



25%50%75%100% Cksum FFT KB Lexgen Life Mmult PIA SIMPLEFigure 9: TIL Heap Allocation Relative to SML/NJ
25%50%75%100% Cksum FFT KB Lexgen Life Mmult PIA SIMPLEFigure 10: TIL Physical Memory Used Relative to SML/NJ
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Cksum FFT KB Lexgen Life Mmult PIA SIMPLEFigure 12: E�ects of Loop OptimizationsFigure 12 presents the ratios of execution time with the loopoptimizations to execution time without the loop optimiza-tions, and similar ratios for total heap allocation. The loopoptimizations reduce execution time by 0 to 83%, with amedian reduction of 39%. The e�ect on heap allocationranges from an increase of 20% to a decrease of 96.5%, witha median decrease of 10%.For matmult, the matrix multiplication function is smallenough that the optimizer inlines it, making the array di-mensions known. If the array dimensions are held unknown,then the loop optimizations speed up matmult by a factor of2.5.6 Related WorkMorrison et al. used an \ad-hoc" approach to implementpolymorphism in their implementation of Napier '88 [35]. Inparticular, they passed representations of types to polymor-phic routines at run-time to determine behavior. However,to our knowledge, Napier '88 did not use types to implementtag-free garbage collection. Also, there is no description ofthe internals of the Napier '88 compiler, nor is there an ac-count of the performance of code generated by the compiler.Peyton Jones and Launchbury suggested that types couldbe used to unbox values in a polymorphic language [26].However, they only supported a limited set of \unboxedtypes" (ints and oats) and restricted these types from in-stantiating type variables. Later, Leroy suggested a gen-eral approach for unboxing values based on the ML typesystem [28]. Leroy's approach has been extended andimplemented elsewhere [38, 24, 42], including the SML/NJcompiler. It does not support unboxed array componentsnor attened, recursive datatypes. Tolmach [46] combinedLeroy's approach with tag-free garbage collection. However,he used an ad hoc approach to propagate type informationto the collector.Other researchers have suggested that polymorphism shouldbe eliminated entirely at compile time [9, 25, 21], in the styleof C++ templates [44]. This prevents separate compilationof a polymorphic de�nition from its uses. In contrast, in-tensional polymorphism, and in particular the intermediateforms of TIL, support separate compilation of polymorphic



de�nitions, though we have yet to take advantage of this.Tag-free garbage collection was originally proposed formonomorphic languages like Pascal, but has been used else-where [12, 11, 48, 15]. Britton suggested associating typeinformation with return addresses on the stack [12]. Appelsuggested extending this technique to ML by using uni�ca-tion [4]. Goldberg and Gloger improved Appel's algorithm[20, 19]. None of the uni�cation-based algorithms were im-plemented due to the complexity of the algorithms and theoverhead of performing uni�cation during garbage collec-tion.Aditya, Flood, and Hicks used type-passing to supportfully tag-free garbage collection for Id [1]. Independently,Tolmach [46] implemented a type-passing garbage collec-tion algorithm for ML. Our approach di�ers from othersby using \nearly" tag-free collection. In particular, recordsand arrays on the heap are tagged. Another di�erence isthat we calculate type environments eagerly, while the otherimplementations construct type environments lazily duringgarbage collection.Loop-oriented optimizations are well-known for imper-ative languages [2]. However, few results are reported forLisp, Scheme, and ML. Appel [5] and Serrano [40] reportcommon-subexpression elimination optimizations similar toours. Appel found that CSE was not useful in the SML/NJcompiler. Serrano restricted CSE to pure expressions, whileour CSE handles expressions which may raise exceptions.7 Conclusions and future workOur results show that for core-SML programs compiled asa whole, intensional polymorphism can remove restrictionson data representation, yet cost literally nothing due to thee�ectiveness of optimization. They also show that loop op-timizations can improve program performance signi�cantly.These results suggest that ML can be compiled as well asconventional languages such as Pascal. TIL produces codethat is similar in many important respects to code producedby Pascal and C compilers. For example, most function callsare known, since few higher-order functions are left, integersare untagged, and most code is monomorphic.There are numerous areas that we would like to investi-gate further. We would like to explore the e�ect of separatecompilation. With separate compilation, polymorphic func-tions may be compiled separately from their uses, leading tosome cost for intensional polymorphism. We would like tomeasure this cost and explore what kinds of optimizationscan reduce it.Another direction we would like to investigate is how thisapproach performs for larger programs. We would like toadd support for more of the ML module system, since largeML programs make extensive use of the module system. Wewould also like to improve TIL's compile times, so that largeprograms can also be compiled as a whole.Finally, we would like to continue improving the per-formance of ML programs. We would like to extend ourregister allocation strategy along the lines of Chow [13] orSteenkiste [43]. We would also like to investigate moreloop optimizations, such as strength-reduction, induction-variable elimination, and loop unrolling. On a more specu-lative note, we would like to explore stack allocation of datastructures.
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