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ABSTRACT

Motivation: Tiling array is a new type of microarray that can be used to
survey genomic transcriptional activities and transcription factor bind-
ing sites at high resolution. The goal of this paper is to develop effective
statistical tools to identify genomic loci that show transcriptional or
protein binding patterns of interest.

Results: A two-step approach is proposed and is implemented in
TileMap. In the first step, a test-statistic is computed for each probe
based on a hierarchical empirical Bayes model. In the second step,
the test-statistics of probes within a genomic region are used to infer
whether the region is of interest or not. Hierarchical empirical Bayes
model shrinks variance estimates and increases sensitivity of the
analysis. It allows complex multiple sample comparisons that are
essential for the study of temporal and spatial patterns of hybridiz-
ation across different experimental conditions. Neighboring probes
are combined through a moving average method (MA) or a hidden
Markov model (HMM). Unbalanced mixture subtraction is proposed
to provide approximate estimates of false discovery rate for MA and
model parameters for HMM.

Availability: TileMap is freely available at http://biogibbs.stanford.
edu/~jihk/TileMap/index.htm

Contact: whwong@stanford.edu

Supplementary information: http://biogibbs.stanford.edu/~jihk/
TileMap/index.htm (includes coloured versions of all figures)

1 INTRODUCTION

Markov model (HMM) method proposed by kt al. (2005). The
available tools are not sufficient to meet the diversified needs of the
biology community. For example, current tools mainly rely on one-
sample and two-sample comparisons. However, in order to study
a complex developmental process, one may need to do tiling array
experiment under a number of different developmental stages and
identify genomic loci with specific temporal or spatial transcriptional
or transcription factor binding patterns. This will inevitably involve
sophisticated multiple-sample comparisons that current tools cannot
handle. Moreover, if one wishes to do experiment under multiple
conditions, the number of replicates within each condition will be
small owing to the cost constraint. How to make efficient use of
the small number of replicates was not specifically considered in
previous works.

The goal of this paper is to develop effective statistical models and
algorithms to detect genomic loci that show hybridization patterns of
interest. We will emphasize the tool’s ability to do flexible multiple
sample comparisons and to make efficient use of a small number of
replicates. A two-step approach, TileMap, is proposed. In the first
step, atest-statisticis computed for each probe based on a hierarchical
empirical Bayes model. In the second step, test-statistics of probes
within a genomic region are combined to infer whether the region
has the hybridization pattern of interest or not. Hierarchical empirical
Bayes model shrinks variance estimates and increases sensitivity of
the analysis when the number of replicates is small. It also provides
a flexible way to do complex multiple sample comparisons. Two

Tiling array is a new type of microarray that interrogates genomedglifferent methods—an MA method and an HMM—are used to com-
with high-density probes. In a typical tiling array, probes are dis-bine neighboring probes. Unbalanced mixture subtraction (UMS) is
tributed along chromosomes approximately evenly at a density oproposed to provide an approximate estimate of local false discovery
one probe per 10-100 bp. When hybridized with RNA or chromatinrate for MA and model parameters for HMM. Cawletyal.'s (2004)
immunoprecipitation (ChlP) samples, the array will detect genomicchromosome 21 and 22 ChIP-chip experiment data are used to test
loci that show transcriptional or transcription factor binding patternsand illustrate TileMap, where it shows improved performance over
of interest (Kapranoet al., 2002, 2003; Cawlest al., 2004; Kampa  existing methods.
etal., 2004). Owing to the high density of the probes, awhole genome The moving average method was initially used by Kedesl.
can be surveyed in an unbiased manner at a high resolution. (2004) in analyzing tiling array data. In addition to the ability to
Identifying genomic loci that show transcriptional or protein bind- do multiple sample comparisons, there are two main differences
ing patterns of interest is a key step of digesting information frombetween TileMap and Keles’s method. First, to compute a probe
tiling array experiments. Currently, available tools to fulfill this task level test-statistic, Keles's method uses data only from the probe in
are few. Examplesinclude G-TRANS (Kamgial., 2004), amoving  question, whereas TileMap pools information from all the probes in
average (MA) method proposed by Kelsl. (2004) and a hidden the array via a closed-form empirical Bayes shrinkage estimator of
variance. Recent studies showed that pooling information from all
probes is an effective way to increase the sensitivity of gene selection
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from microarray experiment when the number of replicates in theThe derivation of the estimator is outlined in Section 1, Supplementary
experiment is small (Baldi and Long, 2001; Newtetnal., 2004; materials.

Smyth, 2004), and variance is the main component through which Onceo? is obtained, the posterior distribution f will be approximated
information pooling takes effect (H. Ji and W. H. Wong, submitted by N(Xij,&i‘z/Kj:), and probe level statistics_will be constructed based on
for publication). TileMap applies this idea to tiling array analysis. (iS approximation. For two-sample comparisquis= 2), the probe level

Second, a different strategy is adopted by TileMap to determine thiFststatisticis Z. _ ¥

. L : Xi1 — Xi2
cutoff for making rejections. Keles's method uses bootstrap to estim- N ORI OR )
ate the null distribution of their ‘scan-statistics’ for choosing the ) )
cutoff. They made an implicit equal mean assumption, i.e. under thEC" Multible-sample comparisons > 2), €.g.{(m1 > wt) or (m2 > wb)},
null hypothesisto, mean hybridization intensities are equal underthe probe level test-statistics will be computed as follows: (1) drga/from

. . o - . N(Yij,&f/l(j) C times; (2) for each probg, count how many times the
different experimental conditions. Although this assumptl.or.w rnayprespecified condition is satisfied, and denote this numbes; py3) use
be reasonable for two-sample comparisons Hghp1 = o, itis

t; = 1—(S;/C) as probe level summary. The advantage of this simula-
often inappropriate for false discovery rate (FDR) estimation whenion based method is its flexibility, making it especially useful to study, i.e.
Ho contains some random effects, eMe: n1 — 2 ~ N(0, 1), hybridizations at specific time and specific place in developmental processes.
and for FDR control of multiple-sample comparisons, such as Formula (6) above looks likezastatistic, but, in fact, they are different in
mutantl (mtl) < wild type(wt) < mutant2 (mt2). For the latter the way the denominator is derived.in formula (6) pools information from
case, the correct null hypothesisfig: NOT {mtl < wt < mt2} all probes, whereas which is used in canonicaistatistics uses only inform-
instead ofH}: mtl = wt = mt2. Ho not only includesH;, but also ation of probe to estimate its own standard deviation. Pooling information to
mtl = wt < mt2, mtl> wt < mt2, etc. FDR control for such a estimate variance significantly increases the sensitivity of the method, since it

. - e . - provides better estimate of variance in terms of mean square error and results
complicated composite null is difficult. To deal with this problem, : . A .
in better separation of test-statistic distributions under the null and alternative

TIIeMap a}dopts an empirical technique, i.e. UMS, to getan approx_hypothesis. The same principle applies to multiple-sample comparisons too.
imate estimate of the local FDR and to choose a cutoff. In contrasfye 410 tried to shrinkjs by setting a proper prior in formula (2). However,

to TileMap and Keles's method, Affymetrix’s G-TRANS uses a dif- mean shrinking usually does not provide much additional gain in sensitivity
ferent strategy. In G-TRANS, probes are grouped into overlappingvhereas it may incur a significant amount of extra computation. This explains
windows, and a Wilcoxon signed-rank or rank sum test is carriedvhy a flat prior was used in formula (2). In formula (1), we assume com-
out for each window. It is difficult to generalize this method to com- mon variance under different conditions, but this assumption is not crucial.
plex multiple sample comparisons, and no FDR estimate is providene can assume unequal variance and apply the shrinkage estimator for each
by G-TRANS. Recently, Lt al. (2005) also proposed an HMM ~condition separately.

method for tiling array analysis, but their method was again lim- Without loss of generality, in what follows, we assume that smaibr-

ited to two-sample comparisons and did not pool information acroséesDondS to the hybridization pattern of interest. Depending on individual

. ; . R Studies, this can be met by setting appropriate group labels (e.g. in a ChIP-
probes when estimating the variance of individual probes. chip experiment, defin&;; andX;, in formula (6) to be the control and IP

samples respectively) or by taking transformations, suchra necessary.

2 METHODS S .
) _ o 2.2 Combining information from
2.1 Hierarchical empirical Bayes model for neighboring probes

computing prObe level test-statistics TileMap provides two ways to combine information from neighboring probes.
After proper preprocessing of the data, the first step of TileMap is to computerhe first method uses an MA. In other words,
a test-statistic for each probe. Assume that therel ggeobes in the array,

i+
hybridizations are done isi different conditions, and there afg replicates = ki —w @
under conditionj. Let X;jjx denote the normalized and log-transformed PM Cw+1)
or PM-MM value of probe under conditiory and replicaté. The following  js computed as the final summary statistic for prolféis is identical to Keles
model is used to describe: etal.’s (2004) scan-statistic, except for the waig calculated. Keles’s method
Xijlwij 02 ~ N(uij, o), i=1,2,..,1; j=1,2...,J; uses_canonlc_akstatlstlcs, whereas herg we use a modified v’ersmn of itand
pool information from all probes to estimate variance. Keles's method only
k=1,2... K. 1) considers two-sample comparisons, whereas TileMap can handle multiple-
2 sample comparisons. Before taking averag@ multiple-sample case will
Mijlto, g o< 1, @ be transformed by Idg /(1 — #;)]. Notice that in multiple-sample casgjs

a posterior probability and belongs to [0, 1]yif= 0 or 1, itis replaced by
or 1—¢, wheres is a small number (e.g.2 10-%). For two-sample case,is
Definev = £;(K; — 1), s? = > Yo ik — 52/, 2 = >, s?/1 and given by formula (6) and belongs te-oo, +00), and it will be used directly
in formula (7). The choice ab was discussed in Keles al. (2004) and will
not be the focus here.
The second method uses HMM. The advantage of using HMM is that

o2 vo, w3 ~ Inv — x%(vo, w3). ®)

S = Y,[s? = (+2)]%. The basic idea to compute probe level statistics is to
estimateo?s by pooling information from alk?s, then treat? = 67 as

known and compargijs in terms of their posterior distribution. } )
. 2p Rij ) P o ) . there is no need to preselectuabefore analyzing new data. The HMM
To estimater, we use the following empirical Bayes shrinkage estimator ) L . )
! structure is shown in Figure 1b. More precisely, #tdenote the hybrid-

proposed by H. Ji and W. H. Wong (submitted for publication), based on.

the theory of Natural Exponential Family with Quadratic Variance Function'zatlon.State of probé. H; = 1 if probe: shows the pattern of interest,
(Morris, 1983): otherwiseH; = 0. Hereafter, we assume that= 1,...,I correspond

to the probe’s physical order on the chromosome. Defineto be the

~2 _ A 2 )

of = (= Bysi + Bs%, “) physical distance between the centers of prabaad j. Assume that (1)
. 2v I-1 1 2\ —,1-1 P(H; = 0) = mo, P(H; = 1) =m = 1—m0; (2)if dijr1 < do,
B= 1+2/v I + 1+2/v \v G s ®) the transition probabilities ar® (H;y1 = 1|H; = 0,d;;+1 < do) = ao,
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(a) s . . . . . [ustration Real Data Example

Raw data (red: IP; blue: Contral-GST: green: Control-Input)

. ¢
N My . . Observed Mixture
o e 3 FE alHew  peeies )
'

h(t)

L

TileMap: probe level test-statistics (t) T ﬂ = T,
5k L R ST AN L aardadih
T Unbalanced
s - e . 1 Mixtures
TileMap: maving average statistics (m) L L ﬂ
ar FE s Y i .\,;..\_,,z"‘fe"'i,& il &) T 2y gift) \‘* F goft)
local fdr = 0.6+ : \
al T A - f’fU:{l'GH{U}-""{l'GD(U} | N,
ast > fo. () > r=qopo \a_
I posteriorprob = 05—, _ | — ﬂ b
0 . . . . . ‘. '
2.9316 29317 29318 2.9319 _ 2932 29321 2.5!322 \ N g () -rg, @)
genomic coordinate 10 [\ f(z):T
f)=8,® »
: @ |
e f "N 1-m — ifd,;, <d, Fig. 2. Unbalanced Mixture Subtraction. Left panel is a conceptual example
el i d >d to illustrate UMS. See Section 2.3 for a detailed description. Right panel
B “ * i ) . .
a - SR is a real example where UMS was applied to analyze 18 arrays of a cMyc
0

a,

CGJ > f]b ChIP-chip experiment to estimafig(¢) and f1(¢) (Section 4).

the abundance of1(r) component. The two ‘unbalanced’ mixtures can then
be used to reconstrugy, fo(¢) and f1(z) and estimate FDR.

Fig. 1. TileMap overview. &) lllustration of TileMap procedures. Raw data, UMS is illustrated in Figure 2. We first construct two mixturggt) =
TileMap probe level test-statistics, MA summaries and HMM posterior prob- p () + (1 — po) f1(t) andg1(r) = go fo(t) + (1 — qo) f1(t), Wherepg >
abilities are shown from top to bottom. In TileMap, small test-statistics g > ¢o. If two such mixtures can be constructed ang¥ifsuch that — 1o,
correspond to the hybridization pattern of interest. The posterior probabil-fy(r)/ f1(r) — oo, thenlim_,, g1(t)/go(t) = qo/po = r. Oncer is known,

ity shown is the posterior probability of not being a target prot.The f1(¢) can be obtained by formula (8).

HMM structure in TileMap. o o
810) —rgo

1—r
To estimatefy(t), notice thatr; = 1 — g is usually small; thereforego(z)
can provide an approximation gb(¢). Given f1(t) and go(¢), mo can be

fi) = (8)
P(Hiy1 = OlH; = 1,dijy1 < do) = ay; if dij11 > do, P(Hiy1 =
O|H;,d; i+1 > do) = mo, P(Hiy1 = 1|H;,d; i1 > do) = m1; (3) the condi- . o ; )
tional dis+tribution of probe Ie¢e| test-statistJircsﬁSt,- = t|H; i g)) = fo(t), estimated by fittingt (1) usingflogo(r) + (1 — o) f1(r) such thatf{h(f) -
f@ = t|H; = 1) = f1(r). Under these assumptions, on&g o, ao, a1, [6ogo(®) + (1 — Go)fl(t)]}2 dr is minimized. The resulting estimaty =
fo(t) and f1(¢) are known, the standard forward—backward algorithm can bel./ 7 () — J1Ollgo(®) = f1(0] dr}/{f1go() — f1(1)I? dr} = 7o/ po = 7o;
applied to infer the hidden stafé through probe level test-statistigs therefore,iy = 1 — 6o provides a conservative estimatesof, which is

In MA, m;s are used to rank and select probes to form target regionsdesirable if we want to keep a relatively stringent criteria in detecting regions
The entire set ofir; can be viewed as a sample from a mixture distribution ofinterest. Oncery, fo(r) andf1(¢) are estimated, local false discovery rate at
70 fo(m) + 1 f1(m), where fo(m) and f1(m) are distributions ofz; under ~ @pointt canbe estimated by Ifdn = 7o fo(t)/[70 fo()+71 f1()], and FDR
H; = 0 andH; = 1, respectively. We need to estimatg fo(m) and f1(m) forarejectionregiotx, e.g.{¢t < tcut}, can be estimated using the relationship
in order to control FDR. In HMMj;s are used to infer the hidden states, and FPR(Z) = E[lfdr (#)|Z]. In the special case where the null distributiytr)
target regions are selected based on the posterior probabilify ef1. The  is known, we can seto = 1, go(t) = fo(t), andgi(t) = h(¢); then UMS
#;s can be treated as a sample from another mixtgi(r) + 71 f1(¢), and reduces to the g-value method discussed in Storey and Tibshirani (2003).
one needs to knowo, fo(r) and f1(r) before decoding the HMM. TileMap To construct the two unbalanced mixturgss) andg(¢), we need addi-

adopts unbalanced mixture subtraction to deal with these two similar issueéonal information. If biological knowledge tells that certain regions are more
likely to be transcribed or bound by the transcription factors under study, this

23 UMS piece of information can be used, e.g. one can map known transcription factor
) binding motifs to the genome to collect regions of potential interest. If such

The goal of UMS is to recover different components of a mixture distribution biological information is not available, the correlation structure provided by

h(t) = mofo(t) + (1 — mo) f1(¢), wherer represents a generic statistic. In tiling array itself can be used to get an approximate estimaig@j and

reality, 2(z) is observed, butg and f1(z) are unknown. Canonical FDR pro- g1(¢) as discussed in the following paragraphs.

cedures assumg(¢) to be known and try to restorg (r) by subtractingfy(r) For HMM, we pick up probes withy > #(,), wheret(,) is the p-th per-

from k(). These procedures usually work well in two-sample comparisonscentile of alls;s. Theny; 1, the immediate downstream test-statistics of the

where fo(f) can be obtained, either by theory or by simulation techniques,selected probes are used to foggir). We then pick up probes with < #,),

such as permutations. However, they cannot be applied directly to casemnd use their downstream,; to form g1(¢). For MA, #;11 is replaced by

where fo(¢) is hard to obtain, e.g. multiple-sample comparisons or compar-m;1,,+1, and a similar procedure is used to constigitin) andgi(m). We

isons involving complex composite null. To circumvent this difficulty, UMS then usegp(.) and g1(.) to surrogatego(.) andgs(.). The intuition behind

makes use of additional information (see below) to construct two ‘unbal-these procedures is that if a DNA/cDNA fragment hybridizes to a probe, it

anced’ distributions. Both are mixtures #f(¢) and f1(¢), but they differ in also tends to hybridize to its neighboring probes. Thus, if a probe has very
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smally;, its neighboring probes are more likely to have the pattern of interesd  RESULTS

than random probes do and vice versa. _ _ _ Tilemap was tested using a ChIP-chip experiment performed by
To generalize the above procedures, we define a selection statistic Cawleyet al. (2004) as well as simulations. In this section, we will

We usego(t) = f(T; = t| Iy, = 1) to approximatego(r), andg1(r) = . . .
(T = f|01({ ) R)f_( 1)to alpr{)r'oéﬁgwatgi(z) FFLF; MA. - %Ol(. ) L fli)m‘ present the global design and the main results of the tests. Details of
p r ue - . W — H—w—-1L 41 — -

For HMM, u; = ;_, T = 1;. Both MA and HMM useA = {u; > r,,}  DOW tests and simulations were done are provided in Supplement-
andR = {u; < 1,)). By defaultr,) = 1) and,, = 15 (see Section 5.3 ary material (Sections 3-6). Cawley’s experiment tried to identify
Supplementary material for discussions about the choiag,pfind1(,)). binding regions for three transcription factors using Affymetrix chro-
As an illustration, the right panel of Figure 2 provides a real example formosomes 21 and 22 tiling arrays. Their cMyc data on Chip A and
estimating HMM parameters in this way. p53-FL (full length antibody) data on Chips A, B, C were used for
It can be shown that if (1P(H; = O|lj,eay = 1) > 7o, (2) f(T; = testing. For discussion’s convenience, Chips A, B and C in p53

11H;, lzeay = 1) = f(T; = t| H;), thengo() is avalid surrogate fogo().  experiment are treated here as a combined single chip. For each

Similarly, if (1) P(H; = Ollyery = 1) < 70, (2) f(Ti = t1H;, Lu,er) = transcription factor, hybridizations were done for two biological rep-

D = f(T; =1l H), g1(n) isavalid surrogate fa (1). Usually, condition (1) - jieates under three different conditions: IP, control GST (C1) and

is not hard to meet. Condition (2) is implied in HMM case, but in general, it ontrol input (C2). For each biological re iicate and experimental
e p - gical rep p

only holds approximately or may not even hold owing to the possible selectio . . . ;
bias or the residual correlations betwegandT; after accounting foH; . We, condition, three technical replicates were obtained. In total, there

therefore, label the application of UMS here as an ‘approximate’ procedureWere 18 arrays for each transcription factor. Before analysis, raw data
meaning that it only provides a rough and possibly imprecise or optimisticvere quantile normalized (Bolstatlal., 2003), PM-only intensities
estimate of FDR under the null model, unless the previous assumptions amere log transformed and adjusted for batch effect (Section 3.1, Sup-
completely satisfied. The advantage of UMS over the permutation-based FDBlementary material). Local repeats were filtered out. The 18 arrays
estimation, such as SAM (Tushetal., 2001), is that, if conditions (1) and (2)  were then randomly divided into three groups G1, G2 and G3 for
are indeed satisfied, UMS can provide FDR estimate for complex compositgytar yse. Each group contained six arrays: two for IP, two for C1

null hytpo';flle&solsvllj;h as -r:fh < p2 t< ?3 0'545 M5 Whtere?ﬁ the latter 504 two for C2. Within each condition, the two arrays were from
cannot. SO, provides an Interface to Incorporate other sources Oziiffel’ent biOlOgical replicates.

information (e.g. empirical biological knowledge about which genes/regions
are more likely to show desired pattern) to evaluate false positive rates. When

applying UMS, however, it is important to understand that there is always 1,1 Sensitivity test based on cMyc data
possibility that bias may be introduced by the new sources of information. | der t h . hrinking helps i itivity i
For HMM, one also needs to determing, a; anddo. One can choose "' OFder to see how variance shrinking helps increase sensitivity in

a1 anddo according to the typical length of hybridizations. For example, in SMall replicate case, MA with variance shrinking (MA-S) was first
ChiIP-chip experiments, IP fragments are usuallykb. If the probe density ~ compared with MA without variance shrinking (MA-N). Notice that
inthe chipis 1 probe/35 bp, atypical hybridization would conta®8 probes; i two sample comparisons, MA-N is equivalent to Keles's scan
correspondinglyg; can be set to 1/28 to match the mean length of continuousstatistic. Before the comparison, a gold standard was constructed by
H; = 1segmentsin HMM, ando can be setto 1000. To estimatg assume  applying MA-N to all 18 arrays to select probes showing{FC1 and
that(mmo, 1) is the stationary distribution for the Markov chain without gaps |P >~ C2 (Section 3.2, Supplementary material). The gold standard
(i-e. withoutd; 1 > do), thenmy = ao/(ao + a1), anda can be estimated  contained 1654 probes (0.5% of all probes) and was grouped into 180
by a1iry/(1 — 7r1) wheresy = 1 — fo. binding regions. In order to compare, one or two of the G1-G3 groups

were excluded. MA-&v = 5) and MA-N(w = 5) were applied

to the remaining arrays to rank probes according to (1IRC1

using one of the G1-G3 groups only; (2)#PC1 and IP> C2 using
3 IMPLEMENTATION one of the G1-G3 groups only; and (3) #2C1 and IP> C2 using
TileMap is implemented in ANSI C. In terms of computation time, two of the G1-G3 groups. For simplicity, we use s2r2, s3r2 and
it is usually >10 times faster than G-TRANS (refer to Section 2, s3r4 to denote the three settings above. s2r2 stands for two-sample
Supplementary material). TileMap includes functions to do raw datacomparison where each sample has two replicates, s3r2 stands for
normalization, local repeat filtering, probe level summary, UMS,three-sample two replicates, etc. In each of the three settings above,
MA and HMM. Local repeat filtering masks any probe that occurs0.5% of top ranking probes were selected to form binding regions.
more than oncenia 2 kblocal window. In UMS, users may choose to This guaranteed that both methods had the same coverage of the gen-
use their own selection statistics. For MA, permutation-based FDRome. Two probes, if separated k00 bp, were treated as in a single
estimation routine is also provided. The output of TileMap includesregion. Regions were ranked according to minimunmed of each
final summaries for each probe and a *.bed file containing selectetegion. MA-S and MA-N were then compared in terms of what frac-
genomic regions. The latter is defined by Ifdr in MA or posterior tion of their top ranking probes were gold standard probes (Fig. 3a)
probability of H; = 0 in HMM being smaller than a user specified and how many of their top ranking regions overlap gold standard
cutoff. regions (Fig. 3b). There were three possibilities to choose one group

In UMS, all statistics are transformed to [0, 1], eteptatistic is  or two groups to exclude, and the results shown here were averages

transformed using exp)/[1+exp()]. [0, 1]isthen equally divided  over the three possibilities. According to Figure 3, MA-S was indeed
into n (default = 1000) intervals.go(.) and g1(.) were estimated more powerful than MA-N, even if the way we define gold standard
using empirical distributions of test-statistics in these intervals. Towas biased toward MA-N. In s2r2 case, the effect was most striking.
estimater, we computer, = [1 — G1()]/[1 — Go(t)] for t = At probe level, the rate of correct rejections increased frotn2
150, 151 - - - » 1(99). I IS then set to be the median of thesers To to ~0.85 when 500 rejections were made; at binding region level,
get stable estimates ¢i(.), we also assumed monotone likelihood MA-S identified>70 more gold standard regions among the top 160
ratio inimplementing UMS, i.e. as— 1, fo(¢)/ f1(¢) isincreasing.  regions. The gain from shrinking decreases as the number of arrays
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P O P — (Fig. 3d) and G—H standard (Supplementary Figure S2). The two
T aneae 222 |1 e 22 #1  results were similar. When replicates were few (s2r2, s3r2), MA-S
—— canonical, 5352 —— canonical, e3r2 . . e .
- shiink var, 332 |] + shnk var, 532 and HMM showed clear improvement in sensitivity compared with
BB o] = e o G-TRANS and Keles’s method. As the number of arrays became
large (s3r4), all methods began to show similar performance. Keles'’s
method and G-TRANS cannot be used to do multiple sample com-
- parisons. In order to get summary statistics fosl”C1 and IP> C2,
""“'w"i&@ﬁ__ﬂ ! o _ Keles's method was replaced by MA-N; G-TRANS was applied
R SRR | e twice to do two-sample comparisons B C1 and IP> C2 sep-
i Vo et W o W oA Ww W@ arately, and the maximum of the twe-values for each probe was
(© (d) taken as its final summary statistics to derive binding regions. We did
not compare TileMap with the HMM method proposed byet &l.
P (2005), since the latter was not available at the time this work was
A done.
/_9/';-,.4"'_"_ - Next, we compared the enrichment of cMyc binding sites in
2 e regions identified by different methods. cMyc consensus binding
s e pattern CA[C/T]G[T/C]G was mapped to chromosome 21, yielding
K 17563 potential binding sites (TFBS) in a total of 18.3 Mb non-
o e | [ - repeat genomic sequences. Among these TFBS, 4496 were located
i e : / inregions whose human—mouse—rat cross-species conservation score
N S 7 Ll L was among the top 30% of the whole chromosome (Section 3.4, Sup-
plementary material). G-TRANS, MA-N (Keles), MA-S and HMM

Fig. 3. Comparisons of MA, HMM, Keles’s method and G-TRANS in cMyc W_ere_ all apP”ed to §elect the top 0.5% probes and group them into
data analysis. Fraction/number of correct rejections among certain numbdtinding regions using 18 cMyc arrays (s3r6) as well as reduced
of total rejections was showra) MA-S and MA-N were compared at probe  data (s2r2, s3r2, s3r4). The number of TFBS and conserved TFBS
level, probe density= 1/35 bp; b) MA-S and MA-N were compared at  (CTFBS) in the identified regions were counted. Binding site enrich-
binding region level, probe density 1/35 bp; €) MA-S and MA-N were ~ ment was computed as the ratio of TFBS and cTFBS densities in
compared at binding region level, probe densityl/70 bp; @) G-TRANS,  selected regions to their chromosome-wide counterparts. Site enrich-
Keles’s method (MA-N), MA-S and HMM were compared at binding region ment for different methods is listed in Table 1. Based on the results,
level, probe density= 1/35 bp, G-M was used as gold standard. MA-S and HMM consistently showed higher or nearly equal TFBS
and cTFBS enrichment than G-TRANS. They also showed higher
TFBS enrichment than MA-N (Keles) in s2r2 case. The differences,
increases, but given that 2-3 replicates are most often encounterdupwever, diminished as more arrays were included.
we would expect to gain from variance shrinking in a significant

number of real studies. 4.2 Sensitivity test based on p53 data

We also reduced the probe density from 1 probe/35 bp to 1 IDrOb%ifferent methods were further compared through the analysis of 18

70 bp by discarding half of the probes. MAB = 2) and oo ) oo e “Cawiest al. (2004) verified 14 p53 binding regions

MA-N (w = 2) were compared again using the data with the reduce - . - )
. ; L y gPCR, using either p53_FL or p53_DO1 antibody. These regions
probe density (Fig. 3c). The gold standard used in Figure 3c was th\(levere used here as gold standard. Each method was applied under

same as that in Figure 3b which were constructed using all IOrobe&if‘ferent settings (s2r2—s3r6) to select the top 0.5% probes and group

including the prqbes discardeq. Thg gain from variance shrinkinqhem into binding regions. Methods were then compared in terms of
gfucgn;?ng}ﬂreZ}V'%ir:';nmtg:]es?tg%z’ mlzgrf;:;?émp‘(fi’ fou;é?oThehow many experimentally verified regions were identified in their
g reg g P ) 9. ) top 10, top 20 and all selected regions. The results were listed in

same sen.smwty was achieved by MA-N but with doubled prObethe top panel of Table 2. HMM and MA-S again detected more
density (Fig. 3b). This means that we only need half as many probegx erimentally verified regions than GTRANS and MA-N (Keles)
for MA-S as for MA-N to achieve the same sensitivity in this case. P y 9

when replicates were few (e.g. s2r2, s3r2). We also reduced the

If MA-N were used to survey 100 genes, using the same number . . . oy
of probes, MA-S allows us to survey 200 genes without losing theprobe density from 1/35 to 1/100 bp by discarding two-thirds of

ability to detect the true targets. Surveying more genes, however, ca%” the probes. MAN, MA-S and HMM were compared again (the

. 2 . . .~ _bottom panel of Table 2). The better performance of MA-S and HMM
increase the chance for finding the unknown players in a biologica : ; .
over MA-N in small replicate case became more evident (e.g. s3r2).

G-TRANS was not compared here since we were unable to use it
(;[o analyze a set of specified probes.

# of comect rejections

02} +y

+— ghrans, s2rd

== kiles $27
ma, sIr2

hmm, 532

= - girans, sird

== kiles, $32
= ma, sid

—— canorucal,
—— sheink var, &
1001 —— canpnical, 3

rird
22
32
e

&0 | —ae brles, s34
— rna, 3
hmm, 534

# ol comect rejections
-

process.

Inorderto compare G-TRANS, Keles’s method, MA-S and HMM,
they were applied to analyze cMyc data as we did in Figure 3b. Tw
gold standards, ‘G-M’ and ‘G-H’, were constructed using all 18
arrays (Section 3.3, Supplementary material). G-M standard corf-3 Performance of UMS
tained 78 regions, which is the intersection of the regions identifiedlo see how UMS works, a series of simulations were done. In all
by G-TRANS and MA-N. G-H standard contained 73 regions, whichsimulations, six arrays were generated and equally divided into three
is the intersection of G-TRANS and HMM regions. Different meth- groups D1, D2 and D3, each of size two. Each array contained 50 000
ods were compared at binding region level using both G—M standargrobes. Probe intensities were generated according to formulae (1)
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Table 1. cMyc binding site enrichment in predicted binding regions

Method s2r2 s3r2 s3r4 s3r6

GTRANS 1.2 (0.1)/1.1 (0.1) 1.4 (0.1)/1.1 (0.1) 1.8 (0.1)/1.4 (0.1) 1.9/1.5/96k

MA-N/Keles 1.6 (0.2)/1.1 (0.1) 1.9 (0.3)/1.4 (0.2) 2.0 (0.1)/1.5(0.1) 2.0/1.5/150k
MA-S 1.7 (0.2)/1.3 (0.1) 1.9 (0.2)/1.4 (0.1) 2.0 (0.1)/1.5 (0.1) 2.0/1.5/149k
HMM 1.9 (0.2)/1.4 (0.1) 2.0 (0.2)/1.4 (0.1) 2.0 (0.1)/1.4 (0.1) 2.0/1.4/134k

For reduced data (s2r2, s3r2, s3r4), conserved TFBS (rc) and TFBS enrichment (rt) were shown as rc(se)/rt(se). rc and rt were averages oventleneeainagpes, se was
standard error of the average. When all 18 arrays were analyzed (s3r6), se cannot be computed, the number of non-repeat bases nb in the psadaseshoegicinstead. The
results were in the format rc/rt/nb.

Table 2. Sensitivity of GTRANS, MA-N, MA-S and HMM on p53 data (@

08 .T
Methods s2r2 s3r2 s3r4 s3r6 506
GTRANS 3.3/4.7/18.7 4.3/8.0/11.7 5.0/9.3/12.3 6.0/10.0/12.(
MA-N/Keles  0.7/1.0/4.0 6.3/9.0/12.7 6.0/10.0/13.0 6.0/10.0/13.C "
MA-S 6.0/10.0/13.0 6.7/10.0/12.7 6.0/10.0/13.0 6.0/10.0/13.( ol !
HMM 7.0/9.7/11.3 6.7/9.0/12.3 6.3/9.7/13.0 7.0/10.0/13.0
MA-N/Keles/3 0.0/0.0/1.3 3.0/4.3/9.7 4.3/6.0/12.0 4.0/5.0/12.0 © 1 e
MA-S/3 3.3/6.0/11.0 3.7/6.0/11.0 4.7/5.3/12.0 4.0/5.0/12.0 '.-*' | i g \
HMM/3 4.0/5.0/9.0 5.0/6.3/10.7 4.3/6.7/10.7 5.0/7.0/11.0 "¢ 1.’ vef J +,.' '

0 Fg _oslf
Number of experimentally verified p53 regions among topsi1,(top 20 ¢2) and all § 7 f:
regions (3) identified by different methods were showrvd#:2/n3. For reduced data 04 ‘_,«'" = 04} . t':g:g gi:
(s2r2, s3r2, s3r4), the numbers shown were averages over three analyses. A — OMS(0 10)

02t 02 o

. i — YRUE‘
Table 3. Simulation design for testing UMS "o 0z 04 08 08 1 05 08
Number Within target regio0H;=1) Outside target regioaH;=0) Fig. 4. Local false discovery rate estimates by UMS and permutation test
in simulations I-lll.7,y = #1). UMS was applied under four different,

I Common for I—III: Aip=Ap=0 settingsr,) = 2nd, 5th, 10th, 50th percentilenBlack curves correspond to

I Aj1 = |ri1l, Aiz = |riz| Ai1,Ai2 ~ N(0,0.25 true .Ifdr. (a) SlmuIaFlon I estimations _baseq omnthouF va'nance'shnnk.mg;
(b) simulation I, estimations based owith variance shrinking;q) simulation
I, estimations based on without variance shrinking;d) simulation IlI,
estimations based arwith variance shrinking.

ri1,ri2 ~ N(1,0.25 Ajjs are all independent
1] rijs are all independent Ai1 = A;2 = 0 plus two types of
binding regions with other patterns:
(@)A1 =0,Ai2 = |ri2]
(b) Aix = Irial, Ai2 =0

. Probe level test-statistiaswere computed for three-sample com-
ri1,riz ~ N(1,0.25 i.i.d

parison D1< D2 < D3. UMS was applied to estimatg and Ifdr
based orr. In UMS, 1,y = t), t(pyWas set ta), ), f109) and

150 respectively, and [0, 1] was divided into= 50 intervals. For
comparison’s purpose, permutation test was also applied to estimate
and (3).vg = 4.64, wé = 0.021 were chosen to match the typ- Ifdr. Since we knew exactly what probes were true targets, the true
ical values observed in real data. A number of binding regions withfdr could be obtained. Both true Ifdr and Ifdr obtained by permutation
pattern D1< D2 < D3 were generated to serve as targets, we wishiest were shown together with UMS estimates in Figure 4a and b. In
to identify (Section 4.1, Supplementary material). In total, theseFigure 4a, estimations were basedramithout variance shrinking.
regions covered 50008; probes. Simulations differ in the way As expected, both UMS and permutation test gave desired Ifdr, with
Ai1 = pi2 — i1 and Ay = iz — iz Were generated, which was UMS being a little bit more conservative. In Figure 4b, estimations
designed to test UMS from different perspective. Table 3 listed thevere based onwith variance shrinking. Surprisingly, permutation
designs for simulations I-1l. In each simulation, 10 different data-test failed to provide desired Ifdr, even though the null hypothesis
sets were generated, and the results below were averages over thehgye was D1= D2 = D3. This was owing to the combined effect of
datasets. Here, we usg = 0.05 to illustrate the results, although permutation test and shrinking. The sample variance of probes with
1 = 0.01, 0.02 and 0.10 were also tried and similar results werd1 < D2 < D3 tend to become bigger after permutations; therefore,

obtained. variance estimates of all probes were pulled toward a biggehen
Simulations | and Il tested UMS when its assumptions were trueshrinkage estimator was applied, and test-statistics tend to become
In simulation |, we tested D% D2 = D3 versus D1< D2 < D3. more centralized in the permutation distribution. As a result, the

3634



Chromosomal map of tiling array hybridizations

number of false probes was underestimated on the tail part, causing Finally, when applying UMS to Cawley’s experiment, at ltgr0.5
optimistic Ifdr estimates. In contrast to permutation test, howeverjevel, MA detected 30 and 19 regions with patternlFC1 and IP>
UMS still provided conservative Ifdr estimates. C2 for cMyc (ChipA) and p53-FL data, respectively. At posterior

In simulation Il (Section 4.2, Supplementary material), probesprobability = 0.5 level, HMM detected 168 and 142 regions. As a
outside target regions were assigned some random changes. Thismparison, aP-value = 0.001 level, G-TRANS reported 48 and
introduced random components, such as ID2 > D3, D1 > 152 regions. HMM tend to report more regions than MA, many of
D2 < D3intothe null hypothesis whichis nolonger B4D2 = D3. which are regions shorter than the window size specified by MA
UMS and permutation test were both applied to estimate Ifdr, and thand are not reported by MA (Section 6, Supplementary material).
results based anwithout and with variance shrinking were shown in Whether the shorter regions found by HMM are more likely to be true
Figure 4c and Supplementary Figure S3b, respectively. Now even isignals or noise cannot be clearly resolved using current data. When
the non-shrinking case, permutation test failed to provide desired Ifdwe checked the probe intensities, many such regions did look like
for D1 < D2 < D3. UMS, however, again provided conservative true binding regions (Figure S8). Future experimental verifications
estimates for both non-shrinking and shrinkingnder different,, are needed to resolve this issue.

settings.
Simulations | and Il tested UMS when its conditional independ-
ence assumption [i.ef(T; = t|H;, Iyeay = D = f(I; = 5 DISCUSSION

t|H;)] was true. Analysis of Cawley’s experiment showed that Compared with previous tools, TileMap provides a flexible way to
this assumption can provide a first order approximation of thestudy tiling array hybridizations under multiple experimental con-
real data (Section 5.1, Supplementary material). To see how UM8itions. The variance shrinking component increases the sensitivity
performs when this assumption does not hold, in simulationsn finding genomic loci of interest when the number of replicates
II-VIl, we challenged UMS by violating the assumption in is small. Though we have only illustrated the use of TileMap in
different ways. ChlIP-chip experiment, it can also be used to analyze transcriptional
In simulation 11l (Section 4.3, Supplementary material), we intro- activities of the genome. In terms of computation time, TileMap is
duced some additional binding regions with pattern-bD2 < D3 substantially more efficient than G-TRANS.
or D1 < D2 = D3 into the background. Each type of the new The main difficulty of multiple sample comparisons is to get
regions also coveredl; of the total probes. The additional regions the distribution of test-statistics under the null hypothesis, which
belonged to null hypothesis and were not the targets we wish tés needed for FDR control or HMM decoding. TileMap adopts an
detect. This design broke the conditional independence assumpti@pproximate procedure, UMS, to deal with this issue. UMS is not
underH; = 0, since D1= D2 < D3 and D1< D2 = D3 are more  a perfect solution. However, the estimation of null distributions
likely to generate significant test-statistics than B1D2 = D3 under complex composite null is a difficult problem in general,
does, and unlike simulation Il, here probes from B1D2 < D3 for which there are no good solutions currently. UMS embodies
and D1 < D2 = D3 tend to be clustered together. The Ifdr estim- an initial try to address this issue. The rough estimate provided
ates by UMS and permutation test in this simulation are showrby UMS can be used to guide the choice of cutoffs, and in many
in Figure 4d and Supplementary Figure S3c. Whgnwas small  cases, such an imprecise estimate is enough for practical use for sev-
(9% < m1 in this case), UMS was still able to provide reason- eral reasons. First, FDR is always model dependent, e.g. assuming
able Ifdr estimates. When,, became large, the estimates becameHo : u1 = p2 and Hy : puy — u2 ~ N(0,1) will result in very
optimistic. In both cases, however, UMS performed much better thadlifferent FDR estimates. Therefore, unless the statistical null model
permutation test. A theoretical analysis of why UMS works in such(e.g. u1 = w2) matches the scientific null (e.g. not tumor-related),
a situation whern, is small is given by supplementary material FDR could be very misleading. Second, compared with power, FDR

(Section 5.2). is of secondary importance if we are only interested in a few top
Simulations IV=VI (Section 4.4, Supplementary material) wereregions. What we really care about is to have higher chance to find
tailored from simulations I-lll respectively. Residual correlations regions of real scientific interest instead of getting an FDR estim-

betweer¥; andu; were introduced into binding regions, which broke ate for a statistical model which may be an oversimplification of
the conditional independence assumption urifle= 1. The results  the real world. Despite all these arguments, we also acknowledge
obtained were shown in Supplementary Figure S3 and were similahat further investigation of how to control FDR under composite
to those in Figure 4, suggesting that this type of violation of thenull per se deserves further investigation. Such investigations will
assumption did not influence the performance of UMS significantlyprovide basis for rigorous statistical inference for complex multiple
We did additional theoretical analysis and tests (Sections 4.5—-4.8ample comparisons.
and Section 5, Supplementary material). Together with simula- Both MA and HMM used here did not consider the real distri-
tions here, they showed that (1) when the conditional independendautions of the length of hybridizations. Current knowledge about
assumption of UMS holds, UMS can provide reasonable Ifdrand  such distributions is limited. If one can determine these distributions,
estimates, and the performance is robust to choicegofindz,); the models here can be refined and may provide further resolving
(2) when the assumption does not hold, UMS can provide reasonabf@wer. For MA, the average can be replaced by a weighted average;
Ifdr and sy estimates wheny,, is small, and under such condition, for HMM, a distance dependent transition probability can be used.
the performance of UMS is robust to choices gf;, however, ift ;) All these aspects deserve further investigation. Finally, TileMap is
is big, UMS is sensitive to choices gf,; (3) UMS works reasonably  only the first step to utilize the information provided by tiling array.
well whenm; instead of; is used to estimate Ifdr. According to our Future efforts to integrate TileMap wittis-regulatory module dis-
own experience, by setting,) < ts andry) < t;,) < t0, UMS  covery, alternative splicing analysis, etc. will help us get deeper
usually can provide reasonable performance. understanding of various biological systems.
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