
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 18 2005, pages 3629–3636
doi:10.1093/bioinformatics/bti593

Gene expression

TileMap: create chromosomal map of tiling array hybridizations
Hongkai Ji1 and Wing Hung Wong2,∗
1Department of Statistics, Harvard University, Cambridge, MA 02138, USA and 2Department of Statistics,
Stanford University, Stanford, CA 94305, USA

Received on May 2, 2005; revised on July 19, 2005; accepted on July 20, 2005

Advance Access publication July 26, 2005

ABSTRACT
Motivation: Tiling array is a new type of microarray that can be used to
survey genomic transcriptional activities and transcription factor bind-
ing sites at high resolution. The goal of this paper is to develop effective
statistical tools to identify genomic loci that show transcriptional or
protein binding patterns of interest.
Results: A two-step approach is proposed and is implemented in
TileMap. In the first step, a test-statistic is computed for each probe
based on a hierarchical empirical Bayes model. In the second step,
the test-statistics of probes within a genomic region are used to infer
whether the region is of interest or not. Hierarchical empirical Bayes
model shrinks variance estimates and increases sensitivity of the
analysis. It allows complex multiple sample comparisons that are
essential for the study of temporal and spatial patterns of hybridiz-
ation across different experimental conditions. Neighboring probes
are combined through a moving average method (MA) or a hidden
Markov model (HMM). Unbalanced mixture subtraction is proposed
to provide approximate estimates of false discovery rate for MA and
model parameters for HMM.
Availability: TileMap is freely available at http://biogibbs.stanford.
edu/∼jihk/TileMap/index.htm
Contact: whwong@stanford.edu
Supplementary information: http://biogibbs.stanford.edu/∼jihk/
TileMap/index.htm (includes coloured versions of all figures)

1 INTRODUCTION
Tiling array is a new type of microarray that interrogates genomes
with high-density probes. In a typical tiling array, probes are dis-
tributed along chromosomes approximately evenly at a density of
one probe per 10–100 bp. When hybridized with RNA or chromatin
immunoprecipitation (ChIP) samples, the array will detect genomic
loci that show transcriptional or transcription factor binding patterns
of interest (Kapranovet al., 2002, 2003; Cawleyet al., 2004; Kampa
et al., 2004). Owing to the high density of the probes, a whole genome
can be surveyed in an unbiased manner at a high resolution.

Identifying genomic loci that show transcriptional or protein bind-
ing patterns of interest is a key step of digesting information from
tiling array experiments. Currently, available tools to fulfill this task
are few. Examples include G-TRANS (Kampaet al., 2004), a moving
average (MA) method proposed by Keleset al. (2004) and a hidden
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Markov model (HMM) method proposed by Liet al. (2005). The
available tools are not sufficient to meet the diversified needs of the
biology community. For example, current tools mainly rely on one-
sample and two-sample comparisons. However, in order to study
a complex developmental process, one may need to do tiling array
experiment under a number of different developmental stages and
identify genomic loci with specific temporal or spatial transcriptional
or transcription factor binding patterns. This will inevitably involve
sophisticated multiple-sample comparisons that current tools cannot
handle. Moreover, if one wishes to do experiment under multiple
conditions, the number of replicates within each condition will be
small owing to the cost constraint. How to make efficient use of
the small number of replicates was not specifically considered in
previous works.

The goal of this paper is to develop effective statistical models and
algorithms to detect genomic loci that show hybridization patterns of
interest. We will emphasize the tool’s ability to do flexible multiple
sample comparisons and to make efficient use of a small number of
replicates. A two-step approach, TileMap, is proposed. In the first
step, a test-statistic is computed for each probe based on a hierarchical
empirical Bayes model. In the second step, test-statistics of probes
within a genomic region are combined to infer whether the region
has the hybridization pattern of interest or not. Hierarchical empirical
Bayes model shrinks variance estimates and increases sensitivity of
the analysis when the number of replicates is small. It also provides
a flexible way to do complex multiple sample comparisons. Two
different methods—an MA method and an HMM—are used to com-
bine neighboring probes. Unbalanced mixture subtraction (UMS) is
proposed to provide an approximate estimate of local false discovery
rate for MA and model parameters for HMM. Cawleyet al.’s (2004)
chromosome 21 and 22 ChIP-chip experiment data are used to test
and illustrate TileMap, where it shows improved performance over
existing methods.

The moving average method was initially used by Keleset al.
(2004) in analyzing tiling array data. In addition to the ability to
do multiple sample comparisons, there are two main differences
between TileMap and Keles’s method. First, to compute a probe
level test-statistic, Keles’s method uses data only from the probe in
question, whereas TileMap pools information from all the probes in
the array via a closed-form empirical Bayes shrinkage estimator of
variance. Recent studies showed that pooling information from all
probes is an effective way to increase the sensitivity of gene selection
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from microarray experiment when the number of replicates in the
experiment is small (Baldi and Long, 2001; Newtonet al., 2004;
Smyth, 2004), and variance is the main component through which
information pooling takes effect (H. Ji and W. H. Wong, submitted
for publication). TileMap applies this idea to tiling array analysis.
Second, a different strategy is adopted by TileMap to determine the
cutoff for making rejections. Keles’s method uses bootstrap to estim-
ate the null distribution of their ‘scan-statistics’ for choosing the
cutoff. They made an implicit equal mean assumption, i.e. under the
null hypothesisH0, mean hybridization intensities are equal under
different experimental conditions. Although this assumption may
be reasonable for two-sample comparisons withH0: µ1 = µ2, it is
often inappropriate for false discovery rate (FDR) estimation when
H0 contains some random effects, e.g.H0: µ1 − µ2 ∼ N(0, 1),
and for FDR control of multiple-sample comparisons, such as
mutant1 (mt1)< wild type(wt) < mutant2 (mt2). For the latter
case, the correct null hypothesis isH0: NOT {mt1 < wt < mt2}
instead ofH ′

0: mt1 = wt = mt2.H0 not only includesH ′
0, but also

mt1 = wt < mt2, mt1> wt < mt2, etc. FDR control for such a
complicated composite null is difficult. To deal with this problem,
TileMap adopts an empirical technique, i.e. UMS, to get an approx-
imate estimate of the local FDR and to choose a cutoff. In contrast
to TileMap and Keles’s method, Affymetrix’s G-TRANS uses a dif-
ferent strategy. In G-TRANS, probes are grouped into overlapping
windows, and a Wilcoxon signed-rank or rank sum test is carried
out for each window. It is difficult to generalize this method to com-
plex multiple sample comparisons, and no FDR estimate is provided
by G-TRANS. Recently, Liet al. (2005) also proposed an HMM
method for tiling array analysis, but their method was again lim-
ited to two-sample comparisons and did not pool information across
probes when estimating the variance of individual probes.

2 METHODS

2.1 Hierarchical empirical Bayes model for
computing probe level test-statistics

After proper preprocessing of the data, the first step of TileMap is to compute
a test-statistic for each probe. Assume that there areI probes in the array,
hybridizations are done inJ different conditions, and there areKj replicates
under conditionj . Let Xijk denote the normalized and log-transformed PM
or PM-MM value of probei under conditionj and replicatek. The following
model is used to describeXijk :

Xijk |µij ,σ
2
i ∼ N(µij ,σ

2
i ), i = 1, 2,. . . , I ; j = 1, 2,. . . ,J ;

k = 1, 2,. . . ,Kj . (1)

µij|µ0, τ2
0 ∝ 1, (2)

σ 2
i |v0,ω2

0 ∼ Inv − χ2(v0,ω2
0). (3)

Definev = �j (Kj − 1), s2
i = ∑

j

∑
k(xijk − x̄ij)

2/v, s2 = ∑
i s2

i /I and

S = ∑
i [s2

i − (s2)]2. The basic idea to compute probe level statistics is to
estimateσ 2

i s by pooling information from alls2
i s, then treatσ 2

i = σ̂ 2
i as

known and compareµijs in terms of their posterior distribution.
To estimateσ 2

i , we use the following empirical Bayes shrinkage estimator
proposed by H. Ji and W. H. Wong (submitted for publication), based on
the theory of Natural Exponential Family with Quadratic Variance Function
(Morris, 1983):

σ̂ 2
i = (1 − B̂)s2

i + B̂s2, (4)

B̂ = 2/v

1 + 2/v

I − 1

I
+ 1

1 + 2/v

(
2

v

)
(s2)2 I − 1

S
. (5)

The derivation of the estimator is outlined in Section 1, Supplementary
materials.

Onceσ 2
i is obtained, the posterior distribution ofµij will be approximated

by N(Xij , σ̂ 2
i /Kj ), and probe level statistics will be constructed based on

this approximation. For two-sample comparisons(J = 2), the probe level
test-statistic is

ti = Xi1 − Xi2

σ̂1
√

(1/K1) + (1/K2)
. (6)

For multiple-sample comparisons(J > 2), e.g.{(m1 > wt) or (m2 > wt)},
the probe level test-statistics will be computed as follows: (1) drawµijs from
N(Xij , σ̂ 2

i /Kj ) C times; (2) for each probei, count how many times the
prespecified condition is satisfied, and denote this number bySi ; (3) use
ti = 1 − (Si/C) as probe level summary. The advantage of this simula-
tion based method is its flexibility, making it especially useful to study, i.e.
hybridizations at specific time and specific place in developmental processes.

Formula (6) above looks like at-statistic, but, in fact, they are different in
the way the denominator is derived.σ̂i in formula (6) pools information from
all probes, whereassi which is used in canonicalt-statistics uses only inform-
ation of probei to estimate its own standard deviation. Pooling information to
estimate variance significantly increases the sensitivity of the method, since it
provides better estimate of variance in terms of mean square error and results
in better separation of test-statistic distributions under the null and alternative
hypothesis. The same principle applies to multiple-sample comparisons too.
We also tried to shrinkµijs by setting a proper prior in formula (2). However,
mean shrinking usually does not provide much additional gain in sensitivity
whereas it may incur a significant amount of extra computation. This explains
why a flat prior was used in formula (2). In formula (1), we assume com-
mon variance under different conditions, but this assumption is not crucial.
One can assume unequal variance and apply the shrinkage estimator for each
condition separately.

Without loss of generality, in what follows, we assume that smallti cor-
responds to the hybridization pattern of interest. Depending on individual
studies, this can be met by setting appropriate group labels (e.g. in a ChIP-
chip experiment, defineXi1 andXi2 in formula (6) to be the control and IP
samples respectively) or by taking transformations, such as−ti if necessary.

2.2 Combining information from
neighboring probes

TileMap provides two ways to combine information from neighboring probes.
The first method uses an MA. In other words,

mi =
∑i+w

k=i−w tk

(2w + 1)
(7)

is computed as the final summary statistic for probei. This is identical to Keles
et al.’s (2004) scan-statistic, except for the wayti is calculated. Keles’s method
uses canonicalt-statistics, whereas here we use a modified version of it and
pool information from all probes to estimate variance. Keles’s method only
considers two-sample comparisons, whereas TileMap can handle multiple-
sample comparisons. Before taking average,ti in multiple-sample case will
be transformed by log[ti/(1 − ti )]. Notice that in multiple-sample case,ti is
a posterior probability and belongs to [0, 1]; ifti = 0 or 1, it is replaced byε
or 1−ε, whereε is a small number (e.g. 1×10−6). For two-sample case,ti is
given by formula (6) and belongs to(−∞,+∞), and it will be used directly
in formula (7). The choice ofw was discussed in Keleset al. (2004) and will
not be the focus here.

The second method uses HMM. The advantage of using HMM is that
there is no need to preselect aw before analyzing new data. The HMM
structure is shown in Figure 1b. More precisely, letHi denote the hybrid-
ization state of probei. Hi = 1 if probe i shows the pattern of interest;
otherwiseHi = 0. Hereafter, we assume thati = 1, . . . , I correspond
to the probe’s physical order on the chromosome. Definedi,j to be the
physical distance between the centers of probesi and j . Assume that (1)
P(Hi = 0) = π0,P(Hi = 1) = π1 = 1 − π0; (2) if di,i+1 ≤ d0,
the transition probabilities areP(Hi+1 = 1|Hi = 0,di,i+1 ≤ d0) = a0,
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Chromosomal map of tiling array hybridizations

(a)

(b)

Fig. 1. TileMap overview. (a) Illustration of TileMap procedures. Raw data,
TileMap probe level test-statistics, MA summaries and HMM posterior prob-
abilities are shown from top to bottom. In TileMap, small test-statistics
correspond to the hybridization pattern of interest. The posterior probabil-
ity shown is the posterior probability of not being a target probe. (b) The
HMM structure in TileMap.

P(Hi+1 = 0|Hi = 1,di,i+1 ≤ d0) = a1; if di,i+1 > d0, P(Hi+1 =
0|Hi ,di,i+1 > d0) = π0, P(Hi+1 = 1|Hi ,di,i+1 > d0) = π1; (3) the condi-
tional distribution of probe level test-statistics isf (ti = t |Hi = 0) = f0(t),
f (ti = t |Hi = 1) = f1(t). Under these assumptions, onced0, π0, a0, a1,
f0(t) andf1(t) are known, the standard forward–backward algorithm can be
applied to infer the hidden stateHi through probe level test-statisticsti .

In MA, mis are used to rank and select probes to form target regions.
The entire set ofmi can be viewed as a sample from a mixture distribution
π0f0(m) + π1f1(m), wheref0(m) andf1(m) are distributions ofmi under
Hi = 0 andHi = 1, respectively. We need to estimateπ0,f0(m) andf1(m)

in order to control FDR. In HMM,tis are used to infer the hidden states, and
target regions are selected based on the posterior probability ofHi = 1. The
tis can be treated as a sample from another mixtureπ0f0(t) + π1f1(t), and
one needs to knowπ0,f0(t) andf1(t) before decoding the HMM. TileMap
adopts unbalanced mixture subtraction to deal with these two similar issues.

2.3 UMS
The goal of UMS is to recover different components of a mixture distribution
h(t) ≡ π0f0(t) + (1 − π0)f1(t), wheret represents a generic statistic. In
reality,h(t) is observed, butπ0 andf1(t) are unknown. Canonical FDR pro-
cedures assumef0(t) to be known and try to restoref1(t) by subtractingf0(t)

from h(t). These procedures usually work well in two-sample comparisons
wheref0(t) can be obtained, either by theory or by simulation techniques,
such as permutations. However, they cannot be applied directly to cases
wheref0(t) is hard to obtain, e.g. multiple-sample comparisons or compar-
isons involving complex composite null. To circumvent this difficulty, UMS
makes use of additional information (see below) to construct two ‘unbal-
anced’ distributions. Both are mixtures off0(t) andf1(t), but they differ in

Fig. 2. Unbalanced Mixture Subtraction. Left panel is a conceptual example
to illustrate UMS. See Section 2.3 for a detailed description. Right panel
is a real example where UMS was applied to analyze 18 arrays of a cMyc
ChIP-chip experiment to estimatef0(t) andf1(t) (Section 4).

the abundance off1(t) component. The two ‘unbalanced’ mixtures can then
be used to reconstructπ0, f0(t) andf1(t) and estimate FDR.

UMS is illustrated in Figure 2. We first construct two mixturesg0(t) =
p0f0(t) + (1 − p0)f1(t) andg1(t) = q0f0(t) + (1 − q0)f1(t), wherep0 >

π0 ≥ q0. If two such mixtures can be constructed and if∃t0 such thatt → t0,
f0(t)/f1(t) → ∞, then limt→t0 g1(t)/g0(t) = q0/p0 ≡ r. Oncer is known,
f1(t) can be obtained by formula (8).

f1(t) = g1(t) − rg0(t)

1 − r
. (8)

To estimatef0(t), notice thatπ1 = 1 − π0 is usually small; therefore,g0(t)

can provide an approximation off0(t). Given f1(t) andg0(t), π0 can be
estimated by fittingh(t) usingθ0g0(t) + (1 − θ0)f1(t) such that

∫ {h(t) −
[θ0g0(t) + (1 − θ0)f1(t)]}2 dt is minimized. The resulting estimatêθ0 =
{∫ [h(t) − f1(t)][g0(t) − f1(t)] dt}/{∫ [g0(t) − f1(t)]2 dt} = π0/p0 ≥ π0;
therefore,π̂1 = 1 − θ̂0 provides a conservative estimate ofπ1, which is
desirable if we want to keep a relatively stringent criteria in detecting regions
of interest. Onceπ1, f0(t) andf1(t) are estimated, local false discovery rate at
a pointt can be estimated by lfdr(t) = π̂0f̂0(t)/[π̂0f̂0(t)+π̂1f̂1(t)], and FDR
for a rejection regionZ, e.g.{t ≤ tcut}, can be estimated using the relationship
FDR(Z) = E[lfdr(t)|Z]. In the special case where the null distributionf0(t)

is known, we can setp0 = 1, g0(t) = f0(t), andg1(t) = h(t); then UMS
reduces to the q-value method discussed in Storey and Tibshirani (2003).

To construct the two unbalanced mixturesg0(t) andg1(t), we need addi-
tional information. If biological knowledge tells that certain regions are more
likely to be transcribed or bound by the transcription factors under study, this
piece of information can be used, e.g. one can map known transcription factor
binding motifs to the genome to collect regions of potential interest. If such
biological information is not available, the correlation structure provided by
tiling array itself can be used to get an approximate estimate ofg0(t) and
g1(t) as discussed in the following paragraphs.

For HMM, we pick up probes withti > t(p), wheret(p) is thep-th per-
centile of alltis. Then,ti+1, the immediate downstream test-statistics of the
selected probes are used to formg̃0(t). We then pick up probes withti ≤ t(q),
and use their downstreamti+1 to form g̃1(t). For MA, ti+1 is replaced by
mi+w+1, and a similar procedure is used to constructg̃0(m) andg̃1(m). We
then useg̃0(.) and g̃1(.) to surrogateg0(.) andg1(.). The intuition behind
these procedures is that if a DNA/cDNA fragment hybridizes to a probe, it
also tends to hybridize to its neighboring probes. Thus, if a probe has very
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smallti , its neighboring probes are more likely to have the pattern of interest
than random probes do and vice versa.

To generalize the above procedures, we define a selection statisticui .
We useg̃0(t) = f (Ti = t | I{ui∈A} = 1) to approximateg0(t), andg̃1(t) =
f (Ti = t |I{ui∈R} = 1) to approximateg1(t). For MA,ui = ti−w−1, Ti = mi .
For HMM, ui = ti−1, Ti = ti . Both MA and HMM useA = {ui > t(p)}
andR = {ui ≤ t(q)}. By default,t(p) = t(1) andt(q) = t(5) (see Section 5.3
Supplementary material for discussions about the choice oft(p) and t(q)).
As an illustration, the right panel of Figure 2 provides a real example for
estimating HMM parameters in this way.

It can be shown that if (1)P(Hi = 0|I{ui∈A} = 1) > π0, (2) f (Ti =
t |Hi , I{ui∈A} = 1) = f (Ti = t | Hi), theng̃0(t) is a valid surrogate forg0(t).
Similarly, if (1) P(Hi = 0|I{ui∈R} = 1) ≤ π0, (2) f (Ti = t |Hi , I{ui∈R} =
1) = f (Ti = t | Hi), g̃1(t) is a valid surrogate forg1(t). Usually, condition (1)
is not hard to meet. Condition (2) is implied in HMM case, but in general, it
only holds approximately or may not even hold owing to the possible selection
bias or the residual correlations betweenui andTi after accounting forHi . We,
therefore, label the application of UMS here as an ‘approximate’ procedure,
meaning that it only provides a rough and possibly imprecise or optimistic
estimate of FDR under the null model, unless the previous assumptions are
completely satisfied. The advantage of UMS over the permutation-based FDR
estimation, such as SAM (Tusheret al., 2001), is that, if conditions (1) and (2)
are indeed satisfied, UMS can provide FDR estimate for complex composite
null hypothesis, such as ‘notµ1 < µ2 < µ3 or µ4 < µ5’, whereas the latter
cannot. Also, UMS provides an interface to incorporate other sources of
information (e.g. empirical biological knowledge about which genes/regions
are more likely to show desired pattern) to evaluate false positive rates. When
applying UMS, however, it is important to understand that there is always a
possibility that bias may be introduced by the new sources of information.

For HMM, one also needs to determinea0, a1 andd0. One can choose
a1 andd0 according to the typical length of hybridizations. For example, in
ChIP-chip experiments, IP fragments are usually∼1 kb. If the probe density
in the chip is 1 probe/35 bp, a typical hybridization would contain∼28 probes;
correspondingly,a1 can be set to 1/28 to match the mean length of continuous
Hi = 1 segments in HMM, andd0 can be set to 1000. To estimatea0, assume
that(π0,π1) is the stationary distribution for the Markov chain without gaps
(i.e. withoutdi,i+1 > d0), thenπ1 = a0/(a0 + a1), anda0 can be estimated
by â1π̂1/(1 − π̂1) whereπ̂1 = 1 − θ̂0.

3 IMPLEMENTATION
TileMap is implemented in ANSI C. In terms of computation time,
it is usually>10 times faster than G-TRANS (refer to Section 2,
Supplementary material). TileMap includes functions to do raw data
normalization, local repeat filtering, probe level summary, UMS,
MA and HMM. Local repeat filtering masks any probe that occurs
more than once in a 2 kblocal window. In UMS, users may choose to
use their own selection statistics. For MA, permutation-based FDR
estimation routine is also provided. The output of TileMap includes
final summaries for each probe and a *.bed file containing selected
genomic regions. The latter is defined by lfdr in MA or posterior
probability ofHi = 0 in HMM being smaller than a user specified
cutoff.

In UMS, all statistics are transformed to [0, 1], e.g.t-statistic is
transformed using exp(ti )/[1+exp(ti )]. [0, 1] is then equally divided
into n (default = 1000) intervals.g0(.) andg1(.) were estimated
using empirical distributions of test-statistics in these intervals. To
estimater, we computert = [1 − G1(t)]/[1 − G0(t)] for t =
t(50), t(51), . . . , t(99). r is then set to be the median of these 50rts. To
get stable estimates off1(.), we also assumed monotone likelihood
ratio in implementing UMS, i.e. ast → t0,f0(t)/f1(t) is increasing.

4 RESULTS
Tilemap was tested using a ChIP-chip experiment performed by
Cawleyet al. (2004) as well as simulations. In this section, we will
present the global design and the main results of the tests. Details of
how tests and simulations were done are provided in Supplement-
ary material (Sections 3–6). Cawley’s experiment tried to identify
binding regions for three transcription factors using Affymetrix chro-
mosomes 21 and 22 tiling arrays. Their cMyc data on Chip A and
p53-FL (full length antibody) data on Chips A, B, C were used for
testing. For discussion’s convenience, Chips A, B and C in p53
experiment are treated here as a combined single chip. For each
transcription factor, hybridizations were done for two biological rep-
licates under three different conditions: IP, control GST (C1) and
control input (C2). For each biological replicate and experimental
condition, three technical replicates were obtained. In total, there
were 18 arrays for each transcription factor. Before analysis, raw data
were quantile normalized (Bolstadet al., 2003), PM-only intensities
were log transformed and adjusted for batch effect (Section 3.1, Sup-
plementary material). Local repeats were filtered out. The 18 arrays
were then randomly divided into three groups G1, G2 and G3 for
later use. Each group contained six arrays: two for IP, two for C1
and two for C2. Within each condition, the two arrays were from
different biological replicates.

4.1 Sensitivity test based on cMyc data
In order to see how variance shrinking helps increase sensitivity in
small replicate case, MA with variance shrinking (MA-S) was first
compared with MA without variance shrinking (MA-N). Notice that
in two sample comparisons, MA-N is equivalent to Keles’s scan
statistic. Before the comparison, a gold standard was constructed by
applying MA-N to all 18 arrays to select probes showing IP> C1 and
IP > C2 (Section 3.2, Supplementary material). The gold standard
contained 1654 probes (0.5% of all probes) and was grouped into 180
binding regions. In order to compare, one or two of the G1–G3 groups
were excluded. MA-S(w = 5) and MA-N(w = 5) were applied
to the remaining arrays to rank probes according to (1) IP> C1
using one of the G1–G3 groups only; (2) IP> C1 and IP> C2 using
one of the G1–G3 groups only; and (3) IP> C1 and IP> C2 using
two of the G1–G3 groups. For simplicity, we use s2r2, s3r2 and
s3r4 to denote the three settings above. s2r2 stands for two-sample
comparison where each sample has two replicates, s3r2 stands for
three-sample two replicates, etc. In each of the three settings above,
0.5% of top ranking probes were selected to form binding regions.
This guaranteed that both methods had the same coverage of the gen-
ome. Two probes, if separated by<500 bp, were treated as in a single
region. Regions were ranked according to minimum ofmis of each
region. MA-S and MA-N were then compared in terms of what frac-
tion of their top ranking probes were gold standard probes (Fig. 3a)
and how many of their top ranking regions overlap gold standard
regions (Fig. 3b). There were three possibilities to choose one group
or two groups to exclude, and the results shown here were averages
over the three possibilities. According to Figure 3, MA-S was indeed
more powerful than MA-N, even if the way we define gold standard
was biased toward MA-N. In s2r2 case, the effect was most striking.
At probe level, the rate of correct rejections increased from∼0.2
to ∼0.85 when 500 rejections were made; at binding region level,
MA-S identified>70 more gold standard regions among the top 160
regions. The gain from shrinking decreases as the number of arrays
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Fig. 3. Comparisons of MA, HMM, Keles’s method and G-TRANS in cMyc
data analysis. Fraction/number of correct rejections among certain number
of total rejections was shown. (a) MA-S and MA-N were compared at probe
level, probe density= 1/35 bp; (b) MA-S and MA-N were compared at
binding region level, probe density= 1/35 bp; (c) MA-S and MA-N were
compared at binding region level, probe density= 1/70 bp; (d) G-TRANS,
Keles’s method (MA-N), MA-S and HMM were compared at binding region
level, probe density= 1/35 bp, G–M was used as gold standard.

increases, but given that 2–3 replicates are most often encountered,
we would expect to gain from variance shrinking in a significant
number of real studies.

We also reduced the probe density from 1 probe/35 bp to 1 probe/
70 bp by discarding half of the probes. MA-S(w = 2) and
MA-N(w = 2) were compared again using the data with the reduced
probe density (Fig. 3c). The gold standard used in Figure 3c was the
same as that in Figure 3b which were constructed using all probes
including the probes discarded. The gain from variance shrinking
became more evident. Interestingly, in s3r2 case, MA-S found∼100
‘true’ binding regions among its top 160 rejections (Fig. 3c). The
same sensitivity was achieved by MA-N but with doubled probe
density (Fig. 3b). This means that we only need half as many probes
for MA-S as for MA-N to achieve the same sensitivity in this case.
If MA-N were used to survey 100 genes, using the same number
of probes, MA-S allows us to survey 200 genes without losing the
ability to detect the true targets. Surveying more genes, however, can
increase the chance for finding the unknown players in a biological
process.

In order to compare G-TRANS, Keles’s method, MA-S and HMM,
they were applied to analyze cMyc data as we did in Figure 3b. Two
gold standards, ‘G–M’ and ‘G–H’, were constructed using all 18
arrays (Section 3.3, Supplementary material). G–M standard con-
tained 78 regions, which is the intersection of the regions identified
by G-TRANS and MA-N. G–H standard contained 73 regions, which
is the intersection of G-TRANS and HMM regions. Different meth-
ods were compared at binding region level using both G–M standard

(Fig. 3d) and G–H standard (Supplementary Figure S2). The two
results were similar. When replicates were few (s2r2, s3r2), MA-S
and HMM showed clear improvement in sensitivity compared with
G-TRANS and Keles’s method. As the number of arrays became
large (s3r4), all methods began to show similar performance. Keles’s
method and G-TRANS cannot be used to do multiple sample com-
parisons. In order to get summary statistics for IP> C1 and IP> C2,
Keles’s method was replaced by MA-N; G-TRANS was applied
twice to do two-sample comparisons IP> C1 and IP> C2 sep-
arately, and the maximum of the twoP -values for each probe was
taken as its final summary statistics to derive binding regions. We did
not compare TileMap with the HMM method proposed by Liet al.
(2005), since the latter was not available at the time this work was
done.

Next, we compared the enrichment of cMyc binding sites in
regions identified by different methods. cMyc consensus binding
pattern CA[C/T]G[T/C]G was mapped to chromosome 21, yielding
17 563 potential binding sites (TFBS) in a total of 18.3 Mb non-
repeat genomic sequences. Among these TFBS, 4496 were located
in regions whose human–mouse–rat cross-species conservation score
was among the top 30% of the whole chromosome (Section 3.4, Sup-
plementary material). G-TRANS, MA-N (Keles), MA-S and HMM
were all applied to select the top 0.5% probes and group them into
binding regions using 18 cMyc arrays (s3r6) as well as reduced
data (s2r2, s3r2, s3r4). The number of TFBS and conserved TFBS
(cTFBS) in the identified regions were counted. Binding site enrich-
ment was computed as the ratio of TFBS and cTFBS densities in
selected regions to their chromosome-wide counterparts. Site enrich-
ment for different methods is listed in Table 1. Based on the results,
MA-S and HMM consistently showed higher or nearly equal TFBS
and cTFBS enrichment than G-TRANS. They also showed higher
TFBS enrichment than MA-N (Keles) in s2r2 case. The differences,
however, diminished as more arrays were included.

4.2 Sensitivity test based on p53 data
Different methods were further compared through the analysis of 18
p53-FL arrays. Cawleyet al. (2004) verified 14 p53 binding regions
by qPCR, using either p53_FL or p53_DO1 antibody. These regions
were used here as gold standard. Each method was applied under
different settings (s2r2–s3r6) to select the top 0.5% probes and group
them into binding regions. Methods were then compared in terms of
how many experimentally verified regions were identified in their
top 10, top 20 and all selected regions. The results were listed in
the top panel of Table 2. HMM and MA-S again detected more
experimentally verified regions than GTRANS and MA-N (Keles)
when replicates were few (e.g. s2r2, s3r2). We also reduced the
probe density from 1/35 to 1/100 bp by discarding two-thirds of
all the probes. MA-N, MA-S and HMM were compared again (the
bottom panel of Table 2). The better performance of MA-S and HMM
over MA-N in small replicate case became more evident (e.g. s3r2).
G-TRANS was not compared here since we were unable to use it
to analyze a set of specified probes.

4.3 Performance of UMS
To see how UMS works, a series of simulations were done. In all
simulations, six arrays were generated and equally divided into three
groups D1, D2 and D3, each of size two. Each array contained 50 000
probes. Probe intensities were generated according to formulae (1)
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Table 1. cMyc binding site enrichment in predicted binding regions

Method s2r2 s3r2 s3r4 s3r6

GTRANS 1.2 (0.1)/1.1 (0.1) 1.4 (0.1)/1.1 (0.1) 1.8 (0.1)/1.4 (0.1) 1.9/1.5/96k
MA-N/Keles 1.6 (0.2)/1.1 (0.1) 1.9 (0.3)/1.4 (0.2) 2.0 (0.1)/1.5 (0.1) 2.0/1.5/150k
MA-S 1.7 (0.2)/1.3 (0.1) 1.9 (0.2)/1.4 (0.1) 2.0 (0.1)/1.5 (0.1) 2.0/1.5/149k
HMM 1.9 (0.2)/1.4 (0.1) 2.0 (0.2)/1.4 (0.1) 2.0 (0.1)/1.4 (0.1) 2.0/1.4/134k

For reduced data (s2r2, s3r2, s3r4), conserved TFBS (rc) and TFBS enrichment (rt) were shown as rc(se)/rt(se). rc and rt were averages over three independent analyses, se was
standard error of the average. When all 18 arrays were analyzed (s3r6), se cannot be computed, the number of non-repeat bases nb in the predicted regions was shown instead. The
results were in the format rc/rt/nb.

Table 2. Sensitivity of GTRANS, MA-N, MA-S and HMM on p53 data

Methods s2r2 s3r2 s3r4 s3r6

GTRANS 3.3/4.7/8.7 4.3/8.0/11.7 5.0/9.3/12.3 6.0/10.0/12.0
MA-N/Keles 0.7/1.0/4.0 6.3/9.0/12.7 6.0/10.0/13.0 6.0/10.0/13.0
MA-S 6.0/10.0/13.0 6.7/10.0/12.7 6.0/10.0/13.0 6.0/10.0/13.0
HMM 7.0/9.7/11.3 6.7/9.0/12.3 6.3/9.7/13.0 7.0/10.0/13.0
MA-N/Keles/3 0.0/0.0/1.3 3.0/4.3/9.7 4.3/6.0/12.0 4.0/5.0/12.0
MA-S/3 3.3/6.0/11.0 3.7/6.0/11.0 4.7/5.3/12.0 4.0/5.0/12.0
HMM/3 4.0/5.0/9.0 5.0/6.3/10.7 4.3/6.7/10.7 5.0/7.0/11.0

Number of experimentally verified p53 regions among top 10 (n1), top 20 (n2) and all
regions (n3) identified by different methods were shown asn1/n2/n3. For reduced data
(s2r2, s3r2, s3r4), the numbers shown were averages over three analyses.

Table 3. Simulation design for testing UMS

Number Within target region(Hi=1) Outside target region(Hi=0)

I Common for I–III: 	i1 = 	i2 = 0
II 	i1 = |ri1|,	i2 = |ri2| 	i1,	i2 ∼ N(0, 0.25)

ri1, ri2 ∼ N(1, 0.25) 	ijs are all independent
III rijs are all independent 	i1 = 	i2 = 0 plus two types of

binding regions with other patterns:
(a)	i1 = 0,	i2 = |ri2|
(b) 	i1 = |ri1|,	i2 = 0
ri1, ri2 ∼ N(1, 0.25) i.i.d

and (3).v0 = 4.64, ω2
0 = 0.021 were chosen to match the typ-

ical values observed in real data. A number of binding regions with
pattern D1< D2 < D3 were generated to serve as targets, we wish
to identify (Section 4.1, Supplementary material). In total, these
regions covered 50 000π1 probes. Simulations differ in the way
	i1 = µi2 − µi1 and	i2 = µi3 − µi2 were generated, which was
designed to test UMS from different perspective. Table 3 listed the
designs for simulations I–III. In each simulation, 10 different data-
sets were generated, and the results below were averages over the 10
datasets. Here, we useπ1 = 0.05 to illustrate the results, although
π1 = 0.01, 0.02 and 0.10 were also tried and similar results were
obtained.

Simulations I and II tested UMS when its assumptions were true.
In simulation I, we tested D1= D2 = D3 versus D1< D2 < D3.

Fig. 4. Local false discovery rate estimates by UMS and permutation test
in simulations I–III.t(p) = t(1). UMS was applied under four differentt(q)

settings:t(q) = 2nd, 5th, 10th, 50th percentile oft . Black curves correspond to
true lfdr. (a) Simulation I, estimations based ont without variance shrinking;
(b) simulation I, estimations based ont with variance shrinking; (c) simulation
II, estimations based ont without variance shrinking; (d) simulation III,
estimations based ont with variance shrinking.

Probe level test-statisticst were computed for three-sample com-
parison D1< D2 < D3. UMS was applied to estimateπ1 and lfdr
based ont . In UMS, t(p) = t(1), t(q)was set tot(2), t(5), t(10) and
t(50) respectively, and [0, 1] was divided inton = 50 intervals. For
comparison’s purpose, permutation test was also applied to estimate
lfdr. Since we knew exactly what probes were true targets, the true
lfdr could be obtained. Both true lfdr and lfdr obtained by permutation
test were shown together with UMS estimates in Figure 4a and b. In
Figure 4a, estimations were based ont without variance shrinking.
As expected, both UMS and permutation test gave desired lfdr, with
UMS being a little bit more conservative. In Figure 4b, estimations
were based ont with variance shrinking. Surprisingly, permutation
test failed to provide desired lfdr, even though the null hypothesis
here was D1= D2 = D3. This was owing to the combined effect of
permutation test and shrinking. The sample variance of probes with
D1 < D2 < D3 tend to become bigger after permutations; therefore,
variance estimates of all probes were pulled toward a biggers2 when
shrinkage estimator was applied, and test-statistics tend to become
more centralized in the permutation distribution. As a result, the
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number of false probes was underestimated on the tail part, causing
optimistic lfdr estimates. In contrast to permutation test, however,
UMS still provided conservative lfdr estimates.

In simulation II (Section 4.2, Supplementary material), probes
outside target regions were assigned some random changes. This
introduced random components, such as D1< D2 > D3, D1 >

D2 < D3 into the null hypothesis which is no longer D1= D2 = D3.
UMS and permutation test were both applied to estimate lfdr, and the
results based ont without and with variance shrinking were shown in
Figure 4c and Supplementary Figure S3b , respectively. Now even in
the non-shrinking case, permutation test failed to provide desired lfdr
for D1 < D2 < D3. UMS, however, again provided conservative
estimates for both non-shrinking and shrinkingt under differentt(q)

settings.
Simulations I and II tested UMS when its conditional independ-

ence assumption [i.e.f (Ti = t |Hi , I{ui∈A} = 1) = f (Ti =
t |Hi)] was true. Analysis of Cawley’s experiment showed that
this assumption can provide a first order approximation of the
real data (Section 5.1, Supplementary material). To see how UMS
performs when this assumption does not hold, in simulations
III–VI, we challenged UMS by violating the assumption in
different ways.

In simulation III (Section 4.3, Supplementary material), we intro-
duced some additional binding regions with pattern D1= D2 < D3
or D1 < D2 = D3 into the background. Each type of the new
regions also coveredπ1 of the total probes. The additional regions
belonged to null hypothesis and were not the targets we wish to
detect. This design broke the conditional independence assumption
underHi = 0, since D1= D2 < D3 and D1< D2 = D3 are more
likely to generate significant test-statistics than D1= D2 = D3
does, and unlike simulation II, here probes from D1= D2 < D3
and D1< D2 = D3 tend to be clustered together. The lfdr estim-
ates by UMS and permutation test in this simulation are shown
in Figure 4d and Supplementary Figure S3c. Whent(q) was small
(q% ≤ π1 in this case), UMS was still able to provide reason-
able lfdr estimates. Whent(q) became large, the estimates became
optimistic. In both cases, however, UMS performed much better than
permutation test. A theoretical analysis of why UMS works in such
a situation whent(q) is small is given by supplementary material
(Section 5.2).

Simulations IV–VI (Section 4.4, Supplementary material) were
tailored from simulations I–III respectively. Residual correlations
betweenTi andui were introduced into binding regions, which broke
the conditional independence assumption underHi = 1. The results
obtained were shown in Supplementary Figure S3 and were similar
to those in Figure 4, suggesting that this type of violation of the
assumption did not influence the performance of UMS significantly.

We did additional theoretical analysis and tests (Sections 4.5–4.8
and Section 5, Supplementary material). Together with simula-
tions here, they showed that (1) when the conditional independence
assumption of UMS holds, UMS can provide reasonable lfdr andπ1

estimates, and the performance is robust to choices oft(p) andt(q);
(2) when the assumption does not hold, UMS can provide reasonable
lfdr andπ1 estimates whent(q) is small, and under such condition,
the performance of UMS is robust to choices oft(p); however, ift(q)

is big, UMS is sensitive to choices oft(p); (3) UMS works reasonably
well whenmi instead ofti is used to estimate lfdr. According to our
own experience, by settingt(q) ≤ t(5) andt(1) ≤ t(p) ≤ t(20), UMS
usually can provide reasonable performance.

Finally, when applying UMS to Cawley’s experiment, at lfdr= 0.5
level, MA detected 30 and 19 regions with pattern IP> C1 and IP>

C2 for cMyc (ChipA) and p53-FL data, respectively. At posterior
probability = 0.5 level, HMM detected 168 and 142 regions. As a
comparison, atP -value= 0.001 level, G-TRANS reported 48 and
152 regions. HMM tend to report more regions than MA, many of
which are regions shorter than the window size specified by MA
and are not reported by MA (Section 6, Supplementary material).
Whether the shorter regions found by HMM are more likely to be true
signals or noise cannot be clearly resolved using current data. When
we checked the probe intensities, many such regions did look like
true binding regions (Figure S8). Future experimental verifications
are needed to resolve this issue.

5 DISCUSSION
Compared with previous tools, TileMap provides a flexible way to
study tiling array hybridizations under multiple experimental con-
ditions. The variance shrinking component increases the sensitivity
in finding genomic loci of interest when the number of replicates
is small. Though we have only illustrated the use of TileMap in
ChIP-chip experiment, it can also be used to analyze transcriptional
activities of the genome. In terms of computation time, TileMap is
substantially more efficient than G-TRANS.

The main difficulty of multiple sample comparisons is to get
the distribution of test-statistics under the null hypothesis, which
is needed for FDR control or HMM decoding. TileMap adopts an
approximate procedure, UMS, to deal with this issue. UMS is not
a perfect solution. However, the estimation of null distributions
under complex composite null is a difficult problem in general,
for which there are no good solutions currently. UMS embodies
an initial try to address this issue. The rough estimate provided
by UMS can be used to guide the choice of cutoffs, and in many
cases, such an imprecise estimate is enough for practical use for sev-
eral reasons. First, FDR is always model dependent, e.g. assuming
H0 : µ1 = µ2 and H0 : µ1 − µ2 ∼ N(0, 1) will result in very
different FDR estimates. Therefore, unless the statistical null model
(e.g.µ1 = µ2) matches the scientific null (e.g. not tumor-related),
FDR could be very misleading. Second, compared with power, FDR
is of secondary importance if we are only interested in a few top
regions. What we really care about is to have higher chance to find
regions of real scientific interest instead of getting an FDR estim-
ate for a statistical model which may be an oversimplification of
the real world. Despite all these arguments, we also acknowledge
that further investigation of how to control FDR under composite
null per se deserves further investigation. Such investigations will
provide basis for rigorous statistical inference for complex multiple
sample comparisons.

Both MA and HMM used here did not consider the real distri-
butions of the length of hybridizations. Current knowledge about
such distributions is limited. If one can determine these distributions,
the models here can be refined and may provide further resolving
power. For MA, the average can be replaced by a weighted average;
for HMM, a distance dependent transition probability can be used.
All these aspects deserve further investigation. Finally, TileMap is
only the first step to utilize the information provided by tiling array.
Future efforts to integrate TileMap withcis-regulatory module dis-
covery, alternative splicing analysis, etc. will help us get deeper
understanding of various biological systems.
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