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Summary. A region T is a closed subset of the real line of positive finite
Lebesgue measure which has a boundary of measure zero. Call a flegion

tile if R can be tiled by measure-disjoint translatesTofFor a bounded tile all
tilings of R with its translates are periodic, and there are finitely many translation-
equivalence classes of such tilings. The main result of the paper is that for any
tiling of R by a bounded tile, any two tiles in the tiling differ by a rational
multiple of the minimal period of the tiling. From it we a structure theorem
characterizing such tiles in terms of complementing sets for finite cyclic groups.

1. Introduction

This paper studies tilings of the real line using translations of a single prototile
T. We characterize compact sdtof positive measure that tilg by translation,
and the types of tilings they give.

There exist such prototileE having many connected components. The sim-
plest case concerns regions consisting of a finite number of unit intervals, all
of whose endpoints are integers. Such regions are calleslersby Stein and
Szald [30]. Tiling questions for clusters can be reformulated in terms of the set
A of left endpoints of unit intervals in the cluster, and then concern which finite
subsetsA of Z give tilings of Z, i.e. additive factorization®\ + B = Z. This
problem has been extensively studied, see Tijdeman [32] for references.

Extra subtleties in this problem arise from the existence of protdfilbaving
infinitely many connected components. A large class of such prototiles arises
from self-similar constructions, e.g. the self-affine tiles studied in Bandt [2],
Grochenig and Haas [11], Kenyon [16, 17], Lagarias and Wang [22, 21]. For
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example, giveny € R there is a unique compact sét:= T, that satisfies the
set-valued functional equation

T=TU(T+U(T +7), (1.1)

and such a seT, tiles R by translation if and only if its Lebesgue measure
w(T,) > 0. It is therefore natural to ask: which € R have p(T,) > 0? This
question was raised in Odlyzko [27] and was answered in Kenyonf{%]) > 0
if and only if v is rational andy = p/q with pq = 2 (mod 3). The main result
of this paper is a generalized rationality result valid for all bounded regions
that tile R by translation, which implies the result above as a special case.

The results of this paper exclusively concern bounded tiles, but to allow
for generalization we use terminology permitting unbounded tilesedion T
is a closed subset dk which is the closure of its interior, has finite positive
Lebesgue measurgT), and has a bounda@T of measure zero. Regions may
have infinitely many connected components, and may be unbounded. We say that
a regionT tilesR by translationif there is a discrete se¥~ for which

R= [T+, (1.2)
te7
such that
pw((T+)N(T+t))=0 if t,t' €.7 are distinct (1.3)

or, equivalently, such that the interiors of all translates are disjoint.tfEmesla-
tion set.7~ defines the tiling and we say two tilingg™ and.”7" aretranslation-
equivalentif

—_

7 =7 +c forsome ccR.

We call any tiling (1.2) amonohedral translation tilingThis should be distin-
guished from the notion ofmonohedral tilingin Grinbaum and Shepard [12],
which is a tiling using a single prototil& which may be moved by Euclidean
motions and reflections. A monohedral tiling Bfis just a translation tiling us-
ing the set of two prototiles” = {T, TR}, in which TR is the reflection ofT
about 0. Some questions about monohedral tilingR afre treated in Adler and
Holroyd [1].

In studying arbitrary compact sets that tikeby translation, we can without
loss of generality reduce to the case of regions. In an appendix we show that if
T is a compact set of positive Lebesgue measure thatRRilesth tiling set.7~
then there is a regiof’ that differs fromT on a set of measure zero such that
T’ tiles R with the same tiling set/". A tiling .7~ is periodic if

7 =7 +) forsome X eR\{0}. (1.4)

and any\ satisfying (1.4) is called geriod of the tiling.7. The set of all
periods together with O forms a latticé(.7"), which is either{0} or else is
{nX:n e Z} for aminimal period A = A\(7") > 0.

We first show the easy result that one-dimensional translation tilings by a
bounded regio are extremely rigid: all of them are periodic.
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Theorem 1. Suppose that a bounded region T of meagL(i) tiles R by trans-
lation. Then:

(i) Every tiling by translations of T is a periodic tiling.
(i) There are only finitely many translation-equivalence classes of tilings by T.
(iii) Each such tiling has a minimal period which is an integral multipleudT ).

The analogue of Theorem 1 is false in higher dimensions, e.g. the unit square
T in R? gives infinitely many nonperiodic tilings dk? which are translation-
inequivalent. Theorem 1 also fails in general for regidnadmitting a monohe-
dral tiling of R, as shown in Example 1. A final observation is that there are pro-
totilesT that tileR by translation but have no lattice tilings, elg= [0, 1]U[2, 3].

Theorem 1 asserts periodicity of all tilings, but it does not give any informa-
tion about the cosets of such a periodic tiling. The main result of the paper is
the following rationality result for such cosets.

Theorem 2 (Rationality Theorem). Suppose that a bounded region T tiR&y
translation, using a periodic tiling se¥” given by

J
7 = +22). (1.5)
i=1
Then all differences;r— ry are rational multiples of the period.

The analogue of Theorem 2 is false in higher dimensions, e.g. there is
a tiling of R? with unit squares which is 7ZZ-periodic with tiling set.7 =
{(0,0),(1,0), (v,1), (1 +~,1)} + 272 where ~ is irrational. The conclusion of
Theorem 2 also fails to hold in the more general situation of (indecomposable)
tilings of the line by compactly supported nonnegative functions, see [20].

The proof of Theorem 2 is Fourier-analytic, and depends on several facts
apparently unrelated to tiling questions, including results on the zeros of ban-
dlimited functions, and the use of either Szemeredi’'s theorem asserting that sets
of integers having positive upper asymptotic density contain arbitrarily long arith-
metic progressions or of the Skolem-Mahler-Lech theorem characterizing the set
of integer zeros of exponential polynomials. The point of the proof is its validity
for arbitrary tiles ofR; an easier proof exists for the special case of self-affine
tiles (defined below), using the arguments of Kenyon [19].

Using Theorem 2 we obtain a structure theorem for bounded regidhst
give tilings of R. To state it we need some further definitions. Given two finite
sets of integers#,.7 and an integet. > 1, we say that the pair ¢, .72) is a
complementing paimodL) if |. 4| |. 2| =L and

A+ 75 ={0,12...,L-1} (modL).

We also say that# is a complementing s€mod L) if there is some# such
that (#4,.72) is a complementing pair (mod), and we call any suchz a
complemenbf . 4.

In view of Theorem 1 we may rescale the tifeso that it tiles periodically
with the period latticeZ. We obtain the following structure theorem.
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Theorem 3. Suppose that the bounded region T tilRswith a periodic tiling
whose period lattice contain. Then it tilesR with a set7 of translations of
the form:

J
P g .
T jL:Jl(L+Z), (1.6)

where0 =a; < ap < --- < g <L —1lareintegers, and the setZ = {g : 1 <
j < J}is a complementing s€tmod ). If .7 runs over the (countable) set of
complements of4 (mod L), then there is a decomposition

T={JTs+7) (7
7

in which only finitely many J # 0, which is determined uniquely by the two
requirements that:

(). The sets T are all regions and have mutually disjoint interiors.
(ii). The union of all the sets } is the interval[0, £].

Conversely, any T having such a decomposition fewith a periodic tile set
.7 of the form (1.6) above.

In particular, a set" of the form (1.6) can be a tiling set for some prototile
T if and only if .4 is a complementing set (mdd. If . 4 is a complementing
set then there exists such a protofilewith the property thal.T is a cluster.
Thus clusters already yield the most general tiling sets possible for translation
tilings in one dimension.

Theorem 3 reduces the classification problem to that of determining all com-
plementing pairs.(#,.77) (modL) for all L > 1. Complementing pairs were first
studied in connection with factorizations of abelian groups, seédd;3, 14],
and de Bruijn [6]; see TijJdeman [32] for a survey and some new results. There re-
main several outstanding open questions concerning their structure. These include
the question of Hdjs [13] whether all complementing paits4,.7’) (mod L) are
guasiperiodic. A complementing pair,.#?) is quasiperiodicif one of .- or
.72, say.#7, can be partitioned ag? = Ui’il.%’i such that 2+.%, = gi+. 4+.72,
where the elementég; } form an additive subgroup (mad).

Theorem 2 can also be used to prove a classification theorem for one-
dimensional self-affine tiles, which was first established by Kenyon [16, 19].
Given an integebase bwith |b| > 2 and adigit setZ of |b| real digits the
attractor T := T (b, &) is the solution of the set-valued functional equation

bT = (T +d),

der

and is explicitly given by

T(h, %)= {ib‘idi . al d e:z}. (1.8)
i=1
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We say thafl (b, &) is aself-affine tileif its Lebesgue measure
w(T(b, 7)) > 0, (1.9)

and that it is arintegral self-affine tilef in addition & C Z. Any self-affine tile
T(b, &) tiles R by translation. In studying such tiles, one can always reduce to
the case that @ &/ by translating the digit set, which has the effect of translating
the tile.

Theorem 4. If T (b, &) is a self-affine tile iNR with 0 € &, then there exists
A > 0 such thath\Z C Z. Consequently every self-affine tilelinis the affine
image of an integral self-affine tile.

The analogue of this theorem in higher dimensions is false, e.g. there is a
two-dimensional self-affine tild (A, &) which is not an affine image of any
integral self-affine tile, see Example 2.1 of Lagarias and Wang [22].

The results of Kenyon [19] concerning which real digit séts give one-
dimensional self-affine tiles follow from Theorem 4, see Section 6.

Our motivation for characterizing one-dimensional tilings was to shed light
on the one-dimensional case of a conjecture of Fuglede [7], which concerns the
structure of spectral sets IR". We say that a regiof in R" is aspectral setif
there is a set”” of exponentials, say” = {e\(x) : A € .7}, where

ex(x) := exp(2ri (A\1xy + - - - + AnXn)),

which when restricted td@ forms an orthogonal basi®f L2(T).

Spectral set conjectureA regionT in R" is a spectral set if and only T tiles
R" by translation.

This conjecture is not settled in either direction, even in the one-dimensional
case. For bounded regiois Theorem 3 allows us to reduce the “if” direction of
the one-dimensional case of the conjecture to problems concerning the structure
of complementing sets. In particular we show elsewhere that a conjecture of
Tijdeman concerning complementing pairs implies that all bounded Tilese
spectral sets.

The Spectral Set Conjecture applies also to unbounded regions, but the meth-
ods of this paper apparently do not extend to the unbounded case. For a survey
of previous work done on the spectral set conjecture see Jorgensen and Pedersen
[15].

Our results also apply to the following conjecture, which is implicitly raised
in Grinbaum and Shepard [12, p. 23].

! That is, the sefex(X)xT(X) : A € .7} is an orthogonal basis df?(T), where xt(x) is the
characteristic function of .
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Periodic tiling conjecture.Any regionT that tilesR" by translation has a peri-
odic tiling.

The one-dimensional case of this conjecture follows from Theorem 1. In
Section 2 we also show that any regidnthat tilesR with a monohedral tiling
also tilesR with a periodic monohedral tiling.

There are a number of partial results known concerning the Periodic Tiling
Conjecture in dimensions > 2. Girault-Beauquier and Nivat [10] proved that
the Periodic Tiling Conjecture holds in dimension 2 whenever the regids
a topological disk with a sufficiently smooth boundary (piecevis®- Kenyon
[18] asserts that his results permit a proof of this result for all regibris R?
that are topological disks, with no restrictions on their boundary. Venkov [34]
proved that any convex polytogethat tilesR" by translation has a lattice tiling.
Thus the Periodic Tiling Conjecture holds for convex polytopes. Venkov’s result
was independently rediscovered by McMullen [26].

The Periodic Tiling Conjecture depends in an essential way on translations
being the only allowed motions. There are known examples of (hon-convex)
polyhedra inR® which tile R® by Euclidean motions, but only aperiodically
(Schmitt [29], unpublished). Recently J. H. Conway and L. Danzer constructed
a three dimensional convex polyhedron (with eight faces) which filésby
Euclidean motions, with all such tilings being aperiodic (L. Danzer [5]).

The contents of this paper are as follows. Theorems 1, 2, 3 and 4 are proved
in Sections 2, 4, 5 and 6, respectively. In Section 3 we obtain an upper bound
for the density of integer zeros of the Fourier transform of compactly supported
nonnegative functions im?(R), when the support of has measure less than
one. This result plays an important role in the proof of Theorem 2.

AcknowledgementsWe thank Palle Jorgensen for introducing us to the Spectral Set Conjecture, and
Henry Landau, Peter McMullen, Andrew Odlyzko, Bjorn Poonen and Boris Solomyak for helpful
comments and references. We also thank the anonymous referee for supplying Example 1, which
simplified our earlier example.

2. Periodicity and finiteness of tilings

The existence of periodic tilings is a general fact about one-dimensional tilings
using an arbitrary finite se&¥” of bounded prototiles, as we show below. However
the finiteness of translation equivalence-classes of tilings for translation tilings
using one tile is a special fact that fails to generalize even to monohedral tilings,
see Example 1.

Theorem 5. Let. = {T; : 1 < j < m} be a finite set of bounded regions in
R. If there is a translation tiling ofR using tiles drawn from¥”, then there is a
periodic tiling of R using tiles drawn from%”.

Proof. Since all prototiles in¥” are bounded, we may suppose®liC [-N, N].
For any prototilesT in ., the interiorT° of T is a countable union of open
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intervals, and the boundad := T—T° is some (possibly complicated) nowhere
dense set of measure zero.
A patch & is any finite set of translates of tiles i, say

27 ={T0+t:1<i <k, each TV c.7},
that are nonoverlapping, i.e.
p((TO+)n @O +4)) =0 if i#j.

Let 2(=) denote the closed set covered by the pat€hi.e.

k
) =T +1).

i=1

A tiling of a finite intervald by . is a patch=” that covers] and also has
the property that every tild® +t; in = intersects]. A set of prototiles¥”
has thelocal finiteness propertyf given any closed interval, there are only
finitely many ways to tileJ by translates of prototiles i, up to translation-
equivalence.

The main step in the proof is:

Claim 1. Any finite set.” of bounded prototiles that tiles the line by translation
has the local finiteness property.

To prove this claim, suppose thatis a closed interval and that+t is a tile
which intersects in a set of positive measure. It suffices to show that it extends
in at most finitely many ways to a patch that covers]. There is some choice
of initial tile T € .7 that extends in at least one way to coverbecause by
hypothesis¥ tiles the line.

The interior of T +t must include at least one open interval,f,) that
intersectsJ, and we suppose that this interval is maximal, so thak, € OT.
Thus for=4 = {T +t} we have

[X1, %2] € £2(). (2.1)

We assert that there are only finitely many choices to place & titet’ so that
X € T’ +t’ and
p((T+)N(T" +t')) =0.

This holds because eithes is the extreme left endpoint af’ +t’, or else it is
a point of T’ +t’ such thafT’ +t’ contains a gap of size x; — x; to the left of
this point. SinceT’ is bounded there can only be finitely many such gap¥’in
indeed at mosfN /(X — x1)] gaps, proving the assertion.

Now suppose that; lies in the interior of]. Then any patcl” coveringJ
that includesT +t must include another til&@’ +t’ that contains<x,. To see this,
take a sequence of poiny; } in J lying outsideT’ +t,, such that limy; = x,.

I —00

These are covered by”?, so some tileT’ +t’ in & contains infinitely many of
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them, so this tile contains alsg since it is closed. By the above argument there
are only finitely many choices foF’ +t’. Let &’ denote the finite set of tiles in
the patch>” that containx,. We assert that there is a valgie > 0 such that

[X1, % + 8] C (). (2.2)

For if not, x, would still be a boundary point a(&”’), and the argument above
shows that2’ then contains another til€~ +t” not in & which touchesx,
contradicting the definition of/”. We also note that the value éf can be
chosen independent of the extensiefl, because we can minimize it over the
finite set of possible extensiong”.

Thus we have shown that there are only a finite number of ways to extend
the tiling at leas® to the right. The argument can now be repeated, since (2.2)
is the same form as (2.1), takimxg to be the right endpoint of the largest interval
in £2(=”') that contains., %, + 6 ]. Continuing this way, at each step we have
finitely many choices for the extension, and each step extends the tiling to the
right by at least” . Thus the whole process halts in at mosf/ih|/é" ] iterations.

Whenx; lies in the interior ofJ, the same argument applies on extending the
tiling to the left. Finally there remain the two cases wheyes 9J or x; € 9J.

The argument above shows there are only finitely many choices for @’tie’
that intersectd only at one or both of its endpoints. Thus Claim 1 is proved.

Now by Claim 1 there are only finitely many translation-inequivalent ways
to tile the interval N, N]. Call this numberM+. Take a translation-tiling7~
of R from . and look at how it tiles théMt + 1 intervals

J=[-N,N]+7kN, 0<k < M.

It covers each of these intervals with a pateb, and the regions the patches
cover are disjoint because all tilds C [-N, N]. By the pigeonhole principle,
two such patches are translation-equivalent, say

S, = Lo, + A, A> 0. (2.3)

Form the patch” of tiles containing#2, plus all tiles in.7~ containing some
point larger tharN + 7k,N and smaller than-N + 7k;N. Then the patch/” tiles

R with a periodic tiling with periodA. Indeed condition (2.3) assures that the
ends of translates o#” fit together properly. We omit the remaining details.

Applying Theorem 5 with¥” = {T, TR} shows that any regiofi that tiles
R with a monohedral tiling also has a periodic monohedral tiling.

Example 1.The clusterT = [0, 2] U [5, 6] gives uncountably many monohedral
tilings that are translation-inequivalent. (These include aperiodic tilings.)

Proof. The reflected tileTR is [-6, —5] U [-2,0]. The interval [09] can be
monohedrally tiles in two translation-inequivalent ways, namely

(T+{0,3) U(T*+{8})
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and its “reflection”
(T+{1)u(TR+{6,9}).

Now R can be tiled using”” = {T,TR} in uncountably many translation-
inequivalent ways, by tiling successive intervals of length 9 arbitrarily using
either of these two patches.

Proof of Theorem 1.Suppose thall C [—N,N]. By Claim 1 of the proof of
Theorem 5, the prototil& has the local finiteness property. We supplement this
with:

Claim 2. If a patch=” covers the interval N, N] and & can be extended to
a tiling of the line, then this extended tiling is unique.

To prove this claim, consider the poirt > N which is the infimum of
all points> N not covered by=". Suppose that the patch’ extends to some
patch&” that covers £ N, x* +§] for someé > 0. Then=”' contains a new tile
T +1t’ that includes some points” + ¢ for every sufficiently smalk > 0. Now
the patch~” completely covers the closed intervall, x*]; hence by measure-
disjointness off2(&°) and T +1t’/, and the fact that any two points ih are at
distance at mosti apart, it follows that

T+t C[x", ).

SinceT +t’ is closed and contains points arbitrarily closext it also contains
x*. But now x" is the left endpoint oflT +t’, so the translation’ is uniquely
specified. In particular, any extension of the pateh to a tiling of R must
include the tileT +t’. Furthermore, the new patch’”’ = =2 U {T +t'} must
cover some interval-}2N,x* + 6] with 6" > 0. To see this, suppose not, so
that x* is still a boundary point of the se®("") covered by the patch””.

If the patch="" can be extended to a tiling &, then a new tileT +t" could
be added to it that covers some points arbitrarily negrand by the argument
above we must have’ =t’, which gives a contradiction because the tilest’
andT +t" overlap in a set of positive measure.

Now we have extended the tiling slightly to the right, by adding a uniquely
determined tileT +t’. We can now repeat the argument, to conclude that, if the
patch=’ extends to a tiling oRR, it extends in a unique manner to the interval
[x*, 00). By a similar argument, the tiling extends uniquely to the left, to cover
(=00, x']. Thus Claim 2 is proved.

Parts (i) and (ii) of the theorem follow easily using Claims 1 and 2. By Claim
1 there are only finitely many translation-inequivalent ways to tile the interval
[N, N]. By Claim 2 each of these tilings of{N,N] extends to at most one
tiling of R. Thus there are only finitely many translation-inequivalent tilings of
R by T, which is (ii).

The pigeonhole principle argument used in proving Theorem 5 shows that
any tiling.7~ contains some patck? such that:
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(@) [-N,N]+t C .7 for somet.
(b) .72 and some disjoint translate2 + A both occur in7".

Consider now the tiling7” — . It contains#2, and Claim 2 applies to show that
.72 determines the tilingZ7 — A uniquely. Since7 is also a tiling containing
2, we have7 — )\ =.7 . Thus.7 is periodic, which is (i).

Finally, we verify (iii). Let.7" be a periodic tiling set foiT with period
lattice \Z. Set.7” = Ule(ri + \Z), in which casel := Uile(T +r;) tiles R with
tile set\Z. We count the number of elemerttsn .7~ such thafT +t intersects
the interval M, M] in two ways. Counted directly, it is

2M
——+0(1) as M — oo,
(T)
while counted in terms of tile that intersectfM,M], it is

2IVIT‘]+O(1) as M — co.

Thus\ = J u(T), which is (ii).

Remark.Is Theorem 1 true for unbounded regions? The proof above used the
boundedness assumption in proving both Claim 1 and Claim 2.

The following example shows that translation-inequivalent tilings do occur.

Example 2.The clusterT = [0,1] U [4,5] U [8,9] gives several translation-
inequivalent tilings ofR.

Proof. Two tiling sets with period\ = 12 are.4 = {0,1,2,3} + 12Z and.% =
{0,1,2,7} + 12Z, and there are others.

3. Density bound for integer Fourier zeros

Given a functionf (t) € LY(R), its Fourier transform

oo
fo) = / f (t)e? Mt (3.1)
is defined for allA € R and lies inL>*(R). We use thesupportof f € L1(R) in
the sense of distributions, denoting it Sugp, @nd note that it is a closed set,
cf. Rudin [28, p. 149]. Without loss of generality we may redefine such an

a set of measure zero so that it vanishes outside $uppie Fourier series zero
setof f € LY(R) is

Zf):={n:nez and f(n)=0. (3.2)
Finally, theupper asymptotic densitg(V) of a (discrete) seil of real numbers

is
d(A) :=lim sup%#{)\ tAeAd and [N <TY, (3.3)

T—o0

We prove:
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Theorem 6. Let f(t) be a compactly supported nonnegative function %(Rl),
whose support has measure

0 < u(Suppf)) < 1. (3.4)
Then the Fourier series zero seff] of f has upper asymptotic density
dz(f)) < 1. (3.5)

Proof. Let L2(R) denote the linear space of compactly supported functions in
L?(R). Note thatL2(R) C L'(R). By the Paley-Wiener theorem the Fourier trans-
forms of functions inL%(R) are exactly the entire functions of exponential type
whose restrictions to the real axis arelif(R).

We will apply two linear operators ol?(R) which changd but do not affect
the Fourier series zero set. The simplest of these is translation

Tyf(t) :=f(t —y). (3.6)
Clearly Ty is a linear operator oh?(R), with
Supp{yf) = Supp() +y.
The Fourier series zero s¥f is invariant undeiTy, i.e.
Z(Tyf)=2(f), all yeR, (3.7)

sinceT,f(\) = e2™Af (), all A € R.
The second operatioR, which is a projection onto functions supported on
[—1,3] takesf € L4(R) to the compactly supported function

dof+m)  —1/2<t<1/2
Pf(t)={ ™Mz (3.8)
0 otherwise
To see thaPf € L4(R), we need only verify thaPf < L2(R). For this, note that
if f(t) has support inf£M,M], then the sum definin§(t) for —1/2 <t < 1/2

is finite, whence
IPf(t)][72 < (M + 17[|f ||

The operatoP obviously does not change the values of the Fourier transform
atn €z, i.e. . A
Pf(n)=f(n) forall neZ,

hence the Fourier series zero Zdf) is invariant, i.e.
Z(Pf) =Z(f). (3.9)

Furthermore
#(SuppPf)) < u(Suppf)) < 1, (3.10)
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for if f is supported infM,M], then

M
SuppPf) € |J {(Supp€)n [m—1/2, m+1/2]) —m}, (3.11)

m=—M

from which (3.10) follows.

Our object is to apply the operatdpsandT, repeatedly to produce a nonzero
function h having support in an intervaH3 + 6, 3 — 6] for someé > 0. Since
SuppPf) is a closed set of measure less than 14@{%], its complement in
[—3. 3] contains an open interval, call ik — &, %o + 6), with —3 + & < xp <
% — 6. Now we apply the translation operat®s,_, to Pf to get a function
g = Tl/27xOPf with

Supp(y/2—x,Pf)

SuppPf) + (1/2 — xo)
[X0,1— %] C [~1/2+6,3/2—6].

N

By construction the support af lies in [f%, %] and omits intervals of width &

centered abou%%, % and%. Now apply the operatd? again, to get the function
h:=Pg=PTy/»_4Pf,
which has
Supph) = SuppPT1/2-5Pf) C [-1/2+6, 1/2— 6], (3.12)

using (3.11) applied tg. The invariance of Fourier series zero sets gives
Z(h) =Z(g) = Z(f). (3.13)

Certainlyh € L2(R), henceh € L2(R). We next show thah()) # 0. To see
this, note that both operatof, and P take nonnegative functions i(R) to
nonnegative functions ih2(R), and

/Z T,f (t)dt = /O; P, f (t)dt = /Oo f(t)dt > 0

— - —o0

implies thath()) % 0.

Sinceh is compactly supported, the Paley-Wiener theorem applid¢dgays
that its Fourier transfornfi()) is the restriction toR of an entire function of
exponential typep, and (3.12) implies that

p<2r(1/2-6). (3.14)

However it is known that entire functiong(\) of exponential type having re-
stricted growth on the real axis cannot have too large a density of real zeros. Let
Ng4(R) count the number of real zeros of such a function in the intervaR][0
Then we have:
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Proposition 1. If ¢()\) # 0 is an entire function of exponential typeand if its
restriction to the real axis is in 4(R), then

. Ny (R

limsup % <?, (3.15)

R—o0 ™

Proof. This appears as Theorem 5.4.1 in Logan [25], with the following proof.
The Paley-Wiener theorem states that

H(t) = / ’ h(t)e"dt
-P

whereh(t) € L?([—p, p]). Now h(t) € LY(R) so ¢(t) € L>(R), whence

> log"(¢(N)
1+)2

where log(|x|) = max(Qlog |x|). The hypotheses of Theorem VIII of Levinson

[24] are then satisfied, and its conclusion yields (3.15). (An alternate proof can

be derived using Boas [4], Theorem 8.4.16.)

d\ < oo,

— 0o

To complete the proof of Theorem 6, we note that the bound (3.15) also
applies to zeros op(A) on the negative real axis — just consid&r—\). Thus
Proposition 1 implies that the upper asymptotic density of all real zeros is at
mostp/m. Now the upper asymptotic densit§ of integer zeros oﬁ()\) can be
no larger than that of all real zeros f)()\), and by Proposition 1 this is at most
p/m. Since (3.13) givep/m < 1 — 26, Theorem 6 follows.

Remarks.(1). Theorem 6 cannot be strengthened to give any quantitative upper
bound between the measure of SUpmnd the densityl(Z(f)). For anye > 0
there are examples whefeis the characteristic functiogr of a tile T, having
1(Suppt)) < € and nevertheless(Z(f)) > 1 — ¢, see Lemma 1 in Section 4.

(2). The hypothesis thdt be nonnegative cannot be removed from Theorem
6. The function

1 for +1/2<x < 1/2+8,
f(t) =

-1 for —1/2<x < -1/2+§,

hasPf(t) = 0, so thatZ(f) = Z, andd(Z(f)) = 1.
(3). The requirement that (f) be the set ointeger zeros is also crucial to
the statement of Theorem 6. If we study instead the sétatifinteger zeros

Zf):={nez:f(n+l)=0},
then the conclusion of Theorem 6 is no longer valid. For any 0, takef to
be the characteristic functiogs for S=[-1 — 6, -2+ 5] U [ — 6,1 + 6], with
w(Suppf)) = 46. Then
- 2 .
f(\) = = sin(2r Ad) cosr)),
™

which vanishes on the entire s§t+ Z, so thatZ (f) = Z.
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4. Rationality of translates

We now prove the rationality of translates in tilingRfoy translates of a bounded
regionT. Theorem 6 plays an important role in this proof.

Proof of Theorem 2 Without loss of generality we may take the period lattice
of .77 to beZ, by rescalingT and.7 to %T and %7 , respectively. We are
now given a bounded regioh that tilesR with a tiling set.7~ which hasZ as

a period, so that

J
7 = +2). (4.1)
j=1

Our object is to show that aft —rj € Q. Set
S2={rp i 1<j <3}

and define the new region
J

U:=Jm+n) (4.2)
j=1
The hypotheses show that the regidntiles R with the lattice tilingZ. Now U
is a bounded region, so it must be a fundamental domaiR f@ (up to a set of
measure 0), hence(U) = 1. (The measure-disjointness of the union (4.2) then
implies that(T) = 7.)
We use the Fourier transforms of the characteristic functip(t) of T and
of the measure
b(t) = D 6 (D), (4.3)

rez
whereé, (t) := 6(t —r) is aé-function centered at. These are

O / exp(2rit \)dt, A € C, (4.4)
T
and A
b(N) =Y exp(2rir\), A€C, (4.5)
re.z2

respectively. Then the characteristic functipn of U has Fourier transform

Xu (M) // exp(2rit \)dt

m
= > / exp(2rit \)dt
i=1 TH

= 62N\, reC. (4.6)
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SinceU tiles R with tiling setZ, we have
2u(n) = 1 ifn=0,
XEV=Y 0 itnez\ {0}
becausdJ = [0, 1] (mod 1), aside from a set of measure zero.

In terms of the Fourier series zero s&& ) and Z(xt), (4.6) and (4.7)
combine to give

4.7)

Z(652) U Z(x1) = Z\ {0} (4.8)
By making a translation o~ we may reduce to the case thiat= 0 without
loss of generality. The theorem then reduces to proving that

2 C Q. (4.9)

We begin by partitioningz2 into nonempty equivalence classes mod@lo

Call the resulting partition
K

2 =75,
k=1
wherer —r" € Qif r,r’ € 22, andr — 1’ ¢ Q if r € 2, r' € F, with
k; # ko. We thus have a decomposition
T =+ EF with 67 CQ, 1<k<K,

where eachry € .#2. Define N to be the least common denominator for this
decomposition, i.e.

K
N := min{M AR <U /k> cz}. (4.10)

k=1
Next, for each?,*, set

fir() =) exp(2ric)), 1<k <K. (4.11)
ceC”
If f*(n) =0 forn € Z then
ff(n+Nm)=0, al meZ, (4.12)

becauseN is a common denominator for all elementsQf*.
We define thecommon integer zero set &f the f,* by

X={neZ: ff(n)=0 for 1<k <K}. (4.13)

Sinced »(\) = Sor, £ (\), we haveX C Z(6.). (4.13) shows thaX is a union
of arithmetic progressions (mdd), and certainly GZ X because & Z(6.,).

Claim. The Fourier series zero set has a partition

Z(6»)=XUY,
in which X is the common integer zero set aMdis a set of density zero, i.e.
d(y)=o. (4.14)

In fact, Y is a finite set.
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Proof of Claim. We define
Y =Z(60) \ X, (4.15)

so that{X, Y} is a partition ofZ(8.). We must show thad(Y) = 0.

We now prove thalY contains no arithmetic progression of length> |.72|.
We argue by contradiction. Suppose that it contains one of lehgth#2|, call
it

s,s+d,s+2d,...,s+(J — 1)d.
Now

J
dn(s+ld):=>" exp(2rirj(s+ld))=0, 0<l<J-1 (4.16)
j=1

Define an equivalence relation on the elements of thesgaty
r ~r'<= exp(2rird) = exp(2rir 'd).

This relation= induces a partition af/2 into nonempty equivalence classes, call
it

L
S = U.%:,
1=1

and setz = exp(2rird) for somer € 72 We have

5N = exp(ariry), 1<1<L,
I’E./a

and (4.16) yields

L
bp(s+md)=> 7" 5(s)=0, 1<m<J-1
I=1
This is a linear system with unknowms= 5',;3' (s). It is coefficients for 1< m <
J — 1 form a Vandermonde matrix with distingt, hence

8,4()=0 for 1<I<L. (4.17)

We next assert that the partitio{r.%. : 1 < I < L} refinesthe partition
{22} : 1<k <K}. Forr ~ r’ implies that exp(2i (r —r’)d) = 1, which since
d e Z\ {0} givesr —r’ € Q, sor andr’ are in the samé)-equivalence class,
as asserted. In consequence,

8.2:(9) > exp(2rirs)
resy

Y 6,;()=0, 1<k<K.
-fllg./z;
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By definition of X this makess € X sos € X NY # 0, a contradiction.

To complete the proof of the claim, suppose tH@Y) > 0. We apply Sze-
meredi’'s theorem asserting that ¥f C Z* hasd(Y) > 0 thenY contains
arbitrarily long arithmetic progressions, cf. Szemeredi [31], Furstenberg [8, 9].
This contradictsy containing no arithmetic progression of lendth?|.

An alternative argument uses the Skolem-Mahler-Lech theorem, and yields
the stronger result that is a finite set. The Skolem-Mahler-Lech theorem states
that the integer zero set of an exponential polynomial is a finite union of complete
arithmetic progressions plus a finite set, cf. Lech [23], van der Poorten [33]. In
particularZ(6.,2) and X both have this structure, from which it follows th#t
differs from a finite union of complete arithmetic progressions on a finite set. So
if Y were infinite then it would contain arbitrarily long arithmetic progressions,
which gives the same contradiction.

To continue the proof of Theorem 2, introduce the regions

Uci= | (T+r), 1<k<K. (4.18)
res¢

A calculation identical to (4.6) gives
KU =88R, AeC, (4.19)

which implies that
Z(xu) = Z(6.02;) U Z(x7)- (4.20)
The definition (4.13) oX guarantees that

X CZ(84) for 1<k<K, (4.21)

whence

Z\ {0} Z(6.£)UZ(xt)=XUY UZ(xT)

Y UZ(E) UZ(xr).

N

The claim states that(Y) = 0, so this yields
d(Z(xu)) =d@Z(xr) U Z(xT)) > 1. (4.22)
If it were true thatu(Uy) < 1, then Theorem 6 would give
d(Z(xu)) < 1,

contradicting (4.22). Thug(Uk) = 1, which means that?, = .22 sok =K =1,
and, since @ .22, we have# C Q.

We now show that Theorem 6 cannot be improved, using some particular
regionsT that tile R.
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Lemma 1. For any e > O there exists a region T if0, 1] which has measure
#(T) < e and which tilesR with a periodic tiling whose period lattice contains
Z, yet whose characteristic functiopr has Fourier series zero set satisfying

dZ(x) > 1-e

Proof. For anyN > 1 take

1 1
T= [O, W] + mré
where.2={0,N,2N,... (N — 1)N}, so that

u(T) = % (4.23)

If .8 =1{0,1,...,N —1} then. 4 +.22 +N?Z = Z, henceT tiles R with tile set

1
T= 5 P+L.

Taking .72 = éﬂ the functiond, has Fourier transform

N—1 i 2mi A

: 2rij A\ _ 1-exp(%?)
6#/3(>\) = eXp( ) = i )
=2 @Rz ) 7 e

hence it has Fourier series zero set

Z(6%):={N,2N,...,(N — )N} +N?Z.

Thus
— N-1
d(Z(6»)) = N2
and (4.8) now implies that
_ N2-N+1 1
dZ () > dZ(r) = —7— > 1- - (4.24)

from which the lemma follows on choosing large enough.

5. Structure theorem for tiles

We classify the structure of bounded regidnshat tile R, using Theorem 2. We
let T, ~ T, mean thafl; and T, differ on a set of measure zero.
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Proof of Theorem 3.We are given that tiles R with a periodic tiling.7~ whose
period lattice containg. Without loss of generality we may suppose that 07,
by translating the tile set. Th&-periodicity of.7" yields

J
7 =Jn+z), o<r <1, (5.1)
j=1
and we may suppose theg = 0. By Theorem 2 alk; = r; —ry are rational.
Taking L to be their common denominator, we st ¢, and then7 is of the
form (1.6).
Now set
A={g 11<i <J}

and, for each € [0, %), define the set of integers

A(t) = {j eZ:t+J[eT}. (5.2)

SinceT is bounded, sayl C [—N, N], there are only finitely many possibilities
for the set Z(t), i.e. .2 (t) lies in .5f := {all subsets of {LN,LN]NZ}. For
each set of integers? € A, we let

T, ={t:.2{t) =%}
By discarding sets7 with ;(T%,;) = 0, we have

T~ (J (Tu+7). (5.3)
w(T%)>0
Furthermore, we have
1 \
{o, d ~ |J T (5.4)
w(T%,)>0

This will turn out to be the required decomposition (1.7), after replacing each of
the setsT*, by its closureT?,.

We assert that for each? with p(T7%;) > 0, the pair (4,.77) is a comple-
menting pair (mod.). To show this, look at the tiling restricted to the subset

1
Sy =T,+-Z
72 A
of R. Now Sy is tiled (up to a measure zero set) by the tiles

1
U » Z:T.}+E.%’2Tﬂs,/),

using the tile set7". Thus

1 1 1
P ~ B+ =+
T,z (_ﬁ L/f) (ﬁ z)

~ <r; + %(4 +.z’)> +7.
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SinceT, C [0, 1] has positive measure, this forces

%Z: %(.,m.z’)% (5.5)

viewed as setwith multiplicity, which requires that (2, .72) be a complementing
pair (modL), proving the assertion. It follows thatZ is a complementing set
(modL), and also that

_ L .
|. 2| = m when p(T?%;) > 0. (5.6)

Now, for each 7% with p(T%,) > 0, we set
T./}' = ﬁv

and proceed to show that these sets satisfy (1.7) with properties (i) and (ii).
We first observe that

1 * = T*
|:07 [] = U T = U T% (5.7)
;/,(T_*ﬁ)>0 p,(T_*ﬁ)>0

is a direct consequence of (5.4), so (ii) holds.
To continue the proof, we study the pointsTrj, \ T%,.

Claim. The set
X= |J @5\Ty) (5.8)

w(T7)>0
is a closed set of measure zero and is given by
Xx=J T3 (5.9)
w(T5,)=0
Proof. We proceed in three steps. First observe that

: L 1
N > — - 1. .
|2 t)| > i forall te [O, L) (5.10)

Indeed sincel coversR using the tiling set7, it follows that the discrete set
t+ %Z must be completely covered by the discrete set

t+ %.%’(t) +.7 =t+ %(% +.2(t)) + Z.
This requires that 4 +.2(t) = Z as sets (not counting multiplicity), which

implies (5.10).
Second, consider for any se a limit pointt* € T%,\ T7,. We have

B C B, (5.11)
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for if we take a sequencgti} C T, with t; — t*, thentj +.2 C T and
t+. 2 — t"+.72, hencet* +.2 C T sinceT is closed, and (5.11) follows.
However.Z2(t*) # .22 sincet* ¢ T%, so that

LB > |.75). (5.12)

If (T ;) > 0 then (5.6) implies that(T 7)) = 0. This shows that

xc |J T (5.13)
w(T3)=0

hencey(X) = 0. Next, every point* € T, with ;(T7,) = 0 hast* € [0, {], and
(5.7) shows that it arises as a member of saimg hence the inclusion (5.13)
is an equality and (5.9) holds.

Third, we show thaX is a closed set. Any limit poirtt* of X is a limit point
of someT %, with |.2| > \_L/I and (5.11) applies, so thaw?(t*)| > |. 2| > ﬁ
hence(T 7)) = 0 andt* € X. The claim follows.

Now form the set

T° :=Int(T) \ X,

which is an open set witta(fo) = 1(T) becauseT is a region andX is closed
and of measure zero. Now the claim gives

Toc (J Tu+7) (5.14)

H(T3)>0

SinceT is a region, every point iff is a limit point of Int(T), hence is still a
limit point of T°, becauseX is in the limit set ofT°.

We next show that if(T?;) > 0 then eachi ® N (T3, +.72) is an open set.
This follows from (5.14) because the sét§, +.7 are disjoint and no point in
any one of them is a limit point of any other, by (5.12). Thus

ToNTE CInt(TE, +.2). (5.15)
We now have

WT) = > p(Int(T,)

wT75)>0

v

)Gl RE))!

H(T3,)>0

u(T°) = u(T).

and this gives
p(N(T3,) +.78) = (T, +.79). (5.16)

Intersecting with(0, 1), we get
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H(NK(T ) = p(T3). (5.17)

Furthermore (5.14) yields that every pointDfis a limit point of some Inf(, +
.72), hence
U T+,
wT75)>0
which verifies (1.7).
Finally, since limit points in the open intervém, %) can only arise fronT %,
itself,

T%, = Int(T>).

Thusf’ffy is a region, and (i) is verified.

We have proved existence of a decomposition (1.7), and it remains to prove
uniqueness. So I€f , be another choice. We use the fact that a redibris
uniquely determined by its interior Id(). The interior disjointness and covering
properties (i) and (ii) guarantee that

- 1 -
Ton (o,[> NT%, C T,
By earlier arguments, the closure of the left siddis soT?, C T 4, whence

Int(T*,) C Int(T ).

But u(Int(T »)) < p(Int(T*,)), for if it were larger it would intersect the interior
of some otheiT%,,, because the sets Imj?) have full measure in LC%] by (5.7)
and (5.17), hence it would intersect it¢/), contradicting property (i). Thus

p(Int(T.2)) = u(INt(T3,)).

Now Int(T%)) = Int(T ), soT%, = T, verifying uniqueness.

6. One-dimensional self-affine tiles

We show that all one-dimensional self-affine tiles are affine images of integral
self-affine tiles. An easier proof of this result can be obtained along the lines of
Kenyon [19], Lemma 4.

Proof of Theorem 4.Suppose first that & &. It is well-known that self-affine
tiles T(b, &) tile R" by a translation tiling7", cf. Theorem 2 of Lagarias and
Wang [22]. That proof showed moreover that iEQZ and if one sets

k—1
Dox =4 bd: al dev
j=0
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then there is one such tiling~ which for somek > 1 has
Do —d" .7, d' € Dy

In particular for eacld € & there are two tiles in this tiling7~ translated from
each other byd. Now Theorem 6 shows that every sughk d — O is a rational
multiple of the minimal period\ of the tiling.7". If m € Z is the least common
denominator of all the rationals? : d € &} then

?{/ A 6.1)

which is the second part of the theorem.
To complete the proof by an affine transformation we reduce the general case
to the case that 8 &7. To do this we use

T(b,tZ) =tT (b, ¥), (6.2)
and
T, Z —t)=TO,Z) - t* (6.3)
with t* =37 bt = 24

Theorem 4 has immediate consequences concerning digit sets for positional
number systems, extending those of Kenyon [19].

Theorem 7. (i). Given an integer base b wittb| > 2 and a digit setZ =
{0,1,%, ..., Xpj—1} With all X € R then a necessary condition fo(T (b, &)) >
Ois that all ¥ € Q.

(i). Suppose further thatb| = p is prime. Thenu(T (b, &)) > 0 if and only
if there are integerdm : 1 <i < p — 1} such that

X = % with g.c.d(mg,mp, ..., Mp_1) =1,

and{0,my,mp, ..., my_1} is a complete residue systgmod p).

Proof. (i). This follows from Theorem 4.

(ii). Certainly u(T(b,Z)) > 0 if and only if u(T(b,mZ)) > 0, where
mZ = {0,m,m,...,My_1}. Now apply Theorem 4.1 of Lagarias and Wang
[21].

Appendix. Tilings of R by compact sets

We reduce the study of compact sets that Rleby translation to the case of
regions that tileR by translation.

Lemma A.1l. Let T be a compact set of positive measure that fitewith a
measure-disjoint tiling using the tile st . If T is the closure of the interior of
T thenu(T \ T’) =0, and T tiles R using the same tile se¥".
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Proof. Since the seT is measurable witl(T) > 0, the tile set must be uniformly
discrete, i.e. there exists an> 0 such thaft —t’| > ¢ for distinctt,t’ € .7,
for p((T +t) N (T +t)) > 0 whenevert — t'| is sufficiently small.

LetT C T’ be the closure of the interior df. We assert that the sEt= T\ T’
has u(E) = 0. By translation if necessary, we may assume tha 07 . Let
T C [-M,M] and consider the finite se¥” .= {t € .7 : |t| < 3M, t # 0}.
These tilesT +t with t € . are the only ones that can possibly intersect the tile
T. If x € T\ T’ then it can be approximated as= lim;_ ., % with all x, ¢ T.
Hence infinitely manyx; lie in some fixedT +t* for somet* € .. We have
X € T +t*, sinceT is closed. Thus

Ec |Jm+nnT,

te.”
and
WE) <Y p((T+)NT) =0,
te.s
using (1.3).

Now T’ is a region, and it has the same measurd aSinceT is discrete,
the setR \ |, (T +1) is an open set, and it has zero measure; hence it must
be empty, proving that’ tiles R with the tile set7".
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