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Abstract

We show how to count tilings of Aztec diamonds and hexagons with defects using
determinants. In several cases these determinants can be evaluated in closed form.
In particular, we obtain solutions to open problems 1, 2, and 10 in James Propp’s
list of problems on enumeration of matchings [22].

1. Introduction

While studying dimer models, P. W. Kasteleyn [15] noticed that tilings of very
simple figures by very simple tiles can be not only plausible physical models, but also
starting points for some very interesting enumeration problems. Kasteleyn himself
solved the problem of counting tilings of a rectangle by dominoes. He also found
a general method (now known as Kasteleyn matrices) for computing the number of
tilings of any bipartite planar graph in polynomial time. Kasteleyn’s method has
proven very useful for computational-experimental work, but it does not, of itself,
provide proofs of closed formulas for specific enumeration problems. We shall see a
few examples of problems for which Kasteleyn matrices alone are inadequate.

By an (a, b, c, d, e, f) hexagon we mean a hexagon with sides of lengths a, b, c, d, e, f ,
and angles of 120 degrees, subdivided into equilateral triangles of unit side by lines
parallel to the sides. We draw such a hexagon with the sides of lengths a, b, c, d, e, f
in clockwise order, so that the side of length b is at the top and the side of length e is
at the bottom. We shall use the term (a, b, c) hexagon for an (a, b, c, a, b, c) hexagon.
Thus Figure 2 shows a (3, 4, 3) hexagon.
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Figure 1. Aztec diamond of order 3 Figure 2. (3, 4, 3) hexagon

An Aztec diamond of order n is the union of all unit squares with integral vertices
contained within the region |x| + |y| ≤ n+ 1. Figure 1 shows an Aztec diamond of
order 3.

We are interested in tilings of hexagons with lozenges, which are rhombi with unit
sides and angles of 120 and 60 degrees, and tilings of Aztec diamonds with dominoes,
which are 1 by 2 rectangles. In particular, we shall examine three problems from
James Propp’s list of open problems on tilings [22].

Problem 1 (Propp’s Problem 1). Show that in the (2n−1, 2n, 2n−1) hexagon, the
central vertical lozenge (consisting of the two innermost triangles) is covered by a
lozenge in exactly one-third of the tilings.

Problem 2 (Propp’s Problem 2). Enumerate the lozenge-tilings of the region ob-
tained from the (n, n+ 1, n, n+ 1, n, n+ 1) hexagon by removing the central triangle.

Problem 3 (Propp’s Problem 10). Find the number of domino tilings of a (2k− 1)
by 2k undented Aztec rectangle with a square adjoining the central square removed,
where the a by b undented Aztec rectangle is defined as the union of the squares
bounded by x+ y ≤ b+ 1, x+ y ≥ b− 2a− 1, y − x ≤ b+ 1, y − x ≥ −(b+ 1).

We have solved these three problems, not by using Kasteleyn matrices, but by
choosing a new approach, which, while much less general than Kasteleyn matrices,
is better suited for problems like these three. We can summarize our approach as
follows:

1. Find the number of tilings of half of a hexagon or half of a diamond, with dents
at given places. This is not new: see [7] and [8].

2. Express the number of tilings of the figure as a whole as a sum of squares of
the expressions obtained in the first step. The sum’s range depends on the
“defects” (missing triangles or squares, fixed lozenges or dominos) given in the
problem.

3. Express the sum of squares as a Hankel determinant.
4. Evaluate the Hankel determinant using continued fractions or Jacobi’s theorem.
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C. Krattenthaler has been working on these problems at the same time as us,
together with M. Ciucu [6] and S. Okada [20]. The solution to Problem 1 in [6] is
literally orthogonal to ours: Ciucu and Krattenthaler slice the hexagon vertically
rather than horizontally. More generally, Fulmek and Krattenthaler [9] have counted
tilings of an (n,m, n, n,m, n) hexagon that contain an arbitrary fixed rhombus on the
symmetry axis that cuts through the sides of length m. Krattenthaler and Okada’s
solution [20] to Problem 2 and Krattenthaler’s solution [17] to Problem 10 are much
like ours in steps 1 and 2. Thereafter, they are based on identities for Schur functions,
not Hankel determinants. The work of Krattenthaler and his coauthors and our work
thus complement each other.

2. From Tilings to Determinants

First we note that a necessary and sufficient condition for an (a, b, c, d, e, f) hexagon
to exist is that the parameters be nonnegative integers satisfying a−d = c−f = e−b.
The number of upward pointing triangles minus the number of downward pointing
triangles in an (a, b, c, d, e, f) hexagon is a − d. Then since every lozenge covers
one upward pointing triangle and one downward pointing triangle, an (a, b, c, d, e, f)
hexagon can be tiled by lozenges only if a = d, and this implies that that the hexagon
is an (a, b, c) hexagon. Moreover, if we remove a− d upward pointing triangles from
an (a, b, c, d, e, f) hexagon with a ≥ d, then the remaining figure will have as many
upward pointing as downward pointing triangles.

Definition 1. A (k, q, k) upper semi-hexagon is the upper half of a (k, q, k) hexagon
having sides k, q, k, q+k, i.e., a symmetric trapezium. A (k, q, k) lower semi-hexagon
is defined similarly. A (k, q, k) dented upper semi-hexagon is a (k, q, k) semi-hexagon
with k upward pointing triangles removed from the side of length q + k. (Figure 4
shows a (3, 4, 3) dented upper semi-hexagon with dents at positions 1, 4, and 6). It
will be convenient to use the term semi-hexagon for an upper semi-hexagon.

Note that a (k, q, k) semi-hexagon is the same as a (k, q, k, 0, q + k, 0) hexagon,
so removing k upward pointing triangles leaves a region with as many upward as
downward triangles.

Definition 2. An a by b dented Aztec rectangle is the union of the squares bounded
by x+ y ≤ b+ 1, x+ y ≥ b− 2a− 1, y − x ≤ b, y − x ≥ −(b+ 1), with the squares
in positions r0 < r1 < · · · < rb−1 removed from the side given by y − x ≤ b (see
Figure 3).

Before proceeding with our results on tilings, we first note some facts about the
power sums 1j+2j+ · · ·+mj that we will need later on. We omit the straightforward
proofs.
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Figure 3. Dented 3 by 2
Aztec rectangle
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Figure 4. Dented (3, 4, 3)
semi-hexagon

For any integer m and any nonnegative integer j we define Sjm by

Sjm =


1j + · · ·+mj, if m > 0;

0, if m = 0;

(−1)j+1
(
0j + 1j + · · ·+ (−m− 1)j

)
, if m < 0,

where we interpret 00 as 1.

Lemma 1. The numbers Sjm have the following properties:

(1) For any integers p and q, with p ≤ q,

pj + (p+ 1)j + · · ·+ qj = Sjq − Sjp−1.

(2) Sj0 = 0 for all j and Sj−1 = 0 for j > 0.

(3) For m > 0, Sj−m = (−1)j+1Sjm−1.
(4) For m ≥ 0, Sjm is given by the exponential generating function

∞∑
j=0

Sjm
xj

j!
=
ex(emx − 1)

ex − 1

(5) Sjm is a polynomial in m of degree j + 1, with leading coefficient 1/(j + 1).

Next we prove two known results. First, we have a closed expression for the
number of tilings of semi-hexagons with given dents, first stated in this form in [7].
This is equivalent to a well-known result on the enumeration of Gelfand patterns, as
noted in [7], or on column-strict plane partitions. (See Knuth [16, exercise 23, p. 71;
solution, p. 593] for a proof similar to ours.)

Lemma 2. The number of tilings of a (k, q, k) semi-hexagon with dents at positions
0 ≤ r0 < · · · < rk−1 < q + k is

Tk,q,r =
1

Vk−1

∏
0≤i<j<k

(rj − ri),

where Vn = 1! 2! · · ·n! =
∏

0<i<j≤n(j − i).
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Proof. We proceed by induction on k. For the case k = 1, there is only one tiling,
no matter where the solitary dent is. Hence the lemma holds for k = 1.

Let us now assume the lemma holds for k. Suppose we have a tiling of a (k +
1, q, k + 1) semi-hexagon with dents at 0 ≤ r0 < · · · < rk < q + k + 1. If we remove
the bottom layer of lozenges from the dented side, we obtain a tiling of a (k, q, k)
semi-hexagon with dents at 0 ≤ t0 < · · · < tk−1 ≤ q + k, ri ≤ ti < ri+1. For every
such tiling of a (k, q, k) semi-hexagon with dents at those places, there is exactly one
tiling of the dented (k, q, k) semi-hexagon. Hence

Tk+1,q,r =
∑

ri≤ti<ri+1

Tk,q,t

=
∑

ri≤ti<ri+1

1

Vk−1

∏
0≤i<j<k

(tj − ti).

=
1

Vk−1

∑
ri≤ti<ri+1

∣∣tji ∣∣k−1

0

=
1

Vk−1

∣∣Sjri+1−1 − Sjri−1

∣∣k−1

0

=
1

Vk−1

∣∣Sjri+1−1 − Sjr0−1

∣∣k−1

0
,

where Sjm = 1j + 2j + · · · + mj . In the second line of our calculations we can see
that, since

∏
0≤i<j<k(tj− ti) depends only on the differences between the ti’s, Tk+1,q,r

depends only on the differences between the ri’s, not on their actual values. (It is
also easy to see this combinatorially.) Hence it is sufficient to prove the formula in
the case r0 = 0. By Lemma 1, Sjm−1− Sj−1 is a polynomial in m of degree j + 1 with
leading coefficient 1/(j+ 1) that vanishes at 0. Thus we can reduce the determinant∣∣Sjri+1−1 − Sj−1

∣∣k−1

0
to
∣∣rj+1
i+1/(j + 1)

∣∣k−1

0
by elementary column operations. Hence

Tk+1,q,r =
1

Vk−1

∣∣∣∣∣ rj+1
i+1

j + 1

∣∣∣∣∣
k−1

0

=
1

Vk

∣∣rj+1
i+1

∣∣k−1

0

=
r1r2 · · · rk

Vk

∣∣rji+1

∣∣k−1

0

=
r1r2 · · · rk

Vk

∏
1≤i<j<k+1

(rj − ri)

=
1

Vk

∏
0≤i<j<k+1

(rj − ri),
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since we assumed that r0 = 0. Then by our observation the formula holds for all
values of r0.

3. Tilings of Dented Aztec Rectangles

Definition 3. An a by b dented Aztec rectangle is the union of the squares bounded
by x+ y ≤ b+ 1, x+ y ≥ b− 2a− 1, y − x ≤ b, y − x ≥ −(b+ 1), with the squares
in positions r0 < r1 < · · · < rb−1 removed from the side given by y − x ≤ b (see
Figure 3). An a by b undented Aztec rectangle is an a by b+1 dented Aztec rectangle
with all squares on the side given by y − x ≤ b removed.

Our next result counts tilings of dented Aztec rectangles. Another proof can be
found in [8]. Just as tilings of dented hexagons correspond to Gelfand patterns, in [8]
it is shown that tilings of dented Aztec rectangles correspond to monotone triangles,
and in this context, a proof of the formula can be found in [19].

Lemma 3. The number of tilings of an a by b dented Aztec rectangle with dents at
0 ≤ r0 ≤ · · · ≤ rb−1 ≤ a is

Aa,b,r =
2
b(b−1)

2

Vb−1

∏
0≤i<j<b

(rj − ri),

where Vn = 1! 2! · · ·n!.

Proof. We proceed by induction on b. First we note that if ri = ri+1 for some i, then
the lemma asserts that Aa,b,r = 0, which is correct. Although of no interest in itself,
this case will be necessary for the induction.

If b = 1, there is only one tiling, no matter where the one dent is. (In general, the
number of dents has to be equal to b for the dented Aztec rectangle to be tileable.)
Hence the lemma holds for b = 1.

Let us now assume the lemma holds for b. Suppose we have a tiling of an a by b+1
Aztec rectangle with dents at 0 ≤ r0 < · · · < rb ≤ a. If we remove all dominoes with
one or two squares on the dented long diagonal and the adjacent short diagonal, we
obtain a tiling of an a by b Aztec rectangle with dents at 0 ≤ t0 < · · · < tb−1 ≤ a,
where rk ≤ tk ≤ rk+1. For every such tiling of an a by b Aztec rectangle with dents
at those places, there are 2m tilings of the a by b+ 1 dented Aztec rectangle, where
m is the cardinality of {k : rk < tk < rk+1}.

Next we show that this implies

Aa,b+1,r =
∑

l∈{0,1}b

∑
rk≤tk−lk<rk+1

Aa,b,t (1)

This follows from the fact that if rk < tk < rk+1 then rk ≤ tk− lk < rk+1 if lk is either
0 or 1, but if tk = rk then this inequality holds only for lk = 0 and if tk = rk+1, it holds
only for lk = 1. Thus the number of different possible values of l corresponding to a
given sequence r, is 2m, where m is the cardinality of {k : rk < tk < rk+1}. Moreover,
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if for some l ∈ {0, 1}b, t satisfies rk ≤ tk − lk < rk+1 for all i, then we must have
t0 ≤ t1 ≤ · · · ≤ tb−1, so all terms Aa,b,t that occur in (1) either have t0 < · · · < tb−1

or are zero; in either case they are covered by the induction hypothesis.
Hence

Aa,b+1,r =
∑

l∈{0,1}b

∑
rk≤tk−lk<rk+1

Aa,b,t

=
2
b(b−1)

2

Vb−1

∑
l∈{0,1}b

∑
rk+lk≤tk<rk+1+lk

∏
0≤i<j<b

(tj − ti) (2)

=
2
b(b−1)

2

Vb−1

∑
l∈{0,1}b

∑
rk+lk≤tk<rk+1+lk

∣∣tji ∣∣b−1

0

=
2
b(b−1)

2

Vb−1

∑
l∈{0,1}b

∣∣∣Sjri+1+li−1 − S
j
ri+li−1

∣∣∣b−1

0
,

where Sjm = 1j+2j+· · ·+mj. Now if u(i, j, k) is any function defined for 0 ≤ i, j < b,
0 ≤ k ≤ 1, then since a determinant is a linear function of its rows, we have

∑
l∈{0,1}b

|u(i, j, li)|b−1
0 = |u(i, j, 0) + u(i, j, 1)|b−1

0 .

Thus

Aa,b+1,r =
2
b(b−1)

2

Vb−1

∣∣∣Sjri+1−1 + Sjri+1
− (Sjri−1 + Sjri)

∣∣∣b−1

0

=
2
b(b−1)

2

Vb−1

∣∣∣(Sjri+1−1 + Sjri+1
)− (Sjr0−1 + Sjr0)

∣∣∣b−1

0
.

By (2), we can see that, since
∏

0≤i<j<b(tj − ti) depends only on the differences
between the tk’s, Aa,b+1,r depends only on the differences between the rk’s, not on

their actual values. Hence we may assume that r0 = 0. Since Sjm−1+Sjm−(Sj−1+Sj0) =

Sjm−1 +Sjm−Sj−1 is a polynomial in m of degree j+1 with leading coefficient 2/(j+1)

that vanishes at 0, we can reduce the determinant
∣∣∣(Sjri+1−1 + Sjri+1

)− Sj−1

∣∣∣b−1

0
to
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i+1/(j + 1)

∣∣b−1

0
by elementary column operations. Hence

Aa,b+1,r =
2
b(b−1)

2

Vb−1

∣∣∣∣∣2rj+1
i+1

j + 1

∣∣∣∣∣
b−1

0

=
2

(b+1)b
2

Vb

∣∣rj+1
i+1

∣∣b−1

0

=
2

(b+1)b
2 r1r2 · · · rb

Vb

∣∣rji+1

∣∣b−1

0

=
2

(b+1)b
2 r1r2 · · · rb

Vb

∏
1≤i<j<b+1

(rj − ri)

=
2

(b+1)b
2

Vb

∏
0≤i<j<b+1

(rj − ri).

4. From hexagons to Determinants

We now compute the number of tilings of a (k, q, k) hexagon with restrictions on
where vertical lozenges may cross the horizontal symmetry axis.

Proposition 4. Let L be a subset of {0, 1, . . . , k+q−1}. Then the number of tilings
of a (k, q, k) hexagon in which the set of indices of the vertical lozenges crossing the
q + k-long symmetry axis is a subset of L is

1

V 2
k−1

∣∣∣∣∑
l∈L

li+j
∣∣∣∣k−1

0

.

Proof. We first recall that by the Binet-Cauchy theorem [11, p. 9], if M is any k by
n matrix and M t is its transpose, then the determinant of MM t is equal to the sum
of the squares of the k by k minors of M .

The number of tilings of a (k, q, k) hexagon in which the indices of the vertical
lozenges crossing the q + k-long symmetry axis are r0 < r1 < · · · < rk−1 is clearly

T 2
k,q,r =

1

V 2
k−1

(∣∣rij∣∣k−1

0

)2
.

Thus the number of tilings to be counted is the sum of T 2
k,q,r over all r0 < r1 < · · · <

rk−1 where each rj is in L. Now suppose that the elements of L are l0 < l1 < · · · < ln−1

and let M be the k by n matrix (lij)0≤i<k, 0≤j<n. Then by the Binet-Cauchy theorem,∑
r

T 2
k,q,r =

1

V 2
k−1

∣∣MM t
∣∣ =

1

V 2
k−1

∣∣∣∣∑
l∈L

li+j
∣∣∣∣k−1

0

.
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Note that since the numbers Tk,q,r depend only on the differences of the ri, the
determinant in Proposition 4 depends only on the differences of the elements of L;
thus we may shift all the elements of L by the same amount without changing the
determinant. This observation will be useful later on:

Lemma 5. For any finite set L of numbers and any number u,∣∣∣∣∣∑
l∈L

li+j

∣∣∣∣∣
k−1

0

=

∣∣∣∣∣∑
l∈L

(l + u)i+j

∣∣∣∣∣
k−1

0

.

Proposition 6. The number of tilings of a (k, 2n + 1 − k, k, k + 1, 2n − k, k + 1)
hexagon with a triangle removed below the center of the horizontal line dividing the
two “hemispheres” is

1

Vk−1Vk

∣∣∣∣(1 + (−1)i+j)

( n∑
l=1

li+j+1

)∣∣∣∣k−1

0

.

Proof. If we cut such a tiled hexagon into two parts by the horizontal segment be-
tween the two angles formed by a side of length k and a side of length k + 1, and
then remove the lozenges that are bisected by this line, we obtain a tiling of a
(k, 2n + 1 − k, k) upper semi-hexagon with dents at points r0 < r1 < · · · < rk−1,
and a tiling of a (k + 1, 2n − k, k + 1) lower semi-hexagon with dents at points
r0 < r1 < · · · < rk−1 and at the center. Since the formula in Lemma 2 de-
pends only on the differences among the ri, we can make zero lie on the center
of horizontal line dividing the two “hemispheres” of the hexagon. Thus, we have
−n ≤ r0 < r1 < · · · < rk−1 ≤ n, ri 6= 0.

The number of tilings of the upper semi-hexagon is

1

Vk−1

∏
0≤i<j<k

(rj − ri),

and the number of tilings of the lower semi-hexagon is

1

Vk

∏
0≤i<j<k

(rj − ri)
∏

0≤i<k
|ri|.

Hence the number of tilings of the hexagon for given −n ≤ r0 < · · · < rk−1 ≤ n is

1

Vk−1Vk
(
∣∣rij∣∣k−1

0
)2
∏

0≤i<k
|ri| =

1

Vk−1Vk
(
∣∣|rj|1/2rij∣∣k−1

0
)2.

(Note that this vanishes whenever rj = 0 for some j.)
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Now let M be the k by 2n + 1 matrix (|j| 12 ji)0≤i<k,−n≤j≤n. Then by the Binet-
Cauchy theorem, the number of tilings of the hexagon is∑
−n≤r0<···<rn−1≤n

1

Vk−1Vk

(∣∣|rj|1/2rij∣∣k−1

0

)2

=
1

Vk−1Vk

∣∣MM t
∣∣

=
1

Vk−1Vk

∣∣∣∣∣ ∑
−n≤l≤n

|l|li+j
∣∣∣∣∣
k−1

0

=
1

Vk−1Vk

∣∣∣∣∣(1 + (−1)i+j)
n∑
l=1

li+j+1

∣∣∣∣∣
k−1

0

.

5. From Aztec rectangles to determinants

For our next result, we use the following lemma, which is analogous to the Binet-
Cauchy theorem.

Lemma 7. Let U = (uij) be a 2k by k matrix, with rows indexed from 0 to 2k − 1
and columns from 0 to k − 1. For each k-subset A of {0, 1, . . . , 2k − 1}, let UA be
the k by k minor of U corresponding to the rows in A and all columns, and let Ā be
the complement of A in {0, 1, . . . , 2k − 1}. Then∑

A⊆{0,... ,2k−1}
|A|=k

UAUĀ = 2k |u2i,j|k−1
0 |u2i+1,j|k−1

0 .

Proof. The lemma is a direct consequence of a result of Propp and Stanley [21,
Theorem 2]. More precisely, the lemma follows from their result when we sum over
all possibilities for A∗. (As noted by Propp and Stanley, their result is a special case
of a theorem of Sylvester [25].)

Proposition 8. The number of tilings of an a by b undented Aztec rectangle, where
a < b ≤ 2a + 1, and b = 2k + 1, with squares with indices r0 < r1 < · · · < rb−a−1

missing from a diagonal of length a+ 1 going through the central square, is

2k
2+a

V 2
k

( ∏
0≤j<i<2k+1−a

(ri − rj)
∏

0≤i<2a−2k
0≤j<2k+1−a

|ti − rj|
) ∣∣tj2i∣∣a−k−1

0

∣∣tj2i+1

∣∣a−k−1

0
,

where t0 < t1 < · · · < t2a−2k−1 are the elements of {0, 1, · · · a} − {r0, r1, . . . , r2k−a}.

Proof. Every tiling of the undented Aztec rectangle with missing squares can be
subdivided into a tiling of two a by k + 1 dented Aztec rectangles with sets of dents
A and B of the form A = R∪P and B = R∪ (T −P ), where R = {r0, r1, . . . , r2k−a},
T = {0, 1, · · · a} − R and P is some subset of T of size a − k. (See figure 5.) Let
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R={1,2,4}
T={0,3}
A={0,1,2,4}
B={1,2,3,4}

Figure 5. From missing
squares to dents

t0 < t1 < · · · < t2a−2k−1 be the elements of T . Then the number of tilings of the
undented Aztec rectangle with missing squares is

2k(k+1)

V 2
k

∏
0≤j<i<2k+1−a

(ri − rj)
∏

0≤i<2a−2k
0≤j<2k+1−a

|ti − rj|

×
∑
P⊆T
|P |=a−k

∏
t0,t1∈P
t0<t1

(t1 − t0)
∏

t0,t1∈T−P
t0<t1

(t1 − t0),

which, written with determinants instead of products, is

2k(k+1)

V 2
k

( ∏
0≤j<i<2k+1−a

(ri − rj)
∏

0≤i<2a−2k
0≤j<2k+1−a

|ti − rj|
) ∑

P⊆T
|P |=a−k

∣∣pji ∣∣a−k−1

0

∣∣qji ∣∣a−k−1

0
,

where p0 < p1 < · · · < pa−k−1 are the elements of P and q0 < q1 < · · · < qa−k−1 are
the elements of T − P . Applying Lemma 7 yields the theorem.

We can prove the following proposition in exactly the same way.

Proposition 9. The number of tilings of an a by b undented Aztec rectangle, a <
b ≤ 2a+ 1, b = 2k, with squares with indices r0 < r1 < · · · < rb−a−1 missing from a
diagonal of length a+ 1 touching the central square is

2k
2−k+a

Vk−1Vk

( ∏
0≤j<i<2k+1−a

(ri − rj)
∏

0≤i<2a−2k+1
0≤j<2k−a

|ti − rj|
) ∣∣tj2i∣∣a−k0

∣∣tj2i+1

∣∣a−k−1

0
,

where t0 < t1 < · · · < t2a−2k are the elements of {0, 1, · · · a} − {r0, r1, . . . , r2k−a−1}.
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6. Computing Determinants of Aztec Rectangles: A Special Case

We can now solve Problem 3 using Proposition 9 with a = 2k−1, b = 2k, r0 = k−1.
The number of tilings is

2k
2−k+a

Vk−1Vk

( ∏
0≤i<2a−2k+1

0≤j<2k−a

|ti − rj|
) ∣∣tj2i∣∣a−k0

∣∣tj2i+1

∣∣a−k−1

0

=
2k

2+k−1

Vk−1Vk

( ∏
0≤i<2k−1

|ti − (k − 1)|
) ∣∣tj2i∣∣k−1

0

∣∣tj2i+1

∣∣k−2

0

=
2k

2+k−1

Vk−1Vk
(k − 1)! k!

∣∣tj2i∣∣k−1

0

∣∣tj2i+1

∣∣k−2

0

=
2k

2+k−1

Vk−2Vk−1

∏
0≤j0<j1<k

(t2j1 − t2j0)
∏

0≤j0<j1<k−1

(t2j1+1 − t2j0+1).

For k = 2q, we have

∏
0≤j0<j1<k

(t2j1 − t2j0)

=
∏

0≤j0<j1<q
(2j1 − 2j0)

∏
0≤j0<j1<q

(
(2q + 1 + 2j1)− (2q + 1 + 2j0)

)
×

∏
0≤j0,j1<q

((2q + 1 + 2j1)− (2j0))

=
(
2q−14q−2 · · · (2q − 2)

)2

× 3 · 52 · · · (2q − 1)q−1(2q + 1)q(2q + 3)q−1 · · · (4q − 1)

and ∏
0≤j0<j1<k−1

(t2j1+1 − t2j0+1)

=
∏

0≤j0<j1<q−1

((2j1 + 1)− (2j0 + 1))
∏

0≤j0<j1<q
((2q + 2j1)− (2q + 2j0))

×
∏

0≤j0<q−1
0≤j1<q

((2q + 2j1)− (2j0 + 1))

= (2q−24q−3 · · · (2q − 4))(2q−14q−2 · · · (2q − 2))

× 3 · 52 · · · (2q − 1)q−1(2q + 1)q−1 · · · (4q − 3).
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For k = 2q + 1, we have∏
0≤j0<j1<k

(t2j1−t2j0)

=
∏

0≤j0<j1<q
(2j1 − 2j0)

∏
0≤j0<j1<q+1

((2q + 1 + 2j1)− (2q + 1 + 2j0))

×
∏

0≤j0<q
0≤j1<q+1

((2q + 1 + 2j1)− (2j0))

= (2q−14q−2 · · · (2q − 2))(2q4q−1 · · · (2q))
× 3 · 52 · · · (2q − 1)q−1(2q + 1)q(2q + 3)q · · · (4q + 1)

and∏
0≤j0<j1<k−1

(t2j1+1 − t2j0+1)

=
∏

0≤j0<j1<q
((2j1 + 1)− (2j0 + 1))

∏
0≤j0<j1<q

((2q + 2 + 2j1)− (2q + 2 + 2j0))

×
∏

0≤j0,j1<q
((2q + 2 + 2j1)− (2j0 + 1))

= (2q−14q−2 · · · (2q − 2))2

× 3 · 52 · · · (2q − 1)q−1(2q + 1)q(2q + 3)q−1 · · · (4q − 1)

Therefore, for k = 2q the number of tilings is

2(2q)2+2q−1

V2q−2V2q−1
24q−544q−9 · · · (2q − 2)3

× 3254 · · · (2q − 1)2q−2(2q + 1)2q−1(2q + 3)2q−3 · · · (4q − 3)3(4q − 1),

and for k = 2q + 1 the number of tilings is

2(2q+1)2+(2q+1)−1

V2q−1V2q
24q−344q−7 · · · (2q − 2)5(2q)

× 3254 · · · (2q − 1)2q−2(2q + 1)2q(2q + 3)2q−1 · · · (4q − 1)3(4q + 1).

7. Computing Determinants: Hexagons

In this section we solve Propp’s Problem 1, and more generally, we count tilings
of a (2m− 1, 2n, 2m− 1) or (2m, 2n− 1, 2m) hexagon with a vertical lozenge at the
center. (A (k, q, k) hexagon has a central vertical lozenge if and only if k+ q is odd.)
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Lemma 10. The number of tilings of a (2m−1, 2n, 2m−1) hexagon with a vertical
lozenge in the center is

1

V 2
2m−2

∣∣(1 + (−1)i+j)Si+jm+n−1

∣∣2m−2

1
.

The number of tilings of a (2m, 2n− 1, 2m) hexagon with a vertical lozenge in the
center is

1

V 2
2m−1

∣∣(1 + (−1)i+j)Si+jm+n−1

∣∣2m−1

1
.

Proof. By Proposition 4, the number of tilings of a (2m− 1, 2n, 2m− 1) hexagon is

1

V 2
2m−2

∣∣∣∣2m+2n−2∑
l=0

li+j
∣∣∣∣2m−2

0

.

By Lemma 5, this determinant is equal to∣∣∣∣ m+n−1∑
l=−m−n+1

li+j
∣∣∣∣2m−2

0

=
∣∣(1 + (−1)i+j)Si+jm+n−1 + δi+j

∣∣2m−2

0

=
∣∣(1 + (−1)i+j)Si+jm+n−1

∣∣2m−2

0
+
∣∣(1 + (−1)i+j)Si+jm+n−1

∣∣2m−2

1
,

where δk is 1 if k = 0 and is 0 otherwise.
It also follows from Proposition 4 that the number of tilings of a (2m−1, 2n, 2m−1)

hexagon that do not have a vertical lozenge in the center is

1

V 2
2m−2

∣∣∣∣ ∑
0≤l≤2m+2n−2
l 6=m+n−1

li+j
∣∣∣∣2m−2

0

.

By Lemma 5 this determinant is equal to∣∣∣∣ ∑
−m−n+1≤l≤m+n−1

l 6=0

li+j
∣∣∣∣2m−2

0

=
∣∣(1 + (−1)i+j)Si+jm+n−1

∣∣2m−2

0
.

We find the number of tilings that do have a vertical lozenge in the center by sub-
tracting from the total number of tilings the number of tilings that do not have a
lozenge in the center.

The formula for (2m, 2n− 1, 2m) hexagons is derived similarly.

As a first step in evaluating the determinants in Lemma 10, we evaluate the de-

terminant
∣∣Si+jp

∣∣k−1

0
. It is interesting to note that this determinant was evaluated by

Zavrotsky [28] in the course of his research on minimum square sums, and we follow
his proof.
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Lemma 11.∣∣Si+jp

∣∣k−1

0
=

V 4
k−1

V2k−1
(p− k + 1) · · · (p− 1)k−1pk(p+ 1)k−1 · · · (p+ k − 1)

=
Vp+k−1Vp−k−1V

4
k−1

V 2
p−1V2k−1

,

where Sip = 1i + 2i + · · ·+ pi and Vp = 1! 2! · · · p!.

Proof (Zavrotsky [28]). If p is a positive integer, we can express the matrix (Si+jp )k−1
0

as the product of a k by p matrix and a p by k matrix, as in the proof of Proposition
4. Since the rank of an p by k matrix is at most p, the rank of the matrix (Si+jp )k−1

0

is at most p. Moreover, this holds also for p = 0.
Now let (ai,j(λ))k−1

0 be a matrix whose entries are polynomials in λ. It is known
[10, p. 17] that if, for some value λ0 of λ, the matrix (ai,j(λ0))k−1

0 has rank at most

m, where m ≤ k, then |ai,j(λ)|k−1
0 is divisible by (λ− λ0)k−m as a polynomial in λ.

By Lemma 1, there is a polynomial Siλ in λ whose value at λ = p is Sip. Since the

rank of (Si+jm )k−1
0 is at most m,

∣∣Si+jλ

∣∣k−1

0
is divisible by (λ−m)k−m for 0 ≤ m ≤ k.

Since Si−m = (−1)i+1Sim−1 when i > 0, it follows that the rank of (Si+j−m)k−1
0 is

at most one more than the rank of (Si+jm−1)k−1
0 ; i.e., at most m. Thus

∣∣Si+jλ

∣∣k−1

0
is

divisible by (λ+m)k−m for 1 ≤ m ≤ k.

Since Siλ is a polynomial in λ of degree i + 1,
∣∣Si+jλ

∣∣k−1

0
is a polynomial in λ of

degree k2. Hence
∣∣Si+jλ

∣∣k−1

0
is equal to a constant times

(λ− k + 1) · · · (λ− 1)k−1λk(λ+ 1)k−1(λ+ 2)k−2 · · · (λ+ k − 1).

Since Siλ has leading coefficient 1/(i + 1), and, by [3, p. 425], the determinant

|1/(i+ j + 1)|k−1
0 (a Hilbert determinant) is equal to V 4

k−1/V2k−1, we may compare
leading coefficients and conclude that the constant is V 4

k−1/V2k−1.

Corollary 12. The number of tilings of a (k, q, k) hexagon is

V2k+q−1Vq−1V
2
k−1

V 2
k+q−1V2k−1

.

In particular, the number of tilings of a (2m− 1, 2n, 2m− 1) hexagon is

V4m+2n−3V2n−1V
2

2m−2

V 2
2m+2n−2V4m−3

and the number of tilings of a (2m, 2n− 1, 2m) hexagon is

V4m+2n−2V2n−2V
2

2m−1

V 2
2m+2n−2V4m−1

.
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Proof. By Proposition 4 and Lemma 5, the number of tilings of a (k, q, k) hexagon is

1

V 2
k−1

∣∣Si+jk+q

∣∣k−1

0
.

The result then follows from Lemma 11.

It is also possible, as shown in [7], to derive the formula for the number of tilings
of an (a, b, c) hexagon directly from Lemma 2.

Next we prove a general theorem on Hankel determinants that allows us to evaluate
the determinants in Lemma 10.

Proposition 13. Let {ai}∞i=0 be a sequence, and let

Hs(k) =
∣∣a(i+j+s)/2

∣∣k−1

0
,

for k ≥ 1, with Hs(0) = 1, where we take ai to be 0 if i is not an integer. Define λk
inductively by

H0(k + 1) = λk+1
0 λk1 · · ·λk,

so that λ0 = H0(1) = a0 and

λk =
H0(k − 1)H0(k + 1)

H0(k)2

for k ≥ 1. Then

H2(k) = λ−1
0 H0(k + 1)

bk/2c∑
j=0

j∏
i=1

λ2i−1

λ2i
(3)

Proof. Define Mr(k) by

Mr(k) = |ai+j+r|k−1
0 .

It is easy to see that

H2r(k) = Mr(dk/2e)Mr+1(bk/2c). (4)

Then
H2(2m+ 1)

H2(2m)
=
M1(m+ 1)

M1(m)
=
H0(2m+ 2)

H0(2m+ 1)
.

Thus it suffices to prove (3) for k = 2m.
Since (3) holds for k = 0, to prove it for even k we need only show that for m ≥ 1,

H2(2m)

H0(2m+ 1)
− H2(2m− 2)

H0(2m− 1)
= λ−1

0

m∏
i=1

λ2i−1

λ2i

.

Using (4), we may write the identity to be proved as

M2(m)

M0(m+ 1)
− M2(m− 1)

M0(m)
=
λ1λ3 · · ·λ2m−1

λ0λ2 · · ·λ2m

. (5)
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To prove (5), we use Jacobi’s identity [12, pp. 594–595],

(M1(m))2 −M0(m)M2(m) +M0(m+ 1)M2(m− 1) = 0.

Dividing both sides by M0(m)M0(m+ 1), we may rewrite Jacobi’s identity as

M2(m)

M0(m+ 1)
− M2(m− 1)

M0(m)
=

M1(m)2

M0(m)M0(m+ 1)
. (6)

To complete the proof we need to express the right side of (6) in terms of the λi.
We have

M0(m)

M0(m− 1)
=
H0(2m− 1)

H0(2m− 2)
= λ2m−2

H0(2m− 2)

H0(2m− 3)

= λ2m−2λ2m−3
H0(2m− 3)

H0(2m− 4)
= λ2m−2λ2m−3

M0(m− 1)

M0(m− 2)
.

Since M0(0) = 1 and M0(1) = λ0, this gives

M0(m)

M0(m− 1)
= λ0λ1 · · ·λ2m−2,

and thus

M0(m) = λm0 (λ1λ2)m−1 · · · (λ2m−3λ2m−2)

Similarly, we can show that

M1(m) = (λ0λ1)m · · · (λ2m−4λ2m−3)2(λ2m−2λ2m−1).

Making these substitutions in the right side of (6) yields (5), completing the proof.

Note. There is a simple combinatorial proof of Proposition 13 in which the determi-
nant is interpreted as counting nonintersecting paths; see Viennot [26, Chapter IV].

We now apply Proposition 13 to evaluate the determinant
∣∣(1 + (−1)i+j)Si+jp

∣∣k
1
.

Proposition 14. The determinant
∣∣(1 + (−1)i+j)Si+jp

∣∣k
1

is equal to

1

2p+ 1

V2p+k+1V2p−k−1V
4
k

V 2
2pV2k+1

bk/2c∑
j=0

(1
2
)2
j (5

4
)j (−p)j (p+ 1)j

(1)2
j (1

4
)j (3

2
+ p)j (1

2
− p)j

,

where (a)j = a(a+ 1) · · · (a+ j − 1).

Proof. Let us set ai = 2S2i
p + δi. Then

ai/2 =

{
2Sip + δi/2, if i is even

0, if i is odd
= (1 + (−1)i)Sip + δi.

With the notation of Proposition 13, the determinant to be evaluated is∣∣a(i+j)/2

∣∣k
1

=
∣∣a(i+j+2)/2

∣∣k−1

0
= H2(k).
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Thus by Proposition 13 we can express the value of this determinant in terms of the
values of the corresponding determinants H0(k).

We have

(1 + (−1)i)Sip + δi =

p∑
l=−p

li,

so by Lemma 5, the determinant H0(k) =
∣∣a(i+j)/2

∣∣k−1

0
is equal to

∣∣Si+j2p+1

∣∣k−1

0
. This

determinant may be evaluated by Lemma 11, which gives

H0(k) =
V2p+kV2p−kV

4
k−1

V 2
2pV2k−1

.

Therefore, with λk as in Proposition 13, we have λ0 = a0 = 2S0
p = 2p + 1, and for

k > 0,

λk =
k2

4

(2p+ k + 1)(2p− k + 1)

(2k − 1)(2k + 1)
.

Thus by Proposition 13, we have

H2(k) = λ−1
0 H0(k + 1)

bk/2c∑
j=0

j∏
i=1

λ2i−1

λ2i

=
1

2p+ 1

V2p+k+1V2p−k−1V
4
k

V 2
2pV2k+1

bk/2c∑
j=0

(1
2
)2
j (5

4
)j (−p)j (p+ 1)j

(1)2
j (1

4
)j (3

2
+ p)j (1

2
− p)j

,

where (a)j = a(a+ 1) · · · (a+ j − 1).

We can now combine Lemma 10 with the determinant evaluation of Proposition
14 to count tilings of hexagons with a vertical lozenge in the center:

Theorem 15. The number of tilings of a (2m−1, 2n, 2m−1) hexagon with a vertical
lozenge in the center is

V4m+2n−3V2n−1V
2

2m−2

(2m+ 2n− 1)V 2
2m+2n−2V4m−3

m−1∑
j=0

(1
2
)2
j (5

4
)j (1−m− n)j (m+ n)j

(1)2
j (1

4
)j (1

2
+m+ n)j (3

2
−m− n)j

,

and the number of tilings of a (2m, 2n − 1, 2m) hexagon with a vertical lozenge in
the center is

V4m+2n−2V2n−2V
2

2m−1

(2m+ 2n− 1)V 2
2m+2n−2V4m−1

m−1∑
j=0

(1
2
)2
j (5

4
)j (1−m− n)j (m+ n)j

(1)2
j (1

4
)j (1

2
+m+ n)j (3

2
−m− n)j

.

To finish the solution of Propp’s Problem 1, we need only evaluate the sum in
Theorem 15 in the case m = n. To do this we use the Wilf-Zeilberger (WZ) method
[27].
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Lemma 16.
n−1∑
i=0

(1
2
)2
i (5

4
)i (1− 2n)i (2n)i

(1)2
i (1

4
)i (

1
2

+ 2n)i (
3
2
− 2n)i

=
4n− 1

3
.

Proof. Let

Q(n, i) =
1

4n− 1

(1
2
)2
i (5

4
)i (1− 2n)i (2n)i

(1)2
i (1

4
)i (

1
2

+ 2n)i (
3
2
− 2n)i

.

We want to prove that

n−1∑
i=0

Q(n, i) =
1

3
.

Since this identity is clearly true for n = 1, it is sufficient to prove that

n∑
i=0

Q(n+ 1, i)−
n−1∑
i=0

Q(n, i) = 0

for n > 1.
To apply the WZ method, we must first find a function U(n, i) such that

U(n, i+ 1)− U(n, i) = Q(n+ 1, i)−Q(n, i). (7)

With the help of Maple, we find that if we set

U(n, i) =
i2 (2i+ 1− 4n) (1 + 4n) (8n2 + 4n− 2i2 + i+ 1)

(4i+ 1) (2i+ 1 + 4n) (i− 2n) (i− 1− 2n) (2n+ 1)n
Q(n, i)

then (7) is satisfied. (Once we have this formula for U(n, i), the verification of (7) is
straightforward.)

Next, we sum identity (7) on i from 0 to n− 1 and add Q(n+ 1, n) to both sides.
The left side telescopes, and we get

Q(n+ 1, n) + U(n, n)− U(n, 0) =
n∑
i=0

Q(n+ 1, i)−
n−1∑
i=0

Q(n, i). (8)

But U(n, 0) = 0 and we can easily check that Q(n + 1, n) + U(n, n) = 0. Thus the
left side of (8) is 0, hence so is the right side.

Note. The sum in Lemma 16 is a partial sum of a special case of Dougall’s very-
well-poised 5F4(1) sum [4, p. 25, eq. (3)]: if the upper limit of summation were 2n−1
instead of n−1, we would have a special case of Dougall’s theorem. It is interesting to
note that in Ciucu and Krattenthaler’s solution of Propp’s Problem 1, they used an
analogous evaluation of a partial sum of the Pfaff-Saalschütz theorem [6, eq. (2.1)].

We can now finish our solution to Propp’s Problem 1:
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Theorem 17. In a (2n− 1, 2n, 2n− 1) or (2n, 2n− 1, 2n) hexagon, the two central
triangles are covered by a lozenge in exactly one-third of the tilings.

Proof. We compare the result of setting m = n in Corollary 12 with the result of
setting m = n in 15 and evaluating the sum by Lemma 16.

8. Computing More Determinants

By Proposition 6, evaluating the Hankel determinant |(1 + (−1)i+j)Si+j+1
n |k−1

0 will
solve Propp’s Problem 2. To do this, we use the close connection between Hankel
determinants and continued fractions that was implicit in our proof of Proposition
13. The following lemma is equivalent to [13, Thm. 7.2].

Lemma 18. Let {ai}∞i=0 be a sequence, and suppose that the generating function for
the ai has the continued fraction

∞∑
i=0

aix
i =

λ0

1−
λ1x

1−
λ2x

1−
λ3x

1− · · ·
Then ∣∣a(i+j)/2

∣∣k−1

0
= λk0λ

k−1
1 · · ·λk−1,

where we take ar to be 0 if r is not an integer.

By Lemma 18, if we can find the continued fraction for

∞∑
j=0

(1 + (−1)j)Sj+1
n xj/2 =

∞∑
i=0

2S2i+1
n xi,

then we can evaluate the corresponding Hankel determinant.
The continued fraction in question is given by the following formula, which we

prove in the next section.

Proposition 19.

∞∑
i=0

2S2i+1
n xi =

µ0

1−
µ1x

1−
µ2x

1− · · ·

,
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where

µ0 = n(n+ 1)

µ2i =
i

4i+ 2
(n+ i+ 1)(n− i), i ≥ 1

µ2i+1 =
i+ 1

4i+ 2
(n+ i+ 1)(n− i).

Now from Proposition 6, Lemma 18, and Proposition 19, we obtain the solution
to Propp’s Problem 2:

Theorem 20. The number of tilings of a (k, 2n+1−k, k, k+1, 2n−k, k+1) hexagon
without the central triangle is

(n− q)(n− q + 1)5 · · ·n4q+1(n+ 1)4q+1 · · · (n+ q + 1)

2(2q)(2q+1)38(q−1)+258(q−2)+2 · · · (2q + 1)2
for k = 2q + 1,

(n− q + 1)3 · · ·n4q−1(n+ 1)4q−1 · · · (n+ q)3

2(2q−1)(2q)38(q−1)−258(q−2)−2 · · · (2q − 1)6
for k = 2q.

See [5] for Ciucu’s recent combinatorial proof of the same result.

9. Proof of the continued fraction

In this section we prove the equality in Proposition 19.
The exponential generating function for (1 + (−1)j−1)Sjn is, by Lemma 1,

∞∑
j=0

(1 + (−1)j−1)Sjn
xj

j!
=
ex(enx − 1)

ex − 1
− e−x(e−nx − 1)

e−x − 1

=
(enx − 1)(ex − e−nx)

ex − 1

= 2
sinh n

2
x sinh n+1

2
x

sinh x
2

.

Now let L be the linear operator on formal power series defined by

L

( ∞∑
i=0

ui
xi

i!

)
=
∞∑
i=0

uix
i.

We note that L(f(x)) has the “formal” integral representation

L(f(x)) =
1

x

∫ ∞
0

f(t)e−t/x dt,

obtained by performing the integration term by term. If F (x) = L(f(x)), then this
formula may be written as a Laplace transform

F (1/z) = z

∫ ∞
0

f(t)e−tz dt,
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and this is the form in which it is most often seen in the literature on continued
fractions.

The continued fraction we need is given by the following formula, in which n need
not be an integer. The case in which n is a nonnegative integer is clearly equivalent
to Lemma 19.

Lemma 21.

L

(
sinh n

2
x sinh n+1

2
x

sinh x
2

)
=

(
n+1

2

)
x

1−
µ1x

2

1−
µ2x

2

1− · · ·

,

where

µ2i =
i

4i+ 2
(n+ i+ 1)(n− i)

µ2i+1 =
i+ 1

4i+ 2
(n+ i+ 1)(n− i).

Lemma 21 is one of several continued fractions for this function given by Lange
[18, pp. 259–260]. (A closely related continued fraction for the same function was
given by Stieltjes [24].) For completeness, we give here a self-contained proof:

Lemma 22. Let f0, f1, f2, . . . be formal power series in x with nonzero constant
terms, and let c1, c2, . . . be constants such that for each k ≥ 1,

fk − fk−1 = ckx
2fk+1. (9)

Then for each m ≥ 1,

fm
fm−1

=
1

1−
cmx

2

1−
cm+1x

2

1− · · ·

Proof. Equation (9) is equivalent to

fk
fk−1

=
1

1− ckx2
fk+1

fk

.
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Iterating this formula gives

fm
fm−1

=
1

1−
cmx

2

1−
cm+1x

2

. . .

1− cm+nx2
fm+n+1

fm+n

Taking the limit as n→∞ yields the lemma.

Proof of Lemma 21. Let E = L−1, so that

E

( ∞∑
j=0

ajx
j

)
=
∞∑
j=0

aj
xj

j!
,

and suppose that with fk as in Lemma 22, gk = E(xkfk). Multiplying the recurrence
(9) by xk−2, and using the fact that if u(x) is divisible by x then

E

(
u(x)

x

)
=
d

dx
E
(
u(x)

)
,

we find that (9) is equivalent to

dgk
dx
− gk−1 = ckgk+1. (10)

We now consider the case of Lemma 22 in which

c2i =
i

4i+ 2
(n+ i+ 1)(n− i)

c2i+1 =
i+ 1

4i+ 2
(n+ i+ 1)(n− i)

We shall express a solution of recurrence (10) in terms of the hypergeometric series,
defined by

2F1

(
a, b

c

∣∣∣∣ z) =
∞∑
n=0

(a)n(b)n
n! (c)n

zn,

where (u)n = u(u+ 1) · · · (u+ n− 1).
We claim that a solution of recurrence (10) is

gk =
(ex − 1)k

k!
e−nx2F1

( ⌊
k+1

2

⌋
,
⌊
k+1

2

⌋
− n

k + 1

∣∣∣∣ 1− ex)
× 2F1

( ⌊
k
2

⌋
+ 1,

⌊
k
2

⌋
− n

k + 1

∣∣∣∣ 1− ex) . (11)
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The verification that gi defined by (11) really does satisfy (10) is a straightforward,
but tedious, computation using the formula

d

dz
2F1

(
a, b

c

∣∣∣∣ z) =
ab

c
2F1

(
a+ 1, b+ 1

c+ 1

∣∣∣∣ z) ,
together with the contiguous relations for the hypergeometric series [1, p. 558]. (This
computation was done with the help of Maple.)

It is not hard to show that g0 = 1. We now evaluate

g1 = (ex − 1)e−nx2F1

(
1, 1− n

2

∣∣∣∣ 1− ex) 2F1

(
1, −n

2

∣∣∣∣ 1− ex)
Using the easily verified fact that

2F1

(
1, β

2

∣∣∣∣ z) =
1

z(β − 1)

(
1

(1− z)β−1
− 1

)
, (12)

we find that

g1 =
e−nx(enx − 1)(e(n+1)x − 1)

n(n+ 1)(ex − 1)
=

2

n(n+ 1)

sinh n
2
x sinh n+1

2
x

sinh x
2

.

Thus f0 = 1, and

f1 =
1

x
L(g1) =

1(
n+1

2

)
x
L

(
sinh n

2
x sinh n+1

2
x

sinh x
2

)
.

Substituting these values of f0 and f1 into the case m = 1 of Lemma 22, and
multiplying both sides by

(
n+1

2

)
x, completes the proof of Lemma 21.

It is clear from the recurrence (10) and the value of g1 that gk is a rational function
of ex and enx. Although we won’t need it, we can give an explicit formula that
expresses gk in this form by applying to (11) the formula

2F1

(
m+ 1, β

k + 1

∣∣∣∣ z) = (−1)k
k!

m! zk

[
(−1)m

(1− z)k−m−β
(1− β)k−m

× 2F1

(
−m, 1− β

1− β −m+ k

∣∣∣∣ 1− z)− (1− k)m
(1− β)k

k−m−1∑
i=0

(β − k)i(1− k +m)i
i! (1− k)i

zi
]
,

for k ≥ m, which can be proved by equating coefficients of powers of z on both sides.
(Note that (12) is the case m = 0, k = 1.)
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