
transactions of the
american mathematical society
Volume 323, Number 2, February 1991

TILINGS OF THE TORUS AND THE KLEIN BOTTLE
AND VERTEX-TRANSITIVE GRAPHS ON A FIXED SURFACE

CARSTEN THOMASSEN

Abstract. We describe all regular tilings of the torus and the Klein bottle. We
apply this to describe, for each orientable (respectively nonorientable) surface
S, all (but finitely many) vertex-transitive graphs which can be drawn on S
but not on any surface of smaller genus (respectively crosscap number). In
particular, we prove the conjecture of Babai that, for each g > 3 , there are
only finitely many vertex-transitive graphs of genus g . In fact, they all have
order < 101 g . The weaker conjecture for Cayley graphs was made by Gross
and Tucker and extends Hurwitz' theorem that, for each g > 2, there are
only finitely many groups that act on the surface of genus g . We also derive a
nonorientable version of Hurwitz' theorem.

1. Introduction

Let S and Nk denote the orientable (respectively nonorientable) surface of
genus g (respectively crosscap number k). The genus (respectively crosscap
number) of a graph G is the smallest number g (respectively k) such that G
can be embedded into S (respectively Nk) such that the edges are pairwise
noncrossing simple curves. By Hurwitz' theorem and examples by Wormald (see
[4, p. 304]), the double torus S2 has the following remarkable property: There
are only finitely many groups that act on S2 but there are infinitely many Cayley
graphs of genus 2. Gross and Tucker [4] conjectured that no other orientable
surface has this property. Babai (see [4]) made the stronger conjecture that, for
each g > 3 , there are only finitely many vertex-transitive graphs of genus g.
The result described in the abstract proves this conjecture. In addition, for each
k > 4, there are only finitely many vertex-transitive graphs of crosscap number
k . (This will not be proved formally in the paper, though. We merely point out
that our proof of Babai's conjecture extends to the nonorientable case as well.)
Babai [13] has independently verified his conjecture by different methods. The
only vertex-transitive graphs of genus 2 are (with a finite number of exceptions)
graphs similar to the aforementioned examples of Wormald. All these graphs
have natural embeddings in the Klein bottle. An inspection of our list of vertex-
transitive graphs shows that all (but finitely many) have unique embeddings and
that their automorphisms can be extended to homeomorphisms of the surface.
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606 CARSTEN THOMASSEN

Using the results of this paper it will probably not be difficult to produce a
complete catalogue of the vertex-transitive graphs of genus g < 1 (maybe even
g = 2) or crosscap number k < 2. For g = 0 (the planar case) this was done
by Fleischner and Imrich [3].

Tucker [11] proved that, if a finite group acts on a surface S (that is, the
group may be thought of as a group of homeomorphisms of S), then some
Cayley graph G of the group has a 2-cell embedding on 5 such that every
homeomorphism in the group induces an isomorphism (in fact, a left multipli-
cation) of the graph. The results of the present paper tell us what the graph G
is, provided the group (and hence also G) is large. Thus we obtain an alter-
native description of all (but finitely many) finite homeomorphism groups of
S. In particular, it follows by inspection of the list of graphs in this paper that
S0, Sx, A,, A2 are the only surfaces having infinitely many homeomorphism
groups.

The main strategy in the paper is the following: We first describe completely
all tilings of the torus Sx and the Klein bottle A2 into hexagons, quadrilaterals,
and triangles in which the vertices have degree 3, 4, and 6, respectively. (Part
of this was also done by Altschuler [1].) We impose some natural regularity
conditions on the tilings in order to avoid the degenerate ones. Many of these
tilings are vertex-transitive graphs, and we describe some operations which will
transform these graphs into new vertex-transitive graphs on the torus or the
Klein bottle. We then show that these are the only (except finitely many) vertex-
transitive graphs on the torus or the Klein bottle. Finally, we show that every
vertex-transitive graph which has many vertices compared to its genus, can be
embedded in the torus or the Klein bottle, and, by inspection of our catalogue,
we conclude that those on the Klein bottle (fortunately) can be embedded on
the double torus. (Note, that this does not hold for all graphs on the Klein
bottle; see [4, 8].) The following two observations (which will be made precise
later) are important for the proof: First, Euler's formula implies that a large
graph on a given surface has a vertex of degree at most 6. Second, a large
vertex-transitive graph G of a given genus cannot contain a small nonplanar
graph H. For if that were the case, then G would contain many disjoint copies
of H (by the vertex-transitivity). But then G would have large genus because
of the additivity property of the graph genus [2], a contradiction.

All the vertex-transitive graphs described in this appear have Hamiltonian
cycles. This supports the well-known conjecture of L. Lovász that all connected
vertex-transitive graphs have a Hamiltonian path. For each fixed genus, the
conjecture now is a finite problem.

The tilings considered in this paper are (locally) similar to some of the tilings
of the plane studied by Grünbaum and Shephard [5]. However, it is not clear if
there is a direct connection between the results on tilings in the present paper
and those in [5]. Finally we point out that Babai's conjecture cannot be extended
to graphs which are almost vertex-transitive in the sense that the vertex set has
only two orbits under the automorphism group. If G is a connected 1-transitive
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TILINGS OF THE TORUS AND THE KLEIN BOTTLE 607

graph with n vertices and q edges, then we may form a new graph Gk by
replacing each edge xy of G by a A>cycle joined completely to x and y.
Clearly, Gk has only two orbits under the automorphism group of Gk . It is
shown in [9] that, for k sufficiently large, Gk has genus q - n + 1.

2.  PRELIMINARY RESULTS ON SYMMETRIES AND EMBEDDINGS

In this section we describe the graphs that will occur in the results of this
paper and we prove some auxiliary results. First we repeat some standard defi-
nitions.

A graph G is a pair V(G) and E(G), where V(G) is a finite set (of vertices)
and E(G) is a set of unordered pairs xy of vertices called edges. We say that
the edge xy joins x and y and that it is incident with x and y and that x
and y are neighbors. The order of G is the cardinality of V(G). The G-degree
(or just degree) of the vertex x is the number of neighbors of x in G. The
set of neighbors of x is denoted N(x) and we put N(x) = N(x) U {x}. If
A ç V(G)uE(G), then G-A is the graph obtained from G by deleting A and
all edges incident with A n V(G). If A ç V(G), then the graph G(A) induced
by A is defined as G - (V(G) \ A). The graph induced by N(x) (respectively
N(x)) is the neighborhood graph (respectively closed neighborhood graph) of x .
A graph is d -regular if all vertices have degree d. A 3-regular graph is also
called cubic. A d -factor of G is a ^-regular subgraph containing all vertices
of G. A k -path is a graph with vertices x0, xx, ... , xk and edges xi_xxi,
i = 1, 2, ... , k . A k-cycleis obtained from a (k- l)-path by adding the edge
between the two ends (i.e., vertices of degree 1). We say that k is the length
of the k-path and Ac-cycle. A graph is connected if any two vertices are joined
by a path. The distance between two vertices is the length of a shortest path
between them. The eccentricity of a vertex x is the maximum distance from x
to other vertices. The radius of a connected graph is the smallest eccentricity. A
vertex whose eccentricity equals the radius is called a center of the graph. The
girth of a graph is the length of a shortest cycle. A cycle through all vertices of
G is a Hamiltonian cycle of G. A graph G is bipartite, if there is a partition
V(G) = A U B such that all edges of G join A and B . The complete graph
Kn is the graph of order n where all possible edges are present.

We shall make use of some graph operations. If C: xxx2 ■ ■ ■ xkxx is a k-
cycle, then adding a new vertex v and joining it to all vertices of C results in
a k -wheel with center v . If k is even, then an edge of the type xixk ,2+i is
called a diagonal of C.

The square G of a graph G is obtained from G by adding all edges between
vertices of distance 2 in G. The line graph L(G) of G is the graph whose
vertex set is E(G) such that two vertices are neighbors in L(G) iff they have
a common end in G. The Cartesian product of two graphs G and H is the
graph with vertex set V(G) x V(H) such that (x, u) and (y, v) are neighbors
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608 CARSTEN THOMASSEN

iff either x = y and u and v are neighbors in H, or u = v and x and y
are neighbors in G.

If xy is an edge of G, then contracting xy means that we delete the edge
xy and identify x and y . More generally, we may contract a number of edges
in G. This will result in a graph which may contain multiple edges. Such a
(generalized) graph is called a multigraph. If we replace every multiple edge by
a single edge we speak of the underlying graph.

An automorphism of a graph G is a mapping n: V(G) —> ̂(G) which is 1-1
and onto such that, for any two vertices x, y , x and y are neighbors iff n(x)
and n(y) are neighbors. The automorphism group of G partitions V(G) and
£(G) into orbits. G is vertex-transitive (respectively edge-transitive) if F(G)
(respectively £(G)) has only one orbit. If, for any edges xy, uv , there is an
automorphism taking x to u and y to v (and G has no isolated vertex), then
G is 1 -transitive. Clearly, 1-transitivity implies vertex-transitivity and edge-
transitivity. The converse is not true. Also, edge-transitivity does not imply
vertex-transitivity. However, the following is an easy exercise (see, e.g., [12];
(c) below is an immediate consequence of (a) and (b)).

Lemma 2.1. (a) If G is edge-transitive and has no isolated vertex, then either
G is vertex-transitive, or V(G) has precisely two orbits and all edges of G join
vertices in distinct orbits. (In other words, G is bipartite. )

(b) If G is vertex-transitive, edge-transitive, and d-regular, where d is odd,
then G is l-transitive.

(c) If G is edge-transitive, nonbipartite, and d-regular, where d is odd, then
G is l-transitive.   □

A surface is a connected compact topological Hausdorff space which is locally
homeomorphic to a disc. By the classification theorem for surfaces (see, e.g., [4,
10]) the only surfaces are S , the sphere with g handles, and Nk , the sphere
with k crosscaps. If G is a graph drawn on a surface such that the edges are
pairwise simple noncrossing curves, then G partitions S or Nk into regions,
called faces. If each face is homeomorphic to a disc, then the embedding is called
a 2-cell embedding. The genus g(G) (respectively crosscap number c(G)) is
the smallest number m such that G has an embedding in Sm (respectively
Nm). An embedding of G into S ,GX is always a 2-cell embedding (see [4]).

Assume now that a connected graph G is a 2-cell embedded in a surface S,
where S = S or S = Nk . The boundary of a face is called a facial walk. If
the number of faces is denoted by /, and |F(G)| = n and \E(G)\ = q, then
Euler's formula says that n - q + f equals 2 - 2g (when S = S ) or 2 - k
(when S = Nk). We shall derive some consequences of Euler's formula. We
concentrate on S , but note that similar results holds for Nk . Let fi be the
number of facial walks of length /. (If an edge is traversed twice it contributes
2 to the length.) Then

/3 + f4 + ■ ■ ■ = f   and    3/3 + 4/4 + • • • = 2q .
Hence 2q > 3/3 + 3/4 + •• • = 3/ and consequently q < 3n - 6 + 6g with
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TILINGS OF THE TORUS AND THE KLEIN BOTTLE 609

equality if 0 = f4 — f5 — • • • (in which case G is a triangulation). The sum
of degrees in G equals 2q. So, if G triangulates S (or A^), then G has at
least 3« - 6 edges.

Also, the average degree of G is at most 6 + I2(g - l)/n . This implies the
first part of the well-known Lemma 2.2 below.

Lemma 2.2. Let G be a connected graph of genus g and order n .
(a) If n> I2(g - 1), then G has a vertex of degree < 6.
(b) If n > 2i(g - 1) and G has minimum degree at least 3, then G has

girth < 6.

If (b) were false, then we have 2q > 3« and 2q > If, which imply, by
Euler's formula, 2-2g = n-q + f< -q/2l < -In/42, contradicting the
assumption n > 28(g - 1).   D

In this paper we investigate vertex-transitive graphs for which n is large
compared to g . Lemma 2.2 shows that such a graph is úf-regular with d < 6.
We shall go a little further.

Lemma 2.3. Let G be a d-regular graph of order n and genus g.
(a) If d = 6 and n > 24(g - 1), then, for every embedding of G in S , G

has a vertex v which is in six facial 3-cycles.
(b) If d = 5 and n > 24(g - 1), then G has a vertex whose neighborhood

graph contains either a 3-path or two disjoint paths of length 1 and 2,
respectively.

(c) If d = 4, n > 360(g - 1), and G has girth > 3, then, for every
embedding of G in S , G contains a vertex which has distance at least
3 to each face which is not bounded by a 4-cycle.

(d) If d = 3 and n > S4(g - 1 ), then, for every embedding of G in S , G
has either a facial cycle of length < 6 or a vertex which is in three facial
(¡-cycles.

Proof. If d = 6, then

6« = 2q = 3/3 + 4/4 + ■ • ■
= 3/ + /4 + 2/5 + 3/6 + ---
= 3(2 - 2g - n + q) + fi + 2fi + ■ ■ ■
= 3(2 - 2g + 2n) + fit + 2fi + ■ ■ ■ ,

which implies

6(* - 1) = /4 + 2/j + • • ■ > $(4/4 + 5/j + ■ • • ) •
The last number (in brackets) is an upper bound for the number of vertices
which are on some facial walk of length > 3 . This proves (a).

Assume next that d = 5 and that G is embedded in S . We shall prove
that G has a vertex v such that at least three of the five 2-paths which have
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610 CARSTEN THOMASSEN

v as center and are contained in facial walks are contained in 3-cycles (which,
however, need not be facial). That will prove (b). So assume that at most two
of the above five 2-paths are contained in 3-cycles. Then G has at least 3«
"facial" 2-paths which are not contained in 3-cycles. Now consider any facial
walk W of length r, say, and let m denote the number of the 2-paths in
W that are not contained in 3-cycles. In the face bounded by W we add a
new vertex w and joint it to all vertices on the facial walk. We claim that the
number 5 of edges incident with w is at least (m + 12)/4. This is clear if
r = 3 (and hence m = 0). It is also clear if r > 4 and W has no repetition of
vertices since then

s > max(4, m) > (m + 12)/4.
If W has repetition of vertices we complete the proof of the claim by induction
on the number of vertex repetitions in W. (We leave the details for the reader.)
The resulting graph then has n + f vertices and at least 5n/2 + (3n + 12f)/4
edges. It also has at most 3(/i + fi) - 6 + 6g edges. Hence

5/1/2 + (3« + 12/)/4 <3(n + fi)-6 + 6g.
This contradiction proves (b).

By the same reasoning as in (a) we show under the assumption of (c) that G
has at most 40(g-1 ) vertices which are on some face not bounded by a 4-cycle.
For each such vertex v there are at most six 2-paths starting at v and with an
edge not in the "non-4-cycle face". Hence there are at most 360(g - 1) vertices
of distance < 2 to a "non-4-cycle face", (d) follows by a similar argument.   D

We shall make use of the fact that a vertex-transitive graph which has large
order compared to the genus has no small nonplanar subgraph. In order to
see this we use the result of Battle et al. [2] which implies that a graph which
contains m disjoint nonplanar subgraphs has genus > m . More precisely, we
prove:

Lemma 2.4. If G is a d-regular vertex-transitive graph, H is a connected sub-
graph of radius r, and G has order > gdr(dr + 1) (where g is a natural
number), then G contains at least g + 1 disjoint copies of H. In particular, if
H is nonplanar, then g(G) > g.
Proof. Let Hx, H2, ... , Hm be a maximal collection of pairwise disjoint sub-
graphs of G each isomorphic to H. It is easy to prove, by induction on
r, that there are at most m\V(H)\dr vertices in G of distance < r from
H' = Hx U H2 U • • ■ U Hm . Similarly, \V(H)\ < dr + 1 . So, if m < g, then G
has a vertex v of distance > r from H'. Since G is vertex-transitive there is
a subgraph H x in G suchthat Hm+X is isomorphic to H and v is a center
of H x . Then we can add Hm+X to the collection Hx, ... , Hm, contradicting
the maximality of m.   D

Note that the proof also applies to edge-transitive graphs if we replace
gdr(dr + 1) by gdr+x(dr + 1). Using the additivity theorem of Stahl and
Beineke [6], we get a nonorientable version of Lemma 2.4.
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We now consider the genus of the line graph of a cubic graph. We shall only
use the trivial part, but include the nontrivial part for the sake of completeness.

Lemma 2.5. If G is a connected cubic graph, then g(L(G)) = g(G).

Proof. It is easy to modify an embedding of G in 5 (C) to an embedding of
L(G) in Sg[G). So g(L(G)) < g(G).

To prove the converse we first make the following observation: If a connected
graph G has at least as many edges as vertices, then it is possible to associate
with every vertex v one of its incident edges ev such that ev ^ eu whenever
v ^ u. This follows easily from Hall's theorem. It can also be proved directly
since it suffices to consider a connected subgraph of G which has the same
number of vertices and edges. Such a graph contains only one cycle and there-
fore the above assignment is easy to describe explicitly. Consider now the line
graph of a cubic connected graph G. For every vertex v, let ev be one of
its incident edges as above. In L(G), ev is a vertex which is contained in a
3-cycle Cv corresponding to the three edges incident with v . Delete from Cv
the edge not incident with ev . The resulting graph is a subdivision of G in
the sense that it is obtained from G by replacing some edges by 2-paths. This
proves that g(G) < g(L(G)).   o

Let G be a connected «i-regular graph (d > 3) and W a collection of
w-cycles in G. Assume that every edge of G is contained in precisely two
cycles in W and that, for each vertex v in G, the edges incident with v
can be labelled ex,e2, ... ,ed such that for each / = 1,2, ... , d there is a
cycle in ^ containing e¡ and ei+x (where ed+x = ex). Then we can define
a surface -S by letting the cycles of W be disjoint convex polygons in the
Euclidean plane pasted together by the graph G. We shall say that G and S
are obtained by pasting m-cycles together or that G isa (d, m) -tiling of S. By
the classification theorem, S is of the form S or Nk . Now 2q = mfi = dn ,
where f =\W\, q = \E(G)\, and n = \V(G)\. So, by Euler's formula,

(d(l-2/m)-2)n = 4(g -I),
where g = g or g = k/2. For fixed g ^ 1, there are only finitely many
possibilities for G. So the case g = 1 (i.e., the case where S is the torus or
the Klein bottle) is particularly interesting. By Lemma 2.2, we have d < 6 in
this case which leaves the three possibilities d = 3 and m = 6, d = m = 4,
and d = 6 and m = 3. Motivated by this we now define a regular tiling of
the torus or the Klein bottle as a (d, w)-tiling G, where (d, m) is one of the
pairs (3,6), (4,4), (6,3) and the following additional conditions are imposed:
If (d, m) = (4,4), v is any vertex of the tiling, and C,, C2, C3, C4 are
the four 4-cycles of the tiling containing v , then C, U C2 u C3 u C4 has nine
vertices. (Note that G may have girth 3. However, it is easy to see that none
of Cx, C2, C3, C4 can have a diagonal.) If (d, m) = (6, 3) we require that
each closed neighborhood graph is planar. (To justify this condition we note
that it is natural to require that all closed neighborhood graphs be isomorphic.
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By the additivity theorems [2, 6] they cannot all be nonplanar if G is large.
Thus the omission of the planarity condition would result in only finitely many
additional tilings.) Finally we require for (d, m) = (3, 6) that G has girth 6.
(If G is a (3, 6)-tiling, then the dual G' defined below is a (6, 3)-tiling. Now
if G' is a regular tiling it turns out, as proved in Theorem 3.2 below, that G
has girth 6.)

Below we describe classes of graphs obtained by pasting m-cycles together.
In the subsequent sections we then show that the list includes all regular tilings
of the torus or the Klein bottle and that all the vertex-transitive graphs of large
order compared to the genus can be found in this list or can be obtained from a
graph in the list by simple modifications. To simplify the description, we define
the dual graph G1 of the above graph G as the graph whose vertex set is W such
that two vertices are adjacent iff they share an edge. Strictly speaking, duality is
defined with respect to a given collection ^ . However, it will always be clear
from the context which collection i7 we are referring to. In most cases ^ will
simply be the collection of all 6-cycles. Moreover, the graphs we are going to
describe all (except perhaps some degenerate ones) have unique embeddings in
the torus or the Klein bottle. (This can be proved directly or by using the results
in [7].) W will then be the collection of facial cycles and G' is the standard
geometric dual graph of G.

We define a quadrilateral cylinder of length k and breadth m as the cartesian
product of a rc-cycle and an m-path. If m = 1 we call it a quadrilateral cylinder
circuit of length k . Considera 4-cycle xxx2xix4xx in a quadrilateral cylinder
circuit. Assume that the edges xxx2, x3x4 are in other 4-cycles as well. If
we replace xxx4 and x2x3 by xxx3 and x2xA, respectively, then the resulting
graph is a quadrilateral Mobius circuit of length k . Figure 1 shows examples
of these graphs.

The cycles xxx2 ■ ■ ■ xkxx and yxy2 ■ ■ -ykyx of Figure 1 are called peripheral cy-
cles. (The indices are expressed modulo k .) Note that the quadrilateral Möbius
circuits have only one peripheral cycle and it has length 2k. If r is a natural
number, we denote by Qk m r the graph obtained from the quadrilateral cylin-
der of length k and breadth m by adding all edges xiyi+r, i = 1,2, ... , k .
Then Qk m r has a "natural" collection of 4-cycles (which is the set of all 4-
cycles when k > 4, m > 4) which defines an embedding of Qk m r in the
torus. Also, Qk m r is vertex-transitive and in some cases even l-transitive
(when k = m + 1 , r = 0). When we speak of Qk m r, r is always a nonnega-
tive integer. We shall also define graphs Qk m a , Qk m b , etc., where a, b, ...
are letters. All these (except Qk m e) have natural embeddings on the Klein
bottle. Qk m a *s obtained from the quadrilateral cylinder above by adding
the edges xxy2, x2yx, x3yk, x4yk_x , etc. If k is even we let Qkmb be ob-
tained by adding instead the edges xxyx, x2yk, x3yk_x , etc. Qkmb is never
vertex-transitive while Qk m a is vertex-transitive iff k = 4.

Qk m c ^S °btamed from the above quadrilateral cylinder (with k even) by
adding all diagonals to the peripheral cycles. Then Qk m c is vertex-transitive
iff m = 1 .   Qk m c may also be thought of as obtained from a quadrilateral
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(a) (b)

(c)

Figure 1. A quadrilateral cylinder (respectively Möbius)
circuit of length 12 and a quadrilateral cylinder of length
12 and breadth 3.

Figure 2. Qx2,3,a and Q12,3,6

cylinder of length k and two quadrilateral Möbius circuits of length k/2 by
identifying each peripheral cycle in the cylinder with a peripheral cycle in one
of the Möbius circuits. We define a quadrilateral Möbius double circuit of length
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Figure 3.   A quadrilateral Möbius double circuit of
length 12

Figure 4. Part of ß5g 18 e

k as a graph obtained from a quadrilateral cylinder of length k and breadth
2 by switching two edges which are on distinct peripheral cycles and which are
in a common 6-cycle as indicated in Figure 3.

Now define Qk m j (k even, k > 6) as the graph obtained from the quadri-
lateral cylinder of length k and breadth m by identifying each peripheral cycle
with the peripheral cycle in a Möbius double cycle. We shall also allow m to be
zero here, i.e., Qk 0 f is obtained by pasting two Möbius double cycles together
along the peripheral cycle. None of the graphs Qk m j are vertex-transitive.
If k is even, then Qk m is the graph obtained from the cylinder by pasting
a quadrilateral Möbius circuit (respectively Möbius double circuit) on one (re-
spectively the other) peripheral cycle. The degenerate Qk 0 is isomorphic to
Ö3,fc/2-i,a- None of Qk,m,g are vertex-transitive.

We define the graph Qk m e as the graph obtained from a cycle x,x2 ■ • ■ x^x,
by adding all edges xJx(+w . Clearly, Qk m e is vertex-transitive and has a
natural embedding in the torus. Part of Q5g lg e is shown in Figure 4.

Finally we define Qk m h as follows: First we take a graph which is the Carte-
sian product of two (m - l)-paths. Let xxx2---xm, yxy2---ym, uxu2 ■■■um,
and vxv2 ■ ■ ■ vm be paths in this product such that xm=yx, xx = um , v{ = ux ,
ym = vm , and vx, xx, yx, ym have degree 2 and all other vertices x;, yi, v¡, ut
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v=u,    u., u„ zu   zal

yn=v,

615

Figure 5. Part of Qx5 4 h

Figure 6. Hexagonal cylinders of length 5 and breadth
3 and 4, respectively

have degree 3. Then add paths

X1Z1,1Z2,1 " ' Zk,\y\ ' X2Z1,2Z2,2 " ' ^,2^2 ; ml ,m   2,m 'k ^¿m

'i,m '
such that all the new vertices z( . are distinct. Add the paths zi , z. 2
where i = 1,2, ... , k . This graph is indicated in Figure 5.

None of theThen add all edges  uxzx m, u2z2 m, Zk-l,lV2> Zk,\U\
k,m ,h are vertex-transitive.graphs Q¡

We now define graphs pasted together with 6-cycles. A hexagonal cylinder
of length k and breadth m is defined analogous to the quadrilateral cylinder.
Examples are shown in Figure 6.

A hexagonal cylinder circuit is a hexagonal cylinder of breadth 1. A hexagonal
Möbius circuit (or double circuit) is defined as indicated in Figure 7.

The peripheral cycles are those where every second vertex has degree 2.
Now Hk r is obtained from a hexagonal cylinder of length k and breadth

m by adding all edges x¡y¡+r (see Figure 6). It is easy to see that Hk m r is
vertex-transitive and (for some values of k,m,r) even l-transitive. Hk m a
is obtained by adding the edges yxx2, y2xx, y^xk , etc. For k even and m odd,
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O
Figure 7. A hexagonal Möbius circuit of length 5, and
a hexagonal Möbius double circuit of length 9

Figure 8

Hk,m,b is obtained by adding the edges yxxx, y2xk,etc. Hk m b is not vertex-
transitive (except for H2 m b = H2 m f), and Hk m a is not vertex-transitive
(except forH2ma = H2m , and for k = 4).

For k even, Hk m c is obtained from a hexagonal cylinder of length k and
breadth m by adding all diagonals of the form xixi+k/2, y¡yi+k,2 to the periph-
eral cycles. If k is odd, Hk m j is obtained by adding a star cycle with respect
to each peripheral cycle. That is, we add new vertices wx,w2, ... ,wk and the
edges wixi for i = 1, 2, ... , k and the cycle WiWj+{k+x)/2wi+xwi+{k+i)/2 • ■ ■ . A
similar cycle is added to the other peripheral cycle. The graphs Hk m c, Hk m ,
are not vertex-transitive (when m > 1 ). For k odd, Hk d (which is also the
degenerate Hk 0 ,) is obtained by pasting two Möbius double circuits together
along their peripheral cycle such that the resulting graph is cubic. Note that
Hk d is not vertex-transitive but its dual graph is. Finally, the graph Hk m e
which is vertex-transitive and toroidal is defined as follows: We first form a
"hexagonal spiral" as indicated in Figure 8. This is analogous to the quadrilat-
eral "spiral" in Figure 4. Then we add the edges zxyx, z2y2, z^y^, .... The
graphs Hk m e are all vertex-transitive.

We have now defined families of graphs obtained by pasting 4-cycles or 6-
cycles together. Some of these are vertex-transitive. Some are even l-transitive.
Using the l-transitive ones we can construct new vertex-transitive graphs on the
torus or the Klein bottle using one of the operations (a)-(e) in Figure 9.

In Figure 9(f), (g) we only add edges. These are indicated by dotted lines.
Note that the operations in (f), (g) can only be performed in special cases of the
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(a)
(b)

id)

(e)

(f)

(g)

Figure 9
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graphs previously defined. Whenever the operation can be performed and the
initial graph is vertex-transitive, then also the resulting graph is vertex-transitive.

3. Hexagonal tilings and triangulations
of the torus and the klein bottle

In this section we characterize those cubic graphs of girth 6 which are ob-
tained by pasting 6-cycles together. Although the result and its proof are purely
combinatorial it may be convenient to think of the 6-cycles as polygons pasted
together such that they form a torus or a Klein bottle as pointed out in §2.

Theorem 3.1. Let G be a connected cubic graph of girth 6 and W a collection
of 6-cycles in G such that every 2-path in G is contained in precisely one cycle
of W. Then for some natural numbers k, m, and r, G is isomorphic to one of

™k,m,r>     "k,m,a>     ™k,m,b>     ^k,m,C     ^k,d'     ^k,m,e'     "k,m,f

Proof. The assumption of Theorem 3.1 implies that every edge of G is in
precisely two 6-cycles in W having precisely e (and its ends) in common.

Assume first that G has a hexagonal cylinder circuit of length k (k > 3)
such that each nonperipheral 6-cycle is in ^ . Extend this hexagonal circuit to a
maximal hexagonal cylinder H of breadth m , say, such that each nonperipheral
6-cycle of H is in ^. Let Cx, C2 be the two peripheral cycles of H. If some
vertex x (of //-degree 2) in Cx is joined to some vertex y of C2 by an edge
e , then the two 6-cycles in W containing e show that each vertex of distance
2 from e on C, is joined to a vertex of distance 2 from y on C2. Repeating
this argument we conclude that G is obtained from H by adding edges between
Cx and C2. Now it is easy to see that G is of the form Hk m a or Hk m b
or Hk m r. So assume that no vertex of C, (of //-degree 2) is joined to C2.

If some vertex x in //-degree 2 in C, is joined to another vertex y of
//-degree 2 in C, by an edge e , then, as above, we consider the two 6-cycles
in fê containing e and conclude that every vertex of //-degree 2 in Cx is
joined to a vertex of //-degree 2 in Cx . Since G is cubic and has girth 6,
k must be even and x and y must be diametrically opposite on Cx. If no
vertex of //-degree 2 in Cx is joined to a vertex of //-degree 2 in C, , then
each vertex x of //-degree 2 in C, is joined to a vertex x in V(G) \ V(H).
The 2-path condition in Theorem 3.1 implies that x' ^ y for x ^ y. Let
Cx : xxuxx2u2 ■ ■ -xkukxx such that xx, x2, ... , xk have //-degree 2 and the
indices are expressed modulo k . We have previously observed that the vertices
x\, x2, ... , x'k are distinct and outside H. The 6-cycles in ^ containing
x-x,' are of the form x'ix¡uix¡+xx'l+xz¡x'l and x'ixiui_xxi_xx'i_lz¡_xx'i. Since
G is cubic, none of the vertices z{ are in H. The maximality of m implies
that at least one of them is in {x[, x2, ... , x'k}, say zx = x\. The 6-cycle
in fê which contains x2x(' (and avoids xxx\) must contain x'x( and hence it
must be one of x2x'x(w(x(+1x;'+1x2 or x2x;'x;w(_1x1_1x._1x2. It must be the
former since otherwise the 6-cycle in ^ containing x2x;'_, and avoiding x2x;'
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implies the presence of the edge x3x('_! and (by repeating the argument) the
edges x3x;'_2, x('_2x4 which finally leads to a contradiction. So G contains
the edge x'2x'i+x and (by repeating the argument) the edges x('+1x3, x'3x'i+2 , etc.
Hence k must be odd and i = (k + l)/2. The cycle x'xx'^k+Xy2x2x'{k+3y2 ■■ ■
is a star cycle with respect to C, . Summarizing, G is obtained from H by
joining diametrically opposite vertices of //-degree 2 in Cx or C2 or by adding
two star cycles to the vertices of //-degree 2 in Cx and C2, respectively. In
any case G is of the form Hk m c or Hk m f. So, we assume that G has no
hexagonal cylinder circuit.

Assume next that G has a hexagonal Möbius double circuit H of length
2k - 1 (k > 4) whose 6-cycles are in ^ . Let C be the peripheral cycle of H.
Consider those 6-cycles in fê which have edges in H and also edges outside of
H. By the above assumption, these do not form a hexagonal cylinder circuit.
Also, each of them has only a 2-path in common with H because no 2-path
is in two cycles in W. By an argument similar to one of a previous case we
conclude that G is obtained from H by adding a star cycle with respect to C,
that is, G is isomorphic to Hk d. So, we can assume that G has neither a
hexagonal cylinder circuit nor a hexagonal Möbius double circuit.

Assume now that G has a hexagonal Möbius circuit H of length k and with
peripheral cycle C. If some two vertices in C of //-degree 2 are adjacent, then,
by the same reasoning as in previous cases, every vertex x of //-degree 2 in H
is joined to its diametrically opposite vertex y in C. However, x and y are
in the same 6-cycle, which contradicts the assumption that G has girth 6. As in
previous cases we conclude that G is obtained from H by adding a star-cycle
to the vertices of //-degree 2. But, this is impossible since H has an even
number of vertices of degree 2. So we can assume that G has no hexagonal
Möbius circuit either.

We now define a sequence of 6-cycles C( : x, ;x2 ;x3 ;x4 ;x5 (x6 ;x, ¿ in
W as follows. Let Cx be any cycle in W. Having denned C¡ we let Ci+X be
the cycle in W\{Cf such that xx 1+1 = x5 ; and x2 ;+1 = x4 J.. Let k be
the smallest number such that Ck has more than a 1-path in common with
Cx U C2 U • • • U Ck_x . Choose CX,C2, ... such that k is minimum. Then Ck
has nothing in common with C2 U C3 U • • • U Ck_2, and Ck C\CX is a 1-path in
x6 ¡x, ,x2 jX3 j . Since G contains no hexagonal cylinder circuit or Möbius
circuit, we can assume that C, n Ck is not both the path xx xx2 x and the
path x4 kx5 k . We can assume that C, n Ck is the path x, ,x6 , . (For if
C, n Ck = x, [X2 j then we consider the sequence Ck, Cx, C2, ... instead of
Cx, C2, ... .) If x3 k = xx x and x4 k = x6 x, then we consider the sequence
Cx, C2, ... , Ck, Ck+X, ... . For each i > k, Ci+X has (at least) a 3-path in
common with C, U • • • U C(. Let m be the smallest number such that Cm+1
has more than a 3-path in common with C1 U • • • U Cm . Then Cm+X contains
the edge x2 (x3 , and one of the edges x6 m_k+2x2 ,, x6 „^.^Xj ,. It must
be the latter since the former cannot be in two cycles in ^. The other 6-cycle
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in <& containing x6m_k+2x3x also contains x6 m_k+3x3 2. Repeating this,
we conclude that G contains all edges x6 m_k+4x3 3, x6 m_k+5x3 4, etc. It
follows that G is of the form Hk m e.

If x6 k = xx , and x5 fc = x6 ,, then we consider CxuC2U-- -uC2¿_,. Since
this is not a hexagonal Möbius double circuit, there is a smallest m < 2k - 2
such that Cm+X has more than a 3-path in common with C, U • • ■ U Cm . By
reasoning as in the previous case we obtain a contradiction to the assumption
that G is cubic and satisfies the 2-path condition.

We are thus left with the cases where xx ,x6 , is one of the paths x4 kx5 k ,
x5 kx4 k ' x5 kx6 k ' xa kx3 k • Let ^i i De me 6-cycle in W containing
x6 ix5 ix6 2 ' ana- ̂ et C2 , be the 6-cycle in W containing x6 2x5 2x6 3. Con-
tinuing like this we define a sequence C, ,, C2 x, ... which we consider instead
of Cx, C2, ... . By the minimality of k , each Ci x (2 < i < k) has only a 1-
path in common with Cx , U ■ ■ ■ U C¡_ x , . Hence C,U • • ■ U Ck cannot be planar.
(Intuitively, it is a Möbius strip.) So, x6 tXj j is one of the paths x4 kx5 k
or x3 kx4 k . We shall show that this leads to a contradiction. We first assume
that Xj , = x5 k and x6 x = x4 k. We consider again C, ,, C2 ,,..., Ck ,
and conclude that Ck x is the 6-cycle in W\{CX} containing x¡ jX2 ,. Then
we consider the sequence Cx 2,C2 2, ... ,Ck 2, where Cx 2 is the cycle in fê
containing the 2-path x3 k_xx2 kx3 k such that C( 2 has an edge in common
with both C; ! and Cl_x 2 for i = 2, ... , k. In a similar way we define the
sequence Cx 3, C2 3, ... , Ck 3 of cycles in ^, etc. Let C; m+x be the first
cycle which has more than a 3-path in common with the previously defined
6-cycles. We must have i = 1 , since otherwise we get a contradiction as in
previous reasoning. Then Cx m+x has an edge in common with Ck m and
hence the sequence Ck m , Ck_x m_x, ... , Cx m+x forms a hexagonal cylinder
(or Möbius) circuit. This is a contradiction.

We consider finally the case where x6 x = x3 k and xx x = x4 k . For each
m , m = 1, 2, ... , [(k+ 1)/2J , we consider the sequence Cx m, C2 m, ... of
6-cycles in W, where Cx m = Cm, C2 m is the 6-cycle in W \ {Cm} con-
taining x6 mxx m, C} m is the 6-cycle in W\{C2 m} containing the edge of
C2 m opposite to x6 mx, m , etc. It is easy to prove, by induction on m , that
Cm+\ m = Cfc+i-m- ^°' f°r m = \-ik + 1)/2J we <?et a contradiction to the
minimality of k . This completes the proof.   D

Theorem 3.1 implies the following:

Theorem 3.2. Let G' be a connected 6-regular graph and & a collection of 3-
cycles in G' such that, for every vertex v of G', there are precisely six cycles in
iAAA' that contain v and their union is a 6-wheel Wv with v as center. Suppose
further that G' has no nonplanar subgraph of radius 1. Then G' ¿j a dual graph
of one of the graphs described in Theorem 3.1.

Proof. We form a graph G as follows: V(G) = W', and two vertices of G
are adjacent if and only if the corresponding cycles in W' have an edge in
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common. Let ^ denote the 6-cycles in G corresponding to the 6-wheels in
G' of the form Wv . Then clearly G is connected, cubic, and every 2-path
in G is contained in a 6-cycle in W. In order to obtain Theorem 3.2 from
Theorem 3.1 it only suffices to show that a 2-path in G is contained in only
one 6-cycle in W and in no cycle of length < 6. Let txt2t3 be a 2-path in G.
Then G' has a vertex v and a cycle vxv2v3v4v5v6 (the indices being expressed
modulo 6) such that the 3-cycles in W' incident with v are t¡ = vv¿vi+xv
(i = 1, 2, ... , 6). Suppose (reductio ad absurdum) that txt2t3 is contained in
an /n-cycle C (m < 6) other than txt2- ■ ■ t6tx and that C is in W if m = 6.
Let C : txt2t3t'4 ■ ■ ■ t'mtx. Since C ^ hhhUhhh > we can assume tnat ?4 ¥= t4,
i.e., t'4 is of the form v3v4uv3, where u ^ v . Since tx n t2 n i3 n r4 = 0,
C is not in £?. Hence m < 5. Since i1 and ?4 have no edge in common,
m = 5. Moreover, ^ is of the form vxv2zvx , where z ^ v . Since i4 n f'5
is a 1-path, we conclude that u G {vx, v2} and z g {v3, v4} . Since N(v)
induces a planar subgraph, we cannot have u = vx and z = v4. Hence one of
t'4, t's (say the former) contains three consecutive vertices (namely v2, v3, vf)
of Wv - v . But then the union of the 3-cycles in W' containing v3 is not a
6-wheel. This contradiction completes the proof.   D

4. Quadrilateral tilings of the torus and the Klein bottle

In this section we use the methods of §3 to characterize the regular tilings of
the torus and the Klein bottle into quadrilaterals.

Theorem 4.1. Let G be a connected 4-regular graph and f a collection of 4-
cycles in G such that, for each vertex v in G, there are precisely four cycles
in W containing v and the union of these 4-cycles form a subgraph of order 9
which is obtained from the 4-wheel with v as center by subdividing each edge
not incident with v. Then G is one of the graphs Qkmr, Qk¡m¡a. Qk,m,b'
*^/c, m , c '    *^/c, m ,e '    *^/c, m , f '    *¿k , m , g ' *¿k , m , h '

Proof. As the proof is very similar to the proof of Theorem 3.1 (and in fact
easier since 4-cycles are easier to deal with than 6-cycles) we shall only sketch
the proof and leave the details for the reader.

We first assume that G has a quadrilateral cylinder circuit. We extend it
to a maximal quadrilateral cylinder. Then we conclude (in a way similar to
Theorem 3.1) that Gisoftheform Qk<m<r, Qk<m<a, Qk,m,b, Qk,m,c, Qk,mJ
or Qk,m,g-

Next we assume that G has a quadrilateral Möbius double circuit and con-
clude that G either has a quadrilateral circuit (which is the previous case) or
G is of the form Qkmg or Qk>mj with m = 0. If G has a quadrilateral
Möbius circuit, then either it has a quadrilateral cylinder circuit or G is of the
form 03,«,«, ■

So, we can assume that G does not contain a quadrilateral cylinder circuit or
a quadrilateral Möbius circuit (or double circuit). Then we consider a sequence
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CX,C2, ... ,Ck such that each C, is a cycle in £?, CxöC2U-■-uCk_x and C2U
• • •l>Ck are the Cartesian products of a 1-path and a (k-2)-path, and Cx LiCk ̂
0. (We choose Cx, C2, ... , Ck such that k is minimum.) Since G contains
no quadrilateral cylinder (or Möbius) circuit, Cx n Ck is not a 1-path disjoint
from C2UCk_x . If Cj nCk is a vertex, then we define Ck+X, Ck+2, ... in the
obvious way. Since G contains no Möbius double circuit, either Cx, C2, ...
form a pattern as in Figure 4 (in which case G is of the form Qm k ), or else
Cx r\Ck is a 1-path intersecting precisely one of C2, Ck_x. In the latter case
we conclude as in the proof of Theorem 3.1 that C, U ■ ■ • U Ck is not planar.
(Intuitively, it is a Möbius strip.) As in the proof of Theorem 3.1, we paste
successively 4-cycles in W on Cx U • • • U Ck as long as possible. In Theorem
3.1 the corresponding argument resulted in a contradiction. In Theorem 4.1 it
shows that G is of the form Qk m h .   a

5. Edge-transitive and 1-transitive graphs
of large order compared to the genus

We shall apply the results of §§3 and 4 to investigate vertex-transitive graphs.
We begin with cubic edge-transitive graphs.

Proposition 5.1. Let G be a connected cubic edge-transitive graph of girth < 6
such that every subgraph of G of radius < 4 is planar. Then G is the graph of
the tetrahedron K4, or the 3-cube K2x K2x K2, or the dodecahedron, or one
of the graphs Hkmr.
Proof. If G has girth 3, then G is isomorphic to K4 . If G has girth 4, then
G is isomorphic to the graph of the 3-cube.

Assume that G has girth 5 . Then G is nonbipartite and hence l-transitive
by Lemma 2.1(c). Then every 2-path xxx2x3 of G is contained in a 5-cycle. To
see this we let x4 be the third neighbor of x2 and we consider an automorphism
taking x2x4 to an edge which is incident with (but not contained in) a given
5-cycle.

Assume that some (and hence every) 2-path XjX2x3 is contained in two 5-
cycles Cj : x1x2x3x4x5x1 and C2 : xxx2x3y4y5xx. Then {x4, x5} n {y4, yf =
0 because G has girth 5. Let y2 be the neighbor of x2 such that y2 £
{Xj,x3}. The 2-path xxx2y2 is contained in two 5-cycles C[, C2 having only
xxx2y2 in common. Then C, U C2 u C[ U C2 contains a subdivision of K3 3 of
radius 2, a contradiction.

We can now assume that every 2-path of G is contained in precisely one 5-
cycle. If v is any vertex of G, then G has precisely three 5-cycles Cx, C2, C3
containing v . These 5-cycles have precisely a 2-path in common pair by pair.
Using the fact that every 2-path is in precisely one 5-cycle we conclude that
there are six 5-cycles C4, ... , C9 which are not in Cx U C2 U C3 and which
have an edge in common with Cx U C2 U C3. Now Cx U C2 U ■ • • U C9 has only
three vertices of degree 2 and hence G - (C, U • • • U Cf must be a single vertex.
It follows that G is the graph of the dodecahedron.
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Assume finally that G has girth 6. Then some (and hence each) 2-path
of G is contained in a 6-cycle. (This is clear if G is l-transitive. If G is
not l-transitive, then G is bipartite and each vertex set in the bipartition is
an orbit under the automorphism group of G. Hence every 6-cycle intersects
both orbits. Using this it is easy to find a 6-cycle through any vertex and hence
through any 2-path.) Suppose first that some 3-path Px is contained in two
6-cycles Px U P2 and Px U P3, say. Since G has girth 6, P2 and P3 have
only the ends x and y in common. Let P. : xxtyty for i = 1,2,3 and put
H = Px U P2 U P3. We say that two vertices of G are mates if they are joined by
three internally disjoint paths of length 3. If y is a mate of x other than y
and P[, P2, P3 are internally disjoint x-y paths, then H\jP[uP2UP3 is a
nonplanar graph of radius < 3, a contradiction. So x (and hence every other
vertex as well) has precisely one mate. Since H has diameter 3 and G has girth
6, every path in G which joins two vertices in H is either contained in H or
has length at least 3. Since some 2-path is contained in two 6-cycles (and if G
is bipartite the midpoint of the 2-path can be chosen to be in any partite class),
it follows that every 2-path is in two 6-cycles. For each pair i, j in {1,2,3}
let C; , be a 6-cycle not in H containing the path x¡xx¡. By the preceding
remark, Ci consists of a path of length 2 or 3 in H and a path P¡ of length
4 or 3 having only its ends in common with H. Since H U Px 2 U Px 3 U P2 3
has radius < 3, it is planar, and from this it follows that the notation can be
chosen such that Px 2 : x2u2v2yx, P2 3 : x3u3v3y2 , and P3 x : xxuxvxy3, where
ux,vx,u2,v2,u3,v3 are all distinct. The three x2-yx paths of PxöP2öPx 2
show that x2 and yx are mates. Similarly, x3 and y2 are mates, and xx and
y3 are mates. Thus we have shown that every vertex of H has a mate which is
in H. The same can be shown for PxuP2uPx 2 instead of H. Thus u2 has
a mate z in H. Then z has two mates, a contradiction. So we can assume
that no 3-path of G is in two distinct 6-cycles.

We now assume that some (and hence each) 2-path is in two distinct 6-cycles.
Consider now a 6-cycle C : xxx2x3x4x5x6xx as in Figure 10. The path xxx6x5
is in another 6-cycle as shown in the second graph of Figure 10. Using the facts
that each of the paths x;x/+1xJ+2 is in a 6-cycle distinct from C, no path of
length 3 is in more than one 6-cycle, G has girth 6, and every subgraph of
G of radius < 4 is planar, we get the third graph of Figure 10 as a subgraph
of G. (We draw the new paths successively noting that planarity implies that
there is always only one face where the path can be drawn. We also note that
we cannot have a vertex v joined by three 2-paths to a 6-cycle because the
three 2-paths having v as a midvertex are all in two 6-cycles. This results in a
nonplanar subgraph of radius 3.) The third graph of Figure 10 is a subdivision
of a 3-connected graph and has only one planar embedding. The 2-path in
thick lines is already contained in a 6-cycle. Another 6-cycle containing that
path produces a nonplanar subgraph in G of radius 4, a contradiction.

We are left with the case that every 2-path of G is contained in precisely
one 6-cycle, i.e., the collection of 6-cycles in G satisfies the assumption of
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Figure 10

Theorem 3.1. Hence G is one of the graphs listed in Theorem 3.1. The only
edge-transitive graphs in that list are some graphs of the form Hk       .   G

Corollary 5.2. Let G be a connected cubic edge-transitive graph of order >
31 g(G). Then G is the graph of the tetrahedron, or the 3-cube, or the do-
decahedron, or one of the graphs Hk m   .

Proof. Since n > 28(g - 1) and G has minimum degree at least 3, G has
girth < 6, by Lemma 2.2. By the remark after Lemma 2.4, G has no nonpla-
nar subgraph H of radius < 4. Now Corollary 5.2 follows from Proposition
5.1.    D

Proposition 5.3. If G is a connected 4-regular l-transitive graph of girth 3 and
order n > 3xog(G), then G is either the graph of the octahedron, or the line
graph of the 3-cube, or the dodecahedron, or a  l-transitive graph of the form

Hk,m,r-

Proof. For any vertex of G, G(N(v)) is vertex-transitive and of order 4. Hence
G(N(v)) is a complete graph or a 4-cycle or a graph with two nonadjacent edges.
In the first two cases G is either a complete graph of order 5 or the graph of
the octahedron. So we can assume that v is contained in precisely two 3-cycles
having precisely v in common. Consider a 3-cycle C : vuwv . Since G is a
vertex-transitive, G has 3-cycles Cv, Cu, Cw distinct from C and containing
v, u, w , respectively. Since no two 3-cycles incident with v (and hence no
two 3-cycles at all) have an edge in common, Cv , Cu, Cw are pairwise disjoint.
We now form a graph H as follows: The vertices of H are the 3-cycles of G.
Two 3-cycles in G are adjacent in H iff they intersect in G. Since G is 1-
transitive, H is l-transitive. Clearly, H is cubic and connected and has order
\n . Also, G is isomorphic to the line graph L(H). So we shall prove that H
is either the 3-cube, or the dodecahedron, or H is of the form Hk m r. In
order to deduce this from Corollary 5.2 we shall show that

\n>39g(H).
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10 9(If the graph in Corollary 5.2 is l-transitive we can replace 3 by 3 .) But
this follows from the assumption that n > 3X g(G) combined with Lemma 2.5,
which implies that g(G) = g(L(H)) = g(H).   u

Proposition 5.4. // G is a connected 4-regular l-transitive graph of girth > 3
and order n > 29g(G), then G is a graph of the form Qk m r.

Proof. Assume first that G contains two nonadjacent vertices v , u which have
the same neighbors. We shall call v and u mates. If a vertex has two mates,
then G contains a K3 3 which is a nonplanar graph of radius 2, contrary to
Lemma 2.4. So, every vertex has precisely one mate. Since a vertex is joined
to two pairs of mates, it follows that G is obtained from a («/2)-cycle by
replacing each vertex by two nonadjacent vertices and adding all four edges
between consecutive pairs. That is, G is of the form Qk x 2- So we can
assume that G has no vertices having mates.

Assume next that G has two nonadjacent vertices u, v with three common
neighbors. So for some (and hence each) edge e incident with v , there is a
vertex ve joined to the three neighbors of « in G - e. The subgraph of G
induced by v , its neighbors, and the four vertices of the form v is a nonplanar
graph of radius 2, contradicting Lemma 2.4. So we can assume that G has no
two vertices joined by three 2-paths.

Now let G be embedded into S . By Lemma 2.3, G contains a vertex v
which is adjacent to four faces bounded by 4-cycles

Cx:vvxuxv2v,       C2:vv2u2v3v,
C3:vv3u4v4v,       C4:vv4u4vxv,

where the indices are expressed modulo 4. Since G has no two vertices joined
by three 2-paths, ux,u2,u3,u4 are distinct, and there is no vertex other than
v and w; which is joined to both v¡ and v¡+l (i = 1, 2, 3, 4). If there is a
vertex zx (¿v) joined to vx and v3, then the 1-transitivity of G implies that
there is a vertex z2 (^ v) joined to v2 and v4 . Then the subgraph induced
by [v ,vx,v2,v3,v4, ux, u2, u3, u4, zx, z2} is nonplanar and of radius 2, a
contradiction. So Cx, C2, C3, C4 are the only 4-cycles containing v . Now
Theorem 4.1 (with W being the collection of 4-cycles of G) implies that G is
of the form Qk m r.   u

Proposition 5.5. If G is a connected 5-regular l-transitive graph of girth 3,
then G is K6 or the graph of the icosahedron.

Proof. Let v be any vertex of G, and let H be the graph induced by the
neighbors of v . Then H is vertex-transitive. Since G has a 3-cycle, H has
an edge. If H is complete, then G = K6. So assume that H is not complete.
Then H is a 5-cycle. It follows that every edge of G is in precisely two 3-
cycles. Now we form the dual graph G1 of G with respect to the 3-cycles. It
is easy to see that G' is cubic, connected, l-transitive, and of girth 5, and that
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every 2-path of G' is contained in precisely one 5-cycle.   By (the proof of)
Proposition 5.1, G' is the graph of the dodecahedron.   D

6. VERTEX-TRANSITIVE GRAPHS OF FIXED GENUS

In this section we prove the main theorem.

Theorem 6.1. Let G be a connected vertex-transitive graph of genus g and order
n > max(90, I2(g - 1)). Then G is d-regular, where d < 6. Moreover,

(a) If d < 2, then G is a cycle.
(b) If d = 3 and n > 4 • 31 g, then G is a quadrilateral cylinder circuit

(that is, the Cartesian product of a cycle and a Kf, or a quadrilateral Möbius
circuit (i.e., an even length cycle with its diagonals), or G is one of the graphs
Hk m r, H4 m a, or Hk m e, or G is obtained from a l-transitive graph of the
form Hkmr (respectively Qk m r or L(Hkmr)) by applying the operation
described in Figure 9(a) (respectively 9(b)).

(c) If d = 6 and n > 65g, then G is the dual graph of one of the graphs
Hk,m,r> H4,m,a>Hk,d- 0Y Hk,m,e-

(d) If d = 4 and n > 2 g, then G is either a graph obtained from a
quadrilateral cylinder circuit by adding the two diagonals in every second 4-cycle,
or G is one of the graphs Qk m r, Q4 m a, Qk m e, or G is obtained from an
edge-transitive cubic graph of the form Hk m r using the operation described in
Figure 9(c) or (d).

(e) If d = 5 and n > 57(57 + l)g, then G is obtained from one of the graphs
described in Theorem 6.1(b) or (d) using the operations described in Figure 9(e),
(f), (g), or G is the Cartesian product of a K2 and the square of a cycle, or G is
obtained from a cycle of even length by first forming the square and then adding
all diagonals, or G is obtained from a quadrilateral cylinder circuit by adding
two diagonals in every 4-cycle.

Before we prove Theorem 6.1 we show that it implies the conjecture of Babai
mentioned in the abstract. First we observe the following, by inspecting the list
of graphs in Theorem 6.1:

Corollary 6.2. // G is a connected vertex-transitive graph of genus g and order
n > I0x0g, then G can be drawn on the torus or the Klein bottle.   O

In a sense, Corollary 6.2 is a more natural consequence (than Babai's conjec-
ture) of Theorem 6.1, since the drawings in Corollary 6.2 are the "natural ones"
(except for those of the graphs which can be drawn in the plane or the projec-
tive plane). In order to establish Babai's conjecture it is sufficient to show that
those on the Klein bottle also have (less natural) drawings on the double torus.
This is done for the graph Q4 3 a in [4, p. 304]. All the graphs in Corollary
6.3 below (except H'k d) are obtained by easy modifications of the one in [4,
Figure 6.25].
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Corollary 6.3. If G is a connected vertex-transitive graph of genus g and order
n > 1010g, where g > 2 (i.e., G cannot be drawn on the torus), then G is one
of the graphs H4ma,H'4ma,H'kd,Q4ma, or G is obtained from H4ma
using the operation in Figure 9(g), or from Q4 m a using the operation in Figure
9(f) or from a l-transitive graph of the form Hk m r using the operation in Figure
9(a), or G is obtained from a cycle of length divisible by 4 by first forming the
square and then adding all diagonals.

All these graphs can be drawn on the double torus. That is, g = 2.   u

The remaining part of the paper is the proof of Theorem 6.1. By Lemma
2.2, G is ¿/-regular where d < 6 . If d < 2, then G is a cycle so assume that
d > 3. By Lemma 2.2, G has girth < 6. We consider first the cases d = 3
and d = 6 which are intimately related by duality and for which we use results
in §3. Then we use §4 to do the case d = 4. Finally, we dispose of the case
d = 5 in which no essentially new graphs arise. In the proof below we let N
denote the subgraph in G induced by N(v). Since G is vertex-transitive, A
is independent of v . The number of edges of A is the number of 3-cycles
containing v. We color an edge of G by the color i if it is contained in
precisely i 3-cycles. Then the color of the edge vu is the degree of u in
N(v). We shall make use of the observation that every automorphism of G
preserves edge-colors.

The case d = 3. We consider first the case where G has girth 3 . Then G is
either a K4 or G is obtained from a cubic l-transitive graph H using operation
(a) in Figure 9. Clearly, g(H) = g(G) = g. Now the proof is completed by
applying Corollary 5.2 to H.

We consider next the case where G has girth 4. If every vertex of G is in
precisely one 4-cycle, then G is obtained from a l-transitive 4-regular multi-
graph H using operation (b) in Figure 9. Since g(H) < g(G), it follows
from Propositions 5.3 and 5.4 that H is of the form Qk or of the form
L(Hk m r), or H is obtained from a cycle by replacing each edge by two edges.
In that case G is of the form Hk m r, where k = 2. If some vertex (and hence
each vertex) of G is contained in two 4-cycles, then it is easy to see that G is
a quadrilateral cylinder (or Möbius) circuit. (We first show that two 4-cycles
cannot have a 2-path in common. Then consider a maximal subgraph which is
the Cartesian product of a 1-path and a /c-path.)

Now we consider the case where G has girth 5 . If every vertex of G is in
precisely one 5-cycle, then we contract each 5-cycle into a single vertex. This
results in a l-transitive 5-regular multigraph H. Since 5 is a prime, H has
no multiple edges. Also g(H) < g(G). So H has a K3 by Lemma 2.3. By
Proposition 5.5, this is a contradiction. So, every vertex of G is contained in
at least two 5-cycles. We shall show that two 5-cycles cannot have a 2-path
in common. Suppose therefore (reductio ad absurdum) that Cx : x,x2x3x4x5x1
and C2 : xxx2x3x'4x'5xx are distinct 5-cycles. Clearly x4,x5,x4,X5 are dis-
tinct. Two vertices will be called mates if they are joined by a 2-path and two
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3-paths which are internally disjoint. Since G is vertex-transitive, every vertex
has a mate.

If the mate x2 of x2 is not on Cx u C2, then the subgraph of G induced
by C, U C2 U {x2} is nonplanar and of radius 2, a contradiction to Lemma
2.4. So we can assume that x2 = x4 and that G has a 3-path x2x6x7x4. The
mate of x6 is in Cx U C2 (because one of the three paths from x6 to its mate
begins with x6x2). Since G has no nonplanar subgraph of radius 3, the only
possible mates for x6 are x5 and x4. In each case, G has a 2-path x6xgx5.
(Note that xg jt x7 because G has girth 5.) This shows that x6 has two mates,
namely x4 and x5, which are adjacent to each other but not to x6 . Hence also
x, has a mate which is adjacent to x3 but not to x,. That is, one of x4, x4
is a mate of x,. However, this implies the presence of a nonplanar subgraph
in G of radius 3, a contradiction.

We can assume that any two 5-cycles in G are either disjoint or have precisely
a 1-path in common. In particular, every edge of G is in at most two 5-
cycles. Let E be the set of edges in G which are in two 5-cycles. Then
either E is a 1-factor, or a 2-factor, or a 3-factor in G because G is vertex-
transitive. Consider two 5-cycles Cx : x,x2x3x4x5x1 and C2 : xxx2y3y4y5xx ,
where x¡x2 G E. If there is a 5-cycle distinct from C, and C2 and containing
one of x,x5, xxy5 , then it also contains the other and hence E = E(G). If none
of x,x5, xxy5 are in E, then £ is a 1-factor in G. So, E is not a 2-factor.
If E ^ E(G), then not both x4x3 and x4x5 are in E. If x4x5 ^ E, then the
third edge incident with x5 is in E and a 5-cycle through that edge contains
either x, x5 or x4x5, none of which is in E. This contradiction shows that
E = E(G). The 5-cycle distinct from C, through XjX5 also contains xxy5
(because no two 5-cycles have a 2-path in common). Hence every 2-path of G
is in precisely one 5-cycle. Now the proof of Proposition 5.1 shows that G is
the graph of the dodecahedron, a contradiction.

In the case d = 3 we are left with the subcase that G has girth 6. Lemma
2.3 tells that, for every embedding of G into S , there is a vertex v which
is adjacent to three faces bounded by 6-cycles Cx, C2, C3. Since G has girth
6, the intersection of any two of CX,C2, C3 is a 2-path. So, every 2-path
of G is contained in a 6-cycle. If no 2-path is contained in more than one
6-cycle, then the 6-cycles of G satisfy the assumption of Theorem 3.1. In that
case, G is a graph of form Hkmr, or H4ma , or Hkme. So assume that
the 2-path in Cx which contains precisely one edge from each of C2, C3 is
in another 6-cycle C[. We are going to prove that G is of the form Hk m
(in fact, G is of the form H3 m 0 or H3 m , ). If two 6-cycles in G have
a 3-path in common, then we obtain a contradiction as in Proposition 5.1.
(In the part of the proof of Proposition 5.1 where we defined mates, we only
used vertex-transitivity and the property that every 2-path is in two 6-cycles.
This would also hold in the present proof. For if XqX^^q (i = 1,2,3) are
three internally disjoint 3-paths, then an automorphism taking x0 to x, shows
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the existence of a 3-path xxzxz2yj (i = 2,3), where z,, z2 are new ver-
tices. Now all 2-paths having xx as mid-vertex are in two distinct 6-cycles.)
It follows that the notation can be chosen such that Cx : x,x2x3x4x5x6x1,
C2 : x4XçX~fxgXçXjQX4, c3 . x3x4XjqXjjXj2Xj3x3 , anu Cj . x3x4x^x7Xj4x^3x3,
where the vertices xx, x2, ... , xX4 are distinct. If the 2-path x5x4x10 is con-
tained in a 6-cycle other than C2, then that 6-cycle would contain x6x5x4x10xn
(since no two 6-cycles share a 3-path). But then G would have a nonplanar
subgraph of radius 3 , contradicting Lemma 2.4. So, every 2-path with x4 as
the mid-vertex is in precisely one 6-cycle except x3x4x5 which is in precisely
two 6-cycles. We shall say that CX,C2, C3 are good at x4 and that C[ is
bad at x4 because C[ is the unique 6-cycle through x4 which has a 2-path in
common with each other 6-cycle containing x4 . Clearly, C2 is also good at x5
and x10,and Cx is good at x3 and x5 (because C2nC3, C2nC,,and C,nC3
are 1-paths). Hence Cxi C2, C3 are good at each of their vertices because G
is vertex-transitive. More generally, every 6-cycle which is good at some vertex
is good at each vertex. Consequently, a 6-cycle which is bad at some vertex
is bad at each of its vertices. Now, the assumption of Theorem 3.1 is satisfied
with £f being the good 6-cycles in G. By Theorem 3.1, G is a graph of the
form H3 m 0 or H3 m ,. This completes the proof of Theorem 6.1 in the case
d = 3.

The case d = 6. By Lemma 2.3, every embedding of G into S has a vertex
v incident only with faces bounded by 3-cycles. Let vx,v2, ... ,v6 be the
neighbors of v such that C : vxv2- ■ ■v(vx is a 6-cycle. If there were another
6-cycle C' with vertex set {vx,... ,v6} , then N(v) would induce a nonplanar
subgraph of radius 1 contradicting Lemma 2.4. We say that a 3-cycle vxyv is
good at v if xy is an edge of the unique 6-cycle in G(N(v)).

We claim that vxyv is also good at x and y. Suppose therefore that it
is not good at x, say, where x = vx and y = v2. Let C" he the 6-cycle
whose vertices are the neighbors of vx = x. Then C contains v and v2 but
not the edge vv2. But then C U C" induces a nonplanar subgraph of radius
2, a contradiction to Lemma 2.4. So, a 3-cycle is good at some vertex iff it is
good at all its vertices. Now, if W' denotes the collection of good 3-cycles,
then the assumption of Theorem 3.2 is satisfied (with G' = G). Hence G is a
dual graph of one of the graphs in Theorem 3.1. Among these, only the graphs
H'k, m, r> H4, m, a > H'k, d > and H'k, m, e are vertex-transitive.

The case d = 4. Assume first that G has no 3-cycle. If G has two nonadjacent
vertices with the same neighbors, then it is easy to see that G is of the form
Qk , 2. So assume that G has no two such vertices. If G is embedded into
Sg , then there is a vertex v which is of distance > 3 from each face which is
not bounded by a 4-cycle (by Lemma 2.3). Let Cx : vvxuxv2v , C2 : vv2u2v3v ,
C3 : vv3u3v4v , and C4 : vv4u4vxv be the facial cycles containing v . Since G
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has no two vertices with the same neighbors and G has no multiple edges,
all vertices v ,vx,v2,v3,v4, ux,u2,u3, u4 are distinct. We say that a 4-
cycle C is good at v if it contains v , and, for any u, w which are not in
C but adjacent to C, G - V(C) has a path of length at most 6 joining u
and w . Since all facial walks containing one of vx, v2, v3, v4, ux, u2, u3, u4
is a 4-cycle, each C¡ (1 < / < 4) is good at v. Also, there is no other 4-
cycle C which is good at v. For if C : vxvv2zvx is good at v (z ■£ ux),
then there is in G - V(C) a path P of length < 6 from ux to w3, and now
P U C U Cx U C2 U C3 U C4 is a nonplanar subgraph of radius < 5 , a contradiction
to Lemma 2.4. Similarly, we get a contradiction if we assume there is a good
4-cycle containing vxvv3. Also note that a 4-cycle is good at some vertex iff it is
good at each of its four vertices. Hence the good 4-cycles satisfy the assumption
of Theorem 4.1. Therefore G is one of the vertex-transitive graphs described
in Theorem 4.1 (that is, G is of the form Qktm>r, or Q4ma, or Qk,m<e).
Now the proof is complete in the case where G has girth > 3 .

We recall that A = G(N(v)) for each vertex v of G. In the case d = 4
we are left with the case that A has at least one edge. We now consider the
case where A has precisely one edge. Then the 3-cycles in G form a 2-
factor. Let G' be obtained from G by contracting each 3-cycle into a vertex.
Then G' is a 6-regular vertex-transitive multigraph. If each vertex of G' has
only two neighbors, then G is of the form Qk 2 0 . If each vertex of G' has
three neighbors, then the underlying graph of G' is a l-transitive cubic graph,
and G is obtained from that by using the operation (d) in Figure 9. Since
giG') < g(G), the proof is now completed using Lemma 2.2 and Proposition
5.1. (Since G has no nonplanar subgraph of radius < 5 , the operation (d) must
preserve the local planarity as indicated in Figure 9(d).) If G' is a 6-regular
graph, then G' is one of the graphs Hkmr, H'4ma, H'k d , or Hk m e by the
previous case «3? = 6. So G is obtained from one of these graphs by blowing
each vertex up into a 3-cycle such that the local planarity is preserved, every
vertex is in precisely one 3-cycle, and G is vertex-transitive. We leave it to the
reader to verify that this is not possible.

Consider next the case where d = 4 and A has precisely two edges incident
with the same vertex. Then each vertex is incident with precisely one edge which
is not in a 3-cycle. If we delete all edges not in 3-cycles, then the resulting graph
is cubic vertex-transitive and each of its vertices is in precisely two 3-cycles. But,
such a graph does not exist.

We consider now the case where A has precisely two edges which are not
incident with the same vertex. Hence every vertex is in precisely two 3-cycles,
and it is easy to see that every 3-cycle intersects precisely three other 3-cycles
which are pairwise disjoint. Hence G is the line graph of a cubic graph G'.
That is, G is obtained from G' using the operation (c) in Figure 9. Since G
is vertex-transitive, G' is edge-transitive. By Lemma 2.5, g(G') = g(G) = g.
By Corollary 5.2, G' is of the form Hk     r.
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We claim that N cannot have a vertex of degree 3 (when d = 4). For if
this were the case, then each vertex v in G would have a neighbor v such
that v and v' have the same neighbors outside {v , v'}. Each of the common
three neighbors ui (i = 1, 2, 3) of v and v has the same property, i.e.,
there is a neighbor u\ of u. such that ui and u\ have the same neighbors
outside {Uj, u'A). Clearly, u\ e {v , v , ux, u2, uf} . This can only be satisfied
if G = K5, a contradiction. So A has maximum degree 2, that is, N is either
a 3-path or a 3-cycle (and an isolated vertex) or a 4-cycle in the remaining
cases where d = 4.

If A is a 3-cycle (and an isolated vertex), then the contraction of each K4 in
G results in a l-transitive 4-regular multigraph G'. If G' is a cycle, then G is
obtained from a quadrilateral cylinder circuit by adding two diagonals to every
second 4-cycle. So assume that G' has no multiple edges. Since g(G') < g(G),
Propositions 5.3 and 5.4 imply that G' is one of the graphs L(Hk m r) or
Qk m r. Then the two 6-cycles containing a fixed edge in Hk m r or the four
4-cycles in Qk m r containing any fixed vertex correspond in G to a nonplanar
graph of radius < 7, a contradiction to Lemma 2.4.

If A is a 4-cycle, then every vertex which is a neighbor of a vertex v is
joined to precisely one nonneighbor of v . That nonneighbor of v has to be
the same for all neighbors of v since they are all the center of a 4-wheel. Hence
G is the graph of the octahedron, a contradiction.

In the case d = 4 we are left with the case where A = G(N(v)) is a 3-path:
vxv2v3v4 . We shall show that G is the square of a cycle (i.e., G is of the form
Qk x j ) and we shall not make use of the fact that n is large. Recall that an
edge has color / if it is contained in precisely i 3-cycles. Thus vvx and vv4
have color 1 while vv2 and vv3 have color 2.

Every automorphism of G preserves edge-colors. Consider the vertex vx.
The 3-path induced by N(vx) is of the form vv2zxz2. In particular, vxv2 has
color 2. Similarly, v3v4 has color 2. So, every edge of color 1 is contained in a
3-cycle whose other edges have color 2. Hence the subgraph of G consisting of
edges of color 2 is connected and 2-regular, that is, the edges of color 2 form
a Hamiltonian cycle C. The 2-path of C whose mid-vertex is v is contained
in a 3-cycle in G. Hence every 2-path of C is contained in a 3-cycle of G
which implies that G contains the square of C. Since G is 4-regular, G is
the square of C. We have now completed the proof when d = 4.

The case d = 5 . By Lemma 2.3, A has a path system with at least three edges.
We consider first the case where A has a vertex of degree 4, that is, for each
vertex v there is a vertex v in N(v) such that N(v) \ {v'} = N(v') \ {v}.
We say that v and v are mates. A vertex cannot have two mates because
G(N(v)) is planar. So, if we contract each edge joining two mates into a single
vertex, then we obtain a multigraph whose underlying graph is a cycle. Hence
G is obtained from a quadrilateral cylinder circuit by adding all diagonals to all
4-cycles. In what follows we therefore assume that A contains a path system
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with three edges (by Lemma 2.3(b)) and has maximum degree at most 3. Now
we prove:

(1) N has either none or at least two vertices of degree 3.

Proof of (I). Suppose (reductio ad absurdum) that A = G(N(v)) has precisely
one vertex, say u , of A-degree 3. Then the edges of color 3 form a 1-factor. If
we delete the edges of color 3, we obtain a connected vertex-transitive 4-regular
graph G' of girth 3 and genus g(G') < g(G) = g. Then G1 is one of the
graphs found in the case d = 4. Also, for every vertex v in G', there is a
vertex u such that v and u are joined by three 2-paths. However, no graph
of girth 3 found in the case d = 4 has this property. This contradiction proves
(1).
(2) Either A has none or at least two 3-cycles.

Proof of (2). Suppose (reductio ad absurdum) that A has precisely one 3-cycle
vxv2v3vx. Then every vertex of G is contained in precisely one K4. Let G'
be obtained from G by contracting each K4 into a single vertex. Then G1
is 8-regular, vertex-transitive, and of genus < g. The automorphism group
of G' partitions E(G') into at most two orbits. Hence G' has at most two
edge-multiplicities. (The multiplicity of a multiple edge between x and y is
the number of edges joining x and y .) These multiplicities must be 1,2, or 4.
Two vertices in G' cannot be joined by four edges because that would imply
the existence of a nonplanar subgraph in G of radius 2 or two 3-cycles in A.
So all edge-multiplicities are 1 or 2. By Lemma 2.2, G' has multiple edges. If
G' also has single edges, then E(G') has two orbits with four edges (incident
with v) in each. In this case the underlying graph H of G' is 6-regular. So
we can assume that H is 4-regular or 6-regular. From the cases d = 4, 6 we
know the structure of G'. In any case, if v' is a vertex of G', then G1 has a
cycle of length at most 10 (or a 4-path) containing all neighbors of v . (The
number 10 occurs when H is the line graph of a cubic graph of girth 6.) In G
this produces a nonplanar graph (namely a graph that can be contracted into
Kf of radius < 7, a contradiction to Lemma 2.4.

(3) A has no 3-cycle.

Proof of (3). Suppose (reductio ad absurdum) that vxv2v3vx isa 3-cycle in N.
By (2), A has another 3-cycle as well. Since A has no vertex of degree 4, that
3-cycle must be of the form vxv2v4vx. The fifth vertex v5 in A cannot be
joined to w, or v2 because A has no vertex of degree 4. Also, v5 cannot be
joined to both v3 and v4 because G(N(v)) then would be a nonplanar graph of
radius 1. So v5 has A-degree 0 or 1. Then vv5 is the only edge incident with
v of color < 2 . If we delete all edges of color < 2, then the resulting graph is
a 4-regular vertex-transitive graph in which each neighborhood graph is a K4
minus an edge. It is easy to see that no such graph exists. This contradiction
proves (3).
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(4) A has no vertex of degree 3.

Proof of (4). Suppose (reductio ad absurdum) that vx has A-degree 3. By (1),
A has another vertex v2 of degree 3. By (3), vx and v2 are nonadjacent and
have the same three neighbors in A. But then G(N(v)) is nonplanar and of
radius 1. This contradiction proves (4).

(5) A is not a 5-cycle.

Proof of (5). Suppose (reductio ad absurdum) that A is a 5-cycle. Then the
collection of 3-cycles define an embedding of G in some surface. Since that
embedding is a triangulation, G has at least 3« - 6 edges by a remark be-
fore Lemma 2.2. On the other hand, G has \n edges. Hence n < 12, a
contradiction which proves (5).

By (4) and (5), A is either a 3-path (and an isolated vertex), or a 4-path,
or a 4-cycle (and an isolated vertex), or a path system consisting of a 1-path
and a 2-path. We consider first the case where A has three edges forming
the disjoint paths vxv2v3 and v4v5. The vertex v is incident with precisely
one edge (namely vvf) of color 2. Thus also v2 is only incident with one
edge of color 2. In particular, vxv2 and v2v3 have color 1. So, if we delete
from G all edges of color 2, then the resulting graph G' is connected 4-regular
and vertex-transitive. Hence G1 is one of the graphs described in the case
d = 4. G is obtained from G1 by adding a 1-factor consisting of edges each
of which is a diagonal in a 4-cycle of G1. Moreover, every vertex of G' is in at
most one 3-cycle, so G1 is not one of the graphs indicated in Figure 9(c). We
have previously determined the structure of G'. We now consider each of the
graphs that G' may be isomorphic to. It then follows that G has the structure
indicated in Figure 9(f). (Note that G' cannot be the 4-regular graph shown
in Figure 9(d) because adding a diagonal in a 4-cycle would create a 3-path in
A. Also note that in order to obtain G from G' we never add diagonals to
two 4-cycles that have an edge in common because A has no 3-path.)

Assume next that A is a 3-path vxv2v3v4 and an isolated vertex u5. A
3-cycle containing v has at most one edge incident with v of color 1. The
same holds for 3-cycles incident with vx . Hence vxv2 has color 2. Similarly,
v4v3 has color 2. It follows that the graph G' obtained from G by deleting
all edges of color 1 is connected. Moreover, G' is cubic and vertex-transitive
and of genus < g. So, G' is one of the graphs described in the case d = 3 .
Since v is incident with precisely two edges of color 2, the edges of color 2
form a 2-factor in G', and the edges of color 1 are precisely those which join
pairs of vertices which are connected by a 2-path in the 2-factor consisting of
color 2 edges. In particular, v2v3 has color 1 and hence G' has no 3-cycle.
If G' has girth 4, then G' is a quadrilateral cylinder (or Möbius) circuit or
else G' is one of the graphs indicated in Figure 9(b). In the former case the
only possible 2-factor in G' are the peripheral cycles (or cycle) since A has no
3-cycle. Hence G is the Cartesian product of a K2 and the square of a cycle, or
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G is obtained from a cycle by forming the square and then adding all diagonals.
In the latter case we first observe that the 2-factor consisting of color 2 edges
contains no three edges of a 4-cycle. So it contains two nonadjacent edges of
each 4-cycle and also all four edges going out from the 4-cycle. It is then easy
to find a nonplanar subgraph of radius < 7 in G, a contradiction. If G' has
girth > 4, then G' is a hexagonal tiling of the torus or the Klein bottle, by the
case d = 3 . The 2-factor consisting of color 2 edges cannot contain a 3-path
in a facial cycle (because G would then contain a nonplanar graph of radius 2,
contradicting Lemma 2.4). Hence G has the structure indicated in Figure 9(g),
where the edges of color 1 are indicated in dotted lines.

We now consider the case where A is a 4-path vxv2v3v4v5. Precisely two
edges incident with v (namely vvx and vvf have color 1 while the other
three have color 2. Let vv2uxu2u3 be the 4-path in G(N(vx)). It follows that
vxv2, vxux, vxu2 have color 2. A similar argument shows that v5v4 has color
2. The 4-path in G(N(vf)) contains the 3-path uxvxvv3. It follows that one of
v2ux, v2v3 has color 1 and the other has color 2. So, one of v , vx (and hence
both of them) is contained in a 3-cycle whose edges have color 2. Let G1 be the
graph consisting of all edges of color 2. Then G' is cubic, connected, vertex-
transitive, and every vertex is in a 3-cycle. Hence G' is obtained from a 1-
transitive graph G" using operation (a) in Figure 9. Since g(G") = g(G') < g ,
Proposition 5.1 implies that G" isa l-transitive graph of the form Hk m r. G
is obtained from G' by adding a 2-factor such that all edges in G-E(G') join
vertices of distance 2 in G'. Now G' has the local structure shown in Figure
11. Since G has no small nonplanar graph and is vertex-transitive, the edges of
G - E(G') can only be added as indicated by curved lines in Figure 11. (Since
there are six color 1 edges incident with each 3-cycle in G', any two adjacent
3-cycles in G' are joined by two color 1 edges.) The resulting graph is obtained
from G" by operation (e) in Figure 9.

We finally assume that A is a 4-cycle vxv2v3v4vx and an isolated vertex vs.
Let G' be obtained from G by deleting all edges of color 0. The resulting graph
is a 4-regular graph in which each neighborhood graph is a 4-cycle. Then each
component of G1 is the graph of the octahedron. Contracting each component
of G' into a single vertex results in a 6-regular 1 -transitive multigraph G".
The underlying graph of G" is either (by the cases d = 3, 6) a graph of the
form Hk m r or H'k m r, or G" is a cycle. If G" is of the form Hk m r or
H'k m r ' tnen ^ nas a nonplanar subgraph of radius < 7, a contradiction to
Lemma 2.4. So G" is a cycle. The graph of the octahedron is a K6 minus a
1-factor. Each octahedron in G is joined by three edges to each neighboring
octahedron. Since G is vertex-transitive, the subgraph induced by the three
vertices in the octahedron which are joined to one of the neighboring octahedra
is a K3. This describes G completely. G is the graph obtained from Hk m
(with k = 3 and r = 0) as indicated in Figure 9(g).

This finally completes the proof of Theorem 6.1.   D
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