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Abstract

Traditional monitoring systems are not able to monitor the global behavior of large retaining structures, and terrestrial laser 

scanning was performed for monitoring a retaining structure for this paper. The three-dimensional point cloud was obtained 

by scanning at seven locations with seven reference targets to cover the retaining structure having 180 m length and 25 m 

high. To evaluate the long-term behavior of the retaining structure, point clouds obtained by performing eight laser scan-

ning at the same locations over 4 years were compared with each other. In this paper, the tilt mapping method was applied 

to define the global behavior of the entire retaining structure. The P2P-TA (Plane-to-Plane-Tilt Angle) comparison method 

was used to calculate the tilt angle by comparing the normal vectors of the planes created by the point clouds, because simple 

comparison methods are not able to be applied to compare points clouds of zigzag-shaped concrete panels. A laboratory test 

was conducted to determine the applicability of laser scanning and P2P-TA analysis, and the error range was conservatively 

set to 0.15°. The results of laser scanning and P2P-TA analysis applied to 231 concrete panels are shown in the tilt mapping 

of the retaining structure. The differential tilt angle was significantly increased every year at the bottom of the concrete panel 

adjacent to the tunnel. It can be seen that the concrete panel having a large differential tilt angle affects the differential tilt 

angles of others, because it is linked to other concrete panels.
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1 Introduction

A retaining structure is constructed to minimize displace-

ment during the excavation, and various reinforcing materi-

als such as soil nailing and anchor are used for the stability 

of the structure Seo et al. [29, 30, 32, 34]. To prevent the 

failure of retaining structure, a study has been conducted 

to reinforce using pressurized grouting [31]. Seo et al. [33] 

proposed a reinforcement method in which anchor and soil 

nailing are combined. To measure the stability, strain gauges 

are installed in the anchor and the soil nailing, or a sensor is 

attached to the surface of the structure to evaluate the stabil-

ity of the structure. Qu et al. used sensors attached to various 

structures such as bridges or superstructures to determine 

the stability [19–22]. The eigensystem realization algorithm 

was used to improve the method of analyzing signals from 

various sensors of the sensor [23], Qu et al. [19–22], and also 

identified closely spaced modes through modified frequency 

domain decomposition Qu et al. [19, 22]. Contact sensors 

are difficult to apply to large-scale structures, because only 

the deformation at the points where sensors are installed 

can be measured. Therefore, laser scanning technology was 

applied to collect the three-dimensional data of retaining 

structure in this paper. Laser scanning can represent not 

only local curvature and roughness, but also the behavior of 

global structures as a three-dimensional point cloud [27, 28].

In recent years, three-dimensional (3D) laser scanning 

has been increasingly applied as a surveying technique, 

which can scan a wider area using millions of points than 

conventional surveying techniques. In the geological field, 

3D laser scanning is used to prevent natural disasters or to 

acquire geological geometry. Lague et al. [13] studied the 

complex ground of Rangitikei canyon by terrestrial laser 

scanning. 3D laser scanning was applied as a technique for 

monitoring the displacement of landslides as well. Derron 

and Jaboyedoff [5] conducted landslide monitoring using 

LIDAR (Light Detection and Ranging) and DEM (Digital 
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elevation Model) technologies. Girardeau-Montaut et al. [9] 

used laser scanning to evaluate the ground changes. Since 

3D laser scanning technology can simulate objects as a 3D 

point cloud, it is also used in construction management fields 

for obtaining geometry data, such as building information 

modeling (BIM). Gikas [8] also documented the shape of 

structures using 3D laser scanning at the highway tunnel 

construction site. 3D laser scanning has the advantage of 

being able to create 3D shapes in a wide area or a large-scale 

structure by a point cloud.

Laser scanning techniques have been used as monitoring 

techniques as well as acquiring three-dimensional geom-

etry. Recently, 3D laser scanning is rapidly developing as 

a monitoring technique for assessing the stability of vari-

ous infrastructures. Armesto et al. [4] modeled the masonry 

arches shape with a terrestrial laser scanning technique, and 

Riveiro et al. [24] conducted a study to automatically pro-

cess large point clouds after performing a laser scan through 

a masonry arch in a bridge. Studies on the settlement and 

deformation of bridges using point clouds have also been 

conducted Acikgoz et al. [1], Ye et al. [38]. Soni et al. [35] 

performed laser scanning for the rail with the conventional 

surveying techniques. Monitoring of the dam is also a chal-

lenge as a huge structure, and González-Aguilera et al. [10] 

conducted a study to structure monitor of the dam using 3D 

laser scanning. Fekete et al. [6] applied 3D laser scanning 

to drill and blast tunnels. Fekete and Diederichs [7] used 

3D laser scanning with discontinuum modeling to analyze 

the stability of the tunnel in blocky rockmasses. Han et al. 

[11] and Wang et al. [37] conducted a study to measure the 

deformation of a tunnel through multi-epoch dispersed 3D 

LIDAR point clouds. Seo [26] applied the 3D laser scanning 

and distributed fibre optic sensing together for the pile test.

Laser scanning is a non-contact monitoring technique 

that has been often used to monitor historic buildings with-

out any installation of other sensors, as have 3D cameras 

and infrared cameras [29]. Schueremans and Genechten 

[25] used 3D laser scanning to determine the stability of 

the masonry vaults of the Saint Jacobs church. Armesto-

González et al. [3] conducted a study that applied terrestrial 

scanning to detect damage to historic buildings. Pesci et al. 

[18] began to study deformation patterns by applying laser 

scanning to ancient buildings. 3D laser scanning has the 

advantage of being able to perform non-contact monitoring 

of the deformation of the structure.

In this paper, a retaining structure was monitored by ter-

restrial laser scanning. The laser scanning monitoring has 

been applied to the retaining wall as well and Oskouie et al. 

[17] conducted a study that applied terrestrial laser scan-

ning to a retaining structure on a highway. Seo et al. [29, 

30, 34] conducted monitoring of the concrete panel in the 

retaining structure. The displacement analysis using point 

cloud data of a retaining structure was conducted, as well 

Seo [27, 28]. Since the results of the laser scanning system 

are affected by the density of the point cloud, Lin et al. [15] 

also applied the terrestrial laser scanning having a high reso-

lution to monitor the behavior of mechanically stabilized 

earth walls with precast concrete panels. Aldosari et al. [2] 

monitored the concrete panels of the retaining walls with a 

mobile LiDAR, because a single scan is not able to cover the 

large-scale retaining structure. In this paper, to obtain the 

high resolution and the high accuracy, multiple monitoring 

was performed in various locations. In addition, if the previ-

ous studies focused on damage detection, this paper focused 

on analyzing the variation of the deformation in the retaining 

structure over time.

To evaluate the deformation of structures, appropri-

ate analysis for point cloud comparison should be applied 

according to the shape and texture of the structure. The 

results by applying an appropriate point cloud comparison 

method can compensate for the low accuracy and low reso-

lution of laser scanning, as well. Lague et al. [13] proposed 

DEM of difference (DoD), direct cloud-to-cloud compari-

son with closest point technique (C2C), and cloud-to-mesh 

distance or cloud-to-model distance (C2M). Girardeau-

Montaut et al. [9], and Hodge [12] studied that high rough-

ness surfaces generate occlusion patterns that depend on 

the viewpoint and introduce complexity in the point cloud 

comparison. Mitra and Nguyen [16], and Lalonde et al. [14] 

studied the calculation and orientation of surface normals. 

The concrete panel scanned in this paper has a rough texture 

and zigzag shape, so that it is difficult to apply the existing 

point cloud comparison methods. Therefore, in this paper, 

the P2P-TA (Plane-to-Plane-Tilt Angle) comparison method 

was proposed and applied to all concrete panels in the retain-

ing structure using the tilt mapping to determine the stability 

of the retaining structure globally.

2  Terrestrial laser scanning technology

The terrestrial laser scanner is surveying instruments that 

use a laser distance meter combined with a rotating mir-

ror. As the unit rotates about a vertical axis on its tripod, 

a 45° mirror rotates about a horizontal axis. This allows 

the scanner to measure distances in any direction within a 

wide field of view. Optionally, a camera within the unit may 

also be used to provide color information for each measured 

point. By performing a scan over the entire field of view, the 

scanner is able to measure millions of separate points in 3D 

space creating a 3D ‘point cloud’. This point cloud may be 

viewed and manipulated on a computer, and may be viewed 

from any locations, not just the position from which the scan 

was originally taken. Typically several scans are taken on 

the same site from different locations. It can minimize the 

effect of shadowing; where objects that were obscured from 
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the view of the scanner would otherwise be absent from the 

point cloud. During off-site processing of the data, multiple 

point clouds from different scans can be referenced together 

to provide a larger, more complete 3D representation.

In this paper, laser scanning was performed to identify the 

behavior of the retaining structure for a long term. The laser 

scanner can shoot the laser and collect the reflected laser. A 

camera can also be installed in the laser scanner to take an 

overall picture of the site. After the installation of the laser 

scanner on a tripod, the tribrach and level can be used for 

leveling the laser scanner (see Fig. 1). In this paper, scanning 

was performed with a TOPCON gls 2000 scanner [36]. The 

setting of the interval between points during scanning was 

6.3 mm at the distance of 10 m between the scanner and the 

object. Detailed parameters of the laser scanning system are 

shown in Table 1. 

Laser scanning technology has been used in various fields 

such as BIM (Building Information Model), because it can 

represent the shape of the object using a three-dimensional 

point cloud. The laser scanner shoots millions of laser light 

toward the object and collects laser points reflected from the 

object to form a single point cloud (see Fig. 2a). The laser 

scanner can rotate 360° vertically and horizontally to perform 

the global scanning for the entire region of object, as well as 

local scanning can be done after setting a specific scanning 

area. The distance between the laser scanner and the object 

can be estimated from the speed of the laser and the time the 

laser is reflected off the object. Each point in the point cloud 

can be represented in the X, Y, and Z coordinates of the three-

dimensional space using the estimated distance and the verti-

cal and horizontal angles of the scanner. The resolution of the 

point cloud representing the interval between the laser points 

can be determined by the distance between the object and the 

laser scanner. Therefore, if the measurement distance of the 

laser scanner is too far, it is not able to expect to obtain the 

higher resolution.

If the object is blocked from other objects from the laser 

scanner or there are some shadowed areas in the object, the 

shape of the object is not able to be obtained based on a sin-

gle scan. Reference targets (checkerboards or magnetically 

mounted spheres) are positioned around the perimeter of the 

area to be scanned. These targets are to aid later post-process-

ing of the scan data by allowing two or more scans, which ini-

tially have different coordinate systems, to be easily referenced 

to one another. Point clouds produced by different scans need 

at least two targets in common to be cross-referenced. The 

site needs to be assessed to be scanned and to plan a series of 

locations from which to perform scans such that overlapping 

scans can minimize the areas of the site that are obscured or 

‘shadowed’, while ensuring that at least three reference targets 

are in view and in common with neighboring scans. On large 

sites, it is necessary to move targets used in earlier scans once 

they are no longer in the view provided three common targets 

remain between successive scans.

Laser scanning of large-scale infrastructures, such as the 

retaining structure scanned in this paper, can collect a three-

dimensional point cloud of the entire structure by multiple 

laser scans. To merge laser scan data taken by different loca-

tions into one, the local coordinate system used for each scan 

can be combined into one integrated coordinate system by con-

necting the reference targets of different scans (registration), 

as shown in Fig. 2b. In this paper, concrete panels installed as 

a retaining structure were scanned, which have zigzag-shaped 

and shadowed areas in concrete panel occur in a single scan, as 

shown in Fig. 2b. Therefore, at least three locations (Location 

A, B, and C) are required to remove the shadowed effects in 

point clouds. In this paper, two or more scans were performed 

in a location, and the laser scanning of the retaining structure 

was performed at seven different locations.

As shown in Fig. 2c, different results can be obtained by 

the position and scanning direction of the scanner. In addition, 

the density of the point cloud representing the object is varied 

with the position of the scanner. The point cloud obtained at Fig. 1  Laser scanner

Table 1  Parameters of laser scanning

Single point accuracy Target detection accuracy Spot size Operation temperature Interval in a scan Operation time

3.5 mm (1—150 m) 3" at 50 m 4 mm at 20 m − 5 to 45 °C 6.3 mm at 10 m scanning 00:26:44 for a 360° 

scanning
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three different locations can be registered in a coordinate sys-

tem to obtain an integrated point cloud, which can more accu-

rately represent the three-dimensional shape of the structure, 

unlike the results obtained at each location. In particular, if the 

surface of the object is severely curved, such as the structure 

scanned in this paper, it is necessary to secure a plurality of 

scanning at various locations.

3  Laser scanning in retaining structure 
and analysis of point cloud

3.1  Introduction of site

A retaining structure located at the tunnel entrance was con-

structed to facilitate the construction of the tunnel. Anchor 

bolts were installed into all concrete panels to reinforce 

the retaining structure. Concrete panel sizes are 4.2 m and 

2.0 m, respectively. In the early stages of construction, the 

strain gauge was installed in the PC strand of the anchor 

to monitor the stability of the structure continuously, but 

all strain gauges were damaged due to electromagnetic 

problems. As shown in Fig. 3, the retaining structure is 

about 200 m in length and 25 m in height, and the conven-

tional monitoring system is not able to monitor the global 

behavior of the entire retaining structure. Although laser 

scanning technology can be less accurate than conventional 

monitoring systems, it can cover a wide range of areas in 

three dimensions. Laser scanning technology is also able to 

monitor in the long term, because there is no need to install 

Fig. 2  Principle of 3D laser scanning

Fig. 3  Laser scanning location
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any instrument on the structure. Therefore, in this paper, to 

determine the global behavior of the retaining structure in 

the long term, laser scanning was performed in March and 

July 2015, April and June 2016, February and July 2017, 

and February and July 2018, respectively. The data scanned 

in March 2015 were set as the baseline to compare with 

the other seven scanning data to evaluate the behavior of 

the retaining structure for 4 years. Since the scanning was 

affected by the vegetation in the summer scanning, the scan-

ning was carried out after the weeding.

It is not able to collect the entire point cloud with a sin-

gle scan in large infrastructures such as retaining structures. 

Higher resolution can be obtained in the area where the 

structure and the laser scanner face each other. However, 

as the distance between the laser scanner and the structure 

increases, the resolution is decreased linearly. Therefore, 

scanning was performed at seven positions to cover the 

180 m length retaining structure (see Fig. 4a). There were 

two scans performed at one location: the global scanning 

with 360° rotation of the laser scanner; and the local scan-

ning obtained by rotating laser scanner left and right 45°. 

There are 231 concrete panels in a masonry structure. 14 

scans were performed to determine the global behavior of 

all concrete panels. The level of the laser scanner was less 

than ± 3 “before scanning and no more than ± 5” after scan-

ning in all scans.

During scanning, an interval was set 6.3 mm at 10 m 

of distance between the laser scanner and the object. The 

distance between the scanning locations and the retaining 

structure is about 20 m, so that the resolution is reduced by 

two times. However, the resolution is increased about six 

times, because two scans are performed at one location and 

a scanned area can be covered by scanning at three locations. 

Therefore, the resolution of the point cloud-shaped concrete 

panels is decreased to approximately 2 mm. Seven circular 

reference targets with a diameter of 150 mm were installed 

to represent all laser scanning data in the same coordinate. 

As shown in Fig. 4b, reference targets were installed at the 

bottom of the column of the streetlight and traffic sign. 

Although different point clouds can be merged with at least 

two reference targets, seven reference targets were installed 

for minimizing the registration error as well as considering 

the loss of targets and long-term monitoring, and most refer-

ence targets can be scanned at all scanning locations.

3.2  Point cloud comparison methods

In this paper, laser scanning was performed to determine 

the behavior of anchored concrete panels installed in the 

retaining structure for a long term. The cloud comparison 

method can be applied to compare the scanned data at differ-

ent period times. As shown in Fig. 5a, an anchored concrete 

panel is a zigzag-shaped structure, which can be overesti-

mated or underestimated the movement of a concrete panel 

without proper cloud comparison. Three methodologies 

can be mainly applied to compare different point clouds: (a) 

Cloud-to-Cloud comparison (C2C); (b) Could-to-Mesh com-

parison (C2M); and (c) Plane-to-Plane comparison (P2P).

Figure 5b shows a schematic diagram of the C2C com-

parison of the point cloud scanned before and after the 

movement of the concrete panel. The C2C comparison can 

simply calculate the distance between the nearest two points. 

Therefore, as shown in the enlarged figure (see Fig. 5b), the 

distance between the points (displacement) can be underes-

timated, because a point at the protruding edge is not able to 

find a point at the same position for distance calculation and 

a nearest point can be selected. C2C comparison is not able 

to be applied to the zigzag structure scanned in this research. 

C2C comparison is also strongly influenced by the resolu-

tion of the point cloud. If the resolution is low, the points in 

the point cloud are sparse, and hence, the distance between 

points can be overestimated when the C2C comparison 

method is applied. To overcome the shortcomings of the 

C2C comparison method, a C2M comparison method can 

Fig. 4  Overview of retaining structure for laser scanning
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be used in which a three-dimensional point cloud is formed 

into a mesh and then compared between cloud and mesh. 

Figure 5c shows a schematic diagram of the C2M compari-

son method. Because C2M comparison compares different 

point clouds as a mesh, they have more accurate results than 

C2C comparison, which means that the error caused by the 

discontinuity between the two points can be minimized. 

However, the C2M comparison method is heavily influenced 

by the density of the point cloud. As shown in Fig. 5c, it is 

possible to create an appropriate mesh that is similar to the 

actual structure meshing from a dense point cloud, but mesh-

ing a sparse point cloud describes an entirely different shape 

of an actual structure. Therefore, C2M method can produce 

unexpected results. In this paper, C2C and C2M comparison 

methods, which can be affected by the particular shape of the 

structure and resolution of the point cloud, were not applied.

P2P comparison method can be applied to compare point 

clouds that a point cloud is simulated as a simple plane and 

then compare the planes. As shown in Fig. 6a, there are four 

planes included in the zigzag shape of the concrete panel. 

It can be seen that all four planes lie in the same direction. 

Therefore, when a plane is created from a point cloud of an 

entire concrete panel, this plane can have the same direc-

tionality as four planes, and hence, it can represent the entire 

concrete panel. In the P2P comparison method, one plane 

representing the selected point cloud can be produced, which 

means that a plane is selected among lots of planes in three-

dimensional space that has the minimum distance between 

the point cloud and the plane (see Fig. 6b). Planes created 

by different point clouds are compared as same as C2M 

comparison method in the P2P comparison. In dense point 

cloud conditions, the P2P method not only achieves proper 

results, but also minimizes errors even in sparse point cloud 

conditions (see Fig. 6c). As shown in Fig. 6a, the four planes 

are vertically oriented and the vertical rotation of the laser 

scanner is scanned in the same direction with these planes. 

In addition, regardless of the density of the point cloud, 

the laser scanner has the same resolution within a scanned 

data, so that a plane representing the concrete panel can be 

obtained from the point cloud even in the sparse point cloud 

condition. However, since the P2P method obtains only a 

plane representing an entire concrete panel, the local defor-

mation in the concrete panel is not able to be estimated. The 

concrete panel has large stiffness, so that this paper focuses 

on global behavior rather than local deformation within a 

panel. There are two anchors installed at the center of the 

concrete panel to reinforce it, and hence, tilt is the main 

behavior of it. Therefore, this paper proposed is the P2P-TA 

(Plane-to-Plane-Tilt Angle) comparison method to evaluate 

the variation of the tilt angles of concrete panels over a long 

term. As shown in Fig. 6d, the normal vectors are calculated 

from the planes representing concrete panels before and after 

Fig. 5  Cloud comparison methodologies
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the movement. The difference between the two normal vec-

tors is equal to the tilt angle ( � ) between the two planes. In 

this paper, the P2P-TA comparison method was analyzed 

for all concrete panels installed in the retaining structure to 

evaluate the global behavior of the retaining structure.

3.3  Laboratory test for calibration analysis

Factors affecting the accuracy of the laser scanning system 

should be considered before conducting field experiments. 

In this paper, because eight scans have been carried out over 

a long period of time, it is not possible to perform scans 

at the exact same location. Although there are a number 

of reference targets, the point cloud data can be affected 

by the scanning positioning effect, and hence, it has to be 

identified. The analyzed results of the point cloud are also 

strongly influenced by the density of the point cloud, as well. 

Therefore, in this paper, the laboratory model test was con-

ducted to calibrate the effect of these two factors. A zig-zag-

shaped wooden panel was made half size of the actual model 

to simulate the concrete panel (see Fig. 7a). The wooden 

panel was leaned against the wall and the tilt angle of the 

wooden panel is increased by inserting a 3 mm-thick plate 

between the wall and the top of the panel (see Fig. 7b). The 

tilt angle, which is calculated by the thickness of each plate 

measured by an electronic caliper before insertion, is used 

as a reference to compare with the tilt angle evaluated by the 

P2P-TA comparison method of point clouds. The terrestrial 

laser scanning was performed every time five plates were 

inserted. The laser scanner was re-installed and dismantled 

repeatedly in the condition that the scanning position is not 

deviated within 0.5 m of the red dot on the floor, as shown in 

Fig. 7c, and hence, the positioning effect of the laser scanner 

is considered. The distance between the laser scanner and 

the wooden panel was 20 m to simulate under field condi-

tions. To consider the effect of the density of the point cloud, 

scanning was performed with different setting of intervals 

as 3.1 mm, 12.5 mm, and 50 mm at 10 m of the distance 

between the laser scanner and the wooden panel. Three ref-

erence targets were installed to register different scanning 

data at the same coordinates, as shown in Fig. 7d.

It is necessary to confirm the error range to use the P2P-

TA comparison method proposed in this paper. If the behav-

ior of the structure occurs within tolerances, calibration 

analysis is required to verify the reliability of the monitoring 

system. Figure 8 shows a point cloud obtained from differ-

ent setting of intervals. The result of scanning at the interval 

of 3.1 mm at 10 m is shown in Fig. 8a, which shows that 

the dense point cloud can represent a zigzag shape clearly. 

In this point cloud, 28,241 points are densely distributed 

within a circular area with a radius of 0.25 m. However, in 

the interval of 12.5 mm at 10 m, the points representing the 

Fig. 6  P2P comparison method



858 Journal of Civil Structural Health Monitoring (2021) 11:851–865

123

Fig. 7  Overview of calibration test

Fig. 8  Density difference in the calibration test
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zigzag shape are sparser than that of the interval of 3.1 mm. 

As shown in Fig. 8b, there are 1763 points within a circular 

area with a radius of 0.25 m. As shown in Fig. 8c, when the 

interval is changed to 50 mm at 10 m, the points existing 

within a circular area with a radius of 0.25 m are signifi-

cantly decreased to 73, so that the zig-zag shape is not able 

to be formed. If the spacing between points is sparse, the 

C2C and C2M comparison methods overestimate or under-

estimate the distance between two different point clouds, as 

explained in Fig. 5. In this paper, the calibration analysis is 

performed to evaluate the applicability of the P2P-TA com-

parison method analyzing the point cloud data represented 

with different intervals, as shown in Fig. 8.

The P2P-TA comparison method can calculate the tilt 

angle from normal vectors of the planes simulated from 

point clouds. Figure 9a shows the increase of the tilt angle 

variation evaluated by the P2P-TA comparison method with 

the increase of the plate number. The differential angles can 

be estimated by calculating the increase using a point cloud 

scanned without a plate as a baseline. All results of three 

cases of intervals show a linear increase. The tilt angles of 

three cases evaluated by the P2P-TA comparison method 

are compared with a reference value which is the tilt angle 

calculated by measuring the plate thickness to determine the 

error. The results of the interval of 50 mm at 10 m have the 

largest difference compared to the reference value. The error 

can be estimated from the difference between the tilt angle 

calculated by the P2P-TA comparison method and the refer-

ence value, as shown in Fig. 9b. In the case of the interval of 

50 mm, it can be seen that the maximum error is about 0.27°. 

However, the maximum error is around 0.04° for the case 

of the interval of 12.5 mm and around 0.02° for the case of 

the interval of 3.1 mm. The point clouds obtained from the 

field test have a higher resolution than those of the interval 

of 3.1 mm in a laboratory test. However, the factors affecting 

to generate the error of the result in the laboratory test are 

better controlled compared to those of the field test. In this 

paper, 0.15° was set as the maximum error conservatively 

and applied to field test results.

4  Results of laser scanning for retaining 
structure

The process of merging point clouds represented on differ-

ent coordinates into the same coordinate is called registra-

tion. There are two registration processes in this paper. The 

first process is to merge the point clouds scanned at seven 

locations as one point cloud. Eight scannings were carried 

out for 4 years, and a set of scanning data includes 14 point 

clouds from seven scanning locations. Therefore, 14 differ-

ent point clouds have to be merged into one group. Eight sets 

of scan data acquired at different time periods are grouped 

separately to form an individual point cloud. After the first 

grouping process, eight grouped point clouds obtained at 

different time points have to be registered in one coordinate 

system to apply the P2P-TA comparison method. The eight 

grouped point clouds are superimposed together on the same 

coordinate. Therefore, all areas representing concrete panels 

in eight grouped point clouds can be cut together to be com-

pared with each other. After cutting, the P2P-TA comparison 

method can be applied to evaluate the variation of tilt angles 

between the baseline and other seven grouped point clouds.

In the registration process, there is a possibility to gener-

ate an error caused by the target scanning. In this paper, most 

registration errors are less than 1 mm or equal to 0. In some 

scanning cases, the registration error occurred 3–5 mm, but 

it was removed when the re-registration process was per-

formed without the certain reference targets that caused the 

large registration error. In this paper, registration error by 

target scan can be minimized, because seven target scan-

ning were performed. After registration, the density of one 

Fig. 9  Calibration test in three different intervals
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grouped point cloud was checked and it was confirmed that 

denser points were formed than the density used in the labo-

ratory calibration test. Figure 10a shows an integrated point 

cloud after completing the registration of all point clouds. 

The integrated point cloud has obstacles such as vegetation, 

street lamps, and traffic signs. As shown in Fig. 10b, point 

clouds after cutting the points representing obstacles can be 

formed only the retaining structure.

To perform the tilt mapping, 231 concrete panels are seg-

mented from the original point clouds which are arranged 

in 41 rows and 11 columns in the retaining structure. After 

registration, eight sets of point clouds can be superimposed 

together in Cloud Compare software, as shown in Fig. 11, 

and the point clouds representing the concrete panel can be 

cut out individually. The point cloud of 231 sets of concrete 

panels can be extracted from the raw data, and the extracted 

point clouds are analyzed by P2P-TA comparison method.

In this paper, the boundary of the tilt angle was set by the 

laboratory model test. However, actual concrete panels have 

a rougher surface than wooden panels simulated in the labo-

ratory model test. Therefore, it is necessary to identify the 

dispersion of points with the plane when the plane is shaped 

in the point cloud representing the concrete panel. If the 

distance between the points and the plane is irregular, it is 

not able to apply the P2P-TA comparison method. An area-

like plane ① of Fig. 6a was selected, as shown in Fig. 12a. 

After creating the plane in the selected area, C2M analy-

sis was performed between the plane and the point cloud 

used to make the plane. Figure 12b shows the dispersion of 

points within the selected area. The distribution of points 

with the distance between the points and the plane is shown 

in Fig. 12c. In all cases where the points are dense, sparse, 

and intermediate, the trend of points distribution shows a 

normal distribution, which means that the points forming the 

plane are not distributed irregularly. For a dense point cloud, 

the standard deviation of 90% probability is 0.00266 m. 90% 

of the total points in the selected area are within 0.00266 m 

between points and plane and 50% of the selected points are 

within 0.00089 m. In the case of a sparse point cloud, 90% 

and 50% of the total points are distributed within 0.00230 m 

and 0.00082 m, respectively, between the point cloud and the 

plane within the selected area. In the intermediate case, 90% 

and 50% of the total points are distributed within a distance 

of 0.00271 m and 0.00098 m. To compare the distribution 

Fig. 10  Registration of point clouds

Fig. 11  Arrangement of extracted point cloud of concrete panel
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trend of the three cases, the number of points was normal-

ized by dividing the number of points by the maximum num-

ber of points in each distance (see Fig. 12d). In all three 

cases, the point cloud densities are different, but the trend 

of the distributions along the distance between the plane 

and the points is similar. All three cases have the relation 

of normal distributions between the plane and the points in 

the selected area, and the deviations are narrow. Therefore, 

it can be analyzed by the P2P-TA comparison method as 

explained in Fig. 6.

The P2P-TA analysis was performed by extracting all 

231 point clouds representing concrete panels from the 

entire point cloud. Since one concrete panel contains eight 

times scanned data over 4 years, the number of concrete 

panels is 1848. As shown in Fig. 6d, the differential tilt 

angle of each panel over 4 years can be evaluated by cal-

culating the difference of the normal vectors of the eight 

panels from the baseline. Figure 13 shows the tilt mapping 

of retaining structure composed of concrete panels analyz-

ing eight scans over 4 years. If the differential tilt angle is 

less than 0.15°, it is within an error range considering the 

accuracy of the laser scan. When the differential tilt angle 

is larger than 0.15°, the color representing the panel can be 

changed depending on the degree of the increase of the tilt 

angle. The scanned data in July 2015 show that the con-

crete panels located at the bottom of the retaining structure 

close to the tunnel are changed in the tilt angle compared 

to the scanned data in March 2015 (see Fig. 13a). The tilt 

angle of most concrete panels except this region is smaller 

than the error range set in this paper, 0.15°. If the location 

of the panel is closer to the tunnel, the higher earth pres-

sure applies to the retaining structure due to the increase 

of the structure height. The bottom of the retaining struc-

ture near the tunnel can be applied by the greatest earth 

pressure, as well. The results obtained in April and June 

2016 show that the differential tilt angles of the concrete 

panels at the bottom of the retaining structure close to the 

tunnel also are changed (see Fig. 13b, c). In the results of 

fifth scanning in February 2017, the bottom area near the 

tunnel which showed the larger variation of the tilt angle 

is wider than previous results (see Fig. 13d). It can be 

seen that the differential tilt angles of the concrete panels 

located at the top of each column are increased, as well. 

These concrete panels are easy to tilt, because the upper 

part of the concrete panel is not in a constrained condition. 

In 2017, there were works such as installing sensors on 

the panels performed by installing rails on the top of the 

retaining structure, and hence, it can generate the tilt of 

the concrete panel. The differential tilt angles are a nega-

tive value, because there is no constraint condition at the 

upper part of the concrete panel. In particular, the results 

of February and June 2017 show that the differential tilt 

angle increases in the bottom of the retaining structure and 

transferred to the horizontal direction (see Fig. 13e). The 

results of the fifth scanning in February 2018 show that the 

area where the tilt angle increases are expanded from the 

bottom panel near the tunnel to others. This trend is also 

shown in Fig. 13f in the eighth scanning. In particular, it 

can be seen that the concrete panel located in row 1 and 

column 3 has a large increase in the tilt angle for 2 years.

Fig. 12  Dispersion of clouds from plane
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 (a) July 2015 (2nd scanning) 

(b) April 2016 (3rd scanning) 

(c) June 2016 (4th scanning) 

(d) February 2017 (5th scanning) 

(e) June 2017 (6th scanning) 
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4 0.03 -0.06 0.05 0.02 -0.01 -0.04 0.04 0.02 0.02 0.02 0.03 0.02 0.01 -0.01 0.01 0.03 -0.01 0.02 0.00 0.03 0.00 0.00 -0.05 0.01 -0.01 0.01 0.01 0.07 0.01 -0.3 - -0.5
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1 0.11 0.04 -0.09 0.00 -0.06 -0.03 -0.13 -0.01 0.06 0.04 0.01 -0.02 -0.03 0.05 -0.02 -0.02 0.01 -0.01 0.02 0.03 0.04 -0.01 -0.01 0.03 0.01 -0.04 -0.03 0.00 0 .02 0.05 0.01 0.03 0.04 0.03 -0.07 -0.04 -0.07 -0.06 -0.05 -0.01 0.06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

11 -0.11
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9 -0.01 -0.06 -0.01 0.00 0.04 0.06 0.01 -0.01 0.01 0.5 - 0.75

8 0.02 -0.04 0.05 -0.05 -0.01 0.02 0.01 0.00 -0.01 -0.02 -0.03 0.02 0.01 0.3 - 0.5
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Fig. 13  Tilt mapping of retaining structure for 4 years
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As a result of analysis in Fig. 13, it was confirmed that 

the differential tilt angle at the bottom of the concrete panels 

near the tunnel was larger than those in other places. Fig-

ure 14 shows the profiles of the differential tilt angle in the 

horizontal direction of a retaining structure. To estimate the 

global behavior in each column of the concrete panel, the 

average value of the absolute differential tilt angle for each 

column is shown in Fig. 14a. However, the panels located at 

the highest level of each column were excluded to calculate 

the average, because those have irregular behavior without 

constraints. The average value of the differential tilt angle 

is increased, if panels are located close to the tunnel. It is 

more intense with the time and within the fifth column of 

concrete panels. The average value between the fifth and 

tenth columns is slightly increased due to the increases in 

the differential tilt angles at some panels located in 1 and 3 

rows. From the tenth column onwards, the average values 

are within the error in every analyzed data regardless of the 

scanning duration. It was confirmed by the average value of 

each column that the variation of the tilt angle was promi-

nent at the bottom of the retaining structure near the tunnel. 

To evaluate the variation of the tilt angle at the bottom of 

the retaining structure precisely, the profile of differential 

tilt angles in the first row of the concrete panels is shown 

in Fig. 14b. In particular, it can be seen that the differential 

tilt angle located in row 1 and column 3 is significantly 

increased after the fifth scanning of the concrete panel. Most 

of the panels also show positive values after the fifth scan-

ning in the first row. A positive differential tilt angle means 

that the concrete panel is erected by the horizontal earth 

pressure at the rear of the retaining structure, which affects 

the increase of the tilt angle. The differential tilt angle of the 

concrete panel located in the row 2 and column 3 has a nega-

tive value. This is because, as shown in Fig. 14c, the move-

ment of a panel affects the other, because the concrete panels 

are linked together. When the panel in the row 1 and the 

column 3 is erected, the panel in the row 2 and the column 

3 can be lied down unless there is the horizontal movement 

with the panel in the row 1 and the column 3. Therefore, the 

variation of the tilt angle of the panel in row 1 and column 3 

affects the other panels in the bottom of the concrete panel 

near the tunnel. The variation of tilt angle was the largest in 

the eighth scanning results. Figure 14d shows the average 

monthly temperature over the 4 years during scanning. In 

2018, the temperature change between February and August 

was particularly larger than in other years. Therefore, it is 

expected that the concrete panel is much more affected by 

the thermal expansion.

In this paper, the global behavior of the retaining struc-

ture was evaluated by the variation of the tilt angle of the 

Fig. 14  Variation of differential tilt angle in the horizontal direction of retaining structure
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concrete panel installed with the anchor. Traditional moni-

toring methods are not able to evaluate the behavior of the 

entire retaining structure, but the laser scanning method with 

the P2P-TA comparison method proposed in this paper is 

able to determine the global behavior of the retaining struc-

ture. While laser scanning can monitor large structures in 

three dimensions, the accuracy of laser scanners is insuf-

ficient as a monitoring technique compared to traditional 

monitoring methods. Therefore, it is more effective to evalu-

ate the global area by laser scanning system and then apply it 

with the existing high-accuracy monitoring method to local 

areas that require detailed monitoring.

5  Conclusions

This paper evaluated the global behavior of retaining struc-

ture by the P2P-TA comparison method after monitoring the 

retaining structure composed of anchored concrete panels 

over 4 years by the terrestrial laser scanning. The results of 

this study are summarized as follows:

1. The point cloud comparison methods like C2C and 

C2M cannot be applied to this research due to the zig-

zag shape of concrete panel. In this paper, the P2P-TA 

comparison method was proposed that calculates the 

tilt angle from the normal vector of the plane simulated 

by a point cloud. The P2P-TA comparison method was 

applied to 231 concrete panels to determine the behavior 

of the retaining structure.

2. The error range of the P2P-TA comparison method was 

estimated as 0.15° in the laboratory calibration test con-

sidering the effects of positioning and density of laser 

scanning. The reason the P2P-TA comparison method 

can be applied is because all planes in a concrete panel 

have the same direction vertically. It was proved by 

analysis of three-point cloud data with different density 

obtained from the field. Therefore, it was possible to 

apply laser scanning and P2P-TA comparison methods 

at this site.

3. The overall behavior of a retaining structure was verified 

by the tilt mapping method over 4 years, and concrete 

panels having larger differential tilt angles than the error 

range were identified. The differential tilt angle at the 

bottom of the concrete panels near the tunnel was larger 

than those in other places because of the effect of hori-

zontal earth pressure. Particularly, it was confirmed that 

a panel in row 1 and column 3 showed the largest change 

of the tilt angle, and the concrete panels were also linked 

to each other to affect the other panels.

Laser scanning was able to evaluate the global behavior 

of the entire retaining structure, but the accuracy was not 

high enough for detailed analysis. If laser scanning is applied 

with other monitoring techniques having a higher accuracy, 

those monitoring systems can complement each other.
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