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The tilt-over mode in a precessing triaxial ellipsoid is studied theoretically and numerically. Inviscid

and viscous analytical models previously developed for the spheroidal geometry by Poincaré �Bull.

Astron. 27, 321 �1910�� and Busse �J. Fluid Mech. 33, 739 �1968�� are extended to this more

complex geometry, which corresponds to a tidally deformed spinning astrophysical body. As

confirmed by three-dimensional numerical simulations, the proposed analytical model provides an

accurate description of the stationary flow in an arbitrary triaxial ellipsoid, until the appearance at

more vigorous forcing of time dependent flows driven by tidal and/or precessional instabilities.

© 2010 American Institute of Physics. �doi:10.1063/1.3504356�

I. INTRODUCTION

The flow of a rotating viscous incompressible homoge-

neous fluid in a precessing container has been studied for

over one century because of its multiple applications, such as

the motions in planetary liquid cores and the generation of

planetary magnetic fields �e.g., Refs. 1 and 2�. In the sphe-

roidal geometry, the early work of Poincaré
3

demonstrated

that the flow of an inviscid fluid has a uniform vorticity.

Later, viscous effects have been taken into account as a cor-

rection to the inviscid modes in considering carefully the

critical regions of the Ekman layer.
4–6

Indeed, the Poincaré

solution is modified by the apparition of boundary layers and

some strong internal shear layers are also created in the bulk

of the flow, which do not disappear in the limit of vanishing

viscosity.
5

Besides, at high enough precession rates, these

shear layers may become unstable
7–9

and in a second transi-

tion, the entire flow becomes turbulent: this is the precession

instability. These experimental works have been completed

by numerical studies in cylindrical, spherical, and spheroidal

geometries,
10–14

in particular for studying kinematic dynamo

models in a spheroidal galaxy
15

or for geophysical

applications.
16–20

However, in natural systems, both the rotation and the

gravitational tides deform the celestial body into a triaxial

ellipsoid, where the so-called elliptical �or tidal� instability

may take place �see Refs. 21–25 for details on this instability

and its geophysical and astrophysical applications�. The el-

liptical instability takes place in any rotating fluid whose

streamlines are elliptically deformed �see, e.g., Ref. 26 or

Ref. 27�. It comes from a parametric resonance of two iner-

tial waves of the rotating fluid with the tidal �or elliptical�
deformation of azimuthal wave number m=2.

25
Similarly, it

has been suggested that the precession instability comes

from the parametric resonance of two inertial waves with the

forcing related to the precession of azimuthal wave number

m=1, which comes from the deviations of the laminar tilt-

over base flow from a pure solid body rotation.
28–30

How-

ever, it has also been suggested that the precession instability

is related to a shear instability of the zonal flows that appear

in a precessing container �e.g., Ref. 18�. Clearly, the precise

origin of the precession instability is still under debate and is

beyond the point of the present work. But since tides and

precession are simultaneously present in natural systems, it

seems necessary to study their reciprocal influence, in pres-

ence or not of instabilities. The full problem is rather com-

plex and involves three different rotating frames: the precess-

ing frame, with a period Tp�26 000 yr for the Earth, the

frame of the tidal bulge, with a period around Td�27 days

for the Earth, and the container or “mantle” frame, with a

period Ts�23.93 h for the Earth. As a first step toward the

full study of the interaction between the elliptical instability

and the precession, we consider the particular case where the

triaxial ellipsoid is fixed in the precessing frame �Td=Tp�,
which allows the theoretical approach to be analytically trac-

table. We show in Fig. 1 a sketch of this configuration.

The paper is organized as follow. In Sec. II, the Poincaré

and Busse analytical models are extended to precessing tri-

axial ellipsoids. Then in Sec. III, our analysis is validated by

comparison with a numerical simulation.

II. ANALYTICAL SOLUTION OF THE FLOW
IN A PRECESSING TRIAXIAL ELLIPSOID

In this section, we consider first the case of an inviscid

fluid and extend the Poincaré model to a precessing triaxial

ellipsoid, which allows us to obtain explicit analytical solu-

tions. We then tackle the viscous case in extending the Busse

model, following the method of Noir et al.
9

As sketched in

Fig. 1, we consider the rotating flow inside a precessing tri-

axial ellipsoidal container of principal axes �a1 ,a2 ,a3�. We

define �Ox1 ,Ox2 ,Ox3� in the frame of the tidal bulge which

is also the precessing frame, such that Oxi is along the prin-

cipal axis ai of the ellipsoidal container and �Ox3� is the

mantle rotation axis. We note � the imposed mantle angular

velocity and use �−1 as a timescale. We also introduce the

mean equatorial radius Req= �a1+a2� /2, which is used as a

length scale. Consequently, the problem is fully described bya�
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six dimensionless numbers: the ellipticity �= �a1
2−a2

2� / �a1
2

+a2
2�, the aspect ratio a3 /a1, the Ekman number E=� /�Req

2 ,

where � is the kinematic viscosity of the fluid, and the three

components of the dimensionless precession vector �p in the

inertial frame of reference, i.e., the angle � between �p and

ex
3
, the angle �2 between �p and ex

1
, and the angular pre-

cession rate �p, which is positive for prograde precession

and negative for retrograde precession.

A. Inviscid Poincaré tilt-over mode for a triaxial
ellipsoid

We look for a base flow solution of the incompressible

Euler equations, i.e.,

�u

�t
+ u · �u = − �p − 2�p � u , �1�

� · u = 0, �2�

inside the triaxial ellipsoid in the precessing frame. In this

frame, using the ellipsoid equation

x1
2

a1
2

+
x2

2

a2
2

+
x3

2

a3
2

= 1, �3�

we transform the ellipsoidal geometry into a sphere with the

transformation �xk��= �xk /ak�k��1,2,3� and we write the velocity

field in this sphere as

�Uk�� = �Uk

ak

	
k��1,2,3�

. �4�

As suggested in Ref. 3, we focus on the so-called

“simple motions” such that the velocity U�U1 ,U2 ,U3� is de-

scribed as linear combinations of the coordinates. This hy-

pothesis leads to a solid body rotation in the sphere, i.e.,

U�=���r�, where ����1� ,�2� ,�3�� depends on time a priori.

Equation �4� then gives the following velocity field in the

ellipsoid:

U = �Uk�k��1,2,3�

= � ak

ak−1

�k+1� xk−1 −
ak

ak+1

�k−1� xk+1	
k��1,2,3�

, �5�

where permutations k� �1,2 ,3� are used.

Now we have to find the simple motions solution of the

Euler equations for the rotational part of the flow, taking into

account the no-penetration boundary conditions for its irro-

tational part, which leads to the so-called Poincaré flow. We

follow the method of Noir
31

rather than the Lagrangian

method of Poincaré which is more laborious. We deduce the

rotation rate vector � from the velocity field �5�

� =
1

2
� � U = ��k�k��1,2,3�

=
1

2

�ak−1

ak+1

+
ak+1

ak−1

	�k��
k��1,2,3�

. �6�

Note that �� is independent of the space coordinates so that

� is uniform. Taking the rotational of Eq. �1�, the inviscid

equation for � gives the following three scalar equations:

d�k

dt
+ ��k+1,k − �k−1,k��k−1�k+1

= �k−1,k�p,k−1�k+1 − �k+1,k�p,k+1�k−1 �7�

for permutations k� �1,2 ,3�, with the coefficients �i,j

=2 / �	ij +2�=2�	 ji+1� / �	 ji+2� and the different ellipticities

	ij =ai
2
/a j

2−1 of the container. The equations for a spheroidal

geometry are recovered with a1=a2.

We focus on the stationary solutions of the problem. In

this particular case, we solve the system �7� analytically,

which gives

�1 =
�3


12

a3
2 + a2

2

�1

�p,1, �8�

�2 =
�3


12

a3
2 + a1

2

�2

�p,2, �9�

where 
ij = �ai
2+a j

2� / �2aia j�=
 ji and �i=�3�ai
2−a3

2� /
12

+2�p,3a1a2. The corresponding velocity field writes

U1 = a1

�3


12

�−
x2

a2

+
2a1�p,2x3

�2

	 , �10�

U2 = a2

�3


12

� x1

a1

−
2a2�p,1x3

�1

	 , �11�

U3 = a3

�3


12

�2a3�p,1x2

�1

−
2a3�p,2x1

�2

	 . �12�

Note that the choice of �3 is arbitrary here. Actually, �3 is

determined by the boundary �Ekman� layer and thus has to

be determined by a viscous study, following for instance the

method of Busse,
5

as described in Sec. II B. Note also that

this velocity field is divergent for �1=0 or �2=0: the inviscid

FIG. 1. �Color online� Sketch of the problem under consideration. A hollow

solid but deformable spheroid �i.e., the mantle� is filled with liquid and set in

rotation at a constant angular velocity � along its axis �Ox3�. The spheroid

axis is tilted at the precession angle � and fixed on a rotating table, which

rotates at the precession rate �p. Two fixed rollers aligned with �Ox3� allow

to transform the spheroid into a triaxial ellipsoid by compression along the

axis �Ox2� perpendicular to the rotation axis.
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study gives two resonances, which correspond to resonance

between the frequencies of, respectively, the precessional

forcing and the tilt-over �see Ref. 9 for details�. These linear

resonances are reached for two specific precession rates �de-

pending on the aspect ratio� which are

�p,3 =
a3

2 − ai
2

a1
2 + a2

2
�3 �13�

for i� �1,2�. It is clear that oblate ellipsoids �a1 ,a2�a3�
have their resonance in the retrograde regime �i.e., in the

range �p,30�, whereas prolate ellipsoids �a1 ,a2a3� have

their resonance in the prograde regime. Finally, compared to

the spheroidal case, an important result here is the apparition

of the second resonance created by the equatorial ellipticity

of the container.

B. Viscous study of the tilt-over mode in a triaxial
ellipsoid

Following Ref. 5, it is possible to take into account the

viscosity in the study of the flow in a precessing triaxial

ellipsoid. Here, we focus on the equivalent method of Noir

et al.
9

based on the equilibrium between the inertial torque

�i, the pressure torque �p, and the viscous torque �
v
. Keep-

ing the leading terms for these three torques, the general

torque balance given in Ref. 5 for a steady rotating flow

q=��r in the precessing frame within a volume V with a

surface � writes

2�
V

r � ��p � q�dV

�i

= − �
�

pr � nd�

�p

+ E�
V

r � �
2qdV

�
v

,

�14�

where r is the position vector and n is the unit vector normal

to � pointing outward �see Ref. 9�. Now, we have to calcu-

late these terms for a triaxial ellipsoid.

At first order, the pressure gradient equilibrates the cen-

trifugal force, which gives

p =
1

2
�
i=1

3

��i+1
2 + �i−1

2 �xi
2 − �

j=1

j�i

3

�i� jxix j� . �15�

Hence in the limit of small ellipticities, i.e., at first order in

	=1−a3 /a1 and 	2=1−a2 /a1, the pressure torque writes

�p = −� pr � nd� = ��p,k�k��1,2,3� = I
�	 − 	2��2�3

− 	�1�3

	2�1�2

� ,

�16�

where I is the moment of inertia in the spherical approxima-

tion. Note that the expression of Noir et al.
9

is recovered for

the spheroid �i.e., a1=a2 hence 	2=0�.
After little algebra, the precessional torque simply writes

�i = I�p � � . �17�

Finally, Eqs. �16� and �17� give �p ·�=0 and �i ·�=0

and thus with Eq. �14�, �
v
·�=0. Consequently, the fluid

being in a stationary state, there is no differential rotation

along �

� · e3 = �2. �18�

Indeed, in the rotating frame of the fluid, the angular rate of

the container along � is null: the only differential rotation

between the fluid and the container is in the equatorial plane

such that no spin-up process occurs. Note that this can also

be recovered with a boundary layer analysis, in the same way

as Busse,
5

which shows that the volumic Ekman pumping is

solution of the inviscid bulk equations provided that the so-

called solvability condition �18� is verified. According to this

equation, also named the no spin-up condition in Ref. 9, the

only relative motion between the interior and the boundary is

a rotation given by �eq=�−�. Then, we need to calculate

the viscous torque due this equatorial differential rotation.

This calculation relies on the fact that in order to maintain

the basic stationary state, the torque supplied to the fluid to

counterbalance the viscous friction is given by the decay rate

that would occur if, at a given time, the precession is turned

off. This decay rate is simply given by the rate at which

energy is dissipated by the Poincaré mode in a free system at

t=0. This rate is given by the Greenspan’s theory,
6

valid in

the frame rotating with the fluid. Thus, this linear solution for

the viscous decay of the spin-over mode in a rotating fluid

leads to introduce a new Ekman number E f =E /� and a new

unit of time t̃= t�, scaled with the fluid rotation rate �. Ac-

cording to Greenspan,
6

the time evolution of �eq in the non-

rotating frame is

�eq�t̃� = e�rt̃�Ef
cos��it̃�E f��eq�0�

− sin��it̃�E f�
� � �eq�0�

�
� �19�

with �r=−2.62 and �i=0.259. Note that strictly speaking in

triaxial ellipsoids, the ellipticity modifies the growth rate and

eigenfrequency of inertial modes. However, in the limit of

small ellipticities we consider here, this modification can be

neglected.

Using this equation, reintroducing the variables E and t,

the equatorial viscous torque is

�
v

= I�d�eq

dt
	

t=0

= I��E
�r�1 + �i�2/�

�r�2 − �i�1/�

�r��3 − 1�
� . �20�

Then, the torque balance given by Eq. �14� projected

onto the rotation axis of the fluid � �the no spin-up condition

�18��, as well as onto the principal axes ex
1

and ex
3
, yields the

following system of equations:

�1
2 + �2

2 = �3�1 − �3� , �21�

�p,2�3 − �p,3�2

= �	 − 	2��2�3 + ��r�1�3
1/4 + �i

�2

�3
1/4	�E , �22�
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�p,1�2 − �p,2�1 = 	2�1�2 − �r�3
1/4�1 − �3��E . �23�

The supplementary terms compared to Ref. 5 or Ref. 9

do not allow simplifying the system of equations into only

one and the full system has to be solved numerically to ob-

tain the rotation axis components of the fluid. This nonlinear

system can be solved in an efficient way with a continuation

method �successive perturbations on the a2 axis� starting

from Busse’s solution in a spheroid. An example is shown in

Fig. 2 where the solution in the spheroidal geometry �the

case �=10−5 m2
/s in Fig. 3 of Ref. 9, which gives an Ekman

number of E=3�10−5� is compared to a slightly deformed

triaxial ellipsoid ��=0.03� with the same ratio a3 /a1. It can

be noticed that even a very small tidal deformation � radi-

cally changes the obtained solution.

III. NUMERICAL AND EXPERIMENTAL VALIDATION

Our purpose here is to validate and test the range of

validity of our analytical solution by comparison with nu-

merical simulations of the full nonlinear Navier–Stokes

equations in a precessing ellipsoid.

A. Numerical resolution

We consider the rotating flow inside a triaxial ellipsoidal

container of principal axes �a1 ,a2 ,a3�, as sketched in Fig. 1.

We work in the precessing frame of reference. Starting from

rest, a constant tangential velocity U�1− �x3 /a3�2 is imposed

from time t=0 all along the outer boundary in each plane of

coordinate x3 perpendicular to the rotation axis �Ox3�, where

U is the imposed boundary velocity at the equator. We intro-

duce the timescale �−1 by writing the tangential velocity

along the deformed outer boundary at the equator U=�Req.

We then solve the Navier–Stokes equations with no-slip

boundary conditions, taking into account a Coriolis force as-

sociated with the precession �p, i.e., in the frame

�Ox1 ,Ox2 ,Ox3� of the tidal bulge, which is also the precess-

ing frame, we solve

�u

�t
+ u · �u = − �p + E�u − 2�p � u , �24�

� · u = 0. �25�

In this work, the range of parameters studied is

E�10−3 and ��0.32. Once a stationary or periodic state is

reached, we determine the rotation rate in the bulk of the

fluid, i.e., outside the viscous boundary layer. To do so, we

introduce an interior homothetic ellipsoid, in a ratio �, and

we define the bulk rotation rate � as the mean value of

rotation rate over this homothetic ellipsoid. Following

Ref. 32, we consider a dimensionless viscous layer thick-

ness of ���5�E and thus choose for the homothetic ratio

��1−���1−5�E. Note that the spheroidal case can be ef-

ficiently solved by spectral methods �see, e.g., Ref. 19 or

Ref. 20�. But for the triaxial ellipsoids we are interested in,

there is no simple symmetry. Our computations are thus per-

formed with a finite element method, which allows us to

correctly reproduce the geometry and to simply impose the

boundary conditions. The solver and the numerical method

are described in details in Ref. 24.

B. Experimental setup

The experimental setup has been described in Refs. 30

and 33 for a precessing cylinder and readers should refer to

these papers for more details. For this paper, the experiment

has been slightly modified in order to study the precession of

a spheroid. This allows validating the flow at small Ekman

numbers, which is impossible numerically. Unfortunately,

this setup is limited to a spheroidal geometry �a1=a2� and is

not able to validate the theory for a triaxial ellipsoid. Further

modifications to the setup, such as two rollers compressing

the spheroid, would be needed to make the equatorial plane

elliptical.

The homemade spheroid has been obtained by assem-

bling two half-spheroidal cavities drilled in solid Plexiglas

cylinders. The accuracy of the machines �10 �m� ensured

that the step between the two parts would be smaller than the

Ekman layer �of the order of 300 �m at E=10−5�. This

spheroid of equatorial diameter 17 cm and aspect ratio

a3 /a1=0.85 is filled with water and mounted on a motor

which is itself located on a rotating platform. The angular

velocities of the spheroid and the platform are stable within

0.1% and the precessing angle � between the two axes was

varied from 5° to 15° with an accuracy of 0.1°.

Pulsed yttrium aluminum garnet �YAG� lasers are used

to create a luminous sheet perpendicular to the axis of the

rotating platform. A particle image velocimetry �PIV� camera

is located on the rotating platform, aligned with the axis of

rotation of the spheroid. This allowed to obtain PIV measure-

ments in a plane almost parallel to the equatorial plane

�x1 ,x2� and located at a distance x3=5 cm above it. Since the

YAG lasers are not located on the rotating platform, the mea-

surement plane is tilted with an angle � with respect to the

equatorial plane, which introduces an error of up to 2 cm �for

�=15°� in the axial location of the velocity vectors. How-

ever, the measured velocity components exactly correspond

−10 −8 −6 −4 −2 0
0.8

0.85

0.9

0.95

1

Ωp(rpm)

ω

ε = 0

ε = 0.03

FIG. 2. �Color online� Theoretical amplitude of tilt-over mode angular ro-

tation rate � for a spheroid ��=0� and for a slightly deformed triaxial ellip-

soid ��=0.03�. The other parameters used in this figure are those of Ref. 9:

the rotation rate of the container is �=207 rpm and a1=0.125 m �such that

the Ekman number is E=3�10−5�, �=9°, a3 /a1=0.96, and �2=0°. The

spheroidal case corresponds to the plot �=10−5 m2
/s in Fig. 3 of Ref. 9.

Note that even a very small tidal deformation significantly changes the

obtained solution.
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to the x1 ,x2 components of the velocity because the camera

is aligned with the axis of the spheroid. There is no distortion

of the images at the air-Plexiglas interface �because it is a

plane� but there are distortions of the images due to the

Plexiglas-water spheroidal interface. These deformations are

small because the refractive index of the Plexiglas and the

water are close. They were calculated analytically and

checked experimentally using a grid. They are located

mostly at the boundary of the spheroid and they introduce a

maximum error of 15% on the radial displacement of the

particles. This does not bias the measurements because only

the central region of the velocity field was used for the treat-

ment of the data. The PIV images were rotated numerically

in order to remove the background rotation of the flow be-

fore being treated by a homemade cross-correlation PIV al-

gorithm.

In the frame of reference of the spheroid, the two-

dimensional velocity field was found to be a nearly uniform

translation flow whose direction and amplitude vary with the

precession frequency �p. This mean flow is linked to the

equatorial component of the angular rotation rate ��1 ,�2�,
which creates a uniform translation flow ��31x3�2 ,

−�32x3�1� in the plane x3=5 cm. This flow corresponds to

the last terms found in Eqs. �10� and �11� in the case

a1=a2. The first terms of these equations correspond to the

axial angular rotation ��3�, which in the frame of reference

of the spheroid is equal to �3−1 in dimensionless form and

is thus small outside of the resonances. The measurements of

the mean velocity and of the mean vorticity thus give in a

simple manner the three components of the rotation vector

�. Such measurements have been done for the first time in a

precessing spheroid and will be compared to theoretical and

numerical results in the following.

C. Validation in the spheroidal case

Before dealing with the problem of precessing triaxial

ellipsoids, a first step of this work has been to simultaneously

check the validity of our numerical tool and the validity of

the theoretical development of Busse
5

over an extended

range in Ekman number. To do so, we combine numerical

and experimental approaches.

In Fig. 3, the theory proposed in Ref. 5 is validated over

more than three decades of Ekman numbers for two different

angles of precession. The interest of the presented results is

twofold. First, they validate our numerical model, which will

now be used to study triaxial ellipsoids. Second, this com-

pletes the previous validations of Busse’s theory �e.g., Refs.

9 and 13�, in particular for rather large Ekman numbers. Note

that, as already noted in Ref. 13, the theoretical analysis

requires that the angle between the rotation vector of the

container and the rotation vector of the fluid is small since

otherwise the Ekman boundary layer analysis is no longer

valid. This could explain the differences between the experi-

mental determinations and the theoretical predictions at the

highest precessional forcing angle ��=15°�. A supplementary

confirmation of both the numerical model and Busse’s theory

at such Ekman numbers is given in Fig. 4�a�, where the com-

ponents of the tilt-over rotation axis are in an excellent

agreement for a large range of precession rate. At large pre-

cession rates, the inviscid results of Poincaré
3

are recovered.

D. Numerical simulations of precessing triaxial
ellipsoids

A first series of simulations have been performed for

a3 /a1=0.86, �=10°, �2=45°, E=1 /600, �=0.1, and various

precession rates. Results are presented in Fig. 4�b�. An ex-

cellent agreement is found between the numerical simula-

tions and the analytical viscous solution all along the ex-

plored range, which demonstrates the validity of our

extended viscous theory. Note also that the triaxial Poincaré

inviscid flow is recovered far from the resonances. As al-

ready noted above, an important feature of the triaxial geom-

etry is the apparition of a second resonance. As already noted

in Sec. II A, according to the Eq. �13�, the two resonances

are in the retrograde regime here because a1 ,a2�a3. Note

also that as already described in the literature �see, e.g., Ref.

9�, the viscosity naturally smoothes the inviscid resonance

peaks but also modifies their position.

The tilt-over mode is thus well described by our analyti-

cal model at relatively large Ekman number and relatively

low precession rate and tidal eccentricity. However, two
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FIG. 3. �Color online� Comparison of the theoretical rotation rate compo-

nents of Busse’s solution for a spheroid �continuous lines� with experimental

PIV measurements and numerical simulations performed over a large range

of Ekman numbers for �p=−0.14 and a3 /a1=0.85. �a� For a precession

angle of 5°. �b� For a precession angle of 15°.
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types of instabilities can be expected for more vigorous

flows: the tidal or elliptical instability at relatively small

Ekman and/or large eccentricity � and the precession insta-

bility at relatively small Ekman and/or large precession rate.

Focusing on the tidal instability, we keep the Ekman number

above the precession instability threshold and we increase

the eccentricity above the elliptical instability threshold.

The appearance and form of the tidal instability in the

presence of a rotating tidal deformation aligned with the ro-

tation axis have been studied elsewhere.
23,24

This case corre-

sponds in our notations to the specific configuration �=0.

The most well-known mode is the so-called spin-over mode,

which appears for low values of tidal bulge rotation. As

shown in the Appendix, a theoretical stability analysis dem-

onstrates that this mode may grow on the Poincaré flow.

Note that the spin-over mode, which is an unstable mode of

the tidal instability, and the tilt-over mode, which is the base

flow of precession, are actually identical and hence should

both be described by our stationary analytical solution. This

is indeed the case, as shown in Fig. 5�a� around �p=0 where

numerical and analytical solutions are in good agreement.

Moreover, by comparison with the known results of the el-

liptical instability in the special case �=0 �see Refs. 23 and

24 for details�, we expect the elliptical instability to lead to

an unstationary mode for �p below the resonance band of

the spin-over and to no elliptical instability for �p above the

resonance band of the spin-over. These results are also re-

covered in Fig. 5�a�, where oscillatory motions are indeed

observed for �p� �−0.5;−0.2�, whereas good agreement is

found for �p�0 between analytical and numerical results.

Finally, a systematic study of the excited mode frequency as

a function of the Ekman number for �p=−0.4 is shown in

Fig. 5�b�. As expected from the stability analysis presented in

the Appendix, the transition from a stationary flow to an

unstationary one is found below E�1 /300.

IV. CONCLUSION

This paper presents the first analytical solution and the

first numerical simulations of the precessing flow inside a

triaxial ellipsoid. The extension of the Busse viscous solution

to this more complex geometry is shown to provide an accu-

rate description of the stationary flow, which may be desta-

bilized by oscillating modes of the tidal and/or precession

instabilities for more vigorous forcing. Clearly, the complete

study of instabilities in such a system deserves more work

and will be the subject of future studies with increased nu-

merical power and a new experimental setup. But the study
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FIG. 4. �Color online� The rotation rate components of the flow in a spher-

oid, shown in �a�, are compared in �b� with those in the ellipsoid with the

same aspect ratio a3 /a1=0.86 ��=10°, �2=45°, and E=1 /600�. The theo-

retical rotation rate components of the inviscid Poincaré solution and of its

extension to triaxial ellipsoids are given by the black dashed and dotted

lines, assuming that �3=
12=a1
2+a2

2
/2a1a2 �see the Appendix�. The theoret-

ical rotation rate components of the Busse viscous solution and of its exten-

sion to triaxial ellipsoids are represented by the continuous lines. The two

inviscid resonances �1 and �2 are represented by the vertical black lines. �a�
In the spheroid, the validity of our numerical model is confirmed over a

large range of precession rate by its good agreement with the Busse solution.

�b� In the ellipsoid with the same aspect ratio but with �=0.1, our analytical

solution is in good agreement with the numerical results.
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FIG. 5. �Color online� We consider the case �=10°, a3 /a1=0.86, �2=0, and

�=0.317 �corresponding to �a1+a2� /2=a3�. �a� Evolution of the rotation rate

components of the flow with the amplitude of precession for a fixed value of

the Ekman number E=1 /600. The legend is the same as in Fig. 4�b�. Filled

symbols correspond to cases where the flow is oscillatory, whereas empty

symbols correspond to a stationary flow. Note that the sign reversal at �p

=0 is due to the two possible symmetric orientations of the spin-over mode

of the tidal instability. �b� We now focus on the �p=−0.4 case, where the

flow is oscillatory at E=1 /600 as shown in �a� and we study the evolution of

the pulsation f of the flow with the Ekman number. The flow is stationary

for an Ekman number larger than E=1 /300 and then oscillates at a fixed

pulsation f �0.67.
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of the stationary flow performed here already highlights the

fact that even a very small tidal deformation significantly

modifies the resulting flow. This conclusion is directly rel-

evant to the dynamics of planetary cores and atmospheres,

where precession and tidal deformation simultaneously take

place.

APPENDIX: INSTABILITY OF THE INVISCID
POINCARÉ FLOW IN A TRIAXIAL ELLIPSOID

The work in Ref. 34 has recently studied the stability of

a rotating flow with elliptical streamlines in the particular

case where the rotation axis executes a constant precessional

motion about a perpendicular axis. Using the Wentzel–

Kramers–Brillouin �WKB� method,
34

they achieve to quan-

tify both the influence of this particular precession on the

elliptical instability and the influence of the strain on the

Coriolis instability for such an unbounded cylindrical base

flow. In this appendix, we consider the stability of the invis-

cid Poincaré flow in triaxial ellipsoids against small inviscid

perturbative rotations. The theoretical expression of the

growth rate for perturbations that are linear in space vari-

ables �i.e., corresponding to the classical spin-over mode�
can be readily obtained with the same method as in Ref. 35,

but with the base flow U obtained in Sec. II A, using an

arbitrary value of �3. As reminded in Ref. 25, the most gen-

eral perturbation-flow linear in the spatial coordinates is

uk − Uk = Ki+1�t�
ai

ai−1

xi−1 − Ki−1�t�
ai

ai+1

xi+1, �A1�

where the scalar amplitude Ki of these small inviscid pertur-

bative rotations can be written Ki=�kie
�t. The total flow u

have to satisfy the inviscid vorticity equation. Then, U being

the flow at order 0, the flow at first order in � is solution of

Mk = 0, �A2�

where k= �ki�i��1,2,3� and M is a 3�3 matrix given by

M = 
A12 − A21 − B12�

C1 B13� D12

− B23� C2 D21

� , �A3�

where

Aij = 2�p,j

a3

a j

�i

� j

,

Bij =
ai

2 + a j
2

aia j

,

Ci =
�i

a3ai

,

Dij = − 4
�p,i�p,3a j

2

�i

.

The solution flow at first order is nontrivial if det�M�
=0 and the growth rate � is obtained in solving this equation.

Actually, the third degree equation det�M�=0 writes in the

simple form �3+ p�=0 and the growth rate is given by

� = �− p =�A12B13D21 + A21B23D12 − C1C2B12

B13B23B12

. �A4�

Note that the dimensionless base flow of Gledzer and

Ponomarev
35

is recovered for the particular value �3=
12. It

can also be noticed that the extension of the result of Gledzer

and Ponomarev
35

to the particular case of a rotating tidal

bulge at �p= �0,0 ,�br� given in Ref. 24 is recovered:

� =�−
C1C2

B13B23

=�−
�a1

2 − a3
2 + 2a1a2�br��a2

2 − a3
2 + 2a1a2�br�

�a1
2 + a3

2��a2
2 + a3

2�
.

�A5�

Note finally that this method gives the theoretical inviscid

growth rate, which has then to be corrected by a viscous

surfacic damping term ��E,
36

where � is a constant

��2.62. The threshold is then given explicitly by

Ec =
1

�2

A12B13D21 + A21B23D12 − C1C2B12

B13B23B12

. �A6�

For the case presented in Fig. 5, i.e., �=10°, a3

= �a1+a2� /2, �2=0, and �=0.317, we predict a critical

Ekman number for instability around Ec�1 /300, and for

E=1 /600, we predict an unstable spin-over mode in the

range �p� �−0.13;0.12�, both in good agreement with the

numerical results.
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