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Abstract. We examine spatially homogeneous cosmological models in which the
matter content of space-time is a perfect fluid, and in which the fluid flow vector is not
normal to the surfaces of homogeneity. In such universes, the matter may move with
non-zero expansion, rotation and shear; we examine the relation between these kinematic
quantities and the Bianchi classification of the symmetry group. Detailed characterizations
of some of the simplest such universe models are given.

1. Introduction: Covariant Formalism
In a previous series of papers ([1-3]), exact solutions of Einstein’s
field equations
a Ray— 3 RGu+ Agap=Tos (1.1)

were studied under the assumptions that
(1) the matter takes the “perfect fluid” form:

Tab:ﬂuaub+p(gab+uaub)’ uaua: _15 :u>0’ pgo (12)

where u® is the fluid 4-velocity, i the energy density and p the pressure;

(2) space-time is locally invariant under a group of isometries G,
simply transitive on spacelike surfaces S(¢), ie. space-time is spatially
homogeneous;

(3) the 4-velocity u” is everywhere orthogonal to the homogeneous
surfaces S(1).

In this paper, we study a wider class of spatially homogeneous
cosmological models: we maintain conditions (1) and (2), but drop (3).
This allows a wider variety of behaviour, for when (3) is dropped, the
fluid may have non-zero vorticity and acceleration. Further, such a
universe may appear to be inhomogeneous to a fundamental observer
(e.g. number counts of radio sources or galaxies will look inhomogeneous)
even though the space-time and its contents are spatially homogeneous
in a strict mathematical sense. Our discussion supplements previous
discussions of such universes (see e.g. [4-6]).

The immediate geometrical objects defined in a space-time in which
(1) and (2) hold are the surfaces of homogeneity S(z) and the fluid flow
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vector u®. The surfaces of homogeneity determine a unique future directed
normal vector field n°, n°n, = — 1, which is geodesic and rotation-free ®:

n,n’=0,  nEhy =0, (1.3)
Hence ny,,;= 0, which shows there locally exists a function t such that

n,= —t nn,= —1:11“t~ =1. (1.4)

a Py

The surfaces S(r) are then the surfaces {t = constant} , the time parameter ¢
can be chosen as any C? function t(t) such that dt/dt = 0. All geometrical
and physical quantities are invariant on the surfaces S(t); for example,
= u(t), p=p(t). The metric tensor in these surfaces is h,, = g,p -+ MaMy
(this is the 3-dimensional symmetric projection tensor which projects n*
to zero: h,,n’ = 0). For any function f(t), [a:(df/df)ﬂa, so by (1.4)

f=f)=f .= —ndf/dt)f n*=df/di, f,h%=0. (L5)

The fluid flow vector u* is uniquely defined as the future directed timelike
eigenvector of the Ricci tensor. The projection tensor h,,=g,, + Uty
projects into the instantaneous rest spaces orthogonal to u®(h,,u’=0);
the covariant derivative , ,u* along the fluid flow lines is denoted by a dot,
e.g. the fluid acceleration vector 4* is u*=u,,,u’ (see e.g. [7,8]).

The relation between u® and n* is determined by

(a) the hyperbolic angle of tilt §, where

coshf=—u'n,, p6)z0, (1.6)

and by the direction of tilt, specified either by
(b) the direction &* of the projection of 4* in the surfaces S(t):

he Y =sinhfe=¢,n*=0, ¢,=1, 1.7
or by
(c) the direction ¢ of n® perpendicular to u*?
Then one has en’ = —sinhBc’=cu’=0, c,¢*=1. (1.8)
u*=coshfn®+sinh f&*, n*=coshfu’—sinhfc*. (1.9)

The condition (3) that u* be perpendicular to S(t) is the condition
u® = n«>f=0; these were the models studied in [1-3]. We now wish to
concentrate our attention on tilted homogeneous cosmological models
{or “tilted models™), i.e. those in which (1), (2) hold and

W+n'=f>0. (1.10)
! It is rotation-free because it is normal to the surfaces S. It is geodesic because it is
orthogonal to a family of 3 Killing vector fields £, (v =1, 2, 3) which are linearly independent
ateach point; for &, n* = 0=¢&,,., 1" + ¢ ,n%, = 0. Multiplying by n°, &, ., = 0= ¢, n°,n*=0
for v=1, 2, 3. Our notation is, as far as possible, identical to that of [1-3].
2 The — sign is included for later convenience (cf. Fig. 1).
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Fig. 1. In a tilted homogeneous cosmology, the normals #* to the surfaces of homogeneity
S(t) make a hyperbolic angle § with the fluid flow vector u*; the unit vectors ¢ & are
coplanar with u% rn° The 2-surface in S(t) perpendicular to ¢% * is spanned by the tensor p,,

When this condition is satisfied, & and ¢* are uniquely defined by (1.7),
(1.8), and (1.9) expresses the way in which u* is tilted with respect to the
surfaces S (see Fig. 1). For some purposes it is useful to think of the
factor y =coshpf instead of f; then sinh = (y*> — 1), and y is the usual
relativistic contraction factor for the relative motion (sometimes called
the “peculiar velocity”) of the fluid with respect to the homogeneous
surfaces (u* = y(n®+v&%), where the 3-velocity v=wvec is related to y by
p=(1—v%)7%).
Combining (1.5) with (1.9), we see that

f=ft)=>f=f, u*=coshpdf/dt, f.h%=sinhBdf/dtc,. (1.11)

This shows how tilted models will in general appear inhomogeneous: an
observer moving with 4-velocity u* will assign to the (homogeneous)
density u(f) a spatial gradient of magnitude sinh 8 du/dt, in the direction c,.
To complete the algebraic relations, note that (1.9) implies

¢ =sinhfn*+coshfe*, &= —sinhfu*+coshfc®. (1.12)

The first covariant derivative of n* is simply [because of (1.3)] the
second fundamental form 8,, of the surfaces S(t):

Mass =040 Oap=0arys Oapn®=0. (1.13)

Its trace is 0 = §“,, and its trace-free part is 5,, =0,, — + 6 h,,. By (1.9) the
first covariant derivative of u® is, on using (1.5) and (1.12),

Ugy = —dP/dt c,n,+cosh B0, +sinh f &, (1.14)

From this, one can obtain expressions for the fluid kinematic quantities
([7, 8]) on using (1.9), (1.12) and (1.13). The acceleration is

i, = c, d(sinh B)/dt + sinh § cosh $ §,,2® +sinh (&),  (1.15)
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the expansion 6 = u” , is
0 = d(cosh B)/di + cosh f 0 + sinh  &,,, i*? , (1.16)

and the vorticity vector w® =14 n**“Yu,u,, is

o =sinh 5 n***?u, e, . (1.17)
The expressions for the expansion tensor 8, and shear tensor g,,,
— d y — 1
Oap = ha" By e,y = Uiap) + Uity Oap =0op — 3 0hyy (1.18)

are somewhat more complex. Egs. (1.15), (1.17) immediately show how
the fluid in a tilted model can have non-zero acceleration and vorticity;
from (1.17), the projection of w* in the & direction is

g, =sinh f cosh 4 y**<4% n, ., = —coth fn,0* (1.19)

From the second expression, one sees that the vector w® lies in the
surfaces of homogeneity if and only if it is perpendicular to the tilt
directions ¢4, ¢*. One may alternatively give the vorticity by specifying
the vorticity tensor . .
Y Oap = Napea O 1 = Upa;p) t Upa Uy - (1.20)
Relations (1.18), (1.20) show that 6%, =0, 0,, = 0,43, Wap = Opgpys Taptt’ =0
=w,,u’; from (1.9) one has then

o ph’ = —0, & tanhf, w,n"= —w,,& tanhp. (1.21)

It will be convenient later to consider average lengths I(1), l~(t) defined
(up to a multiplicative factor) by I'l”'=16(t), di/dt I * = 10(t). They
represent respectively the volume behaviour of the fluid congruence and
the normal congruence (see [7, 8]).

The components u, 7%, =0 and #°,T°",=0 of the conservation
equations T*",, =0 for the perfect fluid (1.2) take the form

BA+(u+p)0=0, h'p,+(u+pi,=0. (1.22)
Defining functions w(), r(t) from u(1), p(¢) by
w(t)_expf P ’l:/_ 5 dt, r(t)—expf K p_i/_dt) dt, (1.23)

Egs. (1.22) become [using (1.11)]
coshf d(logw)/dt +0=0, sinhpd(logr)/dtc,+u,=0; (1.24)
and one can combine Eqgs. (1.22) to give the relation
u,=tanhfdp/dufc,. (1.25)
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This shows that in an expanding tilted universe, either 11,40 or dp/du=0.
Clearly u,=0 if p=0; for realistic equations of state with p+0, an
expanding tilted universe will have non-zero acceleration. Further, (1.25)
shows that 1, is parallel to c,. It now follows from (1.20) and (1.14) that

Bl g =y e,y = sinh B 2,0 Ry G (1.26)
and from (1.18), (1.25) and (1.14) that
ljlac ;lbd O-Cd = COShﬁ gab - % Qilab

+sinh f 7,° i, &4 — 0 sinh? (% - d_u) 2,8 (1.27)

by (1.21), these components are sufficient to determine w,, and g, (note
that h, h,%0,, is not necessarily trace-free; in fact, h*c,,=n‘n‘s,
= tanh? B g,, &%)

Combining (1.24) with (1.15), (1.16), the conservation equations
take the form

= log(wl® cosh ) + tanh § &,,, h** =0, (1.28)
d -
7 log(r sinh ), + (@) +cosh f 0, t=0. (1.29)

To clarify the meaning of these equations, we introduce the projection
tensor pabzhab_ cacbzflub—aaab (130)
which projects at each point into the 2-space perpendicular to u* and »n*
(this is uniquely defined when f > 0). Multiplying (1.29) by & one obtains

%log(r sinh ) + 20, =0 (1.31)

while multiplying by p,” shows that
Pa’(@) +coshf p, O, =0
or equivalently, combining (1.29) and (1.31),
(&)= —coshpb,,&+c,0,.&. (1.32)

Thus two of the conservation equations determine the rate of rotation of
¢, along the fluid flow lines in a way which is independent of the equation
of state of the fluid. The other two, namely (1.28) and (1.31), determine
the evolution of the fluid quantities and the angle 8, once an equation of
state p= p(u) is specified *. The form of (1.31) shows that f is either zero
or non-zero for all ¢, i.e. a tilted universe model stays tilted.

3 One can re-express (1.28) in the form (w1?)' =0, which shows that w/? stays constant
along the fluid flow lines. Note that by (1.23), one can normalize r, w so that rw =y + p.
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Finally we note that in a tilted universe model with perfect fluid
stress tensor (1.2), the stress tensor takes the form
Top = A1+ Bligy + 2oy + iy (133a)

when decomposed with respect to the vector n® (cf. [7, 8]), where
fi=pcosh®?f+psinh?B, §,=(u+p)sinhfcoshpe,, (133b)
p=p+5(u+p)sinh®B, &, =(u+p)sinh?® B(E— 5 h) -
By (1.2}, (u+ p) >0, so (1.33) shows
p>0=4,+0, #,+*0,

Le. in this frame, the stress tensor of a tilted cosmological model is that
of an imperfect fluid with particular equations of state. Using (1.33), one
can write down the components n,T°*,=0 and k% T%,=0 of the
conservation equations: they are

d 2 : 2
o7 (ucosh® -+ psinh® §) (1.342)

+ (1 + p) (cosh? B + sinh? $4,, 22" + sinh f cosh f &%,,) =0,
governing the rate of change of the total energy density i, and
((u+ p) sinh B cosh f &,).,n° + (1 + p) (sinh  cosh (5.2 + O, E,

- 1.34b
+sinh? B(, 2., + h,1 &, &) =0, ( )

governing the rate of change of the momentum §, of the matter. These
can be rewritten in the form (1.28) (relating du/dt and df/dz), (1.31)
(relating dp/dt and df/dt), and

gy nt+ 0% —80,,6¢ +tanh f 1, &, =0 (1.35)

[which is equivalent to (1.32)]. One sees from these relations that if the
pressure is constant (in particular, if it vanishes) the rate of change of
is determined by 0~abc”:“ & alone; and that one could instead of specifying
an equation of state p(u), specify f as a function of ¢ (e.g. specify that
f = constant >0), Eqgs. (1.31) and (1.28) then determining an implicit
equation of state which will lead to the specified B(t).

2. Tetrad Description

To examine the classification of the spaces according to the group
of isometries acting, it is convenient to introduce various tetrads,
i.e. various bases of vectors {E,}, a=0, 1, 2, 3. We denote the derivatives
of any function f in the basis vector directions by 8, f, so if E,/ are the
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components of the vectors {E,} in a local coordinate frame, 0,f
= E,; 0 f/ox". The inverse matrix will be denoted by E“;, so E% E,/=&;.
Any tensor with coordinate components 7%, , has tetrad components
T%b, 4 defined by 7% ,=E%.. E’ T |E*.. Ej] Thus the
metric tensor components g,;, g°° are defined by

9av=Eo-E,=E/Elg;, ¢**=E"E’;¢7=g"g, =0, (21a)

which imply the inverse relations
gij:Eai Ebjgaba giszai Ebjgab- (2.1b)
The differential properties of the basis may be characterized by the

rotation coefficients I, or I'*,., where

Fabc:Eai E; 'Ebj9 Fabc‘_‘gadrdbc' (22)

cisj

Thus T, is simply the E_ -component of the covariant derivative in the
E,-direction of the E_-vector. Alternatively one may consider the basis
vector commutators. For any vector fields X, Y, the commutator [ X, Y]
is the vector field with components

X, Y=Y, ,X'-X' Y=Y ,X-X,Y. (2.3)
It may also be characterized as the Lie derivative Ly Y of these vector

fields ([9, 10]): Ly Y=[X, Y]. Applying (2.3) to the basis vectors {E,},
we define commutation functions y%,., Vap. DY

[Em Eb] = ycab Ew Vcab = yc[ab]a Veab= gcdydab . (24)
It follows from (2.2) that
yabczFabc_racb©yabczrabc_racb 5 (25)

then the relations g;;,, = 0 show that
8bgac = Fabc + Fcbaérabc
= %(abgca + acgab - aa gbc) + % (’))abc + Yeab ™ cha) .

Taking the tetrad components of the curvature tensor, which we
define by the Ricci identity

Vb;cd - Vb;dc - —Rbecd Ve s (27)
and contracting, one obtains the field equations (1.1) in the tetrad form

0al ep = 0T sy = Ies oy + Iy Ta= Ty~ 5 Tqpa+ AGpa-  (2.8)

(2.6)

The identities R, ;=0 are equivalent to the Jacobi identities

[Ey, [E., EjJ] + [E,, [Ey, EJ] + [E., [E4 E]]

) (2.9)
= Oca[dyfbc] +7 [defc]s =0.
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To express the spatial homogeneity of the universe models, we restrict
the bases we consider to those which are invariant under the group of
isometries. One way of obtaining such a basis is to choose the basis
arbitrarily at one point in each surface S(t), and then to move it over the
surfaces S(f) by the action of the group. It then follows (cf. [1]) that the
7% are functions only of t; and Killing’s equations then show that the g,
are functions only of r. Hence for such bases,

Jap= gab(t)3 ’ycabz ')) ( ):6 Gab= a gab(t) abe = abc(t) (210)

Clearly the bases are determined up to a Lorentz transformation whose
coefficients are functions of ¢ only; Eq. (2.10) expresses the homogeneity
of space-time on the surfaces S(¢).

To classify the groups of isometries, we consider a sub-basis of vectors
{Ifu} which spans the surface S(t) at each point, and is invariant under
the group. Their commutators will be linear combinations of themselves
(this follows immediately from their geometrlc interpretation as Lie
derivatives), i.e. [EK,E] b ,{ME where uv—y *uu(t). Following the
procedure of Schuckmg, Kundt and Behr as in [1], we decompose the
¥, into a symmetric relative tensor n*’ and a relative vector a,:

[EoEJ=5", E,= (6,07 +8",a.—8"a JE, (2.11)

where n*”=n*"(1)=n"", a_=a,(t). The characteristic equation for n*”
is —2°+A*n+ AN +detn*? =0, where n=n*,, N=3 0"’ n,;—n?). The
Jacobi identities (2.9) for the vectors {E,} are

nay=0. (2.12)

One can classify the solutions of this equation as in Table 1, giving the
Bianchi-Schiicking-Behr classification of group types {(cf. [1]). As the
group action is analytic, the group type remains constant (ie. is in-
dependent of t).

Table 1. Classification of groups into classes A and B, and group types I to IX. The para-
meter h is defined by h= —a?/N, where ¢ = a“a, ; Bianchi type I is type VI, with h= — 1

Group class Group type
Class A=a, =0 detn*® £0 IX: detn* >0 VIHI: detn*? <0
detn** =0 VIp:N>0 VII,:N <0
II: N=0,n>0 I: N=n=0
Class Bea, +0 detn® =0 VI,: N>0 VIL,: N <0

IV: N=0,n>0 V: N=n=0
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One way of completing a triad {E#} to obtain a complete basis of
vectors is to add the normal vector n, making a “normal basis” {E,}
={n,E,}. When =0, there is no other compelling choice, but when
f>0 the choice is not so obvious; this basis is closely related to the
symmetry properties of the space-time, but not to the properties of the
fluid. Two alternatives are to use a “tilted basis” {E;}={r"‘u,E,},
where the timelike vector is parallel to u and so is not orthogonal to the
spacelike vectors, or to use a “fluid basis” {E,} = {r~'u, E,}, where the
vectors {E,} are orthogonal to u and so do not span the surfaces S(2).
The inclusion of the factor r(t) [ defined by (1.23)] is in order to simplify
the tetrad form of the conservation equations. A particular choice of the
time coordinate ¢t can conveniently be associated with these two bases,
by defining #(f) to satisfy the relations

t Eo* =t ,(r " u)=1e>dt/dt=r(coshp)~*. (2.13)

We shall restrict the bases we consider to ones in which the triads
{E} {E,} are orthonormal triads {&,}, {e,}. For such a normalized
normal baszs {E,} ={n, ¢}, the components of h,, are ha,,—e 8, =10,y
and the metric components are

gop=diag(—1, +1, +1, +1). (2.14)
One finds from (2.2)—(2.6) that
[ne,]=(,, Q2 —0)e,, (2.15)

where Q"Es"’”éui &,;,;# is the rate of rotation of the {¢,} along the

normal congruence; the spatial commutators are given by (2.11). Using
this basis one can write out the field Egs. (2.8) and Jacobi identities (2.9)
in tetrad form (in effect, one generalizes [1] to the case of an imperfect
fluid (1.33)). One obtains the propagation equations

00yt &,5,0° Q"+ G,5a" + 1 0a,=0, (2.16a)
0o +2n,¢ P Q —2n @G 4 L =0, (2.16b)
300+ 162 +6" 6,5+ S u(1+2sinh? B+ 3 p(1 + 3sinh? f)=4, (2.16¢)
Cobps= — 55% + 26" 5 &5 &+ 28,415 a° — 20,0
+nngs+ 50,520 0, —n?) (2.164)
+ (u+ p) sinh? BEpts— %5”) )
{note that dya,=da,/dt, etc.), and the constraint equations
30,6, — £y G, — (u+p)sinhf coshf 2,=0, (2.17a)
—40%+465,5+ 3a%a, + L (" ny— L n?) + pcosh?

L (2.17b)
+psinh*f+ A=0.
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Comparing (2.16¢, d) for >0 and =0, one sees that the normals in a
tilted model tend to contract faster than in the corresponding model
without tilt, and that tilt tends to cause distortion of the normal con-
gruence. Eq. (2.17a) determines the magnitude (u+ p)sinhf coshf
of 4, by the relation

(u+ p)sinh fcoshf =385, a*— ¢, ,n"é,,, (2.17¢)

and determines the tilt direction &, allowed for given &,;, g, and n*”.
This relation shows that tilted models are only possible when the normals
n® are distorting.

The tetrad form of the conservation Egs. (1.34), (1.35) follow on
noting that

& =Gy h® = =2a,¢*, B, ,n0) =0, + & 79E, 0y, (2.18a)
R (2., et =¢,, & n% & + a® — Pay et (2.18b)

Further the tetrad components of the fluid expansion follow from (1.16)
and (2.18a), and those of the vorticity and shear tensors from (1.26),
(1.27) and

bx 1ok so mo_ 1 ~
AR = =37, G =8, 07, @7 = —i(n""—f-a‘”"‘au)c,(, (2.18¢)
. ~ _ N
B, Clany =10 €60 € + 81, Cpy — 0,87 A, (2.18d)

[by (1.21), these tensors are determined by their components per-
pendicular to n*]. It follows that the components of the vorticity vector
in the normal frame are

® = §sinh* e, n** &,

2.18¢
o= +3tanh p(n*# &, + &7 Zpa, + sinh®* et E ). ( )

Using these equations, one can check that as well as B, a,, n** and
the eigenvalues of n*#, the quantities

5 0B 3 paBx afy ,
en*, &y, e*F7a,c,

are I.R. (“invariant relation” quantities [ 5]) : if they vanish or are non-zero
at one time, the same is true at all times. This enables one to check
(cf. [5]) that the group type and parameter value h are preserved; further
it shows that if &, is a null eigenvector of n*# at any time, the same is true
at all times; and if it is parallel to a,, this is true at all times*. It follows
from (2.18¢) that w® is either zero or non-zero at all times (this is in fact
simply a consequence of the existence of an effective equation of state
p=p(w, see [7,8]), and from the relation n****¢,n,¢,,=2&,n**&; and
(1.19) that if w® is perpendicular to & at one time, this is true at all times.

4 Note that &7, = 0=>n"# ;= 0, by (2.12).
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In fact the form of the propagation equation for ,n* g, shows (cf. [5])
that (using (1.28))

(wcosh )™ 3§, n*#§, = constant<=&_w"
Gu q/} a

3
= (constant) x (tanh f)~* cosh f ——— (2.19)
(u+p)
which is a conservation law for the component of w?* parallel to the tilt
direction.

One can also verify that, as must be the case, the constraint equations
(2.17) are conserved as a consequence of the conservation equations (in
fact the quantities on the left hand sides of (2.17) are LR. quantities).
Finally the way in which the vorticity components w,, are governed by
the field Eqs. (2.17a) can be shown by combining this equation with
(2.18¢) and (1.26), obtaining

(:u + p) COShﬁ wazﬂ = %(gocﬂu'nmc + 6: aﬂ - 5; aa) (gxgrnw - 36195;) &év, » (220)

which determines w,, algebraically from the distortion &, of the normal
congruence.

To write out these equations in detail, one will usually specify {&,}
further. One way of doing this is to fit the triad {€¢,} to the tensor n**
and the vector a, as in [1]: one chooses the {€,} as an orthonormal triad
such that

n,, = diag(n,,n,,n;3), a,=(a,0,0). (2.21)
In a tilted universe, an alternative choice is given by defining the vectors
P1, P, as orthogonal unit vectors lying in the surfaces S(t), and orthogonal
to & They therefore span the 2-surfaces orthogonal to n and ¢ at each
point, and may equivalently be defined by the relations

Pab=P1aPisT P2aP2s (2.22)

where the projection tensor p,, is defined by (1.30). In a tilted universe,
these vectors are unique up to a rotation

p./=picosf+p,sinf, p,’=p,cos0—p, sinf; (2.23a)

having partially used this freedom to ensure that p,, p, are invariant
under the group of isometries, the remaining freedom of choice is (2.23a)

with
0=0(). (2.23b)

Using these vectors, a possible orthonormal basis {¢,} is given by the

choice
{éu} = {p17p276} ’ (224)

unique precisely up to the rotation (2.23).
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For a normalized fluid basis {E,} = {r ' u, e}, the components of &,
are h,=e,-e;=0J,; and the metric tensor components are ¢,
=diag(—r~2, +1, +1, +1). One finds

[7'_ ! u, ev] = 'yuOV ep. =7 ! (Euva Q — Huv - 8#va wa) eu s (225)

where Q" =¢"""¢ /e,  is the rate of rotation of the {e,} along the fluid
congruence. The essential step in obtaining this result is to note that

for any vector e orthogonal to u, u-[r~'u,e]= —r~2e(r ,+ri,); and
this vanishes by (1.22), (1.23). Further
Le,, e )= —2re, 0 (wr )+, e.. (2.26)

To specify the basis further, an obvious choice is to use (2.22), defining
{ev}:{plapbc} s (227)

with the freedom of choice (2.23). The commutation coefficients (2.25),
(2.26) for this basis can easily be related to those for the basis (2.24) by
using the relations (1.12) between ¢ and & Useful identities for this basis
are obtained by applying the relations

0u0f) = (00 f) = Vap Ocf (2.28)

which [by (2.3),(2.4)] hold for any function f, to the time coordinate ¢
defined by (2.13); for a=0, b=v one finds

1301=7202=0, 703 =dlog(r tanh f)/dt (2.29)
[which is really a way of writing (1.29)], and for a=u, b=v
26,,,0° =7, tanh (2.30)

[which is essentially a way of writing (1.26)]. These relations are the
integrability conditions ensuring that the choice of tetrad and the choice
of coordinate ¢ are compatible. To simplify the rotation coefficients
further, one can use the freedom of choice (2.23) of {p,} to set

125, =0 (2.31)

which leaves freedom (2.23a) with 0 a constant. The field Egs. (2.8) and
Jacobi identities (2.9) with this tetrad choice, ie. with (2.25)—(2.31)
holding, are written out explicitly in Appendix A. It is sometimes con-
venient to use the renormalized tilt parameter

A=rtanhf (2.32)
in later work [cf. Eq. (2.29)], and this abbreviation is used in the Appendix.

In Appendix B we give the quantities #,,; and a, in terms of the fluid 77,,.
The conservation Egs. (1.22) now imply

KJA=1d ofh=—0,. (2.33)
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Defining I, by I3, /13, = 05 this equation has the integrated form?*
A= (constant) x [~ ". (2.34)

Using (2.33), one can show that four of the Jacobi identities ((,3.) in the
notation of [12]) are equivalent to four other Jacobi identities ((,5)
in [12]). This fact has been used in writing out the equations in
Appendix A.

3. Particular Group Types

One can now take the “normal” field equations and identities (2.16),
(2.17), and (1.34), and use them to examine properties of universe models
invariant under any particular group. A convenient choice of basis for
explicitly writing out these equations is a normalized normal basis such
that (2.21) holds; then the form of the equations is precisely that of
Egs. (2.11), (2.12), and (3.2)—(3.5) in Appendix I of [1], except that the
right hand side of each (Ov) equation is replaced by a term +§,, the right
hand side of each (uv) equation has a term —7,, added to it, and the
quantities 0, 0,, 0,,, Q,, 1 and p each have a ~ sign added to them.

Class A universes are those in which a,=0<-a=0. Then by (2.182),
5,1;,,7;”:0, so one can immediately write down an integral of (1.28)
{cf. [6]) and then rewrite (2.19):

wl? coshf=constant,  (§,n**§,)[° = constant . (3.1)
Using a normalized normal basis, the vorticity components w,, are
w,,= —3sinhfe,, n"*¢ (3.2)

when a,=0; it follows that vanishing of vorticity corresponds to
vanishing of the L.R. quantity n°*¢,.

Theorem 3.1. There are no tilted models of type I: tilted models of
type 1I have zero vorticity. Tilted models of types VIII or IX have non-
zero vorticity.

For a type I model universe, n** =a,=0, so (2.17a) shows =0
(cf. [11]), i.e. there are no tilted solutions. In a type II universe, using a
basis (2.21) with n, =n; =0, the (01) equation shows &, =0; then (3.2)
shows w,, =0, which implies w,, =0 (this generalizes to a perfect fluid
Oszvath’s result [6] for dust). In a universe of type VIII or IX, detn*” = 0,
so for any ¢,, n*#,+0, and hence f+0=-m,,=+0 by (3.2).

> Egs. (2.25) and (2.34) are really integrated forms of the conservation equations.
Here we have essentially used the method of integrating these equations due to Taub [34],
and used by him and MacCallum in investigating spatially homogeneous cosmological
models [35].
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Class B universes are those in which a, = 0<a = 0; using the basis
(2.21), ny =0 because of the identity (2.12). The vorticity vanishes if and
only if the quantity &“ defined by (2.18¢) vanishes; in this frame,

20'= —n & =0, 20%= —n,C,+al;, 20° = —al,—n3&;. (3.3)

Hence w*=0 if &, =¢;=0, and also in particular cases when at least
one of &,, &; is non-zero and the determinant n,n, + a® vanishes; this
means that the group is Bianchi type III (it is type VI, with h= —1).
The case &, = & =0 is the case when the I.R. variable ¢*#&;a, vanishes.
Then the (02), (03) equations show that either & ,=46,,=0, or the
determinant n,n; + 9a* vanishes; this means the group is type VI, with
h= —1/9(this case is a straightforward generalization of class Bbii of [ 1]).

Theorem 3.2. If &, is parallel to a, in a tilted class B universe, then
o =0, and either these vectors are both eigenvectors of the normal shear
G,ps OF the group is type VI, with h= —1/9. If ¢, is not parallel to @,, then
@*=%0 except in particular Bianchi 111 solutions.

{(In fact examination of the conservation equations shows that in
class B universes, the effect of the a-vector is to tend to swing the tilt
direction ¢ towards the — a-direction.)

When v+ 0, one can obtain more detailed information by consider-
ing the LR. quantity &,n**¢,, as ¢,w® and n,w” vanish if and only if this
quantity does. Using the basis (2.21), it takes the form

e Py = () ny + (@) ny +(23)n; .

This clearly vanishes in a type V universe; however it must be non-zero
in models of type VII,, VII, and IX when ®»*#0 (in these cases, the
non-vanishing n, are all positive).

Theorem 3.3. In rotating universe of type VIl,, VII, and IX, the
vorticity direction cannot be perpendicular to the tilt direction (i.e.
w*,%+0); but in a tilted universe of type V, these vectors necessarily are
perpendicular (i.e. w,&*=0). When w*¢,+0, (2.19) gives a conservation
law for this quantity.

Thus apart from type V, one can have rotating universes with ©*
perpendicular to & only in special cases of types VI,, VIII, IV and VI,.
The simplest such universes are those in which the LR. variable n*#¢,
vanishes. This cannot happen in rotating type VI, universes (for vanishing
n* ¢, would mean that ¢, was parallel to a,).
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Theorem 3.4. The rotating tilted models in which n*# &g vanish are all
type V rotating universes, and particular type 1V rotating universes. In

these spaces, o
b abedy gz (3.4)

"= %tanhfiy
so w® is perpendicular to each of n°, a® and &.

One can also consider the possibility of rotating universes having w*
parallel to ¢ (ie. lying in the plane of & and »®). In this case, (2.18¢)
shows that sz o g1z g = %(,n72,) % 0=, P8 =0, (3.5)
where ¢, n“”Eﬁ cannot vanish because if »* is non-zero and parallel to ¢*,
then w*&, cannot vanish; the implication follows on multiplying the first
equation by a,. It follows from (3.5) that in class A universes, ©* is parallel
to ¢* if and only if &, is an eigenvector of n*#. Choosing a basis (2.21) with
¢,=(1,0,0), then ®“+0=>n, +0, and the conservation equations and
Jacobi identities show ;=¢&,,=0, Q,= —6&,3=0. These conditions
are then consistent with the other field equations; use of (1.27) and (2.18)
shows that w” is an eigenvector of the shear g, and (1.32) shows that
it is Fermi propagated along the fluid flow lines.

In class B universe, (3.5) implies that ¢, must be perpendicular to a,.
To proceed further, it is convenient to use the normalised fluid basis of
§2 and the equations in Appendix A, instead of the normal basis used
so far in this section. In the new basis, c! =c*>=0, ¢+ 0, so w! = w? =0,
@ # 0, the Jacobti identities show 6,5 = 6,53 =0. The condition &,a*=0
shows a* =0; then at least one of y*;, or y*,, is non-zero (or a, would
be zero). By the (23) and (13) equations, this is only possible if p! ;3 =%, ;
and y1,;+7%,; =0, and by the (01), (02) equations, it is only possible
if 8,, =0,,, g,,=0. The conditions we now have are sufficient to show
that the spacetime is locally rotationally symmetric, or L.R.S. (see [12, 13]
and § 4 below); but there are no such rotating solutions (see § 4). Hence
there are no rotating class B solutions with o® || ¢*.

Theorem 3.5. The rotating tilted models with w* parallel to ¢* are the
rotating class A solutions with ¢, an eigenvector of n*f. In these universes
w* and ¢ are Fermi propagated eigenvectors of the shear o,,, while ¢,
is an eigenvector of the normal shear &,,; further w,c*=+0.

The two simplest group types allowing tilted universe models are
types IT and V. In each of these cases one can obtain simple geometrically
characterized tetrads and write down associated simple coordinate
systems. The type V case can in fact be easily extended to cover all type IV
models in which »*#&;=0 (cf. Theorem 3.4).

In the case of a type I universe, one can use a basis (2.21) with n, # 0,
n,=n3=a=0; a rotation in the (¢,, ;) plane can be used to set &, =0,
and then (assuming S > 0) the tetrad is unique. The Jacobi identities and
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the (01), (02) and (13) equations show that &, = 0,5,3 =3, =0,0; = —§,,,
2, = —3&,;. Coordinates can be chosen so that the tetrad-coordinate
relations é,=¢&, 9/0x" take the form®

Eo=0/0t,8,=X(1)" 1 9/ox', &,=Y() 1 (0/0x*+ f(t, x*)0/0x"),
&y =Z(t)"1(0/0x> + g(t) 8/0x* + h(t, x*) 8/0x*) (3.6)

where h= | f dg/dt dt; the metric components g;; can now be easily found
by first obtaining the inverse matrix &% and then using (2.1b), (2.14).
The Jacobi identities and (12), (23) field equations show

n=NX(YZ)"', &,=2,(X*2)"", &,,=2,(Y’X)"",

where N, Z,,, 2, 5 are constants, which shows that the functions f, g are
determined by

f=—-N,x*-2Z,(Y(X?Z)"'dt, g=-22,3{Z(XY%dt. 3.7)
The conservation Eqs. (1.28), (1.31) can be integrated in the form
wXYZ coshff=W,, rZsinhf=R,, W,>0 and R, constants. (3.8)

The remaining field equations consist of the time development equations

X.. X. Y. X. Z. 1 2 X2
X tx vt x 7 W g
(X,2)?
Y Y Z Yy X o, ., X?
Yty z Yy x Wy
(3" 5 Cw)?* )
-2 Y* x2 +2X4ZZ :7(,u’"p)+/1a
Z ., Z X Z Y X?
Z Z X 'z Yy *V yrz?
(X23) .
+2 2ikr =3 (= p)sinh® B (utp)+ 4,

and the two first integrals

(t+p) XYZ*sinhBcoshf=2,N,<R,Wy=2,N,, (3.10a)
X Y Y Z 4 X X2
RS T i ¥
y vty z 7z x <N
(2P | (253
X4Zz? + Y4 x?
% The time coordinate ¢ in (3.6), (3.11), (4.8) and (6.4) is in fact the special coordinate i
defined by (1.4).

(3.10b)

+ +pcosh?f+psinh? B+ 4.
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The fluid velocity is given by u = cosh f &, + sinh §§ &;. The constants W,
Rq, 215, Ny, and 2, all represent intrinsic properties of the solution;
in a tilted universe, f>0=>R,X,, N, #+0. Given an equation of state
p=p(u), (3.8) determines p, u and ff in terms of X, Y, Z, and then (3.10) and
one of (3.9) will determine X, Y, Z and so f,g and k. The simplest class
of solutions is that in which X,;=0; this is the case in which ¢* is an
eigenvector of the shear tensor g,,.

In a type V universe or a type IV universe with n“ﬂE,,=0, one can
always find a basis (2.21) with n, =n, =0, &, = (cos 0, 0, sin6). The Jacobi
identities and (02), (13) equations show Q;=§,,=0, Q,= —&;,; and
that either Q, = —§,,, or the basis can be chosen so that this relation
is fulfilled. Coordinates can be chosen so that the tetrad-coordinate
relations &,= &, /0 x" take the form

e, =0/0t, & =X Yt)(@/ox" + f(t,x', x*) 0/0x* + g(t, x') 0/0x3),
&, =Y L(t)exp(d,x') /0 x*, (3.11)
&, =27"1(1)exp(Adyx') (6/0x> + k(t) 8/0x*)
which determines the metric tensor components. The Jacobi identities
and (13), (23) field equations show that
a=A0X_1, nzzNzY(XZ)Ula
Fi3=213(YZ)7!,  Gy5=2,(0 (XY,

where 4,, N, are constants and

0o Z13=YZ*(u+ p)sinh? B sin0 cosl, 0y X,3= —A;N, Y3 (XZ)™*;

and the functions f, g, k are given by (3.12)

k= =2 5,3 Z(XY )V dt, [ = Nyx*—2exp(Aox") [ kZ,, X(YZ3) ™ dt |
g=—2exp(Aox") | 23 X(Y2Z?) 1 dr. (3.13)

The conservation equations can be written in the form

d(logw X YZ cosh B)/dt =2 tanh Bcos0 A, X,
d log(r sinh B)/dt
=—(X'X"'cos?’0+2sinfcosfZ,5(YZ*) ' +Z'Z ' sin?0),
d((x + p) sinh  cosh 8 sinf X Y Z?)/d¢
— Y Z?*(u+ p)sinh? B34, sinf cosf=0.

(3.14)
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The remaining field equations consist of the time development equations

X" X Y X Z Ay? N,2Y? .52
+ t+— 5 2 02 “% 22 2 +2 2134
X X Y X Z X X“Z Y“°Z
- =4(p—p)+(u+p sinh?fcos?6+ 4,
vozZy vX , A NY? 5,52
Y zZ Y Y X x* ' x2z? X2y#*
1 (3.15)
=3u—p+41,
z . Z X ZY 40 | N2Y? 252
Z Z X ZzZ Y X2 ? x?z? Y2z*4
Z 2
+2 5oy X2Y4 =% (u—p)+(u+p)sinh? Bsin?6+ A,
‘and the three first integrals
Ay (XY  Z\ Z;N .
70(27—7“——> X223Y22 = (u+ p) sinh f cosh ff cos@ ,
Ay 2 _
70 YIZ32 =(u+ p)sinh ff cosh f sinf, (3.16)

42 N2Y? 52
X2 +4 X%ZZ2 + Y213z4

2

;2 7 +pcosh? B+ psinh?f+ 4.
The fluid 4-velocity is given by u = cosh 8 &, + sinh f(cosf &, + sinf &,).
In general this set of equations for p, 1, 8, 0; 213, 2,3; X, Y, Z is rather
complex ; given an equation of state p(u), one can take the conservation
equations as determining p, i, B, 0; Eqs. (3.12) determine the X;;; and the
first integrals (3.16) determine X, Y, Z. The vorticity vanishes if and only
if 2,3 =0«sinf=0<3;=0. The type IV solutions have N, +0 which
implies X, =+ 0; the tetrad is unique. The type V solutions have N, =0;
the tetrad is unique if the vorticity is non-zero; X, 5 is constant, and the
simplest such rotating solutions are those in which X,;=0. These are
the type V rotating solutions in which w* is an eigenvector of the shear o,

In the non-rotating type V solutions, one can set 2,;=0by a rotatlon
of the (&,, &,) vectors; the tetrad is then unique if §, + 05, and the equations
are hardly more complicated than in the type II solutions discussed above.
Finally the simplest solution of all is the special non-rotating type V case
in which §,=6,, X,,=0: in this case one can set ¥ = Z, and one has
an L.R.S. solution (see § 4) which can be completely integrated for simple

+
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equations of state. One has only to solve 2 conservation equations for
p, U, P, together with two first integral equations for X, Y.

It is apparent, on comparing with [ 1], that the equations in the tilted
(and particularly, the rotating) universes are rather more complex than
in the non-tilted case. Exact properties of tilted models of type IX have
been given in [5, 6, 11, 14]; properties of class A solutions with ¢, an
eigenvector of n*# in [14; 6]; of non-rotating type V solutions in [5];
and of VII,; and VII, solutions in [15]. Exact tilted solutions have been
given in [12], by Farnsworth in [16] (a non-rotating L.R.S. solution),
and by Demianski and Grischuk in [17] (a rotating and expanding
solution); these will be discussed in the next section. Dynamic properties
of tilted universes except type IX have been examined by Collins and
Hawking [15]; type V by Hawking [18], Matzner [19] and others
([24, 257); and of type IX by a number of authors ([ 18, 20-23]).

4. Tilted Models with Higher Symmetry

There are various kinds of further symmetry conditions one can
impose on tilted homogeneous cosmological models; we shall examine
two of these in this section.

First we consider models which are L.R.S. (locally rotationally
symmetric: see [12, 13]). Then there is a group of rotations at each point
such that all covariantly defined quantities are invariant under it. As
u, n, ¢, ¢ are uniquely defined in any tilted model, in an L.R.S. tilted mode]
the rotation must take place in the 2-plane orthogonal to u, n, ¢, & spanned
by p,,; so all covariantly defined quantities are invariant under the
rotation (2.23a). Choose a normalized normal basis with triad (2.24);
then it follows ([ 1; 12, 137) that

0,=0,, 5,,=0(u=+v), Q,=(0,0,Q), &=(0,0,1), (4.1)
and either .
nuv = dlag (na n, m) H as = (Oa Oa Cl) » (42 a)
or
n,,=0exceptn,; =ny,=a, a,=(a,00). (4.2b)

In the second case one can, after adding suitable terms in g, and #,,,
use the equations of Appendix II of [ 1], with r = 0. By the (03) equation,
G5 =0=>35 = 0; however by (4.1) the §, vector must lie in the 3-direction,
so there can be no such tilted models. In the first case, when (4.2a) holds,
one can use the equations of Appendix I of [1] as before, after suitable
renumbering. We therefore renumber, and conditions (4.1), (4.2a) become

0,=0, 0,=0,=y, &,,=0(u=+v), 3,=(2,0,0), ¢,=(1,0,0),

4.3
n,,=diag(m,n,n), a,=(a,0,0). (43)
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In the class A solutions, a = 0; but then the (0v) equations immediately
imply §,=0, so there are no such tilted L.R.S. models. In the class B
solutions, a=+0, m=0; now (3.3) shows that ®*=0, so there are no
rotating L.R.S. tilted homogeneous universe models. R

An examination of the field equations shows that neither Q nor n
play any part in the remaining non-trivial field equations, which are two
time derivative equations and two first integrals. This indicates that
these quantities are non-essential; and in fact Q can be set to zero by a
rotation in the (e,, e;) plane which varies with time, and n can be set to
zero by such a rotation which varies spatially (this is just the transforma-
tion between a type V and type VII, basis in an L.RS. space, which was
examined in [17]).

Theorem 4.1. The tilted L.R.S. models are invariant under a group of
type V, and a group of type VII, for each value of h> 0. The fluid vorticity
vanishes in these universes.

Using a basis (4.3) in which @=m=n=0, the field equations now
only involve y, p, ; o, y and a. As the universe is type V, one can choose
coordinates as in § 3; then the metric is that given by (3.11), with f=g¢g
=k=0, Y(t)=Z(t). As there is no rotation, one has sin=0, 2,;=0
=2X,5; the conservation equations are given by the first two of (3.14)
(with cosf = 1), and the remaining field equations can be taken to be the
two first integrals (3.16) with N, = 0. The solution in the case of vanishing
pressure has been obtained by Farnsworth ([16]; see also [12]). When
p=*0 one can for particular equations of state reduce the equations to
one second order equation and a set of quadratures, but solution of the
equations seems difficult. It seems clear that one has more likelihood of
obtaining solutions by changing to a fluid tetrad and associated co-
ordinates [one obtains such a tetrad simply by applying the rotation (1.9),
(1.12)] and writing out the field equations in these coordinates; in fact
this is the method by which Farnsworth obtained the dust solutions.
These solutions are special cases of those classified by Stewart and
Ellis [13], and are the only expanding, tilted spatially homogeneous
cosmologies admitting symmetry groups of dimension greater than 3.

The second family of universe models with higher symmetry are
those in which the 3-surfaces of homogeneity S(¢) are surfaces of constant
curvature, i.e. in which the Ricci tensor R* , of these surfaces is isotropic:

R*,=%R*h,,, R*=R*,. (4.4)

It follows (see [1]) on using a normalized orthonormal basis for which
(2.1) holds, that either

or

n=H,=n3=m, (4.5a)

n, =0, n,=ny=n=+0. {4.5b)
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In the first case, one must have a=+0 (or the (Ov) equations imply that
4,=0) and so by (2.12), m=0. Thus when (4.5a) is satisfied, the only
tilted solutions are type V universe models. In fact whenever the group
is type V, R*,, is necessarily isotropic and R* <O.

In the second case when (4.5b) holds, the Jacobi identities imply
§,=Q5,6,3=—Q,,5,,=0,0,=0,. The (23) field equations show that

7~T23=2512513- (4-6)

The tetrad can be rotated in the (€,, ;) plane while still preserving
conditions (2.21) and (4.5b); we choose such a rotation to set &3 =0
=, =0. Now (4.6) shows that at least one of §,, §; must vanish. If
Gs =0, then the (03) equation shows that ,, =0 (as n+0), and so §,=0
by the (02) equation; but then the space-time is an L.R.S. space ad-
mitting a group of type V, and so can be regarded as a special case of
(4.5a). We therefore assume g, + 0; then §, =0, and 7,, +0 by the (03)
equation. The (02) equation shows that a=0, the (01) equation that
G, =0, and the (13) equation that Q, =0. The basis we have found is
such that in addition to (4.5b),

~ 4.7

The space admits a group of type VII;, and as R* =0, it has flat spatial
sections. The vector &, is an eigenvector of n*# with a non-zero eigenvalue,
so w =0 and the space fulfils the conditions of Theorem 3.5. This is the
space found by Demianski and Grischuk [17]; our derivation has shown
that, as they asserted, this is the only rotating homogeneous universe
with flat spatial surfaces of homogeneity, because any such universe must
satisfy (4.4) with R* =0,

Theorem 4.2. The tilted universe models in which the surfaces of
homogeneity are surfaces of constant curvature, are (a) those in which
R* <0, admitting a group of type V, and additionally admitting groups
of type VII, if they are LR.S., and (b) the rotating Demianski-Grischuk
universes in which R* =0, admitting a group of type VII, and fulfilling
the conditions of Theorem 3.5.

Coordinates and the field equations for all type V universes (in which
R*,, is necessarily isotropic) have been given in the previous section.
In the case of the type VII, universe in which (4.7) holds, one can choose
coordinates so that the tetrad-coordinate relations é,=&, d/0x' take

the form
8, =0/0t, E,=Z(t) 1 0/0x?, é;=Z(t) ' 8/0x>,

&, =X(6)""(9/0x" + (No x>+ 2g(1)) /0 x> — Ny x* 8/0x7), w9
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where n= N, X ~ !, N, = constant; this determines the metric. The fluid
flow vector is u = cosh f§ &, + sinh 8 ;. The conservation equations take
the form (3.8) with Y= Z; the (22) and (33) field equations imply 2(3, ,)*
= (u+ p) sinh? B; then the (03), (12) equations show

tanhﬁ= (2WOR0N072)XZ_3, 612 = —(WoRoNov 1) Z_3 . (49)
The second of these equations shows that
g(ty=WyRo Ny~ ! jX(t)Z(t)*4 dt;

the first implies that one cannot specify an equation of state for the
fluid, because S is determined by X and Z alone; the conservation
equations determine the evolution of w and r and thereby determire an
implicit equation of state relating p and .

The remaining field equations are the second order equations

X" X z W,2 R,?
Y X z Pr g CHeoptA
0
- s gy WeRS (4.102)
7z Tz ¥ AN TR

with the first integral

X z z* Wo? R,?
2% St Tv(z,ZT% =(u+p)cosh? f—p+A. (4.10D)
Further details of the solutions of these equations are given by Demianski
and Grischuk ([17]); it seems, unfortunately, that the equation of state
which one finds for the fluid in these models is unrealistic, for it tends
to the “stiff matter” state p = u near the singularity, and the pressure goes
negative and approaches zero from below at large times.

A further class of higher symmetry solutions are the tilted models
which are homogeneous space-times, i.e. which are stationary. Then one
can find a tetrad basis as before, but in which additionally all the rotation
coefficients are constants. All physical quantities (e.g. u, p, f) must also
be constants; solution of the field equations reduces to an algebraic
problem, as all one has to do is solve the equations for the constants
y%.. We shall not investigate these solutions further here; all the dust
solutions are known ([26, 27]), and the perfect fluid solutions could be
obtained by the same methods. As the density is constant in these
models, they do not expand and so cannot be used as reasonable models
of the observed universe.
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5. Kinematical Restrictions

We have already considered the restrictions implied by the vanishing
of the fluid acceleration [see (1.25) and following] and of the fluid
vorticity (see Theorems 3.1 and 3.2). We shall not consider solutions in
which the fluid does not expand, as these models cannot produce an
isotropic redshift; in fact most, if not all, such models would be included
in the homogeneous space-times mentioned in the last section.

Our aim in this section is therefore to see if one can find interesting
universe models by putting restrictions on the fluid shear. In particular,
one may ask if there are any interesting models with vanishing shear.
Godel’s paper [11] suggests such solutions are very restricted; for he
showed that shear free type IX dust models cannot both expand and
rotate, i.e. for type IX dust universes,

O =0=00w,,=0. (5.1)

This result has been extended by Schiicking [28] to all spatially homo-
geneous dust models, and by Banerji [29] to spatially homogeneous
perfect fluid solutions with p=(y — 1)y, y=constant + 10/9. Here we
extend the result to all homogeneous cosmological models in which the
matter content is a perfect fluid. In fact we prove a stronger result:

Theorem 5.1. There are no tilted models with vanishing fluid shear.

Now the only non-tilted perfect fluid spatially homogeneous solutions
(i.e. solutions obeying statements (1), (2) and (3) of § 1) which are shear-
free are the Friedmann or Robertson-Walker universes (this follows
because w,,=u,=0 in these models; when in addition g,, =0, one has
a Robertson-Walker universe [8]). So Theorem 5.1 implies

Theorem 5.2. The only shear-free spatially homogeneous perfect
fluid universe models are the Robertson-Walker universe models.

Note that this result is not contradicted by the existence of the
Godel [21] universe; for while this is a homogeneous, rotating and
shear-free universe, it is not spatially homogeneous in the sense of
statement (2) of § 1; for there exist no spatial surfaces of homogeneity
S(¢)in this universe ’. By contrast, the Einstein static universe and Oszvath
type I model [30] are homogeneous universes which are spatially
homogeneous also; the former has vanishing shear, and is a special case
of the Robertson-Walker universes, while the latter has non-vanishing
rotation and shear.

7 Given any local spacelike surface S, any two points p, g of § can be mapped into
each other by some isometry &,,; but there will be pairs of points p, g in S for which
?,,(8)+S, ie. S itselfl is not invariant under the isometry, and so S cannot be a surface of

homogeneity.
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We shall outline the proof of Theorem 5.1; the interested reader is
referred elsewhere [32] for details. The proof is in two stages: first a
proof that (5.1) holds for tilted models, and then a proof that neither of
the alternatives o,,=m,,=0 or g,,=0=0 leads to a tilted model.
To carry out the proof, we use the normalized fluid basis of §2 and
associated time coordinate (2.13); the field equations needed are given
in Appendix A.

The essential point in proving (5.1) is that if g,, = 0, one can integrate
(2.29) and the Jacobi identities up to a quadrature, in terms of the length [
defined in §1:

A=rtanhf=1"14;, o'=r 12w yl,=1"1A4,, Y ,=1"14,,
y123:lng1, ’))21321_132, (5.2)
V113 =/lol_1(l_1l,o+ Ci), V223 =/lol_l(l~ll,o+ C,),

where 1y, % A, A;, B, B,, C;, C, are constants. We use (2.23a) to
set o' =0 on r=t,, s0 w,* =0 and w! =0 for all t. The (23) equation
implies

200> o> (2272 = 1721 ) + Ao A1(C, — C,) — A,(B, + B,) =0,

so either wy?wy®> =0, or r=r,I"! where r, is a constant. The proof is
now straightforward if tedious. One simply substitutes into the field
equations from (5.2) in the three cases (i) r=ryl" !, wo?wy®+0,
(i) wo® =0, w2 # 0, (i) wy2 =0, wy>#+0. In all cases the assumption
w,,0 + 0 leads to a contradiction.

To prove there are no tilted models with g,, = w,, =0, assume § > 0.
Then the (03) equation shows that 6 = constant. It follows from (1.22—24)
and the equations obtained from them by differentiating and using
8 = constant, that r is linear in ¢, This is incompatible with the remaining
field equations unless 6 = 0; but the only spatially homogeneous perfect
fluid solutions with ¢,,=w,,=6=0 can easily be shown to be the
Einstein static universe, which is not tilted.

When g,,=6=0, the (01) and (03) equations show that y2,;=0,
once one has set @' =0 by an initial rotation of the basis. The remaining
equations imply that y*,,=7y%,;=0, and that either (i) y*,;=7y!,,=0,
or (i) y*,3=y%,3=0, or (iii) y*,,=y';3 =0. However in each case the
constraint equation (C) shows that u+ p <0, contradicting assump-
tion (1.2).

Further restrictions on the shear that might lead to interesting
universe models are, for example, that the vorticity vector or the acceler-
ation vector should be a shear eigenvector. In general such conditions
are difficult to solve, and we shall restrict our attention to a simpler
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problem, which was again initially raised by Godel. He stated [11] that,
in the case of type IX dust universes,

if * 0, at no instant of time can the expansion tensor 0,, (G)
be rotationally symmetric about the vorticity vector w®.

This statement is concerned with one instant of time only, and so
does not concern the propagation equations. We wish to know if (G)
applies to other group types, or when the pressure is non-zero; the
question to be resolved then, is whether the constraint equations
[(A)~(D) in Appendix A] can be solved at any instant so as to violate (G),
or not.

Without loss of generality, we can put w?=0 on the hypersurface
{t =constant} we are considering. Then the condition that 6,, be
rotationally symmetric about w® reduces to

0, =0=0y;, @ o3=00,-0,,
(01?05 = (03?0, + 0,((0")* — ()Mo ™2,
If one puts no condition on A, this question has to be decided on the
basis of equations (A), (B) and (C) alone; and if further p# 0, one can

in general consider only (A) and (C) as (B) has in it a term —2r qo!
which is in general non-zero.

Theorem 5.3. If w0 is parallel to ¢* in a tilted model, then Gédel's
result (G) is true.

(5.3)

In this case, w'=0=-0,=0,. By Theorem 3.5, the solution is a
class A solution; from Appendix B, this implies that in the fluid basis,

V113+V223:/1(91+62)/V- (5.4)

Substituting (5.3) and (5.4) into the constraints, one easily finds that
u+p<0.

This result is the widest form of (G) we have been able to obtain.
In fact in general it seems possible to violate (G). Thus consider class A
rotating dust solutions with w?® =0 (by Theorem 3.3, this is only possible
in types VIII and VI,) and satisfying (5.3), which implies 6, = 6,. Then
one obtains three conditions from the vanishing of a, (sec Appendix B);
constraint (A) shows y',;+2y%,,=0; constraint (B) shows y2,;
=2)"40,—0,)+%20,, whichimplies y! ;3 =310, + 10, +%4171(0,—0,).
Now examination of (C) shows that we can satisfy it for y*,; <0. Thus
(G) does not hold for type VIII or VI, dust universes, and a fortiori for
such solutions with p >0. Similarly in type V dust solutions satisfying
(5.3), we also have n,;=0 which gives a set of conditions on the y“;,
(cf. Appendix B); and one finds y!,5=7%;=7?,=0?*=w’=0,
0,=05, y'13=7"25=40,—0,), ' 1= —20'A7}, 0,y =0(u=v). The
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constraints (A)—(C) can now be satisfied by suitable choice of the
remaining 9’s. Thus (G) does not hold in type V models; and this implies
that (G) does not hold in types IV, VI, or VIJ, either, as these types are
more general than type V in the sense that type V can be obtained from
them by specializing particular parameter values (cf. the “specialization
diagram” in [3]). Hence if one can find initial data to satisfy (5.3) and
keep pu+p>0 in type V, one can certainly do it in these group types
where one has more freedom of choice of initial data. Finally we have
obtained a set of initial data in a type IX universe with p=+0 in which
(5.3) is satisfied and p+ p>0; this is given by y!,3= —92,;=1= —w?,
Pa=00'=5,0,=1 9", =21""rol, y?1, =097, =r "A0,+0,),
and r~'1 chosen sufficiently small. While we have not investigated
type VII, in detail, we have no reason to believe that (G) holds in this
case either when p > 0.

While one can find initial data in which the expansion is at some
instant rotationally symmetric about the vorticity, this restriction by
itself does not determine a simple class of rotating solutions for us. It
may be that insisting that this condition, or some similar condition, hold
at all times would lead to some simple universe models.

6. Some Simple Class A Solutions

We should like to have explicitly written out consistent, simple field
equations and coordinates for rotating and expanding universes in which
the equation of state can be specified arbitrarily. This has been achieved
above for class B universes (the type V and type IV universes with
n*&=01in § 3), but not for class A universes (the type IT models in § 3
do not rotate, while the Demianski-Grischuk solutions in § 4 could only
admit an unrealistic equation of state). We here aim to find a simple set
of class A universes satisfying these requirements.

Consider the universes satisfying the requirements of Theorem 3.5.
Using a normalized orthonormal basis (2.21), we can choose &, =(0, 0, 1).
The conservation Eq. (1.35) then shows that Q, = ~5,,, @, =6&;;. The
(03) equation shows that &;,(n; —n,)=+0; as one of n,,n, +0, we shall
assume n, +0. If 6, +0, the Jacobi identities and (0v) equations show
that n, =n; =0; but this is a non-rotating type II solution. We therefore
consider solutions with

Giamy #0, &=(0,0,1), 6,,=0=8,, 6,,=0=0,, (6.1)

(the latter requirement following from the Jacobi identities). There
remains one algebraic Jacobi identity:

(1) +1,)6,,+ (1, —n,)25=0. (6.2)
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In order that the solutions rotate, it is necessary that ny +0. (The
solutions with n; =0 are type VI, and VII, generalizations of the non-
rotating type II solutions in §3.) The solutions with n,n;+0 will be
rotating type VIII or IX universes; for simplicity, we consider the
simpler type VI, and VII, universes with n, = 0. Then (6.1), (6.2) show:

ny,£0,n,=0=>5,=0;. (6.3)

Clearly these are the simplest universes of the type considered in Theo-
rem 3.5. They are in fact simple generalizations of the Demianski-
Grischuk solutions, which are the special case in which n, =n; (which
implies 8, = 65).
With restrictions (6.1), (6.3) one can find coordinates for which
8, =0/0t, é,=Y(t)"* 0/0x?, &;=2Z()" ' 0/0x*,
& =X(0)"*(0/0x* + (N, x* + 2g(t)) 6/0x* — N3 x* 0/0x3),

where n,=(XZ)"'YN,, ny=(XY) ' ZNj;; N,, N, are constants. The
fluid flow vector is u = cosh f§ €, + sinh § &;. The conservation equations
are (3.8); the (12) and (03) field equations show that

F12= —WoRo(N, Y?Z) '=>g=W,R,N, ' [ X(Y*Z) ' dt. (6.5)

(6.4)

The remaining field equations are the second order equations

X XY X z I(NZY N3Z)2 2W,2 Ry>

_+¥

x " v x Zz A\xz  xv) T Nzvrize
=3(p=-p+4,

YUY Z Y X (MY (NZVE W R

Y Y Z Y X %\ xz XY N2 Y*Z7?
=3(u—p+4, (6.62)

Zm ., Z X Z Y (NZV(NYY

Z Z X  zZ Y *\ XY \xz

=3(u—p)+(u+p)sinh®f+ 4,
with the first integral

X Y Y Z Z X 5
X YTy 7zt 7 x “Wrpeoshiiop+a 665
La(MY  NZV W R '
“\xz XY N,2Y*Z?"°

One can now specify p(u) arbitrarily in these rotating solutions (@ +0
when N, = 0); they represent a simple generalization of the Demianski-
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Grischuk solutions, which are obtained from them by letting Y= Z and
N, = Nj (the extra constraint on the fluid behaviour in that case arises
as the consistency condition for Y'/Y and Z''/Z being equal). By the
derivation, it is clear that we have obtained all type VI, and VII, rotating
solutions satisfying the condition of Theorem 3.5. Properties of these
models have previously been discussed by Ozsvath [14].

7. Conclusion

We have considered the geometrical restrictions implied by the
condition that a perfect-fluid universe should be spatially homogeneous
(in the sense that (1) and (2) of § 1 have been imposed), and concentrated
our attention on “tilted” models, i.e. those in which the fluid 4-velocity
is not the normal direction to the surface of homogeneity. Our general
discussion of these models in § 1 relates the fluid properties to properties
of the intrinsically defined direction of tilt in the homogeneous surfaces.
An examination of possible tetrads in these spaces (§2) enabled us to
obtain various relations between geometrically defined quantities and
the group types (§ 3) and characterisations of certain higher symmetry
models (§4). Some properties of the fluid kinematical quantities were
also obtained (§ 5), and some simple Class A rotating models obtained
in §6.

Our discussion led us to relatively simple metric forms and field
equations for the cases of tilted type II universes, which are necessarily
non-rotating; for tilted type V and some type IV universes, which may
or may not rotate; and for the Demianski-Grischuk rotating universes
with flat spatial sections, and some simple type VI, and VII, generalisa-
tions. These are probably the simplest tilted models (the Farnsworth
type V L.R.S. model being particularly simple); however one might find
other simple models by careful consideration of kinematical restrictions.
In particular, some Bianchi IIT models may be relatively simple.

One might feel that some interesting spatially homogeneous universe
models had been omitted because the definition (2) of spatial homo-
geneity was too stringent: the groups of isometries have been restricted
to 3-dimensional groups (which are necessarily simply transitive on the
surfaces of homogeneity). One could replace condition (2) by the weaker
condition.

(2") space-time is locally invariant under a group of isometries whose
surfaces of transitivity are spacelike surfaces S(i),

and consider cosmological models satisfying (1), (2'). Then all of § 1
would still be applicable; in particular one could, as before, separate the
models into “tilted” and “non-tilted” universes.
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When (2} holds the group transforms each surface S(¢) into itself,
and so acts as a group of isometries in each surface; so the only allowed
values are r=3,4,6 (cf. [12, 13]). In general the group G, (note that
this might not itself be the full group of isometries of the space-time)
will possess a subgroup G, which satisfies condition (2). This is trivially
true when r = 3; it is always true when » =6 ([1]); when r =4 it is always
true except in the case of the Kantowski-Sachs type I universes ([33]).
Thus these are the only universes satisfying (2') and not (2). However
in them, the Ricci eigenvector is normal to the surfaces S(z) (see Eq. (11 a)
in [33]). Hence there are no tilted universes satisfying (1), (2') but not
satisfying (1), (2). Thus if we extend the definition of a tilted model (§ 1)
to one in which (1), (2) hold and >0, all the results of § 3—5 remain
true (but parts of § 2 do not apply to the exceptional universes, cf. [ 12, 13]),
and we do not obtain any further tilted models by broadening (2) to (2).

The restrictions we have found are based on both kinematics and
dynamics; dynamics has entered because we have in each case considered
whether the field equations were consistent or not. However we have not
given a discussion here of the dynamical evolution of the various tilted
models; such discussions can be found for various models, in the papers
given as references. There is one aspect of this dynamical evolution which
is of particular interest, namely the evolution near any singularity
which may occur. We shall return to this question in a later paper;
it will turn out that use of the fluid basis of § 2 is particularly helpful
in considering some aspects of this question.

We should like to thank M. A. H. MacCallum and R.K.Sachs for advice and
discussions, and M. A. H. MacCallum for checking some of the equations used. One of us
(A.RXK.)) would like to thank the U.K. Science Research Council for a grant.

Appendix A
Field Equations
(00) 7000+0%+03+0%+208, + 2085 + 2053 — 2(w)?

A Ar Ar
+'1< r’o>0+ ,.’O (- r’o +V13+V§3>=/1—%(#+3p),

228 ot
’

208yt
(02)  100(03— ") =72 03 = Vil @2 + G2} + 5 @295, — }O ,

(01) j'60(0-13 + wl) = yﬁl O-}V,u - y}‘jK(wkl + O-Kl) + % a)uly/{u +
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03)

(11)

(22)

(33)

(12)

(31

A.R.King and G. F. R. Ellis:
2 L 3
~ 24000, +0,) = 7430, — V(@3 + 0c3) + 7 04275, 5

1 M,o?is a1
r8oby —Adgyis +00, + T + Yuv Vo1

4r(w?)? 2r¥(w?)?
22

—2[0f; + 0f3 — (@®) — (@]~ (412)* ~

2y4rw?

- = 305 - 01 1= A+ 3 (k- p),
y 2

réo0, — 400733+ 00, + %@‘ + VY2

4r¥(wl)? 2r¥(w?)?
22

+2[(w® — 0y,)* + (@) — 023] — (y12)* —

2yiire?
+——y21 +2 01 — (022" 1=A4+ 3 (u—p),

. ) Ar g Ario\? . s
rdgb; + 005 —A0,(yi3 +733)+4 r’ -\ + Puv¥i3
,0

21 (03)?
+2[(@* + 6y3) + (@' — 633" ] — (313 — (33)* + Tz
— 3023 +yi)?=A+3u—-p).
A 1 2
0=r0y01,— 780(3’23 +713) +012(20, +83)
47 ol o’
/’{2

2 1
+2w? <02 - %) + 2! (%32— ——a)z) —20,30,3+

Ar
— V53713 — Vi3 V33 + T;O‘(Vh +713),

0=r080(0y3 — ") + (033 — ") (0, +20,)+ 20,5015+ 20,07

4r? w? @’
—2030° + 2 —20 0 + 91,035 —713) — 132033 +¥1a)s
4r2 ! @®
0=rdo(gys + %) + (013 + @) (20, +0,) +20230° + ——5—

=20 @® +91,(y35 — y13) + 912033 +713).-

{To show that (ab)=(ba) one must use the Jacobi Identitics below].
[Note also that 6,, =6, — 6, in (0p)].
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Jacobi Identities

A
) S autrod=0tih - e - 00l + ),
) Golra®) = =00, +05).
3) do(ra’) = —w'(0, +03) + 20,0 + 20,3 0%,
1) ao(”wz)z —0)2(01 +65)+ 20'23@3 s
A rot ro?
3) - _2_60?%2 =—0,0"+ Tyis + i y33—201,0° =203 0°
+30i2v3s— 733712,
4o0,50° 0 2o
2) ao?iz='%—yiz—:*+ 29,
o ! dg,, 0!
3) 507’%3 —240, (_iri) = Vis 0, —0,—0;3)+ _‘1;3{—“—

20 20
+ r13 Y12+ rlz (33 —71i3)s

9, by 4 40,4 20. 20
1)/160 _r‘>—aoVis= " Yis+ ” w?+ r23 Vi — r12 i3,
A root r?
3)‘350%2:—02@24' 7 V%3+TV%3—2523003
+ _1.(,))2 13—} H )9
i 46,0 22,0, 7W12V13 — V1312
) Oo¥i2= P .
0 0 4a,,0' 20 20
3)/150(72>—60V%3= :3 V33— 2/13 - r13 Vizt+ r12 i3

2 2 2
Y 40,, 0 20,57
1) 00713 = —;3 (0,—06,—05)— 2; - 2: ==

0
equations ( ) are identically satisfied because of ( ),
abe abec
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The four first integrals of the field equations are

r 2Ar
(A5 2 {1t = s + ) + 07k + 200 02}

47‘2601(1)3
+(03 +©*) (20, +0,)+20,50° + — _ 2wt e?

‘H’%z(?’%a _Via)"‘yiz(yés +V%3):0=

1
2r g

.
(B): T{Vﬁz_)’ﬁx(wu‘*‘axz)"‘%mulﬁn_ 7 }

412 w? o*

+ (035 — ") (20, +0,)+20,,0,5 + 20,,0° =20, 0° + 12

=207 +71,(035 — 13 — 1033 + 9312 =0,

A ¥
(C) (7 + 7) {yﬁfio-/lu - yﬁx(wxii + O-K3) +%wul'})iy}

Ar A
— e it 0,4 00 0,702+ 6,06, + 02

A0
“‘20'122 "20'132 “20'233 +2(co)2 +Vﬁv?’33 + 73(3’13 +V%3)

27‘2((,03 2
+ 2[(602 + 0'13)2 +(w' — 0'23)2] - (Vis)z _(%3)2 + *’iz—)_
240 2A0
_%(Vés +V%3)2+4U13w2_40'23501+‘Tzs—)’iz_ r13 V%z
=u+p,
(D): 2(0,0,+ 0,05+ 050,) + 6(w)* —20,,% — 20,3° — 2057

. ) s 2%,
—4dw' oy, +4wP o —dw oy, + 2 6, +86,)

22
+ T {03())%3 +y%3)+yﬁ3o-/lu _yZK((’OK3 +O—K3)+%wuly,?.u}

2r?
Y [2(w")? + 2w +(@0®)*] = (112)* — 32)* — (313)* — (¥35)
Y — 3 (05 H91a) + 80307 — 8030

4, 2re®

+T(023V%2““13Vf2)+ 7 (733 —713)

=2A+4+2u.
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Appendix B
2K lo K AK rw
©rham 2N R e SR 06 dodt
K AK re
s=1 5 33— i)+ =—(0,-0,) — K1, V1. +
2 2r
reo! ro? 2re?

ro? ro K Ak
¢ = (1% - T — b S5 - S0k S04

when x =coshp.
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