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Abstract 

In the absence of a conducting wall, typical spheromak plasmas are 

unstable to tilting and/or shifting modes. The effects of the cross-sectional 

shape, aspect ratio, and the location of a conducting wall on the stability of 

these modes are investigated. 
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One of the most troublesome and fundamental instabilities of the 

spheromak configuration arises from the tendency of the plasma to tilt so as 

to align its magnetic moment with the externally Imposed equilibrium field or 

to shift horizontally into a region of weaker magnetic field strength. Thr 

fret' energy driving this instability is large, arising from the intpraetion of 

the toroidal plnsnia current with the currents in the external field roil;;. 

The clohal, almost rigid nature of the instability makes stabilization duo to 

magnetic shear or finite gyration radius effects seem unlikely. 

\nalytir studies of this mode have been confined to treatment of small 

departures from a spherical configuration or to cylindrical models. ^ircr; 

tho mode conic! have serious consequences, it is important to understand its 

parametric dependence on the pi.i=ma shape, size of the central flux hole, the 

presence or strength of an external toroidal field, and the extent to which 

conductors in the vacuum region can provide stabilization. The application -f 

linear ideal MHO stability computer programs ' to numerically generated 

equilibrium ' solutions should provide this understanding. 

Several features of the PEST-1 stability code ker>n this from being a 

straightforward exercise. This code was designed with special consirferation 

to the numerical problems associated with MUD modes in typical 1 ow-3 

tokamaks. Thus, both the choice of the coordinate system and the 

representation of the displacement vector are not optimal for the s ph «• r mia k 

configuration. Tn rarticular, the inaccurate representation of V-5 when the 

toroidal field is small, leads to a spurious stabilizing effect unless many 

Fourier components of the displacement, vector £ are retained. Tilting 

instabilities have been found with PEST-1 by keeping a small hut finite 

toroidal vacuum field, keeping a modest aspect ratio, employing a high 

resolution equilibrium grid, and including sufficient terms in the Fourier 

expansion for £ . 
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The difficulties associated with PEST-1 are avoided in the PEST-2 ideal 

MHD stability code which has been developed specifically to solve the ideal 

MHD equations at marginal stability, and thus avoids spurious compressive 

stabilization by imposing 0'£ ~ 0 analytically for nonaxisymmetric (n*0) 

modes. Representation problems are avoided by working only with the 

component £*v> , which also effects a factor 3 reduction in matrix size. Away 

from marginal stability these simplifications are obtained at the price of 

using a nonphysical kinetic energy, so that the growth rates obtained are not 

quantitatively meaningful. The use of a \|i, 0, r, toroidal coordinate system in 

which the magnetic field lines are straight with 0 chosen to be proportional 

to the arc longlh on the poloidal cross section of a magnetic f.urface also 

reduces the number of Fourier modes needed by at least a factor of 3 over that 

needed when th? PEST-1 coordinate system is used. 

Our choice of pArameteri2lng the shape of the equilibrium we study is 

illustrated in Fig. 1. Motivated by the exact spherical solution. the i.L'ter 

boundary, in spherical coordinates, is given by r si n8 j. (r)F (cos1-') + & = 0 

where 0 < & < 1.03 measures the size cf the "flux hole." To "flatten" 
? — 1 / ? roblate) the configuration, we multiply the z coordinate by [) + E ] . 

A typical spheromak result Is given in Fig. 2 where the "growth rates" 

for n = I modes are given as Junctions of the shape of I'^e plasma cross 

section. These equilibria have zero pressure and a safety facLor profile 

varying fro' 1.0 at the magnetic axis to 0.01 at the edge as q = q 0 U - i|>) + 

q e, where 0 < ip < 1 is the normalized poloidal flux. For a spheromak plasma 

with a small flux hole, 6 = 0.1, the system is unstable with respect to a 

tilting mode which is primarily a superposition of m - ± 1, n = 1 modes 

U » K, e I of equal amplitude but of opposite phase. As the plasma 

shape becomes oblate the growth rate of this mode decreases, but at some point 
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i a second, shifting instability sets in. This shifting instability is 

essentially a rigid horizontal translation or a superposition of equal 

amplitude m = ± 1, n = 1 modes with the same phase. As the plasma if: nadp 

more oblate the growth rate of the shifting mode continues to increase while 

the tilting mode growth rate decreases and finally becomes stable. 

These results are qualitatively consistent with those of a simple node I 

in which the spheromak plasma is represented hy a rigid current carrying wire 

loop of radios r in an eKCernal axial Field, B , with intim f-r /H ) !)H /or 
e "i o <• 

This svstem is unstable to tilting for n. <1 and unstable tn shifting For 

n.Ml. 'Die fart that these regions of instability overlap for i>p.>0 sus'i'.est̂  

that any sha,>c spheromak plasma will he unstable to one or bnth of these node;, 

in the absence nf a nearby conducting wall. 

Ft is .' merest ing to note the "mode mixing" that occurs in Kip. (2) 

lor I <. /"). Kxarci nation of the two eigenfunct ions for . = 1 shows a pur,.' tilt 

node and a pure shift mode. As t is increased and the two grow1.!; rates be conn-

conparable, thr-sc modes mix to form helical m = 1, n = 1 and m = - 1, n ~ i 

modes at > - 2. Increasing e further causes the modes to change again into i 

pure tilt and a pure shift, but with interchanged jdenLity. 

The results of Fig. 2 were obtained without a conducting shell. It iv 

clear that plai-tng a perfectly conducting wall just outside th.' plasma should 

provide stabilization. In accordance with current spheromak designs we emplov 

ae topological ly spherical shell rather than the usual toroidal vacuum 

chamber. The shell must be fairly close, on the average, so that the eddy 

currents generated in the shell can affect the bulk of the plasma. 

figure 3 illustrates the parameterization of a conducting ellipsoidal 

shell included in the PEST-2 vacuum calculation, with a„ and b w beinj; 

dimensionless measures of the wall separation in the horizontal and in the 
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vertical directions. In the first series of calculations, presented in Fig. 

4, we set a u = b w and plot contours of the value of this wall separation 

parameter for marginal stability as a function of the flux hole 5 and the 

shap<= parameter e. Comparison of Figs. 2 and 4 shows that for a given size 

flux hole, or aspect ratio, the wall reparation distance needed for 

stabilization is roughly inversely proportional to :he larger of the two 

g-nwth rates without a wall, although there is a tendency for shift modes to 

lie more isily stabilized than tilt modes. Also, the larger the flux hole, 

the farther away the wall can h- to provide stabilization. 

To estimate the effect of a purely vertical or a purely horizontal wall, 

we repeat the calculations of Fig. A but set b H = l n and solve? for the 

critical horizontal separation. Fig. 5, and then set a y = 10 and solve for the 

critical vortical separation, Fig. 6. Comparison of Figs, -i, ^, and h shows 

that ;i horizontal wall is ineffective in stabilising tilt modes, hut it can 

rffp-tivplv stabilize shift modes if its vertical separation distance fron thf-

plasn/i is about half that of a nearly equidistant wall. The verticil wall, on 

the- other hand, is totall\ ineffective against stabilizing shift nodes, and 

can onlv stabilize tilt modes if it is verv close, and if the ^nde's 

unstahi1ized growth rate is weak. 

A qualitative understanding nf the wall stabilization rosults of Fif>. i-h 

is provided by a consideration of the pattern of eddv currents which are 

induced in the conducting shell to stibilize the tilt or the shift mode. We 

display in Figs. 7 and fi the pattern of induced currents in a spherical wn11 

stabilizing a tilt mode (Fig. 7) and a shift mode (Fig. 8). 

The stabilization of the tilt mode requires the induced currents to 

produce a horizontal magnetic field. This is accomplished by eddy currents 

flowing in circular loops in the sides of the shell, as evidenced by Fig. 7. 
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The shift mode, however, requires a vertical induced field for 

stabilization. This i.s accomplished by circular loops of eddy currents 

flowing in the top and the bottom of the shell, as illustrated in Fiji,. H. 

We have also studied the effect of an axial current alonj; the symnetry 

axis on tilting and shifting modes* The presence of this current, 1 : , 

rauser the toroidal field in the vacuum to be non-zero. As I ._. :« raiser! 

from zero, keening q at the magnetic axis fixed at I, the e igenf tinot ion.s n: 

the unstable norfns change continuously into an almost pure m = 1 , n = I free 

houndarv kink mode. When I j s > V2 'toroidi I * f' o n t'1'' ''^Pl' exceeds unitv, 

and a stahle configuration, the small aspect ratio tokamak, results. 
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ft. Ovntours of the critical separation distance a between the pl.-isr.i .mi1 .! 

nearly vertical wall with b u = in. 
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