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Abstract

We relate the theory of envelopes and covers to tilting and cotilting
theory, for (infinitely generated) modules over arbitrary rings. Our
main result characterizes tilting torsion classes as the pretorsion classes
providing special preenvelopes for all modules. A dual characterization
is proved for cotilting torsion-free classes using the new notion of a
cofinendo module. We also construct unique representing modules for
these classes.

Introduction

Tilting and cotilting modules have first been considered in the context of
finitely generated modules over finite dimensional algebras. The category
equivalences and dualities induced by them have provided tools for exploring
the structure of module categories over their endomorphism algebras, as
well as the structure of tilting torsion, and cotilting torsion-free, classes of
modules. The pioneering works of Brenner-Butler [4], Happel-Ringel [16],
Assem [1] and Smalø [19] have later been extended to the setting of (infinitely
generated) modules over arbitrary rings [17], [6], [10], [7], [9] et al.

Similarly, the idea of (minimal) left and right aproximations of mod-
ules developed by Auslander, Smalø and Reiten [3], [2] for finitely generated
modules over artin algebras turned out to be useful for modules over arbi-
trary rings. In fact, the corresponding general notions have independently
been discovered by Enochs [11] and termed (pre)envelopes and (pre)covers,
see also [15] and [20]. Enochs also noticed that many important concepts
occur naturally as particular instances of the general notions. This concerns
injective and pure injective hulls, or projective, injective and flat covers.
Indeed, one of the key open problems of contemporary module theory deals
with covers: the Flat Cover Conjecture asks whether each module over an
arbitrary ring has a flat cover, [22].
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In the present paper, we investigate relations between the theory of pre-
covers and preenvelopes, and the tilting and cotilting theory for (infinitely
generated) modules over arbitrary rings.

Our main results are Theorem 2.1 and its dual, Theorem 2.5. Tilting
torsion classes are characterized in Theorem 2.1 as those pretorsion classes
which provide special preenvelopes for all modules or, equivalently, for the
regular module. The dual result is proved with help of the new notion of a
cofinendo module. By Theorem 2.5, cotilting torsion-free classes are char-
acterized as those pretorsion-free classes which provide special precovers for
all modules or, equivalently, for an injective cogenerator. The proofs rely
on the facts that preenvelope pretorsion (precover pretorsion-free) classes
coincide with the classes of modules (co)generated by (co)finendo modules,
Corollary 1.3 (Corollary 1.7). We also consider module representations of
tilting and cotilting classes: in Section 3, we introduce the notions of maxi-
mal tilting (cotilting) modules and envelope (cover) modules, and compute
some of these modules explicitely.

Preliminaries

Let R be a ring, Mod-R the category of right R-modules, and M ∈ Mod-R.
Then M is cotorsion provided that Ext1R(F,M) = 0 for all flat modules
F ∈ Mod-R. For example, any pure-injective module is cotorsion, [22, 3.1].
M is finendo ifM is finitely generated over its endomorphism ring End(MR).
The additive groups of all rationals, p-adic integers and the Prüfer p-group
are denoted by Q, Jp and Zp∞ , respectively. For a group A and a prime p,
Tp(A) denotes the p-torsion subgroup of A.

Denote by Gen(M) the class of all homomorphic images of direct sums
of copies of M , and by Cogen(M) the class of all submodules of products of
copies of M . Given a class M⊆ Mod-R, we denote by Add(M) (add(M))
the class consisting of all summands of (finite) direct sums of elements of M.
Similarly, Prod(M) denotes the class of all summands of arbitrary products
of elements of M. Further, let M⊥ = {X ∈ Mod-R | Ext1R(M,X) =
0 for allM ∈ M} and ⊥M = {X ∈ Mod-R | Ext1R(X,M) = 0 for allM ∈
M}. If M = {M}, then we just write AddM , addM , M⊥ and ⊥M ,
respectively.

The classical definition of a tilting module is that of a finitely presented
module, T , of projective dimension ≤ 1, with no self-extensions, and such
that the regular module R has an addT -copresentation 0 → R → T ′ →
T ′′ → 0, cf. [1], [16]. We will use a more category-theoretic definition which
is nevertheless equivalent to the classical one when restricted to finitely
presented modules (cf. [10]):

M ∈ Mod-R is a tilting module provided that Gen(M) = M⊥. We
will say that M is a partial tilting module provided that Gen(M) ⊆ M⊥
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and M⊥ is a torsion class. Dually, M is a cotilting module provided that
Cogen(M) = ⊥M ; M is partial cotilting provided that Cogen(M) ⊆ ⊥M
and ⊥M is a torsion free class, cf. [10], [7].
Let C ⊆ Mod-R. Then C is a pretorsion class provided that C is closed under
direct sums and factors. Moreover, C is a tilting torsion class provided that
C = Gen(M) for a tilting module M . Dually, C is a pretorsion-free class
provided that C is closed under products and submodules. Moreover, C is
a cotilting torsion-free class provided that C = Cogen(M) for a cotilting
module M .

We will also need the following notions concerning (pre)envelopes and
(pre)covers:

Let E ⊆ Mod-R and M ∈ Mod-R. Then φ ∈ HomR(M,X) with X ∈ E
is an E-preenvelope of M provided that the abelian group homomorphism
HomR(φ,E) : HomR(X,E) → HomR(M,E) is surjective for each E ∈ E .
An E-preenvelope φ ∈ HomR(M,X) of M is called

- special provided that φ is injective and Cokerφ ∈ ⊥E .

- an E-envelope of M provided that ξφ = φ and ξ ∈ End(XR) imply that ξ
is an automorphism of X.

E ⊆ Mod-R is a preenvelope class (envelope class) provided that each module
has an E-preenvelope (E-envelope).
Let C ⊆ Mod-R and M ∈ Mod-R. Then φ ∈ HomR(X,M) with X ∈
C is a C-precover of M provided that the abelian group homomorphism
HomR(C, φ) : HomR(C,X) → HomR(C,M) is surjective for each C ∈ C. A
C-precover φ ∈ HomR(X,M) of M is called

- special provided that φ is surjective and Kerφ ∈ C⊥.

- C-cover of M provided that φξ = φ and ξ ∈ End(XR) implies that ξ is an
automorphism of X.

C ⊆ Mod-R is a precover class (cover class) provided that each module has
a C-precover (C-cover).

Assume that X is an envelope (cover) class closed under extensions and
containing all injective (projective) modules. Then any X -envelope (X -
cover) is special, and unique up to isomorphism, [22, §§1.2 and 2.1]. For
further properties, we refer to [22].

1 Preenvelope and precover classes

Lemma 1.1 Consider a class M⊆ Mod-R.

1. Let b : R→ B be an M-preenvelope of the regular module R. Then B
is a cyclic End(B)-module and Prod(M) ⊆ Gen(B).
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2. Let W be an injective cogenerator and a : A → W an M-precover of
W . Then HomR(A,W ) is a cyclic End(A)-module and Add(M) ⊆
Cogen(A).

Proof. 1. The EndB-epimorphism HomR(b, B) : EndB → HomR(R,B) ∼=
B shows the first claim. To prove the second, consider a sequence (Mα |
α < κ) in M and set M =

∏
α<κMα. Since every epimorphism R(I) → X

factors through the map b(I) : R(I) → B(I) for each X = Mα, α < κ, hence
also for X = M , we have M ∈ GenB.
2. By a dual argument.

An investigation of tilting and cotilting classes naturally leads to testing
when pretorsion and pretorsion-free classes are preenvelope and precover
classes, respectively. We will develop criteria for this purpose.
Note that pretorsion (pretorsion-free) classes of modules, P, are character-
ized by the property that every module has a monomorphic P-cover (an
epimorphic P-envelope), [18, 4.10, 4.1].

We start with a characterization of finendo modules:

Proposition 1.2 The following are equivalent for a module M :

1. M is finendo;

2. there is an add(M)-preenvelope R→ B;

3. Gen(M) is a preenvelope class.

Proof. 1. =⇒ 2. The map R→Mn induced by a spanning set f1, . . . , fn
of the left EndM -module HomR (R,M) is an addM -preenvelope.
2. =⇒ 3. Let b : R→ B be an addM -preenvelope. We first show that b is
also a Gen(M)-preenvelope. Take a map f : R→ X ∈ Gen(M). Then there
is an epimorphism p : M (J) → X, and we obtain a commutative diagram

M (J0) M (J)-
⊆ X-

p

R

f ′′

�
�

�
�

�
�	 ?

f ′ f

@
@

@
@

@
@R

where J0 is a finite subset of J . Since the map f ′′ : R → M (J0) factors
through b, we deduce that f factors through b as well.
Take now an arbitrary module AR and an epimorphism π : R(I) → A.
Consider the push-out diagram
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A B′-
b′

R(I) B(I)-b(I)

?

π

?

σ

Note that σ is an epimorphism since π is, thus B′ ∈ Gen(M). Moreover,
for any map f : A → X ∈ Gen(M), we have that fπ factors through b(I),
because b(I) is a Gen(M)-preenvelope by [22, 1.2.4]. But then f factors
through b′ by the push-out property. So, b′ is a Gen(M)-preenvelope of A.
3. =⇒ 1. Take a Gen(M)-preenvelope b : R → B. We know from
Lemma 1.1 that Prod Gen(M) ⊂ GenB. Since GenB ⊂ Gen(M), we
conclude that Gen(M) is closed under products, and this implies (1) by
[8, 1.5].

Alternatively, one can prove the equivalence 1. ⇔ 3. in Proposition 1.2
combining [8, Lemma 1.5] with [18, 3.3].

Corollary 1.3 Let T ⊆ Mod-R be a pretorsion class. Then the following
are equivalent:

1. T is a preenvelope class;

2. R has a T -preenvelope;

3. T = Gen(T ) for a finendo module T .

Proof. 1. =⇒ 2. is clear. 2. =⇒ 3. follows immediately from Lemma 1.1
and the assumption on T , 3. =⇒ 1. from Proposition 1.2.

We turn to the dual setting. First, notice that a module B is finendo
if and only if there exists f : R → Bn, n ∈ N, such that HomR(f,B) :
HomR(Bn, B) → HomR(R,B) is surjective. The latter is equivalent to the
statement “there are a cardinal γ and a map f : R → B(γ) such that for
any cardinal α, all maps R→ B(α) factor through f”. So we can define the
dual notion of a cofinendo module as follows:

Definition 1.4 (i) Let W be an injective cogenerator of Mod-R. A module
C is called W -cofinendo if there exist a cardinal γ and a map f : Cγ → W
such that for any cardinal α, all maps Cα →W factor through f .

(ii) A module C is cofinendo if there is an injective cogenerator W of
Mod-R such that C is W -cofinendo.

Lemma 1.5 Let C ∈ Mod-R and let W be an injective cogenerator of
Mod-R. The following are equivalent:
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1. C is W -cofinendo;

2. there is a cardinal β such that for any cardinal α, all maps Cα → W
factor through some coproduct of copies of Cβ.

Proof. 1. =⇒ 2. is clear. 2. =⇒ 1. Set I = HomR(Cβ,W ). Denote by
f̃ : [Cβ ](I) → W the codiagonal map induced by all maps in I. There are a
cardinal γ and a map f : Cγ →W such that [Cβ](I) ↪→ Cγ and f|[Cβ ](I) = f̃ .
By hypothesis, for any cardinal α each map φ : Cα → W factors through
some ψ : [Cβ](J) → W . Let ιj be the embedding of the j-th copy, j ∈ J , of
Cβ in [Cβ ](J). For each j ∈ J , ψιj factors through f̃ , hence through f . Let
ξ : [Cβ ](J) → Cγ the codiagonal morphism of all ψιj ; then ψ and hence φ,
factor through ξ.

Proposition 1.6 The following are equivalent for a module C:

1. C is cofinendo;

2. there is a Prod(C)-precover of an injective cogenerator of Mod-R;

3. Cogen(C) is a precover class.

Proof. 1. =⇒ 2. Every morphism X → W, X ∈ ProdC, extends to
a morphism Cα → W . Then f : Cγ → W in Definition 1.4 is a ProdC-
precover.
2. =⇒ 3. by arguments dual to 2. ⇒ 3. in Proposition 1.2.
3. =⇒ 1. A CogenC-precover of an injective cogenerator W extends to a
map f : Cγ →W as in Definition 1.4.

Corollary 1.7 Let F ⊆ Mod-R be a pretorsion-free class. Then the follow-
ing are equivalent

1. F is a precover class;

2. there is an F-precover of an injective cogenerator of Mod-R;

3. F = CogenC for a cofinendo module C.

Proof. 1. =⇒ 2. is clear. 2. =⇒ 3. Let W be an injective cogenerator
having an F-precover a : A → W . By Lemma 1.1 and the assumption on
F we know F = CogenA. Moreover, for any cardinal α all maps Aα → W
factor through a, hence A is cofinendo.
3. ⇒ 1. by Proposition 1.6.

A corresponding version of Corollary 1.3 and 1.7 in the setting of finitely
generated modules over an artin algebra can be found in [3, 4.6, 4.7].

6



2 Tilting and Cotilting Classes

In the category of finitely generated modules over an artin algebra, torsion
classes which are generated by a tilting module can be described in terms
of covariant finiteness. Similarly, torsion-free classes which are cogenerated
by a cotilting module can be described in terms of contravariant finiteness,
[1],[19]. We provide analogous results for arbitrary (co)tilting torsion(-free)
classes:

Let C ⊆ Mod-R. A module M ∈ Mod-R is C-projective (C-injective)
provided that the functor HomR(M,−) (HomR(−,M)) is exact on short
exact sequences of the form 0 → X → Y → Z → 0 where X,Y, Z ∈ C, cf.
[10, 2.6].

Theorem 2.1 Let R be a ring and T ⊆ Mod-R be a pretorsion class. The
following are equivalent:

1. T is a tilting torsion class;

2. every module has a special T -preenvelope;

3. there is a special T -preenvelope of R;

4. there is a T -preenvelope of R, b : R→ B, such that b is injective and
B is T -projective.

Proof. 1. =⇒ 2. Assume T is a tilting torsion class, so T = GenT = T⊥

for a tilting module T ∈ Mod-R. By [21, 6.8], for any module M , there is a
T -torsion resolution of M of the form

0 →M → T ′ → T (λ) → 0,

where T ′ ∈ T , λ is a cardinal, and Ext1R(T (λ), N) = 0 for all N ∈ T . So the
map M → T ′ is a special T -preenvelope of M .
2. =⇒ 3. is clear.
3. =⇒ 4. Let b : R → B be a special T -preenvelope. We then have an
exact sequence

0 −→ R
b−→B −→L −→ 0

where B ∈ T , and R and L are in ⊥T . Hence B ∈⊥ T , which shows that
HomR(B,−) is exact on any epimorphism with kernel in T . In particular,
B is T -projective.
4. =⇒ 1. Take b : R→ B as in 4. As in Corollary 1.3, 2.⇒3., we get that
T = Gen(B) and B is finendo. Since b is injective, B is faithful. Now, [10,
2.7] shows that T is a tilting torsion class.

In the theorem above, the assumption of T being a pretorsion class is
necessary. This is seen, e.g., for T equal to the class of all injective modules

7



(which always satisfies conditions 2., 3. and 4., but condition 1. is true iff
R is right hereditary and right noetherian).

In view of Theorem 2.1, it is an interesting problem to determine when
a tilting torsion class is an envelope class. We will present a sufficient con-
dition.

Given a tilting torsion class T ⊆ Mod-R, define TT as the family of
all classes H such that H is closed under extensions, there exists PH ∈ T
with P⊥

H = T , and ⊥T ⊇ H ⊇ Add(PH). For example, ⊥T ∈ TT . Also,
Add(P ) ∈ TT for each (partial tilting) P ∈ T such that P⊥ = T .

Proposition 2.2 Let R be a ring and T be a tilting torsion class in Mod-R.
Assume that there is G ∈ TT such that G is closed under direct limits. Then
T is an envelope class.

Proof. Let M ∈ Mod-R. Since Ext1R(PG , P
(κ)
G ) = 0 for all cardinals κ, [21,

6.8] gives an exact sequence

(∗) 0 −→M −→G −→P
(λ)
G −→ 0,

where G ∈ T and λ is a cardinal. Then (∗) is a generator for Ext1R(G,M)
in the sense of [22, 2.2.1]. From=20our assumption and [22, 2.2.6] it follows
that M has an G⊥-envelope. Since

T = (⊥T )⊥ ⊆ G⊥ ⊆ (Add(PG))⊥ = T ,

the claim is proved.

For example, T is a tilting envelope class if T = Mod-R, or if R is right
hereditary and right noetherian and T is the class of all injective modules.
These easy facts are consequences of Proposition 2.2 for G = Add(0) and
G = ⊥T , respectively.

We turn to the dual setting. First, notice the following property of
cotilting modules which underlines the duality with the tilting case:

Proposition 2.3 Let R be a ring, W be an injective module and C be a
cotilting module. Then there is an exact sequence

0 −→ C1 −→C0 −→W −→ 0

where C0, C1 ∈ Prod(C).

Proof. Let p : R(α) →W be an epimorphism, where α is a cardinal. Since
R(α) ∈ ⊥C = Cogen(C), there is a monomorphism R(α) → Cβ . So p extends
to an epimorphism f : Cβ → W . Let K = Ker(f) ∈ CogenC. By [7, 1.8],
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there is an exact sequence 0 −→ K −→Cγ −→L −→ 0 where L ∈ Cogen(C).
Consider the push-out diagram

0 0y y
0 −−−→ K −−−→ Cβ

f−−−→ W −−−→ 0y y ∥∥∥
0 −−−→ Cγ −−−→ E −−−→ W −−−→ 0y y

L Ly y
0 0

We are going to show that 0 −→ Cγ −→ E −→ W −→ 0 is the desired
sequence. Observe that L and Cβ are in ⊥C, thus E ∈ ⊥C = Cogen(C).
Again by [7, 1.8], there is an exact sequence 0 −→ E −→ Cδ −→ Y −→ 0
where Y ∈ Cogen(C) = ⊥C. But this sequence is split exact, because
Ext1R(Y,Cγ) ∼= Ext1R(Y,C)γ = 0 = Ext1R(Y,W ), so Ext1R(Y,E) = 0. This
shows that E ∈ Prod(C).

The following Lemma is dual to [10, 2.7]:

Lemma 2.4 Let R be a ring and F ⊆ Mod-R be a class of modules. Then
F is a cotilting torsion-free class iff F = Cogen(P ) for a faithful, cofinendo
and F-injective module P .

Proof. For the direct implication, we take C as the cotilting module with
F = Cogen(C). Clearly, C is faithful and F-injective. Let W be an injective
cogenerator of Mod-R. By Proposition 2.3, there is an exact sequence

0 −→ C1 −→C0 −→W −→ 0

where C0, C1 ∈ Prod(C). Since Ext1R(N,C1) = 0 for all N ∈ Prod(C),
the map C0 → W is a Prod(C)-precover of W . By Proposition 1.6, C is
cofinendo. For the other implication, let Cogen(P ) = F with P faithful,
cofinendo and F-injective. By Proposition 1.6, we have an F-precover π :
P γ → W of an injective cogenerator W of Mod-R. Since P is faithful, F
contains all projective modules. Then π is surjective, hence gives rise to an
exact sequence

(∗) 0 → P ′ → P γ
π→W → 0.

If M ∈ F , then any presentation 0 → K → F → M → 0 with F free is in
F . Since P is F-injective, the induced map Ext1R(M,P ) → Ext1R(F, P ) is
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monic. Since Ext1R(F, P ) = 0, we get M ∈ ⊥P , so Cogen(P ′) ⊆ F ⊆ ⊥P .
We prove that F = ⊥P ′. Let M ∈ Mod-R. Applying HomR(M,−) to (∗),
we get

(∗∗) HomR(M,P γ) π∗→ HomR(M,W ) → Ext1R(M,P ′) → Ext1R(M,P γ) .

If M ∈ F , then the precover property shows that π∗ is surjective. Since
F ⊆ ⊥P , (∗∗) gives M ∈ ⊥P ′. Conversely, if M ∈ ⊥P ′, then π∗ is surjective.
Since W is an injective cogenerator, ∩{Kerϕ | ϕ ∈ HomR(M,W )} = 0. By
surjectivity of π∗, ∩{Kerψ | ψ ∈ HomR(M,P γ)} = 0, so M ∈ F . It follows
that

Cogen(P ⊕ P ′) = Cogen(P ) = F = ⊥P ′ = ⊥(P ⊕ P ′),

so P ⊕ P ′ is a cotilting module cogenerating F .

Theorem 2.5 Let R be a ring and F ⊆ Mod-R be a pretorsion-free class.
The following are equivalent:

1. F is a cotilting torsion-free class;

2. every module has a special F-precover;

3. there exists a special F-precover of an injective cogenerator of Mod-R;

4. there is an F-precover, π : P → W , of an injective cogenerator W of
Mod-R such that π is surjective and P is faithful and F-injective.

Proof. 1. =⇒ 2. Assume F is a cotilting torsion-free class, so F =
Cogen(C) = ⊥C for a cotilting module C ∈ Mod-R. By [21, 6.9] (or [9,
2.14]), for any module M , there is an F-torsion-free resolution of M of the
form

0 → Cλ → C ′ →M → 0,

where C ′ ∈ F and λ is a cardinal. Since Ext1R(N,Cλ) = 0 for all N ∈ F ,
the map C ′ → M is a special F-precover of M . 2. =⇒ 3. is clear. 3.
=⇒ 4. Let π : P → W be a special F-cover of an injective cogenerator
W . There is κ such that R embeds into W κ. Since π is surjective, so is the
induced map πκ : P κ → W κ. Since R is projective, the embedding factors
through πκ, hence R embeds into P κ, and P is faithful. The F-injectivity
is shown by a dual argument to the one in the proof of Theorem 2.1, 3. ⇒
4. 4. =⇒ 1. Take π : P →W as in 4. As in Corollary 1.7, 2. ⇒ 3., we get
that F = Cogen(P ) and P is cofinendo. Now, Lemma 2.4 shows that F is
a cotilting torsion-free class.

In the theorem above, the assumption of F being a pretorsion-free class
is necessary as seen, e.g., for F equal to the classes of all projective or flat
modules.
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Corollary 2.6 Let R be a ring and F be a torsion-free class closed under
direct limits. Then F is a cover class containing all projective modules iff
F is a cotilting torsion-free class.
In this case, C is cotorsion whenever C is a module such that F ⊆⊥ C.

Proof. Assume that F is a cotilting torsion-free class. By [22, 2.2.8] and
Theorem 2.5, F is a cover class. Clearly, F contains all projective modules.
Conversely, assume that F is a cover class containing all projective modules.
Let P be the F-cover of an injective cogenerator W . We have the exact
sequence

0 → P ′ → P →W → 0,

where P ′ ∈ F , and by [22, Lemma 2.1.1], P ′ ∈ F⊥. So, W has a special
F-precover, and Theorem 2.5 applies. Finally, by the premise, F contains
all flat modules. So any module C ∈ Mod-R with ⊥C ⊇ F is cotorsion.

As illustrated by the following examples, the cotilting torsion-free classes
are quite frequent:

Example 2.7 Let R be a commutative domain and F be the class of all
torsion-free modules. By Enochs’ Theorem [22, Theorem 1.3.2], F is a cover
class. Clearly, F is a torsion-free class, so Theorem 2.5 implies that F is
a cotilting torsion-free class. Moreover, if W is an injective cogenerator for
Mod-R and 0 → F ′ → F → W → 0 is an F-cover of W then F ⊕ F ′ is a
cotilting module cogenerating F .

This can be generalized in the spirit of [20]: Let R be a ring and H =
(T ,F) be a hereditary torsion theory for Mod-R. Assume that R ∈ F and
that the radical filter corresponding to H has a cofinal subset of finitely
generated right ideals. Then F is a cover class by [20, Theorem], hence a
cotilting torsion-free class by Theorem 2.5.

The next example deals with the class of all flat modules. In case R is a
Prüfer domain, it is just a restatement of the previous one (cf. [13, IV.§1]):

Example 2.8 Let R be a ring and F the class of all flat modules. Clearly,
F is closed under direct limits. It is well known that F is a torsion-free class
iff R is left coherent and of weak global dimension ≤ 1. In that case, by [22,
3.1.12] and Corollary 2.6, F is a cotilting torsion-free class.

Observe that an analogous result for the class P of all projective modules
was already proved in [9, 2.13]. Namely, if P is torsion-free, then R is a right
hereditary left coherent and semiprimary ring, and P is a cotilting torsion-
free class.

Example 2.9 Let R be a ring and P ∈ Mod-R be ∗-module (e.g., let P be
a finitely generated tilting module). Then C = HomR(P,Q) is a cotilting
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right S-module, where S = EndPR and Q is any injective cogenerator of
Mod-R, [8, 1.2]. Since Ext1S(M,C) ∼= HomR(Tor1S(M,P ), Q) [5, VI.5.1],
and Tor commutes with direct limits [5, VI.1.3], Cogen(C) is a cotilting
torsion-free class closed under direct limits. Since Q is injective, C is even
a pure-injective right S-module.

For other examples where the cotilting modules are not duals of finitely
generated tilting modules, we refer to Example 3.6 below.

3 Unique Representing Modules

In the finite dimensional case, each finitely generated tilting and cotilting
module is a direct sum of indecomposable modules. So one can represent
tilting and cotilting classes by multiplicity free, or basic, generating tilting
modules and cogenerating cotilting modules, respectively, [2]. Such repre-
sentation is not available for classes of modules over arbitrary rings. Never-
theless, there are other module representations:
Let R be a ring and M ∈ Mod-R. Denote by spn(M) the minimal cardi-
nality of an R-spanning subset of M . Let T ⊆ Mod-R be a tilting torsion
class. Then trank(T ) is defined as the minimum of spn(T ), where T ranges
over all tilting modules such that T = Gen(T ).
As an illustration, recall [10, 2.12] which shows that for each cardinal λ there
are a ring R and a tilting torsion class T such that trank(T ) ≥ λ.

Dually, let F ⊆ Mod-R be a cotilting torsion-free class. Then crank(F)
is defined as the minimum of spn(C), where C ranges over all cotilting
modules such that F = Cogen(C).
For example, if R = Z, then crank(Mod-R) = ω, and crank(F) = 2ω for all
cotilting torsion-free classes F ( Mod-R, [14, 2.2].

Definition 3.1 Let R be a ring and T ∈ Mod-R. Then T is maximal tilting
provided that T =

⊕
α<κ Tα, where

(1) Tα is a tilting module for each α < κ;

(2) Tα 6∼= Tβ and Gen(Tα) = Gen(Tβ) for all α 6= β < κ;

(3) spn(Tα) = trank(Gen(T )) for all α < κ;

(4) if T ′ is a tilting module such that Gen(T ′) = Gen(T ) and spn(T ′) =
trank(Gen(T )), then there exists α < κ such that T ′ ∼= Tα.

Let C ∈ Mod-R. Then C is maximal cotilting provided that C =
∏
α<κCα,

where

(1’) Cα is a cotilting module for each α < κ;

(2’) Cα 6∼= Cβ and Cogen(Cα) = Cogen(Cβ) for all α 6= β < κ;
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(3’) spn(Cα) = crank(Cogen(T )) for all α < κ;

(4’) if C ′ is a cotilting module such that Cogen(C ′) = Cogen(C) and
spn(C ′) = crank(Cogen(C)), then there exists α < κ such that C ′ ∼=
Cα.

Note that any maximal tilting module is tilting, and any maximal cotilting
module is cotilting. We will show that there is a bijective correspondence
between tilting torsion classes (cotilting torsion free classes) and maximal
tilting (cotilting) modules.

For a ring R, denote by T the family of all tilting torsion classes in
Mod-R. Dually, C denotes the family of all cotilting torsion free classes in
Mod-R.

Proposition 3.2 Let R be a ring.

(i) Denote by M the class of all maximal tilting modules (up to isomor-
phism). Then the map b : M → T defined by b(T ) = Gen(T ) is
bijective.

(ii) Denote by N the class of all maximal cotilting modules (up to isomor-
phism). Then the map c : N → C defined by c(C) = Cogen(C) is
bijective.

Proof. (i) By Definition 3.1, b is well-defined and monic.
Let T be a tilting torsion class. Let A be a representative set of the iso-
morphism classes of all tilting modules M such that Gen(M) = T and
spn(M) = trank(T ). Let T = ⊕M∈AM . Then T is maximal tilting and
Gen(T ) = T , so b is surjective.
(ii) By a dual argument to (i).

If T = Mod-R, then the corresponding maximal tilting module is just
the direct sum of a representative set of all cyclic progenerators.

Let R = Z. If F = Mod-R, then the corresponding maximal cotilting
module is Q

ω⊕
∏
p∈P Z

ω
p∞ . If F ⊂ Mod-R, then there is a non-empty set, P ,

of primes such that F = {A ∈ Mod-Z | Tp(A) = 0 ∀p ∈ P}, [14, 2.2]. The
corresponding maximal cotilting module is Q

2ω ⊕
∏
p∈P Z

2ω

p∞ ⊕
∏
p/∈P J

ω
p .

In the case when the tilting class T (cotilting class C) is an envelope
(cover) class, there is another module representation available:

Definition 3.3 Let R be a ring and Q be a (fixed) injective cogenerator for
Mod-R. Define

T′ = {T ∈ T | T is an envelope class},

C′ = {C ∈ C | C is a cover class}.
Further, call P ∈ Mod-R an envelope module provided that there is a sub-
module P ′ ⊆ P satisfying
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(i) P ′ ∼= R,

(ii) P ⊕ P/P ′ is a partial tilting module, and

(iii) there exists no proper summand of P containing P ′.

Dually, C ∈ Mod-R is called a cover module provided that there is a sub-
module C ′ ⊆ C satisfying

(i’) C/C ′ ∼= Q,

(ii’) C ⊕ C ′ is a partial cotilting module,

(iii’) there is no non-zero submodule of C ′ which is a summand of C.

By condition (i’), each cover module is faithful.

Proposition 3.4 Let R be a ring and Q an injective cogenerator for Mod-R.
Denote by B the class of all cover modules (up to isomorphism). Define
ρ : C′ → B by ρ(C) = C, where C → Q is the C-cover of Q.
Then ρ is injective and Im ρ contains all cover modules C such that Cogen(C)
is closed under direct limits.

Proof. First, we show that ρ is well-defined. Take C ∈ C′. Let 0 → C ′ ↪→
C → Q → 0 be an exact sequence, where C → Q is the C-cover of Q (the
C-cover is surjective as C contains all projective modules). Then (i’) is clear,
and (iii’) holds by [22, 1.2.8]. Moreover, C = Cogen(C) by Lemma 1.1, and
as in (the proof of) Lemma 2.4, we get

Cogen(C ′) ⊆ Cogen(C) = Cogen(C ⊕ C ′) = C = ⊥C ′ ⊆ ⊥C,

so ⊥(C⊕C ′) = ⊥C ′, and (ii’) holds. So ρ is well-defined. Since Cogen(ρ(C)) =
C, ρ is injective.
Let C ∈ B be such that Cogen(C) is closed under direct limits. Put
C = Cogen(C). By (ii’), C ⊆ ⊥C ′, so C → C/C ′ ∼= Q is a special C-precover
of Q. Again by (ii’), we get that C is C-injective. Since C is faithful, we
obtain from Theorem 2.5 that C ∈ C, and Corollary 2.6 gives C ∈ C′. By the
uniqueness of covers [22, 1.2.6], we get ρ(C) ∼= C.

Proposition 3.5 Let R be a ring. Denote by Q the class of all envelope
modules (up to isomorphism). Define π : T′ → Q by ρ(T ) = P , where
R→ P is a Q-envelope of R.
Then π is injective, and Imπ contains all envelope modules P such that
⊥ Gen(P ) is closed under direct limits.

Proof. Dual to the proof of Proposition 3.4, using Corollary 2.2 instead of
Corollary 2.6.
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Note that if ⊥ Gen(P ) is closed under direct limits in Proposition 3.5,
then Gen(P ) consists of cotorsion modules; in particular, P is then cotorsion.
In fact, the module T ′ = P ⊕ P/P ′ in Proposition 3.5 is a tilting module
such that Gen(T ′) = T . Let T be any tilting module with Gen(T ) = T .
Then there is a T -preenvelope of R of the form

0 → R→ Tn → T ′′ → 0.

By (the proof of) [22, 1.2.2], T ′ is isomorphic to a direct summand of Tn⊕T ′′.
In particular, spn(T ′) ≤ spn(Tn ⊕ T ′′). Since T ′′ is a factor of Tn, we infer
that ω · trank(T ) = ω · spn(T ′). In particular, trank(T ) = spn(T ′) provided
that trank(T ) ≥ ω.
Dually, the module C⊕C ′ in Proposition 3.4 is a cotilting module. Neverthe-
less, κ = spn(C⊕C ′) may be much bigger than crank(F), since κ ≥ spn(Q)
where Q is the (fixed) injective cogenerator for Mod-R. We don’t know
whether a dual version of the previous remark holds e.g. when Q is the
minimal injective cogenerator of Mod-R.

We finish by illustrating the above notions in the category of abelian
groups. So assume R = Z. Then the cotilting torsion-free classes are always
closed under direct limits, cf. [14, 2.2]. So Proposition 3.4 implies that the
classes are uniquely represented by the (cotorsion) cover modules. We will
show that in this case all cover modules are injective:

Example 3.6 Let R = Z, P be the set of all primes in Z, andW an injective
cogenerator of Mod-Z. Let Q =

∏
p∈P Zp∞ . Clearly, there is a cardinal λ

such that W is isomorphic to a summand in Qλ.
Let F be a cotilting class. By [14, 2.2], there is a subset P ⊆ P such that
F = {A ∈ Mod-Z | Tp(A) = 0, ∀p ∈ P}. Note that F is closed under direct
limits. If P = ∅, then F = Mod-R, so the corresponding cover module is
C = W (and C ′ = 0).
Let p ∈ P . Consider the canonical exact sequence

(∗) 0 → Jp ↪→ Dp
φ→ Zp∞ → 0,

where Dp =
⋃
n<ω Jpp

−n ∼= Q
(2ω) is injective.

Since Jp is a cotorsion group, we have Ext(F, Jp) = 0 for all torsion-free
groups F . Let A ∈ F . We have the exact sequence 0 → T (A) → A →
A/T (A) → 0. We claim that φ is an F-cover of Zp∞ . Since Jp is re-
duced, it suffices to show that Ext(T (A), Jp) = 0 (and then apply Corol-
lary 2.6 and [22, 1.2.8]). However, there is an exact sequence 0 → T (A) →⊕

q∈P\P Z
(γq)
q∞ → D → 0, where D is divisible. The claim now follows from

the fact that Ext(Zq∞ , Jp) = 0 for all p ∈ P and q ∈ P\P . (Indeed, we have
the exact sequence (∗), and Hom(Zq∞ ,Zp∞) = 0).
Let q ∈ P \ P . Then the identity map Zq∞ → Zq∞ is an F-cover of Zq∞ .
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Let D′ =
∏
p∈P J

λ
p and D =

∏
p∈P D

λ
p ⊕

∏
q∈P\P Z

λ
q∞ . By [22, 1.2.9],

0 → D′ ↪→ D
ψ→ Qλ → 0

is an F-precover of Qλ. Since D′ is reduced, Corollary 2.6 and [22, 1.2.8]
show that ψ is an F-cover of Qλ.
Finally, the composition of ψ with the projection, π, of Qλ on to the sum-
mand W , is an F-precover of W . Let E be the divisible part of Ker(πψ).
Then D = E ⊕ C for some (divisible) C. The restriction, f , of πψ to C,
maps on to W . Let C ′ = Ker f = Ker(πψ) ∩ C. Then f is an F-precover
of W . Since C ′ is reduced, Corollary 2.6 and [22, 1.2.8] show that f is the
F-cover of W . Clearly, C is injective (and C ′ is reduced cotorsion, hence
pure injective).
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