
V. Sgurev et al. (Eds.): Intelligent Systems: From Theory to Practice, SCI 299, pp. 181–199.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Time Accounting Artificial Neural Networks
for Biochemical Process Models

Petia Georgieva, Luis Alberto Paz Suárez, and Sebastião Feyo de Azevedo*

Abstract. This paper is focused on developing more efficient computational
schemes for modeling in biochemical processes. A theoretical framework for
estimation of process kinetic rates based on different temporal (time accounting)
Artificial Neural Network (ANN) architectures is introduced. Three ANNs that
explicitly consider temporal aspects of modeling are exemplified: i) Recurrent
Neural Network (RNN) with global feedback (from the network output to the
network input); ii) Time Lagged Feedforward Neural Network (TLFN) and iii)
Reservoir Computing Network (RCN). Crystallization growth rate estimation is
the benchmark for testing the methodology. The proposed hybrid (dynamical
ANN & analytical submodel) schemes are promising modeling framework when
the process is strongly nonlinear and particularly when input-output data is the
only information available.

1 Introduction

The dynamics of chemical and biochemical processes are usually described by
mass and energy balance differential equations. These equations combine two
elements, the phenomena of conversion of one reaction component into another
(i.e. the reaction kinetics) and the transport dynamics of the components through
the reactor. The identification of such mathematical models from experimental
input/output data is still a challenging issue due to the inherent nonlinearity and
complexity of this class of processes (for example polymerization or fermentation

*Petia Georgieva
Signal Processing Lab, IEETA, DETI
University of Aveiro, 3810-193 Aveiro, Portugal
e-mail: petia@ua.pt

Luis Alberto Paz Suárez . Sebastião Feyo de Azevedo
Department of Chemical Engineering, Faculty of Engineering,
University of Porto, 4200-465 Porto, Portugal
e-mail: sfeyo@fe.up.pt

182 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

reactors, distillation columns, biological waste water treatment, ect.) The most
difficult problem is how to model the reaction kinetics and more particularly, the
reaction rates. The traditional way is to estimate the reaction rates in the form of
analytical expressions, Bastin and Dochain 1990. First, the parameterized structure
of the reaction rate is determined based on data obtained by specially designed
experiments. Then the respective parameters of this structure are estimated. Reli-
able parameter estimation is only possible if the proposed model structure is
correct and theoretically identifiable, Wolter and Pronzato 1997. Therefore the
reaction rate analytical structure is usually determined after a huge number of
expensive laboratory experiments. It is further assumed that the initial values of
the identified parameters are close to the real process parameters, Noykove et al.
2002, which is typically satisfied only for well known processes. The above con-
siderations motivated a search for alternative estimation solutions based on
computationally more attractive paradigms as are the Artificial Neural Networks
(ANNs). The interest in ANNs as dynamical system models is nowadays increas-
ing due to their good non-linear time-varying input-output mapping properties.
The balanced network structure (parallel nodes in sequential layers) and the non-
linear transfer function associated with each hidden and output nodes allows
ANNs to approximate highly non-linear relationships without a priori assumption.
Moreover, while other regression techniques assume a functional form, ANNs
allow the data to define the functional form. Therefore, ANNs are generally be-
lieved to be more powerful than many other nonlinear modeling techniques.

The objective of this work is to define a computationally efficient framework to
overcome difficulties related with poorly known kinetics mechanistic descriptors of
biochemical processes. Our main contribution is the analytical formulation of a model-
ing procedure based on time accounting artificial neural networks (ANNs), for kinetic
rates estimation. A hybrid (ANN & phenomenological) model and a procedure for
ANN supervised training when target outputs are not available are proposed. The
concept is illustrated on a sugar crystallization case study where the hybrid model
outperforms the traditional empirical expression for the crystal growth rate.

The paper is organized as follows. In the next section a hybrid model of a general
chemical or biochemical process is introduced, where a time accounting ANN is as-
sumed to model the process kinetic rates in the framework of a nonlinear state space
analytical process model. In section 3 three temporal ANN structures are discussed.

In section 4 a systematic ANN training procedure is formulated assuming that
all kinetics coefficients are available but not all process states are measured. The
proposed methodology is illustrated in section 5 for crystallization growth rate
estimation.

2 Knowledge Based Hybrid Models

The generic class of reaction systems can be described by the following equations,
Bastin and Dochain 1990

() xUDXTXK
dt

dX +−= ,ϕ (1)

Time Accounting Artificial Neural Networks for Biochemical Process Models 183

() TUTdTXb
dt

dT +−= 0,ϕ (2)

where, for Ν∈mn, , the constants and variables denote

() n
n RtxtxX ∈=)(),.......(1 Concentrations of total amounts of n process

components

[] mn
m RkkK ×∈= ,.......1

kinetics coefficients (yield, stoichiometric, or other)

() mT
m R∈= ϕϕϕ ,.......1 Process kinetic rates

T Temperature

mRb ∈ Energy related parameters

qin / V Feeding flow/Volume
D
do

Dilution rate
Heat transfer rate related parameter

xU and TU are the inputs by which the process is controlled to follow a desired

dynamical behavior. The nonlinear state-space model (1) proved to be the most
suitable form of representing several industrial processes as crystallization and
precipitation, polymerization reactors, distillation columns, biochemical fermenta-
tion and biological systems. Vector (ϕ) defines the rate of mass consumption or

production of components. It is usually time varying and dependent of the stage
of the process. In the specific case of reaction process systems ϕ represents the

reaction rate vector typical for chemical or biochemical reactions that take place in
several processes, such as polymerization, fermentation, biological waste water
treatment, etc. In nonreaction processes as for example crystallization and precipi-
tation, ϕ represents the growth or decay rates of chemical species. In both cases

(reaction or nonreaction systems) ϕ models the process kinetics and is the key

factor for reliable description of the components concentrations. In this work,
instead of an exhaustive search for the most appropriate parameterized reaction
rate structure, three temporal (time accounting) ANN architectures are applied to
estimate the vector of kinetic rates. The ANN sub-model is incorporated in the
general dynamical model (1) and the mixed structure is termed knowledge-based
hybrid model (KBHM), see Fig.1. A systematic procedure for ANN-based estima-
tion of reaction rates is discussed in the next section.

data-based
submodel

analytical
submodel

process model

Fig. 1 Knowledge-based hybrid model (KBHM)

184 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

3 Time Accounting Artificial Neural Networks

The Artificial Neural Network (ANN) is a computational structure inspired by the
neurobiology. An ANN is characterized by its architecture (the network topology and
pattern of connections between the nodes), the method of determining the connection
weights, and the activation functions that employs. The multi-layer perceptron
(MLP), which constitute the most widely used network architecture, is composed of a
hierarchy of processing units organized in a parallel-series sets of neurons and layers.
The information flow in the network is restricted to only one direction from the input
to the output, therefore a MLP is also called Feedforward Neural Network (FNN).
FNNs have been extensively used to solve static problems as classification, feature
extraction, pattern recognition. In contrast to the FNN, the Recurrent Neural Network
(RNN) processes the information in both (feedforward and feedback) directions due
to the recurrent relation between network outputs and inputs, Mandic and Chambers
2001. Thus the RNN can encode and learn time dependent (past and current) infor-
mation which is interpreted as memory. This paper specifically focuses on compari-
son of three different types of RNNs, namely, i) RNN with global feedback (from
the network output to the network input); ii) Time lagged feedforward neural network
(TLFN), and iii) Reservoir Computing Network (RCN).

Recurrent Neural Network (RNN) with global feedback
An example of RNN architecture where past network outputs are fed back as in-
puts is depicted in Fig. 2. It is similar to Nonlinear Autoregressive Moving Aver-
age with eXogenios input (NARMAX) filters, Haykin 1999.The complete RNN
input consists of two vectors formed by present and past network exogenous in-
puts (r) and past fed back network outputs (p) respectively.

Fig. 2 RNN architecture

The RNN model implemented in this work is the following

[]pru ,=NN (complete network input)
(3)

[])(),....(),.....(),....(11 lkrkrlkrkr cc −−=r (network exogenous inputs)
(4)

Time Accounting Artificial Neural Networks for Biochemical Process Models 185

[])(),....1(22 hknkn −−=p (recurrent network inputs)
(5)

11211 bpWrWx +⋅+⋅= (network states)
(6)

() ()xxxxn −− +−= eeee /1 (hidden layer output)
(7)

21212 bn +⋅= nw (network output) ,
(8)

where 2
11

×∈ mRW , 2
12

×∈ mRW , mR ×∈ 1
21w , 1

1
×∈ mRb , Rb ∈2 are the network

weights (in matrix form) to be adjusted during the ANN training, m is the number
of nodes in the hidden layer. l is the number of past exogenous input samples and
h is the number of past network output samples fed back to the input. The RNNs
are a powerful technique for nonlinear dynamical system modeling, however their
main disadvantage is that they are difficult to train and stabilize. Due to the simul-
taneous spatial (network layers) and temporal (past values) aspects of the optimi-
zation, the static Backpropagation (BP) learning method has to be substituted by
the Backpropagation through time (BPTT) learning. BPTT is a complex and costly
training method, which does not guarantee convergence and often is very time
consuming, Mandic and Chambers 2001.

Time lagged feedforward neural network (TLFN)
TLFN is a dynamical system with a feedforward topology. The dynamic part is a
linear memory, Principe et al. 2000. TLFN can be obtained by replacing the neu-
rons in the input layer of an MLP with a memory structure, which is sometimes
called a tap delay-line (see Fig. 3). The size of the memory layer (the tap delay)
depends on the number of past samples that are needed to describe the input char-
acteristics in time and it has to be determined on a case-by-case basis. When the
memory is at the input the TLFN is also called Focused Time delay Neural Net-
work (TDNN). There are other TLFN topologies where the memory is not fo-
cused only at the input but can be distributed over the next network layers. The
main advantage of the TDNN is that it can be trained with the static BP method.

z -1

x(n)

x(n-1)

x(n-2)

x(n-k)

z -1

z -1
z -1

PE

PE

PE

Fig. 3 RNN architecture

Reservoir Computing Network (RCN).
RCN is a concept in the field of machine learning that was introduced independ-
ently in three similar descriptions, namely, Echo State Networks (Jaeger 2001),
Liquid State Machines (Maass et al. 2002) and Backpropagation-Decorelation

186 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

learning rule (Steil 2004). All three techniques are characterized by having a fixed
hidden layer usually with randomly chosen weights that is used as a reservoir of
rich dynamics and a linear output layer (termed also readout layer), which maps the
reservoir states to the desired outputs (see Fig. 4). Only the output layer is trained
on the response to input signals, while the reservoir is left unchanged (except when
making a reservoir re-initialization). The concepts behind RCN are similar to ideas
from both kernel methods and RNN theory. Much like a kernel, the reservoir pro-
jects the input signals into a higher dimensional space (in this case the state space
of the reservoir), where a linear regression can be performed. On the other hand,
due to the recurrent delayed connections inside the hidden layer, the reservoir has a
form of a short term memory, called the fading memory which allows temporal
information to be stored in the reservoir. The general state update equation for the
nodes in the reservoir and the readout output equation are as follows:

()res
bias

res
out

res
inp

res
res WkyWkuWkxWfkx +++=+)()()()1((9)

out
bias

outr
out

out
inp

out
res WkyWkuWkxWky ++++=+)()()1()1((10)

Where: u(k) denotes the input at time k; x(k) represents the reservoir state; y(k) is
the output; and f () is the activation function (with the hyperbolic tangent tanh() as
the most common type of activation function). The initial state is usually set to

x(0)=0. All weight matrices to the reservoir (denoted as resW) are initialized ran-

domly , while all connections to the output (denoted as outW) are trained. In the

general state update equation (3), it is assumed a feedback not only between the

reservoir neurons expressed by the term)(kxW res
res , but also a feedback from the

output to the reservoir accounted by)(kyW res
out . The first feedback is considered as

the short-term memory while the second one as a very long term memory. In order
to simplify the computations Following the idea of Antonelo et al. 2007, for the
present study the second feedback is discarded and a scaling factor α is intro-
duced in the state update equation

()res
bias

res
inp

res
res WkuWkxWkxfkx +++−=+)()()()1()1(αα (11)

Parameter α serves as a way to tune the dynamics of the reservoir and improve its
performance. The value of α can be chosen empirically or by an optimization.
The output calculations are also simplified (Antonelo et al. 2007) assuming no
direct connections from input to output or connections from output to output

out
bias

out
res WkxWky ++=+)1()1((12)

Each element of the connection matrix res
resW is drawn from a normal distribution

with mean 0 and variance 1. The randomly created matrix is rescaled so that the
spectral radius maxλ (the largest absolute eigenvalue) is smaller than 1. Standard

settings of maxλ lie in a range between 0.7 and 0.98. Once the reservoir topology is

Time Accounting Artificial Neural Networks for Biochemical Process Models 187

set and the weights are assigned, the reservoir is simulated and optimized on the
training data set. It is usually done by linear regression (least squares method) or
ridge regression, Bishop 2006. Since the output layer is linear, regularization can be
easily applied by adding a small amount of Gaussian noise to the RCN response.

The main advantage of RCN is that it overcomes many of the problems of tra-
ditional RNN training such as slow convergence, high computational requirements
and complexity. The computational efforts for training are related to computing
the transpose of a matrix or matrix inversion. Once trained, the resulting RCN-
based system can be used for real time operation on moderate hardware since the
computations are very fast (only matrix multiplications of small matrices).

Fig. 4 Reservoir Computing (RC) network with fixed connections (solid lines) and adapt-
able connections (dashed lines)

4 Kinetic Rates Estimation by Time Accounting ANN

The ANNs are a data-based modeling technique where during an optimization
procedure (termed also learning) the network parameters (the weights) are updated
based on error correction principle. At each iteration, the error between the net-
work output and the corresponding reference has to be computed and the weights
are changed as a function of this error. This principle is also known as supervised
learning. However, the process kinetic rates are usually not measured variables,
therefore targets (references) are not available and the application of any data-
based modeling technique is questionable. A procedure is proposed in the present
work to solve this problem. The idea is to propagate the ANN output through a
fixed partial analytical model (Anal. model) until it comes to a measured process
variable (see Fig.5). The proper choice of this Anal. model and the formulation of
the error signal for network updating are discussed below. The procedure is based
on the following assumptions:

(A1) Not all process states of model (1) are measured.
(A2) All kinetics coefficients are known, that is b and all entries of matrix K are
available.

188 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

A N N
 in X

 T a rg e t
a v a i la b le

 e r ro r

A n a l.
 m o d e l

Fig. 5 Hybrid ANN training structure

For more convenience, the model (1) is reformulated based on the following aug-
mented vectors

⎥
⎦

⎤
⎢
⎣

⎡
=

T

X
X aug , 1+∈ n

aug RX , ⎥
⎦

⎤
⎢
⎣

⎡
=

b

K
K aug , mn

aug RK ×+∈)1(. (13)

Then (1) is rewritten as

() UXDXK
dt

dX
augaugaug

aug +−= ϕ with ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

T

x

U

U
U

d

D
D ,

0

0

0

 (14)

Step 1: State vector partition A

The general dynamical model (8) represents a particular class of nonlinear state-
space models. The nonlinearity lies in the kinetics rates ()augXϕ that are nonlin-

ear functions of the state variables augX . These functions enter the model in the

form ()augaug XK ϕ , where augK is a constant matrix, which is a set of linear

combinations of the same nonlinear functions)(),.......(1 augmaug XX ϕϕ . This par-

ticular structure can be exploited to separate the nonlinear part from the linear part
of the model by a suitable linear state transformation. More precisely, the follow-
ing nonsingular partition is chosen, Chen and Bastin 1996.

⎥
⎦

⎤
⎢
⎣

⎡
=

b

a
aug K

K
LK , () lKrank aug = , (15)

where nnRL ×∈ is a quadratic permutation matrix, aK is a lxm full row rank sub-

matrix of augK and mln
b RK ×−∈)(. The induced partitions of vectors augX and U

are

⎥
⎦

⎤
⎢
⎣

⎡
=

b

a
aug X

X
LX , ⎥

⎦

⎤
⎢
⎣

⎡
=

b

a

U

U
LU , (16)

with l
a RX ∈ , l

a RU ∈ , ln
b RX −∈ , ln

b RU −∈ .

Time Accounting Artificial Neural Networks for Biochemical Process Models 189

According to (9), model (8) is also partitioned into two submodels

() aabaa
a UXDXXK

dt

dX
+−= ,ϕ (17)

() bbbab
b UXDXXK

dt

dX
+−= ,ϕ (18)

Based on (9), a new vector lnRZ −+∈ 1 is defined as a linear combination of the
state variables

ba XXAZ += 0 , (19)

where matrix llnRA ×−+∈)1(
0 is the unique solution of

00 =+ ba KKA , (20)

that is

1
0

−−= abKKA , (21)

Note that, a solution for 0A exist if and only if aK is not singular. Hence, a

necessary and sufficient condition for the existence of a desired partition (9), is
that aK is a pxm full rank matrix, which was the initial assumption. Then, the first

derivative of vector Z is

()[] ()
() babababa

bbbabaabaa

ba

UUAXXADXXKKA

UXDXXKUXDXXKA

dt

dX

dt

dX
A

dt

dZ

+++−+=

+−++−=

+=

000

0

0

)(,)(

,,

ϕ
ϕϕ (22)

Since matrix 0A is chosen such that eq. (13) holds, the term in (15) related with ϕ

is cancelled and we get

ba UUAZD
dt

dZ ++−= 0 (23)

The state partition A results in a vector Z whose dynamics, given by eq. (15), is
independent of the kinetic rate vector ϕ . In general, (9) is not an unique partition

and for any particular case a number of choices are possible.

Step 2: State vector partition B (measured & unmeasured states)

Now a new state partition is defined as sub-vectors of measured and unmeasured
states 21, XX , respectively. The model (8) is also partitioned into two submodels

190 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

() 11211
1 , UXDXXK

dt

dX
+−= ϕ (24)

() 22212
2 , UXDXXK

dt

dX
+−= ϕ (25)

From state partitions A and B, vector Z can be represented in the following way

22110 XAXAXXAZ ba +=+= . (26)

The first representation is defined in (12), then applying linear algebra transforma-
tions 1A and 2A are computed to fit the equality (18). The purpose of state

partitions A and B is to estimate the unmeasured states (vector 2X) inde-

pendently of the kinetics rates (vector ϕ). The recovery of 2X is defined as

state observer .

Step 3: State observer

Based on (16) and starting with known initial conditions, Z can be estimated as
follow (in this work the estimations are denoted by hat)

)()(ˆ
ˆ

____0 boutbinaoutain FFFFAZD
dt

Zd −+−+−= (27)

Then according to (18) the unmeasured states 2X are recovered as

)ˆ(ˆ
11

1
22 XAZAX −= − (28)

Note that, estimates 2X̂ exist if and only if 2A is not singular, Bastin and Dochain

1990. Hence, a necessary and sufficient condition for observability of the un-
measured states is that 2A is a full rank matrix.

Step 4: Error signal for NN training

[]TXXX 21
ˆ=

xE

-

⎥
⎦

⎤
⎢
⎣

⎡
=

x

x

E

E
BEϕ

Error signal for
NN updating

hybX

Biochemical
reactor model

+
(state observer)

AHM

Xaug
ANN

NNϕ

Fig. 3 Hybrid NN-based reaction rates identification structure

Time Accounting Artificial Neural Networks for Biochemical Process Models 191

The hybrid structure for NN training is shown in Fig. 3, where the adaptive hybrid
model (AHM) is formulated as

)(hybaughybNNaug
hyb XXUXDK

dt

dX
−Ω++−= ϕ (29)

The true (but unknown) process behavior is assumed to be represented by (8).
Then the error dynamics is modeled as the difference between (8) and (21)

)()()(
)(

hybaughybaugNNaug
hybaug XXXXDK

dt

XXd
−Ω+−−−=

−
ϕϕ (30)

The following definitions take place:

)(hybaugx XXE −= is termed as the observation error,

NNE ϕϕϕ −= is the error signal for updating the ANN parameters.

augX consists of the measured (1X) and the estimated (2X̂) states. Thus, (22) can

be rearranged as follows

xaug
x EDEK

dt

dE
)(Ω−−= ϕ (31)

and from (23) the error signal for NN training is

[] []1,1 11 Ω−=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Ω−= −− DKB

E

E
B

E

E
DKE aug

x

x

x

x
augϕ (32)

Ω is a design parameter which defines the speed of the observation error conver-
gence. The necessary identifiability condition for the kinetic rate vector is the non

singularity of matrix augK . Note that, the error signal for updating the network

parameters is a function of the observation error (xE) and the speed of the obser-

vation error (xE). The intuition behind is that the network parameters are changed

proportionally to their effect on the prediction of the process states and the predic-
tion of their dynamics.

Step 5: Optimization porcesure - Levenberg-Marquardt Quasi-Newton algorithm

The cost function to be minimized at each iteration of network training is the sum
of squared errors, where N is the time instants over which the optimization is per-
formed (batch mode of training)

[]∑
=

=
N

i
k iE

N
J

1

2)(
1

ϕ (33)

A number of algorithms have been proposed to update the network parameters
(w). For this study the Levenberg-Marquardt (LM) Quasi Newton method is the
chosen algorithm due to its faster convergence than the steepest descent or

192 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

conjugate gradient methods, Hagan et al. 1996. One (k) iteration of the classical
Newton’s method can be written as

kkk gHww
k

1
1

−
+ −= ,

k

k
k w

J
g

∂
∂

= ,
kk

k
k ww

J
H

∂∂
∂

=
2

 (34)

where kg is the current gradient of the performance index (25) kH is the Hessian

matrix (second derivatives) of the performance index at the current values (k) of the
weights and biases. Unfortunately, it is complex and expensive to compute the Hes-
sian matrix for a dynamical ANN. The LM method is a modification of the classical
Newton method that does not require calculation of the second derivatives. It is
designed to approach second-order training speed without having to compute di-
rectly the Hessian matrix. When the performance function has the form of a sum of
error squares (25), at each iteration the Hessian matrix is approximated as

k
T
kk JJH = (35)

where kJ is the Jacobian matrix that contains first derivatives of the network errors

(ke) with respect to the weights and biases

k

k

k w

E
J

∂

∂
= ϕ , (36)

The computation of the Jacobian matrix is less complex than computing the Hes-
sian matrix. The gradient is then computed as

kkk EJg ϕ= (37)

The LM algorithm updates the network weights in the following way

[] k
TT

kk EJIJJww
kkk ϕμ 1

1

−
+ +−= (38)

When the scalar μ is zero, this is just Newton’s method, using the approximate Hes-
sian matrix. When μ is large, this becomes gradient descent with a small step size.
Newton’s method is faster and more accurate near an error minimum, so the aim is
to shift towards Newton’s method as quickly as possible. Thus, μ is decreased after
each successful step (reduction in performance function) and is increased only when
a tentative step would increase the performance function. In this way, the perform-
ance function will always be reduced at each iteration of the algorithm.

5 Case Study - Estimation of Sugar Crystallization Growth
Rate

Sugar crystallization occurs through mechanisms of nucleation, growth and ag-
glomeration that are known to be affected by several not well-understood operat-
ing conditions. The search for efficient methods for process description is linked
both to the scientific interest of understanding fundamental mechanisms of the

Time Accounting Artificial Neural Networks for Biochemical Process Models 193

crystallization process and to the relevant practical interest of production require-
ments. The sugar production batch cycle is divided in several phases. During the
first phase the pan is partially filled with a juice containing dissolved sucrose. The
liquor is concentrated by evaporation, under vacuum, until the supersaturation
reaches a predefined value. At this point seed crystals are introduced into the pan
to induce the production of crystals (crystallization phase). As evaporation takes
place further liquor or water is added to the pan. This maintains the level of super-
saturation and increases the volume contents. The third phase consists of tighten-
ing which is controlled by the evaporation capacity, see Georgieva et al. 2003 for
more details. Since the objective of this paper is to illustrate the technique intro-
duced in section 4, the following assumptions are adopted:

i) Only the states that explicitly depend on the crystal growth rate are extracted
from the comprehensive mass balance process model;
ii) The population balance is expressed only in terms of number of crystals;
iii) The agglomeration phenomenon is neglected.

The simplified process model is then

ffff
s PurBFGk

dt

dM ρ+−= 1 (39)

Gk
dt

dMc
1= (40)

dcJbFGk
dt

dT
vapf

m +++= 2 (41)

Gk
dt

dm
3

0 = (42)

where sM is the mass of dissolved sucrose, cM is the mass of crystals, mT is the

temperature of the massecuite, 0m is the number of crystals. fPur and fρ are

the purity (mass fraction of sucrose in the dissolved solids) and the density of the
incoming feed. fF is the feed flowrate, vapJ is the evaporation rate and b, c, d

are parameters incorporating the enthalpy terms and specific heat capacities. They
are derived as functions of physical and thermodynamic properties. The full state

vector is []Tmcsaug mTMMX 0= , with []Taug kkkkK 3211−= . Now

we are in a position to apply the formalism developed in sections 2.2 and 2.3 for
this particular reaction process.

We chose the following state partition A : ca MX = , []Tmsb mTMX 0=
and the solution of equation (13) is

T

k

k

k

k
A ⎥

⎦

⎤
⎢
⎣

⎡
−−=

1

3

1

2
0 1 (43)

194 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

cM and mT are the measured states, then the unique state partition B is

[]Tmc TMX =1 , []Ts mMX 02 = ,

Taking into account (32), the matrices of the second representation of vector Z in
(18) are computed as

T

k

k

k

k
A

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−=
010

1
1

3

1

2

1 ,

T

A ⎥
⎦

⎤
⎢
⎣

⎡
=

100

001
2

For this case D=0, then the estimation of the individual elements of Z are

0
1

3
3

1

2
21 ˆˆ,ˆ,ˆˆ mM

k

k
ZTM

k

k
ZMMZ cmcsc +−=+−=+= (44)

The analytical expression for the estimation of the unmeasured states is then

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

m

cs

T

M

k

k
k

k

Z

Z

Z

m

M

0

1

01

ˆ

ˆ

ˆ

100

001

ˆ

ˆ

1

3

1

2

3

2

1

0
 (45)

The observation error is defined as

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

mhybm

hyb

chybc

shybs

x

TT

mm

MM

MM

E
00ˆ

ˆ

 (46)

In the numerical implementation the first derivative of the observation error is
computed as the difference between the current)(kEx and the previous value

)1(−kEx of the observation error divided by the integration step (tΔ)

t

kEkE
E xx

x Δ
−−=)1()((47)

The three types of time accounting ANNs were trained with the same training data
coming from six industrial batches (training batches). The physical inputs to all
networks are (mc TM , , 0m , sM), the network output is NNG . Two of the inputs

(mc TM ,) are measurable, the others (0m , sM) are estimated. In order to improve

the comparability between the different networks a linear activation function is
located at the single output node (see Fig. 2, Layer 2- purelin) and hyperbolic

Time Accounting Artificial Neural Networks for Biochemical Process Models 195

tangent functions are chosen for the hidden nodes (Fig. 2, Layer 1 - tansig).
Though other S-shaped activation functions can be also considered for the hidden
nodes, our choice was determined by the symmetry of the hyperbolic tangent
function into the interval (-1, 1).

The hybrid models are compared with an analytical model of the sugar crystal-
lization, reported in Oliveira et al. 2009, where G is computed by the following
empirical correlation

[] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−⎥

⎦

⎤
⎢
⎣

⎡
+

−=
m

c
sol

m
g V

V
PS

TR
KG 21)1(863.13exp)1(

)273(

57000
exp , (48)

where S is the supersaturation, solP is the purity of the solution and mc VV / is the

volume fraction of crystals. gK is a constant, optimized following a non-linear

least-squares regression.
The performance of the different models is examined with respect to prediction

quality of the crystal size distribution (CSD) at the end of the process which is
quantified by two parameters - the final average (in mass) particle size (AM) and
the final coefficient of particle variation (CV). The predictions given by the mod-
els are compared with the experimental data for the CSD (Table 1), coming from 8
batches not used for network training (validation batches). The results with respect
to different configurations of the networks are summarized in Tables 2, 3, and 4.
All hybrid models (eqs. 31 +RNN/TLNN/RCN) outperform the empirical model
(37) particularly with respect to predictions of CV. The predictions based on
TLFN and TCN are very close especially for higher reservoir dimension. Increas-
ing the RCN hidden nodes (from 100 to 200) reduces the AM and CV prediction
errors, however augmenting the reservoir dimension from 200 to 300 does not
bring substantial improvements. The hybrid models with RNN exhibit the best
performance though the successful results reported in Table 2 were preceded by a
great number of unsuccessful (not converging) trainings. As with respect to learn-
ing efforts the RCN training takes in average few seconds on an Intel Core2 Duo
processor based computer and by far is the easiest and fastest dynamical regressor.

Table 1 Final CSD – experimental data versus analytical model predictions

batch No. experimental data analytical model (eqs. 31+ eq. 37)
 AM[mm] CV [%] AM[mm] CV [%]
1 0.479 32.6 0.583 21.26
2 0.559 33.7 0.542 18.43
3 0.680 43.6 0.547 18.69
4 0.494 33.7 0.481 14.16
5 0.537 32.5 0.623 24.36
6 0.556 35.5 0.471 13.642
7 0.560 31.6 0.755 34.9
8 0.530 31.2 0.681 27.39
av. err 13.7% 36.1%

196 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

Table 2 Final CSD – hybrid model predictions (eqs. 31+RNN)

RNN batch No. AM[mm] CV[%]
exogenous input 1 0.51 29.6
delay: 2 2 0.48 30.7
 3 0.58 33.6
Recurrent input 4 0.67 31.7
delay: 2 5 0.55 29.5
 6 0.57 34.5
Total Nº of inputs: 14 7 0.59 29.6
hidden neurons:5 8 0.53 32.2
Average error (%) 4.1 7.5
exogenous input 1 0.59 30.7
delay: 1 2 0.55 41.5
 3 0.59 39.3
Recurrent input 4 0.51 35.9
delay: 3 5 0.49 32.1
 6 0.58 31.7
Total Nº of inputs: 11 7 0.56 30.5
hidden neurons:5 8 0.53 36.8
Average error (%) 5.2 9.2
exogenous input 1 0.51 30.9
delay:3 2 0.56 31.1
 3 0.59 37.2
Recurrent input 4 0.48 29.8
delay:1 5 0.52 34.8
 6 0.51 32.4
Total Nº of inputs: 17 7 0.59 30.6
 hidden neurons:5 8 0.50 33.5
Average error (%) 3.6 6.9

Time Accounting Artificial Neural Networks for Biochemical Process Models 197

Table 3 Final CSD – hybrid model predictions (eqs. 31+TLNN)

TLNN batch No. AM[mm] CV[%]
Tap delay: 1 1 0.49 30.8
 2 0.51 37.1
 3 0.62 31.5
Total Nº of inputs: 8 4 0.60 35.5
hidden neurons:5 5 0.57 36.2
 6 0.52 28.7
 7 0.55 38.6
 8 0.54 32.4
Average error (%) 6.02 11.0
Tap delay: 2 1 0.51 37.5
 2 0.49 31.6
 3 0.59 34.6
 4 0.53 40.3
Total Nº of inputs: 12 5 0.60 35.2
hidden neurons:5 6 0.49 31.5
 7 0.51 29.6
 8 0.54 30.3
Average error (%) 5.9 10.8
Tap delay: 3 1 0.479 30.3
 2 0.559 41.2
 3 0.680 39.4
 4 0.494 35.7
Total Nº of inputs: 16 5 0.537 35.4
hidden neurons:5 6 0.556 30.3
 7 0.560 29.9
 8 0.530 28.3
Average error (%) 5.8 10.3

198 P. Georgieva, L.A.P. Suárez, and S.F. de Azevedo

Table 4 Final CSD – hybrid model predictions (eqs. 31+RCN)

RCN batch No. AM[mm] CV[%]
Reservoir 1 0.53 31.2
dimension: 100 nodes 2 0.49 28.1
 3 0.57 43.6
Total Nº of inputs: 4 4 0.61 41.7
 5 0.59 39.6
 6 0.60 36.1
 7 0.51 30.4
 8 0.54 40.2
Average error (%) 6.8 12.0
Reservoir 1 0.56 40.1
dimension: 200 nodes 2 0.51 37.4
 3 0.61 36.2
 4 0.56 38.6
Total Nº of inputs: 4 5 0.49 28.9
 6 0.59 34.7
 7 0.61 30.4
 8 0.54 39.2
Average error (%) 5.9 10.2
Reservoir 1 0.59 33.9
dimension: 300 nodes 2 0.48 28.8
 3 0.57 39.7
 4 0.51 29.6
Total Nº of inputs: 4 5 0.53 31.8
 6 0.51 33.9
 7 0.49 30.7
 8 0.57 36.9
Average error (%) 5.9 9.8

6 Conclusions

This work is focused on presenting a more efficient computational scheme for
estimation of process reaction rates based on temporal artificial neural network
(ANN) architectures. It is assumed that the kinetics coefficients are all known and
do not change over the process run, while the process states are not all measured
and therefore need to be estimated. It is a very common scenario in reaction sys-
tems with low or medium complexity.

The concepts developed here concern two aspects. On one side we formulate a
hybrid (temporal ANN+ analytical) model that outperforms the traditional reac-
tion rate estimation approaches. On the other side a procedure for ANN supervised
training is introduced when target (reference) outputs are not available. The net-
work is embedded in the framework of a first principle process model and the
error signal for updating the network weights is determined analytically. Accord-
ing to the procedure, first the unmeasured states are estimated independently of
the reaction rates and then the ANN is trained with the estimated and the measured

Time Accounting Artificial Neural Networks for Biochemical Process Models 199

data. Ongoing research is related with the integration of the hybrid models pro-
posed in this work in the framework of a model based predictive control.

Acknowledgements. This work was financed by the Portuguese Foundation for Science
and Technology within the activity of the Research Unit IEETA-Aveiro, which is gratefully
acknowledged.

References

1. Antonelo, E.A., Schrauwen, B., Campenhout, J.V.: Generative modeling of autono-
mous robots and their environments using reservoir computing. Neural Processing Let-
ters 26(3), 233–249 (2007)

2. Bastin, G., Dochain, D.: On-line estimation and adaptive control of bioreactors. El-
sevier Science Publishers, Amsterdam (1990)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

4. Chen, L., Bastin, G.: Structural identifiability of the yeals coefficients in bioprocess
models when the reaction rates are unknown. Mathematical Biosciences 132, 35–67
(1996)

5. Georgieva, P., Meireles, M.J., Feyo de Azevedo, S.: Knowledge Based Hybrid Model-
ing of a Batch Crystallization When Accounting for Nucleation, Growth and Agglom-
eration Phenomena. Chem. Eng. Science 58, 3699–3707 (2003)

6. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing,
Boston (1996)

7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, NJ (1999)
8. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural net-

works. Technical Report GMD Report 148, German National Research Center for In-
formation Technology (2001a)

9. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computa-
tion 14(11), 2531–2560 (2002)

10. Mandic, D.P., Chambers, J.A.: Recurrent Neural Networks for Prediction: Learning
Algorithms, Architectures and Stability (Adaptive & Learning Systems for Signal
Processing, Communications & Control). Wiley, Chichester (2001)

11. Noykove, N., Muller, T.G., Gylenberg, M., Timmer, J.: Quantitative analysis of an-
aerobic wastewater treatment processes: identifiably and parameter estimation. Bio-
technology and bioengineering 78(1), 91–103 (2002)

12. Oliveira, C., Georgieva, P., Rocha, F., Feyo de Azevedo, S.: Artificial Neural Net-
works for Modeling in Reaction Process Systems. In: Neural Computing & Applica-
tions, vol. 18, pp. 15–24. Springer, Heidelberg (2009)

13. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and adaptive systems: Funda-
mentals through simulations, New York (2000)

14. Steil, J.J.: Backpropagation-Decorrelation: Online recurrent learning with O(N) com-
plexity. In: Proc. Int. Joint Conf. on Neural Networks (IJCNN), vol. 1, pp. 843–848
(2004)

15. Walter, E., Pronzato, L.: Identification of parametric models from experimental data.
Springer, UK (1997)

