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Abstract

Although psychological and computational models of time estimation have postulated the

existence of neural representations tuned for specific durations, empirical evidence of this

notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adap-

tation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supra-

marginal gyrus) exhibited reduction in neural activity due to adaptation when a visual

stimulus of the same duration was repeatedly presented. Adaptation was strongest when

stimuli of identical durations were repeated, and it gradually decreased as the difference

between the reference and test durations increased. This tuning property generalized

across a broad range of durations, indicating the presence of general time-representation

mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s

attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not pro-

duce neural adaptation in the IPL. These results provide neural evidence for duration-tuned

representations in the human brain.

Author Summary

The human brain has the ability to estimate the passage of time, which allows us to per-

form complex cognitive tasks such as playing music, dancing, and understanding speech.

Scientists have just begun to understand which brain areas become active when we esti-

mate time. However, it still remains a mystery how exactly the information about time is

represented in the brain. In this study, we hypothesized that time might be represented by

neurons that are specifically tuned to a specific duration, as has been known for simple

visual features such as the orientation and the motion direction in the visual cortex. To

test this idea, we performed multiple functional magnetic resonance imaging (fMRI) adap-

tation experiments in which we sought evidence of neuronal adaptation, that is, a
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reduction in the responsiveness of neurons to repeated presentations of similar durations.

Our experiments revealed that the level of brain activity in the right inferior parietal lobule

(IPL) was strongly reduced when a stimulus of the same duration was repeatedly pre-

sented. This finding was reproduced for a range of subsecond durations. Our results indi-

cate that neurons in the human IPL are tuned to specific preferred durations.

Introduction

Time is a fundamental property of our perception and action. Precise time-interval estimation

in the range of hundreds of milliseconds is important for motor control, motion detection, and

speech recognition and generation, as well as for many other complex sensory motor tasks

such as playing music or dancing [1,2]. Previous studies of the neural representation of stimu-

lus duration have found various forms of gradual, time-dependent changes in neural activity.

For example, the temporal probability of the occurrence of upcoming events, known as the

“hazard rate,”modulates the neural firing rate in the lateral intraparietal region in monkeys

[3]. Human neuroimaging studies demonstrated that such temporal modulation of firing rate

during an anticipation period is reflected in a time-varying increase or decrease of the blood-

oxygenation-level-dependent (BOLD) signal in the primary visual cortex, right supramarginal

gyrus (SMG), supplementary motor area (SMA), right middle frontal cortex, and cerebellar

vermis in humans [4,5]. It has also been reported that elapsed time is represented by the time-

dependent ramping activity of neurons in the posterior parietal cortex in monkeys [6]. In

humans, similar time-dependent increases of BOLD responses during encoding of long time

intervals (9 and 18 s) have been reported in the posterior insula and superior temporal cortex

[7]. Although duration information is indubitably present in such time-dependent changes in

neural activity, it is not known whether durations are explicitly coded in the human brain—in

other words, whether there are tuning properties for specific durations.

Theoretical models such as the striatal beat-frequency model [8], the labeled-line model [9],

and the population clock model [10] have predicted that elapsed time is explicitly represented

by the selective firing of a population of neurons in response to the stimulus durations to

which they are tuned [11]. There is currently some behavioral evidence for the notion of such

channel-based processing of time intervals [12,13]. However, potential neural substrates with

duration-tuned response properties have not yet been documented.

Here, by using functional magnetic resonance imaging (fMRI) adaptation, we aimed to

identify brain regions that show explicit representations of stimulus duration. fMRI adaptation

is based on the principle that repetition of an identical stimulus feature produces an immediate

decrease in the BOLD signal by repetitive activation of the same subpopulation of neurons

[14,15]. If a brain area contains neural populations that are sensitive to the repeated stimulus

feature, the BOLD signal shows graded adaptation depending on the perceptual similarity in

the stimulus feature space between consecutive presentations [16,17]. A large number of previ-

ous studies have shown that perception of time obeys Weber’s Law where the perceptual

discriminability of two intervals depends on the ratio of their physical differences (deviation

ratio) [18–22], but not on the absolute differences. The deviation ratio has been used as a proxy

for perceptual discriminability in adaptation paradigms elsewhere [17]. According to the popu-

lation clock model that assumes explicit time representations, duration-tuned neurons are

assumed to fire selectively when a time-specific neural firing pattern is submitted from another

population of neurons [10]. We hypothesized that, if there exist duration-tuned neurons, they
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would be selectively activated by stimulus offset and show weaker BOLD responses when simi-

lar durations are repeated.

We used fMRI adaptation and a broad range of stimulus durations to identify brain regions

that showed adaptation to two consecutive visual stimuli of the same duration or slightly differ-

ent durations. First, we identified brain areas that showed fMRI adaptation for 400 ms of stim-

ulus duration. In the second experiment, we examined whether the brain areas that were

identified in the first experiment also showed adaptation to other stimulus durations by repli-

cating the same experiment with a slightly longer stimulus duration (i.e., 600 ms). With these

two experiments, we aimed to establish generality and robustness of fMRI adaptation to spe-

cific durations. Furthermore, we asked whether such adaptation would require explicit perfor-

mance of a duration estimation task or would be observed independently of the task relevance

of duration estimation. For this purpose, we examined neural adaptation during both an

explicit duration discrimination task and during an implicit, nontemporal shape discrimina-

tion task. Finally, in a control experiment, we confirmed that the neural adaptation that we

observed in the above experiments was specific to time and was not observed in the case of rep-

etition of a nontemporal stimulus feature (i.e., shape).

Results

Experiments 1 and 2: fMRI Adaptation to Stimulus Durations of 400 and
600 ms

Two groups of participants performed a duration discrimination task and a shape discrimina-

tion task as instructed at the beginning of each block (Fig 1A). In the tasks, participants made

same-or-different judgments on two successively presented stimuli, but on different aspects of

the stimuli (i.e., duration or shape). In each trial, a reference stimulus (adaptor) was presented

for a fixed duration, followed by a test stimulus presented for a variable duration. In experi-

ment 1, the duration of the reference stimulus was 400 ms and that of the test stimulus was

167, 283, 400, 533, or 650 ms, whereas in experiment 2 the duration of the reference stimulus

was 600 ms and that of the test stimulus was 250, 433, 600, 783, or 967 ms. The shape of the ref-

erence and test stimuli was either a square or a circle (i.e., the sequence presented was square-

square [SS], circle-circle [CC], square-circle [SC], or circle-square [CS]). To minimize the effect

of response preparation and selection processes on the offset of the test stimulus, the key corre-

spondences were randomized on a trial-by-trial basis and were indicated by a response cue pre-

sented after a variable interval of 1.0–3.0 s following the offset of the test stimulus. Data of 12

(experiment 1) and 14 (experiment 2) participants were analyzed.

Behavior

The proportions of “same” responses in the time task were fitted by a Gaussian function for indi-

viduals’ behavioral data. Gaussian functions were also fitted to the task performance means for

presentation purpose (Fig 1B). The centers of the fitted Gaussian curves did not significantly

deviate from the physical durations, showing that perceived durations were not biased from

physical stimulus durations in experiment 1 (center = 399.3 ± 32.8, t11 = −0.070, p = 0.946; stan-

dard deviation [SD] = 130.0 ± 27.1) and experiment 2 (center = 579.7 ± 51.7, t13 = −1.465,

p = 0.167; SD = 162.2 ± 28.3).

Neural Adaptation to Time during the Time Task

To identify which brain regions showed graded adaptation to the duration of the reference stim-

ulus (400 or 600 ms), we analyzed the offset response to a test stimulus of variable duration. We
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hypothesized that BOLD responses to the test stimulus would recover from adaptation according

to the deviation ratio between the reference and test stimulus durations (i.e., [longer duration

− shorter duration] / shorter duration) (Fig 1C). This analysis revealed that a number of brain

areas showed the expected pattern of a neural adaptation effect, primarily in the right hemisphere

(Fig 2A and S1 Table for experiment 1 and Fig 2C and S2 Table for experiment 2). Importantly,

neural adaptation to both the 400-ms (experiment 1) and the 600-ms (experiment 2) reference

duration was found in the right inferior parietal lobule (IPL), corresponding to the SMG, and in

the posterior temporal cortex (PTC), including the middle and inferior temporal gyri (MTG/

ITG). Plots of the effects at the peak coordinates of the right SMG are shown in Fig 2B (experi-

ment 1) and 2D (experiment 2). Note that, however, values of the regression coefficient (i.e.,

beta) in most of the test durations were negative, indicating that the overall right SMG activity

decreased when the test stimulus had terminated and that the adaptation effect was reflected in

the degree of reduction in the BOLD signal. We interpreted that this pattern of BOLD response

was generated by mixed effects of general task-related suppression and duration-selective activa-

tions within a relatively small neural population. (See Discussion for further details.)

No Adaptation to Shape Repetition in IPL and PTC

One possible explanation for the greater response of the right IPL and PTC to “different” con-

ditions compared with “same” conditions is that the responses reflect general same-or-different

Fig 1. Stimulus sequence, mean task performances, and deviation ratios in experiments 1 and 2. (A)
The stimulus sequence. Participants were asked to respond with whether the durations of two sequentially
presented visual stimuli were the same or different in the time task and whether the shapes of the two stimuli
were the same or different in the shape task. (B) Mean task performances in experiments 1 (blue) and 2 (red).
Proportions of the “same” responses for the time task were fitted by Gaussian functions for presentation
purpose (left). The proportion of the “same” response for the shape task is shown for each combination of
reference and test shapes (right). Letters on the x-axes represent combinations of shapes for reference and
test stimuli: square-square (SS), circle-circle (CC), square-circle (SC), and circle-square (CS). Please refer to
S1 Data for the numerical values underlying these figures. (C) Plots of deviation ratios for each set of stimulus
durations in experiments 1 (blue) and 2 (red).

doi:10.1371/journal.pbio.1002262.g001
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decisions and are thus not a reflection of neural adaptation to repeated stimuli of the same

duration. To address this possibility, we next examined whether adaptation occurred in

response to repetition of the same shape during the shape task that shared processes of same-

or-different decisions with the time task.

The results showed that neither the right IPL nor the PTC was sensitive to repetitions of the

same shape during the shape task in either experiment 1 or experiment 2. Plots of the beta val-

ues in the right IPL are shown in S1 Fig (for experiments 1 [S1A Fig] and experiment 2 [S1B

Fig]). Instead, we found a significant effect of shape repetition in the right parahippocampal

gyrus, but only in experiment 1 (see S2 Fig for further details). A direct comparison between

duration adaptation in the time task and shape adaptation in the shape task confirmed that the

right IPL and PTC adapted specifically to repetitions of the same duration, but not to repeti-

tions of the same shape (S3A Fig and S1 Table for experiment 1, S3B Fig and S2 Table for

experiment 2). These results suggested that neural adaptation in these regions was specifically

Fig 2. Duration adaptation effects during the time task in experiments 1 and 2. (A) Results of experiment
1. Clusters showing duration adaptation effects during the time task are shown on a standard brain. (B) Plots
of the beta values at the peak coordinates of the cluster in the right SMG (x, y, z = 58, −42, 30) for each set of
stimulus durations. (C) Results of experiment 2. Clusters showing duration adaptation effects during the time
task are shown on a standard brain. (D) Plots of the beta values at the peak coordinates of the cluster in the
right SMG (x, y, z = 62, −34, 32) for each set of stimulus durations. The color scales indicate the T-values.
Error bars indicate standard errors of the mean. Please refer to S1 Data for the numerical values underlying
(B) and (D).

doi:10.1371/journal.pbio.1002262.g002
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linked to repetition of a stimulus duration rather than to decision processes regarding same

versus different.

Although we modeled the offset responses for the test stimuli to make the design matrix

comparable to that for time, shape adaptation may be observed at the onset of the test stimulus

rather than offset, because unlike duration, the information about shape is already available at

the stimulus onset. Thus, setting regressors at the onsets of the test stimuli might be considered

more appropriate. To address this issue, we analyzed the data of experiments 1 and 2 by setting

regressors at the onsets of the test stimuli instead of at their offsets. The results of this analysis

were essentially the same as the original findings—no significant clusters were found for exper-

iments 1 and 2, but clusters in the right parahippocampal gyrus and hippocampus were signifi-

cant in experiment 1, only at slightly more liberal threshold (p< 0.001 voxel-level uncorrected,

cluster size> 100 voxels). These results further confirm our interpretation that the neural

adaptation in the right IPL and PTC are specifically associated with the repetition of the identi-

cal stimulus duration.

Duration Adaptation Occurs Regardless of the Task Relevance of
Duration

Adaptation to duration occurred not only when the participants were performing the time task

but also when they were engaged in the shape task, in which duration information was not

explicitly estimated. We analyzed the degree of adaptation to repetition of duration, as above,

under conditions in which the participants were engaged in the shape task. In both experiment

1 and experiment 2, neural adaptation to time during the shape task was observed in the right

IPL (including the SMG) (Fig 3A and 3B and S1 Table for experiment 1, Fig 3C and 3D and S2

Table for experiment 2). The clusters in the right IPL (SMG) overlapped with the clusters

found in the explicit time estimation task (S4A Fig for experiment 1, S4B Fig for experiment 2),

indicating that neural adaptation to duration in the right IPL (SMG) occurred regardless of

whether or not duration was explicitly estimated.

Experiment 3: Graded Shape Discrimination Task

One potential concern in experiments 1 and 2 was the possibility that the lack of adaptation to

repetition of a shape in the right IPL and PTC could be attributed to the fact that the shapes

were simply either identical or clearly different, whereas the duration variation involved finer

steps across five different levels. Therefore, differences in the task design in the shape task and

the level of difficulty might have contributed to our positive finding only in the time task, but

not in the shape task.

To make the task design and the level of difficulty for the shape task comparable to those

for the time task in experiments 1 and 2, we varied the degree of shape change in a graded

manner in a new control experiment (experiment 3). The oval-shaped test stimuli were varied

in width on five levels (i.e., very narrow [VN], narrow [N], same [S], wide [W], and very wide

[VW]), whereas the oval-shaped reference stimulus remained the same throughout the experi-

ment (Fig 4A). In this experiment, participants performed only the shape task because the

goal of this experiment was to examine whether the right IPL and PTC show adaptation to the

repetition of the same shape when the stimulus shape was manipulated at a finer step of five

different levels. For this purpose, we did not intermix the time task in this control experiment,

as our interest was not to re-examine the effect of duration adaptation established in experi-

ments 1 and 2. Furthermore, we did not expect that the intermixing of the two tasks was essen-

tial for this control experiment, because the shape task was also performed in experiments 1

Duration Selectivity in the Parietal Cortex
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and 2 in separate blocks. Data from 13 participants were analyzed for this graded-shape dis-

crimination task.

Behavior

The proportions of the “same” response in the shape task were fitted by a Gaussian function

for individuals’ behavioral data. Gaussian functions were also fitted to task performance means

for presentation purpose (Fig 4B). The center of the fitted Gaussian curve showed that the per-

ceived stimulus width was estimated as slightly narrower than the physical stimulus width

(center = 58.7 ± 0.5, t12 = −9.236, p< 0.001; SD = 4.2 ± 1.2). One-way ANOVA showed that

the task difficulty of this experiment was similar to that of the time task in experiments 1 and 2

(F2, 36 = 0.779, p = 0.467), suggesting that any differences in fMRI results across these experi-

ments (i.e., the time task in experiments 1 and 2 and the graded-shape task in experiment 3)

were unlikely to be due to differences in task difficulty.

Fig 3. Duration adaptation effects during the shape task in experiments 1 and 2. (A) Results of
experiment 1. Clusters showing duration adaptation effects during the shape task are shown on a standard
brain. (B) Plots of the beta values at the peak coordinates of the cluster in the right SMG (x, y, z = 52, −40, 40)
for each set of stimulus durations. (C) Results of experiment 2. Clusters showing duration adaptation effects
during the shape task are shown on a standard brain. (D) Plots of the beta values at the peak coordinates of
the cluster in the right SMG (x, y, z = 48, −42, 44) for each set of stimulus durations. The color scales indicate
the T-values. Error bars indicate standard errors of the mean. Please refer to S1 Data for the numerical
values underlying (B) and (D).

doi:10.1371/journal.pbio.1002262.g003

Duration Selectivity in the Parietal Cortex

PLOS Biology | DOI:10.1371/journal.pbio.1002262 September 17, 2015 7 / 27



Right IPL and PTC Do Not Adapt to Shape Repetition

We expected that, if the adaptation effect found in the right IPL and PTC in experiments 1 and 2

reflected processes of general decision-making regarding same-or-different judgments, these

regions would also show a graded adaptation to other stimulus features (i.e., the width of an oval)

(Fig 4C). We found that, despite the graded change of the shape in this experiment, the right IPL

(SMG) and PTC did not show adaptation to repetition of the same shape. As we did for experi-

ments 1 and 2, setting regressors at the onsets instead of the offsets of the test stimuli did not

change the results. Plots of the relationship between BOLD responses and the graded shape con-

ditions in the right SMG (at the same coordinates as in the plots in Fig 2B and 2D) are shown in

Fig 5A and 5B. Importantly, the BOLD signal extracted from the right SMG (Fig 5) showed nega-

tive regression coefficients, indicating that the right SMG showed reduction of BOLD signal due

to attention focus regardless of the task (i.e., duration or shape discrimination task). These results

corroborate our conclusion that neural adaptation in the right IPL (SMG) was specific to time

and did not reflect general decision-making processes regarding same-or-different judgments.

Finally, we also examined whether the repetition of the same duration during the graded-

shape task showed adaptation in the right IPL. Plots of the relationship between BOLD

responses and the test duration conditions at the same coordinates as in Fig 5A and 5B are

shown in Fig 5C and 5D. Although the duration adaptation was not very clear at these coor-

dinates, we instead found that the slightly more posterior part of the right IPL (SMG) showed

a significant graded adaptation to stimulus durations (Fig 6). These results further support

Fig 4. Stimulus sequence, mean task performances, and deviation ratios in experiment 3. (A) The
stimulus sequence. Participants were asked to respond with whether the widths of two sequentially
presented visual stimuli (ovals) were the same or different. (B) Mean task performances. The proportion of
“same” responses was fitted by a Gaussian function for presentation purpose. Please refer to S1 Data for the
numerical values underlying this figure. (C) Plots of deviation ratios for each set of visual stimulus widths.

doi:10.1371/journal.pbio.1002262.g004
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Fig 5. Plots of the beta values in the SMG. Plots of the relationship between beta values and the test
stimulus width in experiment 3 are shown at the peak coordinates in the right SMG (x, y, z = 58, −42, 30) that
showed a duration adaptation effect in experiment 1 (A) and in the right SMG (x, y, z = 62, −34, 32) that
showed a duration adaptation effect in experiment 2 (see Fig 2) (B). Plots of the beta values for each set of
test durations at the same coordinates as in Fig 5A and 5B are shown in (C) and (D), respectively. Please
note that, while the beta values in (C) showed significant duration adaptation effect, the beta values in (D) (x,
y, z = 62, −34, 32) did not reach statistical significance. Error bars indicate standard errors of the mean.
Please refer to S1 Data for the numerical values underlying these figures.

doi:10.1371/journal.pbio.1002262.g005

Fig 6. Effects of duration adaptation during the graded-shape task in experiment 3. (A) Results of
experiment 3. The right SMG cluster showing duration adaptation effects during the graded-shape task is
shown on a standard brain. Plots of the beta values at the peak coordinates of the cluster in the right SMG (x,
y, z = 60, −44, 30) for each set of stimulus durations (B) and for each set of stimulus widths (C). The color
scale indicates the T-values. Error bars indicate standard errors of the mean. Please refer to S1 Data for the
numerical values underlying (B) and (C).

doi:10.1371/journal.pbio.1002262.g006
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our findings in experiments 1 and 2 that neural adaptation to the repetition of identical

duration in the right IPL (SMG) occurred regardless of whether the durations were explicitly

estimated.

Experiment 4: fMRI Adaptation to Stimulus Durations of 300 and 450 ms

Having established the specificity of neural adaptation to stimulus duration in the right IPL, we

further addressed some other potential concerns. One could argue that the duration adaptation

effect observed in experiments 1 and 2 might reflect neural adaptation to the fixed interstimu-

lus interval (ISI) between the reference and test stimuli, but not to the duration of the reference

stimulus, because the ISI (0.5 s) was close to the duration of the “same” conditions in these

experiments (400 and 600 ms in experiments 1 and 2, respectively). To address this concern,

we performed another control experiment (experiment 4) with a longer ISI that varied between

1 s and 2.5 s (0.5-s steps).

Another concern was that participants’ responses were biased toward “same” when a

slightly shorter or longer duration was presented as the test stimulus, resulting in considerably

lower performances under these conditions. To resolve this issue in experiment 4, we also

changed the number of response alternatives and the number of variations in the duration of

the test stimuli. Whereas judgments of the test stimulus as “shorter” or “longer” were both

classed as “different” in experiments 1 and 2, in experiment 4 these judgments were classed

individually as “shorter” or “longer” (Fig 7A, see Materials and Methods for full details). The

duration of the reference stimulus was either 300 ms or 450 ms; that of the test stimulus was

200 ms, 300 ms, or 450 ms for the block with a reference duration of 300 ms, and 300 ms, 450

ms, or 667 ms for the block with a reference duration of 450 ms. A response cue was presented

after a variable interval of 2.0–3.5 s following the offset of the test stimuli. Data from 20 partici-

pants were analyzed in this experiment.

Behavior

Proportions of the “same” responses were fitted by a Gaussian function for individuals’ behav-

ioral data (Fig 7B). Statistical analyses showed that time estimation for the 300 ms block was

perceived as slightly longer (center = 325.5 ± 52.3, t19 = 2.182; p = 0.042; SD = 99.6 ± 60.2),

whereas that for the 450 ms block was not biased (center = 463.4 ± 43.6, t19 = 1.380, p = 0.184;

SD = 134.3 ± 30.9). In contrast to the time task in experiments 1 and 2, participants showed

comparable accuracy across conditions (F1.88, 35.77 = 0.610, p = 0.540).

Replication of Duration Adaptation in the Right IPL

As in experiments 1 and 2, we predicted that the right IPL and PTC would show adaptation to

repeated stimuli of the same duration. Our analysis showed a substantial duration adaptation

effect in the right IPL (SMG) (Fig 8), whereas the right PTC did not show such significant

adaptation. The result in the right IPL is consistent with the findings in experiments 1 and 2

and supports our observation of duration-specific adaptation in the IPL.

Finally, we examined the extent to which the clusters showing adaptation to repeated stimu-

lus duration overlapped across experiments 1, 2, and 4 (Fig 9). We found that the clusters in

the right SMG overlapped across the three experiments. In existing literature, the right SMG is

often labeled as the right temporoparietal junction (TPJ), which refers to the cortex at the inter-

section of the posterior end of the superior temporal sulcus, the IPL, and the lateral occipital

cortex [23,24]. Since a recent TPJ parcellation study [24] suggested that the right TPJ is subdi-

vided into three distinct regions depending on the differences in the pattern of anatomical con-

nectivity, we examined which of the subdivisions corresponded to the overlapped area shown

Duration Selectivity in the Parietal Cortex
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Fig 8. Duration adaptation effects in experiment 4. (A) The cluster showing a duration adaptation effect is
shown on a standard brain. (B) Plots of the beta values under each set of stimulus conditions in the 300-ms
(blue) and the 450-ms (red) reference blocks at the peak coordinates of the cluster in the right SMG (x, y,
z = 54, −42, 28). Please refer to S1 Data for the numerical values underlying this figure. The color scale
indicates the T-values. Error bars indicate standard errors of the mean.

doi:10.1371/journal.pbio.1002262.g008

Fig 7. Stimulus sequence, mean task performances, and deviation ratios in experiment 4. (A) The
stimulus sequence. Participants were asked to respond with whether the duration of the second (test)
stimulus was shorter, longer, or the same compared with the first (reference) stimulus. (B) Mean task
performances. Proportions of the “same” responses for the 300 ms (blue) and the 450 ms (red) reference
blocks were fitted by Gaussian functions for presentation purpose. Please refer to S1 Data for the numerical
values underlying this figure. (C) Plots of deviation ratios for each set of stimulus durations in the 300 ms
reference block (blue) and in the 450 ms reference block (red).

doi:10.1371/journal.pbio.1002262.g007
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in Fig 9 (white area). We first identified the peak coordinates of the clusters for experiments 1,

2, and 4 within the overlapped area (Fig 9), and then the correspondence was evaluated using a

connectivity-based parcellation atlas (http://www.rbmars.dds.nl/CBPatlases.htm). The result

showed that all the peak coordinates within the overlapped area (x, y, z coordinates for experi-

ment 1: 56, −42, 28; experiment 2: 64, −40, 30; experiment 4: 54, −42, 28) were located within

the anterior TPJ (TPJa). These findings together strongly indicated that the right IPL (SMG)

showed duration-specific adaptation to a broad range of stimulus durations (i.e., 300, 400, 450,

and 600 ms), independently of whether the task was to make same-versus-different or shorter-

versus-same-versus-longer judgments.

Discussion

Our results demonstrate that neural responses in the right IPL (corresponding to the SMG)

exhibit adaptation to repeated presentations of stimuli of the same duration, regardless of

whether the participants are engaged in time estimation. This finding provides empirical sup-

port for the notion that the right IPL contains neural populations tuned for particular time

intervals.

Dysfunction of the right SMG because of stroke [25] or virtual lesions created by transcra-

nial magnetic stimulation (TMS) [26,27] results in impairment of time estimation, suggesting

that the right SMG is crucial for estimating time intervals. Our finding of duration adaptation

in the right SMG is consistent with the findings of these studies and the emerging view of the

human SMG as the locus for encoding durations [26–28]. Although the representational con-

tent of time intervals in the right SMG has been unclear, our findings suggest that time inter-

vals are represented by duration-tuned neural populations in the right SMG.

The involvement of the right IPL in time perception has been reported in a number of neu-

roimaging studies [5,29–39]. Activation of the right IPL has been shown in response to stimuli

of a broad range of durations (sub- and suprasecond) [35,37] and regardless of the nature of

Fig 9. Overlaps of clusters showing a duration adaptation effect during the time task across
experiments.Colors correspond to the results of each experiment: red for experiment 1, blue for experiment
2, and green for experiment 4. Overlapped areas showmixed colors, as shown in the legend. The clusters in
the SMG are magnified at the bottom right.

doi:10.1371/journal.pbio.1002262.g009
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the task (perceptual and motor timing) [40]. It should be noted, however, that the center of

typical activations in these studies was located in the dorsal part of the right IPL (outside of the

right SMG) (Talairach coordinates x, y, z = 40, −44, 38, corresponding to 39, −47, 40 in Mon-

treal Neurological Institute (MNI) coordinates; see meta-analysis [40]), whereas the right SMG

we found was located more inferiorly (MNI coordinates: [58, −42, 30] in experiment 1, [62,

−34, 32] in experiment 2, [54, −42, 28] in experiment 4). Moreover, in contrast to the positive

BOLD response in the dorsal part of the right IPL shown in the previous studies, overall BOLD

response in the right SMG in the present study was negative. Together, these results may sug-

gest that, while the inferior part of the right IPL (i.e., SMG) encodes time by duration-tuned

mechanisms, the dorsal part of the right IPL may play a different role in time perception.

The IPL is often labeled as TPJ, which usually refers to the cortex at the intersection of the

posterior end of the superior temporal sulcus, the IPL, and the lateral occipital cortex [23,24].

In addition to temporal processing, the right TPJ has been implicated in various types of per-

ception and social cognition, such as reorienting of attention [41] and attribution of mental

states to others (i.e., a theory of mind [ToM]) [42,43]. However, whether these apparently dif-

ferent types of cognitive functions are commonly subserved by the right TPJ or are processed

in the distinct subdivisions of the right TPJ has been a matter of debate. A recent parcellation

study proposed that the right TPJ is subdivided into three distinct regions based on diffusion-

weighted-imaging tractography: dorsal TPJ, ventral TPJa, and ventral posterior TPJ (TPJp)

[24]. Moreover, a resting state functional connectivity analysis showed that the TPJa and TPJp

are embedded in different functional networks: the right TPJa activity interacted with the bilat-

eral IPL, the ventral prefrontal network, and the anterior insula, which are often associated

with ventral attention network [41,44], while the right TPJp interacted with the posterior cin-

gulate, the temporal pole, and the anterior medial prefrontal cortex, which are often implicated

in social cognition [45]. These lines of evidence suggest that the right TPJ can be subdivided

based on anatomical and functional connectivity.

This study, however, also left a possibility that these two different subregions may perform

similar neural computation but on different types of information (e.g., social versus perceptual

information), and some neural populations located in the adjacent area might not distinguish

those different types of information. This possibility seems to be supported by a recent study

which demonstrated, using multivoxel pattern analysis, that spatial distance, social distance

(i.e., familiarity), and temporal distance are represented by a similar activation pattern in the

right TPJ [46]. The view of a "shared computational mechanism" is also compatible with the

idea that the right TPJ acts as a “reorienting” system for perception and social cognition, such

as attribution of another person’s mental states [23]. A number of studies have also proposed

that the right TPJ is functionally homogeneous by showing that activations in the right TPJ

overlap between attention reorienting and ToM tasks [42,47]. Future studies should address

whether and how specifically the duration-tuned time representation mechanism is shared or

interacts with those reorienting system and social cognition such as ToM.

We found a significant overlap of duration adaptation effect in the right IPL across experi-

ments. The overlapped area corresponded to the right TPJa that was associated with the ventral

attention network in the parcellation study [24]. A large number of studies have reported that

the ventral attention network is involved in stimulus-driven shift of attention. For example, the

right TPJ responds to a peripheral target that appears at an unexpected spatial location

[23,48,49] or to an unexpected change in stimulus features [50–53]. Based on these previous

reports, one might point out that our findings of the greater BOLD responses for the deviant

durations than for the repeated duration may reflect violation of prediction, as was shown in a

previous face-adaptation study [54]. In other words, participants might have expected to see

the test stimuli of identical duration as the reference, and the violation of that expectation by

Duration Selectivity in the Parietal Cortex

PLOS Biology | DOI:10.1371/journal.pbio.1002262 September 17, 2015 13 / 27



the deviant test stimulus might have produced greater activity in the right TPJ than the “same”

condition. This alternative account is, however, unlikely to be the sole explanation for our

results. In experiments 1 and 2, the number of trials was the same across test durations, and the

probability of occurrence for a “different” test duration was much higher than that for the

“same” stimuli (80% versus 20%). Under these circumstances, it is more likely that participants

expected to see a “different” duration than the “same” duration; thus, the potential effect of pre-

diction error signals for “different” conditions should have been minimized in the present

study. This is consistent with a previous study that showed effect of repetition suppression

even when the “same” versus “different” response ratio was 1:3 [55]. Moreover, in our control

experiment with the graded-shape task (experiment 3), we showed that the right IPL was not

adapted to the repetition of the same shape, while repetition of the identical durations showed

an adaptation effect in this area. The lack of a significant effect of shape adaptation in the right

IPL suggests that the graded adaptation for time cannot be explained in terms of the generic

concept of prediction errors. Importantly, the task design, task difficulty, number of trials, and

number of subjects in experiment 3 were all comparable to the time task in experiments 1 and

2, suggesting that the sensitivity for detecting the adaptation signal was similar across these

experiments. Taken together, we suggest that our finding of duration adaptation in the right

IPL is more likely to be explained by neural adaptation than by the violation of expectation

(i.e., prediction error signal). This conclusion is supported by a previous neuroimaging study

that showed insensitivity of the right IPL to the violation of temporal expectation, using a tem-

poral version of the spatial cuing paradigm [56].

Training in discrimination of temporal intervals in the range of a few hundreds of millisec-

onds produces trained-interval-specific improvements in temporal discrimination [57].

Intriguingly, the training effect is transferred across sensory modalities [58] and from percep-

tual to motor timing tasks [59] in an interval-specific manner. The interval specificity of the

learning effect implies that duration-selective neurons mediate the learning of time intervals. A

recent fMRI study found stronger activation in the left IPL as well as the left posterior insula

following intensive training in duration discrimination in the range of a few hundreds of milli-

seconds [60]. However, changes in right IPL activity were not reported. One possible interpre-

tation for the seemingly discrepant results is that the training effect might be reflected in the

tuning, rather than the amplitude, of activity in the right IPL. The adaptation paradigm we

reported here offers a method of testing for possible changes in time-related neuronal tuning in

future studies.

In our recent voxel-based morphometry (VBM) study [61], we reported that individual dif-

ferences in the ability to discriminate stimulus durations correlated with regional gray-matter

(GM) volume: GM volume in the bilateral anterior cerebellum was correlated with the ability to

discriminate subsecond (<1 s) durations, while GM volume in the right IPL was correlated

with suprasecond (>1 s) durations. The correlation between right IPL GM volumes and supra-

second discrimination thresholds was interpreted as the reflection of the ability to focus atten-

tion on continuing to track long time intervals. One might wonder why the fMRI adaptation to

the repetition of subsecond durations was found in the right IPL, while correlation between

regional GM volumes and discrimination thresholds in the subsecond range was absent in the

VBM study [61]. To address this point, we scrutinized the data from our previous VBM study

[61]. We found that, with a slightly more liberal threshold than the stringent one that was used

in our VBM study [61], the right IPL was correlated with individual differences in subsecond

duration discrimination thresholds (MNI coordinates: x, y, z = 57, −27, 44, corresponding to

the right SMG; the peak coordinates were identified using the Masked Contrast Images (MAS-

COI) toolbox with primary and secondary thresholds of p< 0.005 and p< 0.05, respectively).

This was such that a larger GM volume in this area was associated with better duration

Duration Selectivity in the Parietal Cortex

PLOS Biology | DOI:10.1371/journal.pbio.1002262 September 17, 2015 14 / 27



discrimination performance. This result is consistent with another recent VBM study showing

that a larger GM volume in the right TPJ is associated with performance in numerical and con-

tinuous quantity (i.e., line length and time estimation in subsecond range) tasks [62], although

the peak coordinates of the cluster identified in that study were found at a more posterior ven-

tral region than ours. This additional result provides an interesting contrast in the size-perfor-

mance relationship between subsecond and suprasecond time estimation: better task

performance in the subsecond range was associated with larger GM volume, while better per-

formance was associated with smaller GM volume for the suprasecond range. We speculate that

this difference might reflect the different functional roles of the right IPL for subsecond and

suprasecond time estimation. In our previous VBM study, we attributed the better suprasecond

timing performance with smaller IPL to the better ability to focus attention on continuing to

track long time intervals. On the other hand, the better performance in the subsecond time esti-

mation associated with greater GM volume in the IPL may reflect finer duration-tuning mecha-

nisms. The duration-specific adaptation in the right IPL suggests that individuals with greater

GM volume in this region might have a greater number of neurons tuned to different durations,

enhancing the ability to estimate subsecond durations. Testing this potential hypothesis would

provide further insight into the anatomo-computational relationship in the right IPL.

We did not find any duration adaptation in the SMA, despite its considerable involvement

in various timing tasks, as shown by previous fMRI studies [40]. Importantly, a recent

electrophysiological study in monkeys reported interval-tuned responses of neurons in the

SMA [63]. One possible explanation for the lack of duration adaptation in the SMA in our

study might be that the interval tuning found in the monkeys was specifically associated with

the motor tasks employed by that particular electrophysiological study [63]. In contrast, the

duration-specific adaptation in our study is likely to reflect more perceptual aspects of time

estimation and is independent of the task relevance of duration estimation. Regarding the rela-

tionship between the right IPL and SMA, a recent TMS study proposed a feed-forward mecha-

nism of temporal information from the right SMG to the SMA [27]. That study showed that

TMS over the right SMG influenced the subjective perception of time intervals, as they

reported earlier [26], and that the degree of time dilation was reflected in the contingent nega-

tive variation (CNV) amplitude recorded from the frontocentral site in the measurement win-

dow around the stimulus offsets [27]. On the basis of an earlier report showing a positive

correlation between the CNV amplitude and SMA activity as measured by BOLD signals [64],

Wiener and colleagues (2012) suggested that there was a feed-forward mechanism of temporal

information from the right SMG to the SMA. Intriguingly, it has also been shown recently by

electroencephalography (EEG) that the amplitude of the potentials evoked by the offset of

comparison intervals reflects subjective time intervals better than does the amplitude of the

CNV [65]. Our findings, together with these previous reports, suggest that duration informa-

tion is primarily encoded in the duration-tuned neural populations in the right IPL, regardless

of the task; the information is then transferred to the SMA for task-specific processing.

Although a considerable number of previous studies reported the involvement of the basal

ganglia and cerebellum in time perception [40,66,67], neither of these regions were found to

show consistent adaptation across different durations. The basal ganglia showed adaptation

only to the repetition of 400 ms (experiment 1, see S1 Table), but this was not replicated for

600 ms in experiment 2. These results may suggest that the duration tuning of basal ganglia is

limited to the durations of around 400 ms; however, this notion requires further investigation.

Although a previous theoretical study has proposed that the cerebellum may contain neurons

tuned for duration [11], a duration adaptation effect was not found in the cerebellum in our

study. However, it is important to note that the cerebellum was not consistently covered by the

field of view in our fMRI experiments except for experiment 4, and therefore, the lack of
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positive findings in the cerebellum should be taken with caution. Although the cerebellum was

covered in experiment 4, further investigations with a broader range of reference durations

would be needed to draw a firm conclusion on this issue.

Our results showed negative BOLD responses at the offset of the test stimuli in the right

IPL. The negative BOLD response indicates a reduction in overall neural activity [68]. While a

deactivation rather than a reduction in the degree of BOLD activation may seem puzzling, sim-

ilar deactivation patterns for orientation-tuned fMRI adaptation in the visual cortex have pre-

viously been reported [69]. In that study, Fang et al. investigated the effect of neural adaptation

effect for orientation tuning in the visual cortex following brief adaptation versus prolonged

adaptation. The study found that the neural adaptation in the visual cortex was related to sup-

pression of the BOLD signal for repetitions with the same orientation and to a graded increase

of the BOLD response as the difference in adaptor and test stimulus orientation increased. Sim-

ilarly to the present study, they showed a negative BOLD response when the same orientation

was repeated (0°) or when the orientation of the test stimulus was only slightly different (7.5°)

from that of the adaptor. Fang et al. interpreted this negative response as “[. . .] maybe attrib-

uted to the overlapping neural populations tuned to 0 and 7.5°” [69]. The idea of the over-

lapped neural populations is also consistent with the computational model of duration

channels [70].

We speculate that the overall negative responses observed in the present study may reflect

suppression of neural activity due to attentional focus on the duration judgment task. Previous

studies have reported that the right TPJ shows strong deactivations during attentionally

demanding visual tasks [23,71–73]. Since the right TPJ has been considered to act as a “circuit

breaker” that interrupts ongoing processes when a potentially task-relevant stimulus appears

[41], the deactivation of the right TPJ has been proposed to play a role in preventing attention

from reorienting to task-irrelevant information when performing an attentionally demanding

task [23,72,73]. Time perception is generally susceptible to interference from task-irrelevant

stimulus properties (e.g., [34,70,74–78]) and thus likely to require attention. The relatively low

task performance in the present study also suggests that attentional demand was high during

the time task in the present study. The observed negative BOLD response in the right IPL

could therefore be attributed to inhibition of task-irrelevant inputs for accurate time estima-

tion. One possible interpretation for the negative BOLD response in our study is that this deac-

tivation stems from a mixture of neuronal populations that are deactivated during the task and

neural populations that are activated for specific durations. In this interpretation, the duration-

tuned neural populations are adapted by the repetition of the same duration, whereas other

neurons, unrelated to time estimation, are suppressed during the task, causing the overall nega-

tive BOLD responses in the right IPL. This interpretation is in line with previous studies that

attributed negative BOLD responses in the right TPJ during other types of visual tasks to the

mixture of increased and decreased activities of heterogeneous neuronal populations in the

right TPJ [23,72]. Importantly, the negative BOLD response at the offset of the test stimuli was

also found in the graded-shape discrimination task in experiment 3 in which the task design

and difficulty was comparable to the time task in experiments 1 and 2. Nevertheless, variation

in the degree of BOLD reduction (i.e., fMRI adaptation) was uniquely found for the repetition

of identical duration but not for the repetition of a shape. These results further support our

interpretation that the negative BOLD response at the offset of the test duration found in the

right IPL is related to the attention focus in general, while graded adaptation effect was unique

to the repetition of the same duration.

It has been shown that extensive adaptation to repetitions of identical durations (e.g., ~100

repetitions) can produce perceptual changes in perceived duration (“aftereffect”) [70]. In con-

trast, the paired presentation paradigm with a single presentation of an adapter does not
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produce a perceptual change in duration as shown by a previous psychophysical study (see Dis-

cussion in [70]). Although our fMRI adaptation paradigm and previous psychophysical studies

of time adaptation [13,70] indicate the existence of duration-tuned neural representations, fur-

ther investigation is required to determine whether the right IPL identified in the present study

mediates the psychophysically observed aftereffect. Intriguingly, previous studies of orientation

adaptation demonstrated that a prolonged presentation of an adapter produced an fMRI adap-

tation across multiple visual areas, whereas adaptation to a briefly presented stimulus produced

adaptation only in the higher visual cortex [69,79]. These neuroimaging studies in orientation

adaptation suggest that differences in the strength of adaptation could produce different fMRI

adaptation. Direct comparison between the two different adaptation paradigms (i.e., single pre-

sentation versus 100 times repetition of the same duration) would provide further insight into

the relationship between duration-tuned representations in the right IPL and the psychophysi-

cal duration aftereffect.

Here, we carefully ruled out potential confounding factors and replicated the main findings

by using multiple experimental paradigms and four standard durations. Our findings of dura-

tion adaptation in the right IPL are attributable neither to general decision-making processes

(experiments 1 and 2) nor to graded manipulation of a stimulus feature (experiment 3). More-

over, we confirmed that adaptation was induced by the duration of the reference stimulus and

not by the fixed interval between the reference and test stimuli (experiment 4). Differences in

task difficulty between conditions or experiments were equated and thus should not have

accounted for our findings of duration adaptation (experiments 3 and 4). The replication of

duration adaptation in the right IPL across the experiments strongly corroborates our conclu-

sion that this area represents the durations of salient events in a duration-selective manner. On

the other hand, repetition suppression in the other brain areas such as the PTC and prefrontal

cortex were not reproduced across experiments in the present study. One possible interpreta-

tion for this experiment specific effect is that such apparent repetition suppression was the

result of the potential confounding factors listed above (e.g., general decision-making pro-

cesses, graded manipulation of a stimulus feature, and fixed interval between the reference and

test stimuli). Alternatively, neurons in those areas might specifically be tuned for a very narrow

range of duration used in that particular experiment. Future studies applying single-unit

recording technique for those areas (e.g., PTC and prefrontal cortex) in nonhuman primates

could provide clear insight into this issue.

Before our work, neural correlates of time perception had been found in the form of gradual

changes in neural activity over time, such as in the hazard rate of elapsed time [3,5] or in the

form of ramping activity over time [6,80,81]. Although several theoretical models have

assumed that duration is represented by populations of neurons that fire selectively for the

durations to which they are tuned [8–10], empirical evidence for such neurons in humans has

until now been missing. Only a handful of electrophysiological studies in animals have

reported the existence of neurons that show duration-selective responses to time intervals of a

few hundreds of milliseconds; these neurons have been located in the striatum and prefrontal

cortex [82] and the SMA [63] in monkeys and in the visual cortex in cats [83]. Our findings

suggest that such duration-selective neurons exist in the human IPL.

Materials and Methods

Ethics Statement

All participants gave written informed consent. Experiments 1, 2, and 3 were approved by the

University College London (London, United Kingdom) ethics committee, and experiment 4 was

approved by the National Institute for Physiological Sciences (Okazaki, Japan) ethics committee.
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Participants

In total, 55 healthy, right-handed volunteers participated in the fMRI experiments. Seventeen

volunteers participated in experiment 1. In experiment 2, another group of 17 volunteers was

recruited. These 17 volunteers in experiment 2 also participated in experiment 3. In experiment

4, a new group of 21 volunteers participated. Data of five participants in experiment 1, three

participants in experiment 2, three participants in experiment 3, and one participant in experi-

ment 4 were excluded from data analyses because of poor task performance in the duration or

shape discrimination task (binomial test, p> 0.05). Moreover, one more participant was

excluded from the data analysis of experiment 3 because of partial signal loss caused by a large

movement of the head. Therefore, data from the remaining 12 participants (five male and

seven female, age range 19 to 28 y) in experiment 1, 14 participants in experiment 2 (five male

and nine female, age range 21 to 30 y), 13 participants in experiment 3 (five male and eight

female, age range 21 to 29 y), and 20 participants (nine male and 11 female, age range 18 to 29

y) in experiment 4 were analyzed.

Task and Stimuli

Experiments 1 and 2. The task was either (1) to discriminate whether the durations of two

sequentially presented visual stimuli were the same or different (time task) or (2) to discrimi-

nate whether the shapes of the two stimuli were the same or different (shape task) (Fig 1A).

Each participant completed a total of four runs of fMRI scans (9 min 25 s and 9 min 48 s per

run for experiment 1 and experiment 2, respectively), each of which comprised 16 blocks (eight

blocks for each task); each block consisted of five trials. An instruction cue (duration 1.5 s) indi-

cated whether the task in the following five trials was a time (“Time”) or a shape (“Shape”) task.

In both tasks, a trial started with the presentation of a fixation cross for 1.5 s, followed by a refer-

ence and a test stimulus that were presented sequentially at the center of the screen with an inter-

val of 0.5 s. Then, a fixation cross was presented for a variable duration of time (1 to 3 s, with a

0.5-s step), followed by a response cue. The response cue “S D” indicated that the subject’s right

index finger was assigned to “same” and the right middle finger to “different” responses; in con-

trast, “D S” indicated that the right index finger was assigned to “different” and the middle finger

to “same” responses. These cues were randomly presented across trials. Participants were

requested to respond within the response period of 1 s. Interblock intervals were 2 s, and block

durations (i.e., intervals between onset of instruction cue presented at the beginning of each

block and the offset of the response cue at the last trial in that block) were varied within the

range of 26.5–34.7 s (experiment 1) and 28.5–37.5 s (experiment 2). Before the fMRI session, par-

ticipants were instructed to fixate on the center of the screen throughout the run and to ignore

the task-irrelevant dimension (i.e., the shape of the stimulus during the time task and the stimu-

lus duration during the shape task). The blocks for the time task and for the shape task were

mixed in each run, and the presentation order of these types of block was randomized.

The reference and test stimuli were a square or a circle presented on a black background.

The total areas of the stimuli were equated so as to control their physical properties. The stimu-

lus durations for the reference and test stimuli differed between experiment 1 and experiment

2. The duration of the reference stimulus presentation was fixed at 400 ms for experiment 1

and 600 ms for experiment 2, whereas the duration of the test stimulus was varied on five levels

(167, 283, 400, 533, and 650 ms for experiment 1 and 250, 433, 600, 783, and 967 ms for experi-

ment 2). There were four combinations of shape pairs for the reference and test stimuli, namely

square-square (SS), circle-circle (CC), square-circle (SC), and circle-square (CS). Therefore,

each experiment consisted of 20 different types of trial (5 levels of test stimulus duration × 4
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combinations of shape), and each of them was presented four times in each run (Half were pre-

sented in the time task, and the other half in the shape task.).

Experiment 3. The task was to discriminate whether the widths of two sequentially pre-

sented visual stimuli (an oval-shaped reference and a width-varying oval-shaped test stimulus)

were the same or different (graded-shape task) (Fig 4A).

The experiment consisted of two runs (11 min 28 s per run), each of which had 20 blocks of

five trials. The durations of the reference and test stimuli, as well as the durations of the fixation

cross, the instruction cue (only “Shape” was presented), and the response cue (“S D” or “D S”)

and interblock intervals were the same as in experiment 1. Block durations were varied within

the range of 26.7–34.8 s. The visual stimulus was a white oval presented on a black background.

The reference stimulus was identical across all trials (width of oval = 60 pixels), whereas the

test stimuli varied in width on five levels, namely 50 pixels (very narrow [VN]), 56 pixels (nar-

row [N]), 60 pixels (same [S]), 64 pixels (wide [W]), and 70 pixels (very wide [VW]). In total,

the experiment had 25 types of trial (5 levels of test stimulus duration × 5 levels of test stimulus

width), and each of them was presented four times in each run.

Experiment 4. The task was to discriminate whether the duration of the second (test)

stimulus of two sequentially presented visual stimuli was shorter, longer, or the same compared

with the duration of the first (reference) stimulus (time task) (Fig 7A).

Each participant completed a total of five runs of fMRI scans (7 min 52 s per run), each of

which comprised 12 blocks of four trials: six blocks with a reference (adaptor) of 300 ms and

six blocks with a reference (adaptor) of 450 ms. Each block began with an instruction cue of 1.5

s (Only “Time” was presented.). A trial started with the presentation of a fixation cross for 1.5

s, followed by a reference and a test stimulus that were presented sequentially at the center of

the screen with a variable ISI (1 to 2.5 s, with a 0.5-s step). Then, a fixation cross was presented

for a variable duration (2 to 3.5 s, with a 0.5-s step), followed by a response cue. The response

cue consisted of “+,” “-,” and “=,” corresponding to “longer,” “shorter,” and the “same”

responses, respectively. The spatial locations of these cues indicated the assignment of each

response to one of the three buttons on the button box. For example, “+ - =” indicated that the

right index finger was now assigned to the response “longer,” the middle finger to “shorter,”

and the ring finger to “same.” The cues (i.e., “+ - =,” “+ = -,” “- + =,” “- = +,” “= + -,” or “= - +”)

were randomly presented across the trials. Participants were requested to respond within the

response period of 2 s. Before the fMRI session, participants were instructed to fixate on the

center of the screen throughout the session. The blocks with 300-ms reference and with

450-ms reference were mixed in each run, and the presentation order of these types of block

was randomized. Interblock intervals were 1 s, and block durations were varied within the

range of 33.5–40.3 s.

The reference and test stimuli were white squares presented on a black background. The

sets of test stimulus durations in the 300-ms and 450-ms reference blocks differed. The test

stimulus durations when the 300-ms reference blocks were used were 200 ms, 300 ms, and

450 ms, whereas those when the 450-ms reference blocks were used were 300 ms, 450 ms, and

667 ms. Therefore, this experiment consisted of six different types of trial (2 reference stimu-

lus durations × 3 levels of test stimulus duration), each of which was presented eight times in

each run.

Behavioral Data Analysis

The proportions of the “same” responses in the time task were fitted by a Gaussian function for

individuals’ behavioral data. A one-sample t-test (α = 0.05) was performed to examine whether

the center of the Gaussian was shifted from the reference durations (experiments 1, 2, and 4) or
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the reference stimulus width (experiment 3). A one-way ANOVA was performed to compare

the task difficulties (i.e., accuracy) across experiments (α = 0.05). Also, a one-way repeated

measures ANOVA was performed to compare the accuracy across conditions in experiment 4

(α = 0.05). Degree of freedom was corrected using Greenhouse-Geisser estimates of sphericity

when Mauchly’s test indicated that the assumption of sphericity was violated.

Functional MRI Data Acquisition

Visual stimuli were projected onto a half-transparent screen by an LCD projector running at

60 Hz. The screen was viewed through a mirror mounted on the head coil.

Psychtoolbox (http://psychtoolbox.org) implemented on MATLAB software (Mathworks,

Natick, Massachusetts) was used to present the stimuli in experiments 1, 2, and 3, and Presen-

tation Software (Neurobehavioral System, Berkeley, California) was used in experiment 4.

MR images for experiments 1, 2, and 3 were acquired with a 1.5-T MRI scanner (Avanto,

Siemens, Munich, Bavaria, Germany). Data were acquired by using a 32-channel head coil.

Time-course series of 175 (experiment 1), 182 (experiment 2), and 213 (experiment 3) volumes

were acquired by using ascending T2�-weighted gradient-echo echo-planar imaging (EPI)

sequences. To cover the entire cerebral cortex and basal ganglia, each volume consisted of 38

oblique slices, with 3.0 × 3.0 mm resolution, 2.0 mm thickness, and a 1.0-mm slice gap. The

cerebellar cortices were not covered. The time interval between two successive acquisitions of

the same slice was 3,230 ms, with a flip angle of 90° and a 50-ms echo time. The field of view

was 192 × 192 mm. The digital in-plane resolution was 64 × 64 pixels, with a pixel dimension

of 3.0 × 3.0 mm. High-resolution whole-brain MR images were also obtained by using a

T1-weighted three-dimensional (3-D) magnetization-prepared rapid acquisition gradient-echo

(MPRAGE) sequence (voxel size = 1.0 × 1.0 × 1.0 mm). The first six volumes of each fMRI run

were discarded because of unsteady magnetization, and the remaining 169, 176, and 207 vol-

umes per run (a total of 676, 704, and 414 volumes per participant) were used for analysis in

experiment 1, experiment 2, and experiment 3, respectively.

MR images for experiment 4 were acquired with a 3-T MRI scanner (Allegra, Siemens,

Munich, Bavaria, Germany). A time-course series of 236 volumes was acquired by using

ascending T2�-weighted gradient-echo EPI sequences. To cover the entire cerebral and cerebel-

lar cortex and basal ganglia, each volume consisted of 34 oblique slices, with 3.0 × 3.0 mm reso-

lution, 3.5 mm thickness, and a 0.56-mm slice gap. The time interval between two successive

acquisitions of the same slice was 2,000 ms, with a flip angle of 80° and a 30-ms echo time. The

field of view was 192 × 192 mm. The digital in-plane resolution was 64 × 64 pixels, with a pixel

dimension of 3.0 × 3.0 mm. High-resolution whole-brain MR images were also obtained by

using a T1-weighted 3-DMPRAGE sequence (voxel size = 1.0 × 1.0 × 1.0 mm). The first five

volumes of each fMRI run were discarded because of unsteady magnetization, and the remain-

ing 231 volumes per session (a total of 1,155 volumes per participant) were used for the

analysis.

Preprocessing of fMRI Data

The fMRI data were analyzed by using statistical parametric mapping software (SPM8; http://

www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB. The MR images were preprocessed at

the individual level. Following realignment of the fMRI data, the high-resolution 3-D

T1-weighted MR images were coregistered to the fMRI data. The coregistered T1-weighted

images were normalized against the MNI T1 template, and the same parameters were applied

to all of the fMRI data. The anatomically normalized fMRI data were then smoothed in three

dimensions by using an 8-mm full-width-at-half-maximum Gaussian kernel. Before the
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coregistration, slice-timing correction was applied only to the data of experiment 4, because

the TR of fMRI scan was short enough (< 3 s) to apply the correction.

Statistical Analysis of fMRI Data

Experiments 1 and 2. We constructed two general linear models (GLMs) and applied them

to the same datasets in experiment 1 and experiment 2. The first model was aimed at evaluating

the effects of adaptation to time while performing the time task and adaptation to shape while

performing the shape task. The second model was designed to evaluate whether the effect of

adaptation to time would appear while performing the shape task. For these purposes, in the first

model, the regressors were set at the onsets of the instruction, the reference stimulus presentation

for the time task, the reference stimulus presentation for the shape task, and the response phase,

as well as at the time of offset of the test stimulus presentations. There were nine independent

regressors for the offsets of the test stimulus presentations, namely five levels of duration condi-

tions for the time task trials, along with the SS, CC, SC, and CS conditions for the shape task tri-

als. In total, therefore, 13 regressors were set for each run.

In the second model, there were ten independent regressors for the offsets of the test stimu-

lus presentations, namely five levels of duration conditions for the time task trial and five for

the shape task trial. The regressors for the onsets of the instruction, the reference stimulus pre-

sentation for the time task, the reference stimulus presentation for the shape task, and the

response phase were also set as in the first model. In total, therefore, 14 regressors were set for

each run of fMRI scanning. The duration of all regressors in both models in SPM8 was set to

zero. The signal time course of each participant was modeled with hemodynamic-response

functions, high-pass filtering (256 s), and session effects.

The summary data for each participant were incorporated into a group-level analysis using

a random effects model, separately for the first and the second model. The parameter estimates

in the individual analysis constituted “contrast” images, which were used for the group analy-

sis. To detect brain regions that showed fMRI adaptation effects, the contrast images for each

condition were obtained via individual analysis representing the event-related change in MR

signals at the offset of the test stimuli. For these contrast images, a full factorial analysis was

performed for every voxel within the brain, in order to obtain population inferences for the

effect of duration adaptation and the effect of shape adaptation (“same” versus “different” con-

ditions). To detect the duration adaptation effect, we applied a parametric contrast according

to the perceptual duration change between the reference and the test stimuli. In the present

study, the deviation ratio was used as a proxy of perceptual discriminability of durations. The

deviation ratio [(longer duration − shorter duration) / shorter duration] for each set of stimulus

durations was 1.4 (167 ms), 0.41 (283 ms), 0 (400 ms), 0.33 (533 ms), and 0.63 (650 ms) for

experiment 1 and 1.4 (250 ms), 0.39 (433 ms), 0 (600 ms), 0.31 (783 ms), and 0.61 (967 ms) for

experiment 2 (Fig 1C). The means of these values were adjusted to zero and then the mean-

adjusted values were applied as the contrast values. Unless otherwise noted, a statistical thresh-

old of p< 0.05 FWE-corrected at the cluster level (defined as p< 0.001 uncorrected at the

voxel level) was used as the criterion for statistical significance.

Experiment 3. We constructed a GLM to evaluate the effect of adaptation to stimulus

width while subjects were performing the graded-shape task. Similarly to experiments 1 and 2,

we also constructed another GLM to evaluate whether the effect of adaptation to time would

appear while performing the graded-shape task. The regressors were set at the onsets of the

instruction, the reference stimulus presentation, and the response phases, as well as at the off-

sets of the test stimulus presentations. In the first model, there were five independent regressors

for the offsets of the test stimulus presentations; these corresponded to the five graded oval
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widths. In the second model, these instead corresponded to the five levels of duration condi-

tions. In total, therefore, eight regressors were set for each run in both models. The duration of

all regressors in SPM8 was set to zero. The signal time course of each participant was modeled

with hemodynamic-response functions, high-pass filtering (256 s), and session effects.

In the group-level analysis with a random effects model, we performed full factorial analyses

in order to obtain population inferences for the effect of graded-shape adaptation and the effect

of duration adaptation. To detect the graded-shape adaptation effect, we applied a parametric

contrast according to the perceptual width change between the reference and the test stimuli.

Similarly to the time tasks in experiments 1 and 2, we used deviation ratio as a proxy of percep-

tual discriminability of widths. The deviation ratio for each test condition was 0.2 (VN), 0.07

(N), 0 (S), 0.07 (W), and 0.17 (VW) (Fig 4C). To detect the duration adaptation effect, we

applied the same parametric contrast as experiment 1 because the deviation ratios for the test

stimulus durations in this experiment were the same as in experiment 1. The means of these

values were adjusted to zero and then the mean-adjusted values were applied as the contrast

values. Unless otherwise noted, the same statistical threshold as in experiments 1 and 2 was

used as the criterion for statistical significance.

Experiment 4. We constructed a GLM to evaluate the effects of adaptation to time while

subjects were performing the time task with two different adaptor durations. The regressors

were set at the onsets of the instruction, the 300-ms reference stimulus presentation, the

450-ms reference stimulus presentation, and the response phases, as well as at the offsets of the

test stimulus presentations. There were six independent regressors for the offsets of the test

stimulus presentations, namely three test durations that followed the 300-ms reference stimu-

lus and three test durations that followed the 450-ms reference stimulus. In total, therefore, ten

regressors were set for each run. The duration of all regressors in SPM8 was set to zero. The sig-

nal time course of each participant was modeled with hemodynamic-response functions, high-

pass filtering (256 s), and session effects.

In the group-level analysis with a random effects model, we performed a full factorial analy-

sis in order to obtain population inferences for the effect of duration adaptation. To detect the

duration adaptation effect, we applied a parametric contrast according to the deviation ratio

between the reference and test stimuli. The deviation ratio for each test duration that followed

the reference stimulus of 300 ms was 0.5 (200 ms), 0 (300 ms), and 0.5 (450 ms), and the ratios

for the durations that followed the reference stimulus of 450 ms were 0.5 (300 ms), 0 (450 ms),

and 0.5 (667 ms) (Fig 7C). The means of these values were adjusted to zero and then the mean-

adjusted values were applied as the contrast values. Unless otherwise noted, the same statistical

threshold as used in experiments 1, 2, and 3 was used as the criterion for statistical significance.

Supporting Information

S1 Data. The original data underlying each figure in the manuscript and supporting infor-

mation.

(XLSX)

S1 Fig. Plots of the beta values in the right SMG for each combination of shapes during the

shape task. (A) Plots of the beta values under each set of shapes at the peak coordinates of the

clusters in the right SMG (x, y, z = 58, −42, 30) that showed duration adaptation effects during

the time task in experiment 1 (see Fig 2A). (B) Plots of the beta values under each set of shapes

at the peak coordinates of the clusters in the right SMG (x, y, z = 62, −34, 32) that showed a

duration adaptation effect during the time task in experiment 2 (see Fig 2C). Letters on the x-

axes represent combinations of shapes for reference and test stimuli: square-square (SS), circle-

circle (CC), square-circle (SC), and circle-square (CS). Error bars indicate standard errors of
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the mean. Please refer to S1 Data for the numerical values underlying these figures.

(TIF)

S2 Fig. Shape adaptation effects during the shape task in experiment 1. (A) Cluster showing

shape adaptation is shown in axial (bottom left, z = −18) slices of the standard brain. Plots of the

beta values for each set of shapes during the shape task (B) and for each set of stimulus durations

during the time task (C) at the peak coordinates of the cluster in the right parahippocampal

gyrus (x, y, z = 20, −22, −18). The right parahippocampal gyrus showed a significant adaptation

to the repetition of the same shape but not to the repetition of the same duration. Color scale

indicates T-values. Letters on the x-axis represent combinations of shapes for reference and test

stimuli: square-square (SS), circle-circle (CC), square-circle (SC), and circle-square (CS). Error

bars indicate standard errors of the mean. Please refer to S1 Data for the numerical values

underlying (B) and (C).

(TIF)

S3 Fig. Greater stimulus duration adaptation during the time task than shape adaptation

during the shape task in experiments 1 and 2. Clusters highlighted by the contrast (duration

adaptation during time task> shape adaptation during shape task) are shown for experiments

1 (A) and 2 (B). The color scale indicates the T-values.

(TIF)

S4 Fig. Overlap of clusters showing duration adaptation effects during the time task and

the shape task. Red clusters represent areas showing duration adaptation effects during the

time task (corresponding to the results shown in Fig 2A and 2C), and blue areas represent

those showing duration adaptation effects during the shape task (corresponding to the results

shown in Fig 3A and 3C) in experiment 1 (A) and experiment 2 (B). Overlapped areas are col-

ored magenta, as shown in the legend.

(TIF)

S1 Table. Anatomical labels and statistical results of experiment 1.

(DOC)

S2 Table. Anatomical labels and statistical results of experiment 2.

(DOC)
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