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Abstract

In this work we propose an adaptive classification method able both to learn and to follow the temporal
evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using
multiple hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies
proposed in the literature, our method learns all hyperplanes in a global way, minimizing a cost function
that evaluates the error committed by this family of local classifiers plus a measure associated to the VC
dimension of the family. We also show how the idea of slowly changing classifiers can be applied to non-linear
stationary concepts with results similar to those obtained with normal SVMs using gaussian kernels.
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1 Introduction

Many classification problems associated with real
world systems vary over time. For example, a
system may change because of physical reasons
as the season of the year, or because there is
a change in the expectations or interests of its
users. In most cases the cause and characteris-
tics of the change are not obviously present in
the data under analysis. In these situations, the
classifier needs to learn not only the correct input-
output function but also of to detect the change
in the concept and to adapt to it.

Usually this problem is tackled using a tempo-
ral window of a given length and assuming that
the change in the concept that must be learned is
negligible in that period of time [1]. If the win-
dow is too big, such assumption is in general not
valid and the responce time needed by the algo-
rithm to follow the changes is excessive. On the

contrary, when the window is too small, the al-
gorithm adapts quickly to any drift in the data,
but it is also more sensitive to noise and looses
accuracy because it must learn the input-output
relationship from only a few examples. As a po-
tential solution, there are algorithms that use an
adaptive window size [1], where the data is di-
vided in small batches and the optimal number
of batches is used. Even then, the concept must
be stationary in all batches. Vicente et al. [2] in-
troduced a different, purely statistical approach,
to the learning of evolutive concepts. In a recent
work, Kolter and Maloof [4] discussed the use of
ensemble methods for drifting concepts, includ-
ing a lengthly review of the state of the art in the
field.

Bartlett et al. [3] proposed to learn a sequence of
functions with some restrictions on how diverse
those functions can be. In this work we present
a new approach to this problem, the use of suc-
cesive classifiers that vary following the concept
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change, but they are all fitted in a global way. In
our method, the interval of validity of each clas-
sifier can be as small as needed (even only one
point), but the classifiers are trained to minimize
a global measure of the error instead of adjust-
ing them locally. To build the sequence of classi-
fiers we selected one of the most powerfull meth-
ods nowadays, the Support Vector Machines [5, 6]
(SVM), which we adapted accordingly.

An interesting by-product of our method is the
possibility of applying it on non-linear station-
ary classification problems. In that case, the idea
described before can be applied simply by replac-
ing the temporal windows by a “neighbourhood
window” in the input space. In this way, the SVM
classifier can describe complex decision functions
(not only simple hyperplanes) without relying on
kernels [5]. We show, through a simple example,
that with our implementation of adaptive SVM
it is possible to achieve results similar to those of
a normal SVM with a gaussian kernel.

The rest of this paper is organized as follows. In
Section 2 we introduce and justify the new min-
imization problem we need to solve and in sec-
tion 3, we derive the corresponding dual problem.
Then, in Section 4 we present some preliminary
experimental results and, finally, Section 5 closes
the work with some conclusions.

2 The
problem

new minimization

Suppose we have a data set [(x1,y1) ..., (Tn, Yn)]s
where the pair (x;,y;) was obtained at time 7, x;
is a vector in a given vectorial space and y; = £1.
In this setting we define:

Family F of classifiers: is composed by a set of
hyperplanes that can change with time. That is,
using this family, a point readed at a given time ¢
is classified according only to the hyperplane cor-
responding to that ¢ period of time. The Vapnik-
Chervonenkis dimension (VC) [6] of this family
is VC(F) = oo. This follows from the fact that
the hyperplane can be changed enough from time
1 — 1 to time i as to be able to classify correctly
the point x;, no matter where it is.

Family F, of classifiers: is composed by the clas-
sifiers f € F for which the change between an
hyperplane at a given time and the next one is
bounded by v. To be more precise, if the hyper-

plane at time ¢ is defined by w; - x; + b;, then

f cF, < (wi,1 — ’LUZ')Q + (bifl — bl)z < v? Vi

It is easy to see that given v,v’ such that v < v/,
we have F, C F,/, which means that VC(F,) <
VC(F, ). On the other hand, if the input space
has d dimensions, VC(F,—o) = d+1, since Fy is a
set of hyperplanes that do not change in time. It
follows that the VC dimension of F,, grows with
v, starting from d + 1.

According to this, we can control the complexity
of the set of classifiers f just limiting them to be
in F, for some small v. Other option, that makes
use of the regularization theory, is to search in F
the set of classifiers that minimizes

Err(f,z,y) + C comp(f)

where

Err(f,a,y) =Y max[0, 1 — yi(wiz; + b)),

is the empirical error, comp(f) is a given measure
of the complexity of the set of n classifiers and C
is a constant that defines the relative importance
of the complexity with respect to the errors.

If we change slightly the definition of F), to be the
family of hyperplanes that change less than v on
average (instead of bounded by v), we can use a
simple measure of complexity given by

Following the typical reasoning in Structural
Risk Minimization [6], the VC dimension should
drop when the average margin of all hyperplanes
grows. According to this, we can define an im-
proved measure of complexity:

o) = L5 u

+% Z(wifl — ’LUZ')Q + (bifl — bl)z

where v can be used to change the relative im-
portance of each term.
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Finally we get the problem

min Zmax((), 1 —yi(wiz; + b)) +

1 2, 2
C[n ;wi + - ;(wz_l w;)® 4+
+(bi—1 — bi)?],

which can be show to be equivalent to

min Zfi +
C[% Zw? + % Z(wi,l —w;)? +

+(bi—1 — b:)?],
subject to

& >0
yi(wir; +b;) —1+& >0.

The solution of this problem is a set of SVMs that
evolve in time, which we will call Time—Adaptive
Support Vector Machines (TA-SVM).

3 Solution: deriving the dual

In this section, following the typical strategy in
the SVM literature, we will derive the dual of
the minimization problem we have recently intro-
duced. Even if our problem is slightly more com-
plicated than the one usually faced, the strategy
to solve it remains the same, involving lagrange
multipliers and derivatives.

From here on we will call V; the set of neighbour
points of x; and Nj; its cardinality. Also we will
use the following notation. Given a matrix A, A;.
will be its i*" row and A.; its j** column. P® Q
will be the element-wise product of the matrices
P and Q. That is, (P ® Q)i; = P;;Qi;-

We start from the problem

. 1 ¢ 2 7 2
min %ijwin g > llwi —wyl P+

wi, )
o JjEV;

+(b; — by) +CZ§Z,

with |Jw|| = w - w, subject to

& >0
yi(wix; + b)) — 14+ & > 0.

Note that we have used the common notation in
SVM, where the parameter C' multiplies the er-
rors instead of the complexity of the solution.

The corresponding lagrangean is

1 & ¥
= gl + g 3 -l )

JEV:

+(bi — b;)? +OZ§1
—ZO(Z yz wl:cl—i—b _1+§z Zﬁzgzu

where a; > 0 and 5; > 0.

We want to maximize L with respect to «; and
Bi, and minimize it with respect to w;, b; and &;.
At this point, the derivatives with respect to the
primal variables should be zero. The equation

oL
9&i

:O:C_ai_ﬁiv

implies that

On the other hand, taking in account that each
x; is multiplied by (C' —«; — 3;), Eq. (1) becomes

1 — v
L = o Z[||wi||2 + 5 Z [Jw; —w;||* +
2n, 4 2 4
=1 Naz
- Zai(yi(wixi +b;)—1). (2)

In the case of the w; we have

oL
6’[1}1' :O:E wl—i-'yz '—U)J — YTy,
JEV:

where we have considered that if z; is a neighbour
of z; then z; is a neighbour of x;. This results in

1
- (14 ~yNy)w; —~ Z w; | = ayixi. (3)

JEV:

If we define the matrix M and vector z as
(1 +'yN1)/n if 7 :j

My =< —v/n ifjev,
0 in other case.

Zi = QY4
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we can write (3) in the matrix form Mw = z, or
w; = (M~1);.2. Replacing in (2) we have

L - %J((M*)%K)m (4)

+Z—naT((M_1QM_1) ® K)a +

+% DD bi=by)?

i JEV;
_aT((Mfl) ® K)Oé —+ Zai — Zalyzbz
where we have defined two matrices N x N,
Kij = yiyjzix; and @ given by
N; ifi=j

Qij = —1 if4is a neighbour of j
0  in other case

In the case of the b;,

oL

—o=21 b)) — s
O =TS b)) e
JEV;
which gives
Y Ni Y
b; — — b; = ;.
n ' Z j = QiYi (5)
JjeV;
Defining h as:
a1y1
h = :
anyn
we can write (5) as
g
—Qb=h. 6
Tq (6)
Since @ is singular,
Ny — ZjGVi 1 0
QL= : =1
No =2 ey, 1 0

SO
Yo Y7oy T
0=10b=-L1Qb=Th=

It is possible to eliminate b from (4). The part
that depends on b is

ﬁ Z Z (bi —b;)* — Zaiyibi =
i JEV; i

gl 2
:EZZ(@—@) — Kb

i JeV;

On the other hand,
bTQb =" " (bi — b)bs.
i jev;
which gives
g 2 T 7T T
— bi — b)) —h"b==—b"Qb—h"b.
T 2 2 (bi = b)) 5-b'Q
i jeV;
From (6) we know that
b - nhT7
Y
resulting in

T T
anhT oy, b

2n vy 2
Diagonalizing @ we have Q@ = PDPT, where
P~! = PT since Q is symmetric, so we can obtain

from (6)

DPTh = PT"—h

If we define ¥ = PTbh and h' = PTh, the last
equation can be written as

nh'
_

As D is diagonal, it’s easy to find the b} for which

Db =

/
b’i:%,if)\ﬁéo.
YA

If the eigenvalue A; = 0, from (6) we obtain

h
Py = pi™
0 = P;Q”—h
0 — nh
.
0o = n

K2

That is, when we cannot determine b, with the
last equation, h/ = 0.

Let’s go back to what we wanted to obtain:

hTy B hPPTY
2 2
— _lh/Tb/
2

= —% zi:h;b;

1 n
-5 Z ;Aih’f
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where A; ——sz\ #0and A;, =0if \; =0. If
we define D’ as the diagonal matrix D}, = A; and
Y given by Y;; = vy, the last equahty is

hTb
BN —ﬁhTPD’PTh
2 2y
- —QEaT((PD'PT)@Y)a.
5

Replacing in (4) we have

1

2n
v

RQT((
(MY OK)a+> a;—

L = —aT"(M )6 K)a+

M7'QM™Y o K)rra —

—%QT((PD’PT) OY)a
That is
y
in

(PD PT)QYaJrZa“ (7)

L = [( — M Py M QM - M o K —

n
2
which has the form

L:aTRoz—l—Zai

with the matrix R defined accordingly.
Finally, the dual problem is

max o’ Ra + E ;,
(o7

subject to

OSOQSC
Zaiyi:O,

which is the same quadratic minimization prob-
lem with restrictions solved in SVM (with a dif-
ferent matrix R). In consequence, any technique
employed to solve the conventional SVM problem
can be used here, as, for example, SMO [5].

4 Experimantal Results

4.1 Artificial datesets

We first applied the new TA-SVM to three arti-
ficial datasets, designed to evaluate different as-
pects of the method.

The first two examples point to check the time
evolution of the classifier for different values of
the v parameter and to compare it with the solu-
tion found by a standard SVM with a linear ker-
nel (which does not take into account the time at
which each sample was collected). The v parame-
ter regulates how diverse the differenct classifiers
in the TA-SVM can be. High v values force the
classifiers to remain stationary (see Eq. 1, for
example).

Example 1: We generated a dataset with 500
points sampled from a normal distribution in R2,
divided in two classes. Class 1 contains 250 points
centered in (0,1) with a standard deviation of
0.1 for each dimension. The other 250 points,
corresponding to class —1, were equally gener-
ated but centered in (0,—1). To simulate a drift
in time, we added an angle of 35 radians to
each point z;, represented in polar coordinates.
The resulting points (again in rectangular coor-
dinates) were presented to both (TA-SVM and
SVM) algorithms. Figure 1 shows the resulting
(final) dataset. When time evolves, both classes
drift along the unitary circle in counterclockwise
sense.

15
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Figure 1: The dataset used in the Example 1

In order to force the TA-SVM to search for a
temporal evolution, only the points x; 1 and z;11
were considered as neighbours of z; (with the ex-
ception of both extremes). That is, we used a
matrix @ defined as

Qll = an = 1
Qi = 2 fori#landi#n
Qiit1 = Qi1 = —1

in other case.

Qi = 0

The parameter C' in TA-SVM was fixed to 1 while
~v was changing. According to this, we also used
C =1 for the SVM parameter.
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Figure 2 shows the time evolution of the classi-
fier for v € {10,10%,10°,10%}. The lines in the
Figure join the extreme of each vector w; with
the corresponding extremes of w;+1 and w;_1; i.e.
they are the curve w(t). For TA-SVM, the train-
ing errors for these four cases were 0, 0, 0, and
2.6%, respectively. Class 1 points are plotted for
comparison. The Figure shows that the classifier
evolves, following the data, for low «, and tends to
the solution found by standard SVM as 7 grows.
The training error is 0, except for high values of
~v where the TA-SVM is forced to remain almost
constant (it is worth mentioning that the Bayes
error for this example is zero).

T
gamma=10
gamma=1000 —--—
gamma=1 millions -------
gamma=100 millions.
WL SVMsoluton = |
Class1

Figure 2: Results of TA-SVM and SVM on Example
1. The different lines show the time evolution of the
TA-SVM classifier for growing values of ~.

Example 2: In this case we used the same

points sampled for the previous example, but we
changed the added angle to 1301—0”0 radians (instead

of %). In this case we have some overlap be-

tween the classes, as can be seen in Figure 3.
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Figure 3: The dataset used in the Example 2

The results in this case were qualitatively simi-
lar to those of the first example. Figure 4 shows
the results, including the curves corresponding to

v € {10%,105,107,108}. The training errors of
the TA-SVM for these values were 0, 0, 0,2% y
28,8%, respectively. It is worth mentioning that
the high error rate for v = 10% is approximately
equal to the result obtained with the standard
SVM, given the high overlap between the classes.

gamma=1000 ——
gamma=1 million ——---—
jammas=10 millions --------
gamma=100 millions -
solution  w
Class1

L L
15 -1 05 0 05 1 15

Figure 4: Results of TA-SVM and SVM on Example
2. As in Fig. 2, the different lines show the time
evolution of the TA-SVM classifier for growing

values of ~.

Example 3: With this example we want to
study the behaviour of the method in problems
where the decision frontiers are not a simple
hyperplane (i.e., we address the situation of a
smooth change in the input space of the prob-
lem instead of a smooth change in time). Even
though the decision frontier is a complex function
of the input, the classes can be separated by a set
of hyperplanes that varies slowly as one of the
coordinates changes. Note that in this case the
method is being applied over a stationary system,
so this example actually explores the capacity of
the algorithm of becoming an alternative to SVM
with non linear kernels.

We created a dataset sampling 500 points from
a uniform distribution in x € R?, where x; €
[—0.2;1.2] and z2 € [—5;5]. A point z; belongs
to class 1 if

1
T2 2 [P

and to class —1 in the other case. Figure 5 shows
the resulting dataset.
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Figure 5: The dataset used in the Example 3

As in the previous cases, in order to force the TA—
SVM to search for solutions that vary locally, the
points x; and x; were considered neighbours if x;
is one of the 5 nearest-neighbours of z; or z; is
one of the 5 nearest—neighbours of x;. As before,
both parameters C' (in TA-SVM and in SVM)
were fixed to 1. We use as test set a fixed grid
of points inside the same rectangle as the train-
ing points. Each point in the test set was classi-
fied using the hyperplane assosiated to its nearest
neighbour in the training data.

Figures 6 to 9 show the results obtained on the
test set for a v of 102, 10%, 5 x 10* y 5 x 10° re-
spectively. As expected, the decision frontier for
a big « is very similar to the one produced by
SVM with a linear kernel.

08 -
06 -
04

02

Decision frontier
Approximation -------

02 L L L L L L L L L

Figure 6: The decision frontier for Exam-
ple 3 obtained with TA-SVM using ~ = 103,

Decision frontier
Approximation -------

Figure T: The decision frontier for Exam-
ple 3 obtained with TA-SVM using ~ = 10%.

12 T T T

Decision frortier
Approximation -—-—-

Figure 8: The decision frontier for Example
3 obtained with TA-SVM using v == 5 x 10%.

12 r

Decision frortier
Approximation -—-—-

Figure 9: The decision frontier for Example 3 ob-
tained with TA-SVM using v == 5 x 10°.

We also compared the error rates on the test set
produced by TA-SVM with those corresponding
to a SVM with a gaussian kernel. Table 1 shows
these results. The error rates reported in the Ta-
ble are the best that could be obtained by opti-
mizing the v parameter of the gaussian kernel and
using a fixex value of C' = 1. As can be seen in
the table, TA-SVM outperforms the best result
of SVM with a gaussian kernel, even though the
results must be considered as preliminary since
neither of the methods were exhaustively opti-
mized.
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Method Error rate (%)
TA SVM ~ = 10° 3.61

TA SVM ~ = 10* 9.12

TA SVM ~ = 5 x 104 2.81
TA-SVM ~v =5 x 10° 5.17

SVM (linear kernel) 5.73

SVM (gaussian kernel, v = 2.94) 2.37

Table 1: Error rates on the test set for Example 3
and different methods.

4.2 A real-world example

The synthetic examples 1 and 2 clearly demon-
strated the capacity of TA-SVM of resolving
drifting classification problems. It is remarkable,
however, that TA-SVM can also solve stationary,
non-linear classification problems with a preci-
sion comparable to SVM with a gaussian ker-
nel, as the analysis of the third example sug-
gests. To explore deeper this capacity, we also
tested the new method over a real-world prob-
lem. In this case we used the breast cancer
dataset from the IDA repository [7]. As in Miiller
et al. [8], 100 splits of the data in a train-
ing set and a test set were used (200 samples
for training and 77 for testing). To optimize
the free parameters of each method we used an
internal 10-fold cross validation for each of the
100 runs. The parameter v was chosen from
{10,102,10%,5x 103, 10%,5x 10*} and the number
of neighbours from {3,4,5,7,10,15,20,25}. Ta-
ble 2 shows our best result and the ones reported
by Miiller et al. [8] for standard SVM.

Method Error rate (%)
TA-SVM 27.0+5.7
SVM 26.0 = 4.7

Table 2: Average test set errors for the “breast can-
cer” dataset.

The small difference in average errors, in this case
on the side of satndard SVM, does not have sta-
tistical significance. Again, this time over a real-
world problem, we obtained a result comparable
to SVM with a gaussian kernel.

5 Conclusions

In this work we presented TA-SVM, a new
method for generating adaptive classifiers, capa-
ble of learning concepts that change with time.

The basic idea of TA-SVM is to use multiple hy-
perplanes valid only in small temporal intervals
(windows) for making the classification but, in
contrast to other proposals, learning all the hy-
perplanes in a global way. We derived an appro-
priate minimization problem including the error
commited by the family of local classifiers plus a
measure associated to the VC dimension of the
set of classifiers.

We evaluated the method using two artificial ex-
amples, showing that TA-SVM can easily follow
the temporal drift of a simple clasification prob-
lem.

We also argued the idea of temporal locality can
be extended to localities in the input space. We
used the TA-SVM method to solve artificial and
real-world non—linear classification problems, ob-
taining results similar to SVM with a gaussian
kernel. This capacity of TA-SVM is remark-
able, since the method can generate a non-linear
classifier in the original input space without hav-
ing to choose a map to a high dimentional space
(through a kernel function).

The presented results are preliminary and the
method still requires a more exhaustive experi-
mentation to establish its advantages and short-
comings. Nevertheless, at least for non stationary
systems, the results look promising enough as for
being optimistic in regard to the application of
TA-SVM to real problems in slowly drifting sys-
tems.
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