
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/194846

 

 

 

Please be advised that this information was generated on 2022-08-27 and may be subject to

change.

http://hdl.handle.net/2066/194846


Time and Bayesian Networks

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken

volgens besluit van het college van decanen

in het openbaar te verdedigen op donderdag 30 augustus 2018

om 12.30 uur precies

door

Manxia Liu

geboren op 5 oktober 1987

te Zhejiang (China)



Promotor: Prof. dr. P.J.F. Lucas

Copromotoren: Dr. A.J. Hommersom (OU)

Dr. M. van der Heijden (FocusCura, Amsterdam)

Manuscriptcommissie:

Prof. dr. ir. M.J. Plasmeijer

Prof. dr. M.G. Madden (National University of Ireland Galway)

Dr. A. Tucker (Brunel University London, United Kingdom)

SIKS Dissertation Series No. 2018-20

The research reported in this thesis has been carried out under the

auspices of SIKS, the Dutch Research School for Information and

Knowledge Systems, the Institute for Computing and Information

Sciences of the Radboud University, the COPD+ project supported by

EFRO, with financial support by the China Scholarship Council, and

by a grant from project NanoSTIMA [NORTE-01-0145-FEDER-000016],

which was financed by the North Portugal Regional Operational

Programme [NORTE 2020], under the PORTUGAL 2020 Partnership

Agreement, and through the European Regional Development Fund

[ERDF].

Cover picture: Dreamstime/Alexmax

Printed by: Gildeprint

ISBN: 9789492896490



C O N T E N T S

1 introduction 1

1.1 Complex Systems 1

1.2 The Dynamics of Complex Systems 2

1.3 Intelligent Systems for Clinical Decision Support 4

1.4 Data Collecting Tools: Paper versus Mobile Devices 5

1.5 Modeling Techniques 8

1.6 Outline of the Thesis 9

2 preliminaries 13

2.1 Notation 13

2.2 Probability Theory 14

2.3 Bayesian Networks 17

2.4 Markov Processes 20

2.5 Temporal Bayesian Networks 22

2.5.1 Dynamic Bayesian Networks 23

2.5.2 Continuous-time Bayesian Networks 25

2.6 Model Learning 27

2.6.1 Structure Learning 28

2.6.2 Parameter Learning 28

3 hybrid time bayesian networks 31

3.1 Introduction 31

3.2 Motivating Example 33

3.3 Hybrid Time Bayesian Networks 34

3.3.1 General Idea 34

3.3.2 Model Definition 35

3.3.3 Factorization 37

3.4 Discrete-time Characterization 39

3.4.1 Structural Discretization 40

3.4.2 Constructing Representative Bayesian Nertworks 47

3.5 Experiments 50

3.6 Discussion 55

4 learning parameters of hybrid time bayesian net-

works 57

4.1 The Heart Failure Example 58

4.2 Related Work 60

4.3 Parameter Estimation in HTBNs 62

iii



iv contents

4.3.1 Likelihood of Complete Data 63

4.3.2 MAP Estimates with Complete Data 66

4.3.3 Incomplete Data 68

4.4 Experiments 71

4.4.1 Data Generation Process for HTBNs 72

4.4.2 Experimental Setup 74

4.4.3 Results 76

4.5 Conclusion 76

5 modeling unevenly spaced time series 79

5.1 Introduction 79

5.2 Related Work 83

5.2.1 The Clinical Setting: COPD Symptomatology 83

5.2.2 Model Development: Temporal Bayesian Networks 84

5.2.3 Data: Irregular Longitudinal Clinical Data 85

5.3 Materials 86

5.3.1 Synthetic Datasets 86

5.3.2 ACCESS Dataset 91

5.3.3 Interpretation of Unevenly-spaced Time Series 92

5.3.4 Interpretation of Time Series by DBNs 93

5.3.5 Interpretation of Time Series by CTBNs 93

5.3.6 Choice of Hyperparameters in CTBNs 95

5.4 Experiments 98

5.4.1 Experimental Settings 98

5.4.2 Results 100

5.4.3 Discussion 105

5.5 Conclusion 109

6 making continuous time bayesian networks more

flexible 113

6.1 Introduction 113

6.2 Motivating Example 116

6.3 Preliminaries 117

6.4 Hidden Continuous Time Bayesian Networks 120

6.4.1 Structure 120

6.4.2 Model Definition 123

6.5 Equivalent Direct Models 127

6.6 Experiments 132

6.7 Conclusions 135

7 conclusions and further research 139

7.1 Main Contributions 139



contents v

7.2 Further Research 140

a evidence types and inference in ctbns 143

BIBLIOGRAPHY 149

LIST OF SIKS DISSERTATIONS 161

SUMMARY 181

SAMENVATTING 183

ACKNOWLEDGMENTS 185

CURRICULUM VITAE 187





1
I N T R O D U C T I O N

The physical world we live in is characterized by evolution and ongoing

changing processes. While this is true for almost anything in the world,

it is in particular true for the main application field of the research in this

thesis: the field of clinical medicine. For example chronic diseases are

usually not fully stable but, by influencing the underlying pathophysi-

ological mechanisms, their associated signs and symptoms are affected

by changes in the patient’s environment, the interaction with other dis-

eases that temporally may coexist, and of course, by various treatments.

In addition, a disease evolves in time, and when it concerns a chronic

disease, will often become more severe as time progresses. Develop-

ing models that accurately describe disease evolution helps us to better

understand in which way the human body reacts to the disease and

whether there are suitable ways to recover from it. It also helps in de-

signing new, more effective treatments.

This thesis is about modeling evolving systems using probabilistic

graphical models as main representation technique, with its linked meth-

ods of probabilistic reasoning and learning. Here we restrict ourselves

to dynamic systems, where different parts of the systems may evolve at

their own rate, and where the time for the system to change from one

state to another is also an important aspect of modeling the dynamics.

1.1 complex systems

Many real-world systems are composed of a large number of parts that

interact with each other; these systems are known as complex systems.

As the name indicates, modeling the behavior of the systems can be

intrinsically difficult due to the complicated interactions between their

parts. This is indeed also a typical situation in the medical field. For

many medical problems, we may be interested in a patient’s health sta-

tus in terms of the presence of a particular disease or illness. A more
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2 introduction

concrete example is modeling a patient’s heart condition. There are a

number of factors that are associated with the patient’s cardiac health

status, such as the presence of angina pectoris, in most cases indicating

the presence of coronary artery disease. In the end, coronary artery dis-

ease may progress towards myocardial infarction, commonly called a

“heart attack”. A heart attack usually results in damaged heart muscle,

that is partly replaced by non-functional scar tissue. The reduction in

functional heart muscle is a major contributor to heart failure, i.e., the

heart is no longer able to comply with the body’s circulatory demands.

There are drugs available that counteract heart failure, such as digitalis.

It is a drug that is also known because of its narrow therapeutic spec-

trum, making it one of the favorite toxic substances by the murderers in

Agatha Christie’s detective novels. To build a system that appropriately

describes a patient’s heart condition, unarguably these factors must be

taken into consideration and the resulting system, therefore, will involve

complicated interactions between these factors.

One major characteristic of complex systems we in particular pay at-

tention to here is uncertainty. It is nearly impossible to precisely know

what the future state of a system will be. Uncertainty can be due to the

unavailability of complete information about a system, or because the

behavior of a system is not well understood [74]. The causes of uncer-

tainty in medicine can be more subjective and complicated. In the case

where patients are involved to self evaluate the state of their illness, pa-

tients have also been shown to experience “uncertainty in illness” [62],

suggesting that patients are incapable of determining the meaning of

illness-related events. A more fundamental problem is that a shared

concept of uncertainty from different disciplines is still missing [88].

Dealing with uncertainty is also a major issue in the primary domain

of this thesis, viz., medicine, where the object of interest is an extremely

complex biological machine: the human body. It is clear that, without

incorporating a manner of dealing with uncertainty in medical software

systems, one can not build systems that are capable of handling uncer-

tain events in actual clinical circumstances.

1.2 the dynamics of complex systems

Not only do systems consist of many complex interacting parts, they

also manifest rich dynamic behavior: most parts of systems are constantly

changing and evolving over time. The effect of one part of such a system
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on another may not take place immediately, but instead only after a

certain amount of time.

Capturing the dynamics of complex systems in models has many po-

tential benefits, and we are in particular interested in its use in pre-

dicting the course of a disease. In the case of heart failure, a relevant

predictive question of clinical interest would be how likely it is that

a patient’s heart condition is stabilized in the following days after the

patient has had a heart attack, followed by the administration of med-

ical treatment for a certain amount of time. To be able to answer such

a question, we are not only concerned with the static state of the pa-

tient’s heart condition, but also with when the patient reaches a desired

health state. Having the answers to these questions can be used to assist

a physician’s clinical judgment in the process of disease management.

For example, during the process of making a diagnosis, the temporal

order of presence and absence of signs and symptoms related to heart

failure can be used for a more timely intervention and more effective

treatment.

An important aspect of describing the dynamics of complex systems

is time granularity, i.e., the level of temporal abstraction at which in-

formation is expressed. The changes in parts of dynamic systems can

happen at different time granularities and on different time scales. In

a model describing heart failure, for example, a drug may be adminis-

tered frequently, such as on a daily basis, whereas the occurrence of a

heart attack can be far less frequent with an average rate of once every

7 years. In addition to varying evolving rates, a part in the system may

change irregularly over time. Instead of the part changing at a constant

rate, the time for a change can be random, but may follow a probability

distribution. This can be illustrated by the incubation time, the time for

an individual to manifest the symptoms of a viral infection, such as the

flu. It is clear that the incubation time varies from person to person, as

individuals vary greatly in how they react to pathogens.

To formally describe dynamic complex systems as models, many dif-

ferent techniques are being used. Usually the behavior of these systems

is described by employing systems of differential equations, whereas

when there is a focus on discrete state descriptions, timed automata

are used. We, however, opt for Bayesian networks (BNs) in this thesis, a

graphical representation of a joint probability distribution, as they are

considered to be particularly suited for capturing and reasoning with

uncertainty that comes with dynamic complex systems. Probability the-
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ory lays the foundations of Bayesian networks and offers a well-founded

and mathematically sound basis for representing and reasoning with

uncertainty.

1.3 intelligent systems for clinical decision support

Clinical medicine has been one of the first areas in which probabilis-

tic methods were applied to support decision making (e.g. [16, 30, 89]).

These early research efforts were mainly motivated by the complexity of

medicine and the high likelihood that errors were made by the medical

doctors in diagnosing and treating illness. However, the early proba-

bilistic methods were very limited in their capability. As a consequence,

some researchers from Artificial Intelligence started to work on meth-

ods that were more powerful. Initially the focus was on representing

medical knowledge by making use of clinical expert knowledge, giving

rise to software systems that were initially called expert systems and later

knowledge-based systems [59].

An expert system is a computer program that contains knowledge of

one or more human experts in a specific domain. The ultimate goal of

an expert system is to emulate the decision-making ability of a human

expert in a specialized area to support decision makers who are less

experienced. One essential component in an expert system is the knowl-

edge base [59]. The knowledge base represents facts about the world

and a set of if-then rules that relate these facts to each other to allow

drawing conclusions. Clearly, having a knowledge base of a given do-

main describing a problem of interest is a prerequisite for building an

expert system. The process of eliciting and formalizing knowledge for

building a knowledge base is known as knowledge acquisition.

Early on it was recognized that a drawback of knowledge-based sys-

tems is the so-called knowledge-acquisition bottleneck: acquiring and mod-

eling knowledge from experts is hard, very time-consuming, and it

is usually not possible to obtain a description of the problem which

covers all the possibilities. To make matters worse, experts are by def-

inition highly-valued and in constant demand by organizations, and

their time for knowledge elicitation is very limited. Several attempts

were thus made to automate the process of knowledge acquisition to

overcome the knowledge-acquisition bottleneck. In the 1980s, much

research focused on developing software tools for knowledge acqui-

sition, to help automate the process of designing and maintaining
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rules designed by experts. Unfortunately, the success of this research

in the end was very limited. The main result of this research has

been a knowledge management, analysis and development methodol-

ogy, called CommonKADS [85]. The methodology is in limited use

today, although some ideas from CommonKADS are being employed

in computer-based clinical guidelines design and building clinical

decision-support systems [43, 95].

In the last decades, the focus has shifted from expert knowledge to

medical data for building medical systems. Broadly speaking, medical

data contains health-related information, which is associated with regu-

lar patient care or as part of a clinical trial program. Medical data takes

the forms of, but is not limited to, electronic health records, adminis-

trative data, claim data, data of disease registries, health surveys and

clinical trial data, etc. These medical data are relatively easier to obtain

than trying to extract medical knowledge from experts, thus it has the

potential of overcoming the knowledge-acquisition bottleneck.

To make the best use of medical data, a broad class of algorithms

have been devised to be able to learn different kinds of models from

data that, e.g., can be used for making predictions. Nowadays, the field

of machine learning, a term coined by Arthur Samuel in 1959 [82], in-

cludes a plethora of different algorithms, models and techniques to be

able to learn from data. These models sometimes perform as good, or

even better, as human experts. It has strong ties to mathematical opti-

mization, which delivers methods, theories and application domains to

the field. It is not surprising that models learned from data may also re-

veal surprising associations between signs and symptoms over time that

our human brain would never suspect. Such associations may assist us

in better understanding the evolution of a disease, and even how signs

and symptoms regarding a disease develop over time.

1.4 data collecting tools : paper versus mobile devices

Collecting medical data is indispensable for applying machine learning

to medical problems. Medical data usually concerns a patient’s general

information, including age, gender, ethnic origin, and disease history. It

is augmented with additional information from the medical interview

between the patient and physician, results from physical examination,

radiology, laboratory results, medication and other treatments, etc. With
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the exception of the general information, most of the other information

in the medical data is time related, i.e., it is time stamped.

In this thesis, we are mainly concerned with clinical data that are ob-

tained from patients in their home environment. In the past, most of

the data analyzed by medical statisticians were obtained from special-

ized clinical studies or clinical trials, in which different treatments were

compared. Nowadays, increasingly medical data are being collected in

the home environment. The home environment is the habitat in which

the patient having a chronic disease, such as cardiovascular disease or

chronic obstructive pulmonary disease (COPD), resides most of the time.

Understandably, clinicians have realized that it is crucial to understand

how the patients react to treatments under the ‘normal’ conditions of

the home.

In the past, it has been very hard to collect medical data in the home

environment, because researchers did not have the ability to control the

data collection process. Early attempts have focused on using paper di-

aries and questionnaires to collect medical data. However, it may be

hard to ensure that paper diaries are filled out by patients on a regu-

lar, very frequent basis for a long period of time. In addition, some of

the questionnaires can be very lengthy. In the case where information

during the day is required at multiple time points, there is obviously no

guarantee that the respondent will complete a questionnaire according

to the protocol when at home. Without a clear guidance on the regu-

larity of entries and follow-up encouragement, there is a danger that a

questionnaire will become a one-off task.

Recently, there is a dramatic shift in the medical data collecting tools

in the research community, from conventional paper diaries and ques-

tionnaires to more advanced technology-based tools, in particular mo-

bile devices. Mobile devices are increasingly common in today’s every-

day life and impacting profoundly in shaping the way we live. As com-

munication tools, they also facilitate better maintenance of connections

between patients and physicians, thus dissolving the boundaries that

separate inpatient and outpatient care. This is particularly important for

patients with chronic diseases, who are able to control their disease in

the comfort of their own homes, as it makes it possible that the patients

can receive timely health care of high quality in spite of the physical dis-

connection between the patients and their physicians. Not surprisingly,

researchers in medicine and other related fields are also seeking new
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ways of using mobile devices as a data collection tool in clinic studies,

where so far traditionally paper diaries have been mainly employed.

Mobile devices are a promising substitute for paper diaries and ques-

tionnaires in the process of data gathering by overcoming their limita-

tion of low accuracy. Unlike paper diaries, compliance of patients to

research protocols can be better enforced via a user-friendly reminder

using mobile devices. The reminder can be sent out automatically by a

preset alarm clock in the patients’ mobile devices or a phone call from

supervising researchers, when it is detected that the entries are not reg-

istered by the patients according to the protocol. These automatic re-

minders help the patients to capture their experiences close to the time

of the occurrence of the symptoms and signs related to their diseases

and illness, thus improving the accuracy of the gathered data.

In addition to higher accuracy, mobile devices are an effective tool to

get access to additional information that can not be easily captured by

paper diaries. Mobile devices provide a unique opportunity to capture

the way in which individual participant interacts with recording sys-

tems, which can be used to iteratively refine and enhance the usability

and usefulness of developed systems. Equipped with more advanced

functionalities, mobile devices can identify whether participants in clin-

ical trials intentionally disengage themselves from registering entries

in time. With such information, it allows us to potentially reduce the

number of participants in clinical trials based on their engagement lev-

els. More importantly, more objective and real-time measures of the pa-

tient’s health condition can be collected. For example, a patient’s phys-

ical activity behavior can be quantified and be continuously monitored

by built-in sensors. This is particularly suitable for the family members

of patients requiring constant healthcare while still living a solitary life,

to be acknowledged of the patient’s current health condition and to be

called for timely healthcare intervention.

A recent successful intelligent medical application using mobile de-

vices is the autonomous mobile system for the management of chronic

obstructive pulmonary disease (COPD) [42]. Fig. 1.1 shows the set-up of

this eHealth application for patient management and home monitoring

as also used in the research of this thesis. In particular, the data collected

in this way were used in our research.

Despite that the new emerging tools offer many new opportunities,

it also yields a new type of medical data. Unlike paper diaries, where

a time interval is predefined, patients may have the autonomy to de-
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Fig. 1.1: Typical architecture of an eHealth application, in this case for home

monitoring of patients with COPD. It consists of sensors and a smart-

phone app that is used to give the patients feedback based on a prob-

abilistic interpretation of sensor measurements and answers to a ques-

tionnaire, and a back-end application in the hospital that stores patient

data supporting follow-up by medical specialists.

cide when they make a registration, depending on their preference. In

practice, patients may receive contrasting instructions of how often a

registration should be made. On one hand, a message from a smart-

phone will remind a patient to make regular registrations, often on a

daily basis. On the other hand, they also receive instructions directly

from clinical researchers that a registration is made only when they feel

something abnormal. Apparently, the latter case is more likely to be seen

in clinical data collection since it is the most time-saving process from

patients’ perspective. As a consequence, the collected data will take a

particular form where observations are made at irregularly spaced time

points. The time irregularity imposes a new challenge in applying ma-

chine learning techniques.

1.5 modeling techniques

Bayesian networks have become the most widely accepted technique for

incorporating expert knowledge along with data into one probabilistic

model. Expert knowledge can be incorporated into models by either

constructing the causal (or independence) graph, or by incorporating
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factors into the causal network which are important for inference but

cannot be well captured by data. Initially, Bayesian networks were used

to build probabilistic expert systems (e.g. Pathfinder, [38, 39]), which

were completely based on domain-expert judgements. Later machine

learning algorithms were developed to learn Bayesian networks from

data (e.g. [12]). As a consequence, it has become possible to use expert

knowledge as background knowledge in the Bayesian network learning

process, as such is often done nowadays in probabilistic machine learn-

ing, e.g. in the R package BNLearn [65].

Widely used and well-known extensions of Bayesian networks are dy-

namic Bayesian networks (DBNs), supporting the modeling of dynamic

probabilistic systems [14, 64]. DBNs extend standard Bayesian networks

by assuming that changes in a system can be captured by a sequence

of states of the system at discrete time points. Usually the assumption

is made that the distribution of variables at a particular time point is

conditional only on the state of the system at the previous time point.

A problem occurs if a system is best described using different rates of

change, e.g., one temporal part of the system changes much faster than

another. In that case, the whole system has to be represented using the

finest time granularity, which is undesirable from a modeling and learn-

ing perspective. In particular, if a variable is observed irregularly, much

data on discrete-time points will be missing and conditional probabili-

ties will be hard to estimate.

As an alternative to DBNs, dynamic complex systems can also be

modeled as continuous time Bayesian networks (CTBNs), where time

acts as a continuous parameter [68]. In these models, the time granu-

larity is infinitely small by modeling transition rates rather than con-

ditional probabilities. Thus, multiple time granularities, i.e., slow and

fast transition rates, can easily be captured. A limitation from a model-

ing perspective is that all probabilistic knowledge, for example derived

from expert knowledge, has to be mapped to transition rates which are

hard to interpret. Moreover, it is assumed that the transition times, the

time until a transition occurs, are exponentially distributed, which may

not always be appropriate.

1.6 outline of the thesis

In this thesis, we narrow down our research to temporal Bayesian net-

works and to medical problems where evolution of a disease is a ma-
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jor concern. More specifically, we try to answer the question that what

are the advantages and disadvantages of using DBNs and CTBNs to

model medical data where observations are made regularly and irregu-

larly spaced in time. Another question we also try to address is how to

further improve the existing CTBNs to be better-suited for general real-

world problems. Our choice of improving CTBNs is based on the con-

tinuous nature of dynamics systems, which is what exactly described in

CTBNs.

For the first question, we conduct comparative research of DBNs and

CTBNs to deal with both regular and irregular clinical data for a real-

world problem. For the second question, we present two extensions of

CTBNs by allowing richer and more flexible time distributions and by

incorporating both discrete and continuous time in a model. Now we

give an overview of the remaining chapters in this thesis and summarize

their contributions.

Chapter 2: Preliminaries

In the next chapter, we give a brief overview of some necessary technical

preliminaries on probability theory, probabilistic graphical models and

Markov chains.

Chapter 3: Hybrid time Bayesian networks

In this chapter, a new type of temporal Bayesian network model, called

hybrid time Bayesian networks (HTBNs), is proposed. It is shown how

HTBNs can be used to model dynamic systems, and in particular it is

shown that HTBNs allow modeling the temporal behavior of variables

based on their associated granularity. For variables for which expert

knowledge is available to estimate their parameters, it is sufficient to de-

scribe them at discrete time points. Whereas for variables with available

data that show significant time irregularity, it is better to incorporate

time as one of their continuous parameters. In HTBNs, these two types

of variables are allowed to coexist. Another contribution of this chapter

is the combined representation of DBNs and CTBNs into generalized

temporal probabilistic models. The potential benefits of HTBNs are il-

lustrated by an example model of the temporal evolution of heart failure.

Furthermore, we establish a mapping of hybrid-time networks into stan-

dard BNs given a set of time points of interest. The inference problem in

HTBNs is therefore reduced to a problem for which efficient solutions
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exist. This chapter is based on the paper titled "Hybrid time Bayesian net-

works" published in the conference ECSQARU, 2015 (best student paper

award) [53] and the journal IJAR, 2017 [55].

Chapter 4: Learning parameters of hybrid time Bayesian networks

In this chapter, we continue the research described in Chapter 3 by defin-

ing algorithms for parameter estimation of HTBNs from complete as

well as incomplete data. We use MAP estimation of parameters when

training data is complete. When the training data contains missing

values, we use a Markov Chain Monte Carlo (MCMC) method imple-

mented in the widely used probabilistic programming language Stan

to estimate the posterior distribution of parameters in HTBNs. We use

these approaches to learn a number of HTBNs with different structures

and complexities. In the incomplete data case, however, it is assumed

that only the variables that are changing continuously in time are al-

lowed to have missing values. This chapter is based on the paper titled

"Learning parameters of hybrid time Bayesian networks" [54] published in

the conference PGM, 2016.

Chapter 5: Modeling unevenly spaced clinical time series using temporal

Bayesian networks

In this chapter, we investigate the capability of DBNs and CTBNs to

learn from clinical time series that vary in nature. In order to compare

the two temporal Bayesian network types for regularly and irregularly

spaced time-series data, three typical ways of observing time-series data

are investigated: (1) regularly spaced in time with a fixed rate; (2) irreg-

ularly spaced and missing completely at random at discrete time points;

(3) irregularly spaced and missing at random at discrete time points. In

addition, similar experiments are carried out using real-world COPD

patient data where observations are unevenly spaced. This chapter is

based on the paper titled "Modeling clinical time series data using temporal

Bayesian network" [58].

Chapter 6: Making continuous time Bayesian networks more flexible

In this chapter, we propose an extension to support the modeling of the

transition time with a richer and more flexible distribution, rather than

the exponential distribution in the standard CTBNs. To describe such a



12 introduction

distribution, we introduce an additional hidden variable. With the hid-

den variable, we also allow CTBNs to obtain memory, which is lacking

in standard CTBNs. In addition, two learning methods are proposed

and compared to estimate parameters for the proposed models. This

chapter is based on the paper titled "Representing hypoexponential distri-

butions in continuous time Bayesian networks" [56] and "Making continuous

time Bayesian networks more flexible" [57] published in the conferences

IPMU and PGM, 2018, respectively.

Chapter 7: Conclusions and further research

In this chapter, we place the main contributions of this thesis in a more

general context and conclude with an outlook on possible future re-

search.



2
P R E L I M I N A R I E S

In this chapter, we review some important theoretical background re-

garding key concepts in probability theory, discrete and continuous time

Markov processes, Bayesian networks and their temporal variants, i.e.,

dynamic Bayesian networks and continuous time Bayesian networks.

This material is included in a separate preliminary chapter, since it

forms the basis for most of the development in the remainder of the

thesis. All of the material is intended to provide a minimal subset of the-

oretical knowledge to support understanding most of the discussions in

the thesis, rather than to offer a comprehensive review of these fields.

2.1 notation

To provide a clear understanding of the technical terms employed in

this thesis, we first start with reviewing the notations we will use. We

use upper-case letters or strings, e.g., X, Y, to denote random variables

and bold upper-case letters e.g., X and Y, to denote a set of random

variables. For a binary variable with values true and false, its values are

also denoted by lower-case letters x, and x̄, short for X = true and

X = false, respectively. Alternatively, we use X = T and X = F, and

X = 1 and X = 0, respectively. If the value of a variable is known, this

is often referred to as an observation, an instantiation, or evidence.

Often a random variable X is indexed by discrete or continuous time

t, which is then indicated by Xt. In addition, we will make use of a

successor function s, which is defined on a countable, linearly ordered

set of numbers Z in which every element zi ∈ Z with index i is mapped

to element s(zi) = zi+1 ∈ Z. If the set Z consists of natural numbers,

then we also assume that s(zi) = zi + 1 = zi+1, with zi ∈ Z.

Finally, in the thesis we will sometimes employ some notions from

linear algebra. In more advanced algebraic expressions, vectors v are as-

sumed to be in column form, whereas the transpose of a vector, denoted

13
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vT, represents its row form. Hence, the inner product of two vectors v, u

from the same real vector space is denoted vTu. Matrix M is denoted by

uppercase. In probabilistic computations often expressions will be en-

countered of the form u = vM with uj = ∑
n
i=1 vi Mi,j, j = 1, . . . , n, and

in that case both u and v are in row form, where multiplication is done

according to the rules of matrix multiplication. It will become clear from

the context whether use is made of notions from linear algebra (cf. e.g.

[91]), or probability theory, as discussed in the following.

2.2 probability theory

Now we continue with a brief review of some key concepts from proba-

bility theory, i.e., we consider events, joint probability distributions, con-

ditional probability distributions, the chain rule, marginalization, and

conditional independence. More detail about probability theory from a

mathematical perspective is given in [33, 45]; an engineering approach

is provided by [100].

Let X = {X1, . . . , Xn} be a set of random variables, where Val(X) in-

dicates the domain of X ∈ X and Val(X) the domain of X, respectively.

An (elementary) event E ≡ X = x is any random variable X with a

value x from its domain. The set of all possible Boolean combinations of

events, or Boolean algebra denoted as B(X), is defined by using the oper-

ators: conjunction (X = x ∩ X′ = x′) (also called intersection), disjunc-

tion (X = x ∪ X′ = x′) (also called union), and negation (X = x) (also

called complementation). This Boolean algebra contains events such as

(X1 = x1 ∪ X2 = x2), (X3 = x3 ∩ X4 = x4), and X2 = x2. Events are

partially ordered by ⊆, with the universal lowerbound ∅ ∈ B(X) and

universal upperbound Ω ∈ B(X), i.e., we have for each E ∈ B(X) that

∅ ⊆ E and E ⊆ Ω. Usually (X = x ∩ X′ = x′) is represented in set

notation as {X = x, X′ = x′}.
A probability distribution is a function or mapping that assigns prob-

abilities, i.e., values from the closed real interval [0, 1], to any event in-

volving variables in X.

Definition 2.1 (Probability Distribution). A probability distribution for a

set of random variables X with domain Val(X) is defined as a function P :

B(X)→ [0, 1], such that the following axioms hold:

(1) P(E) is a non-negative real value for all E ∈ B(X);

(2) P(Ω) = 1;
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(3) for any set of disjoint events E1, . . . , En ∈ B(X), with (Ei ∩ Ej) = ∅,

1 ≤ i, j ≤ n, i 6= j, we have that:

P

(

n
⋃

k=1

Ek

)

=
n

∑
k=1

P(Ek).

It is a fundamental property of probability theory that it is suf-

ficient to specify a probability distribution in terms of joint events

{X1 = x1, X2 = x2, . . . , Xn = xn}, i.e., in terms of a joint probability dis-

tribution P(X1, X2, . . . , Xn) for all values of the domain Val(X) (possibly

with the exception of one element from Val(X), where its probability can

be derived from the other probabilities of elements of Val(X) according

to axioms (2) and (3)).

When the actual value of a random variable in an elementary event

does not matter in a given context, we often also write P(X) rather than

P(X = x) for the probability of variable X taking the value x.

The marginal probability distribution for a set of variables Y given the

probability distribution for the random variables X, with Y ⊆ X and

X = Y ∪ Z, where Y and Z are disjoint, is obtained by summing out the

other variables (i.e. Z) from the joint probability distribution P(X), and

is defined as:

P(Y) = ∑
z∈Val(X\Y)

P(Y, Z = z)

Definition 2.2 (Conditional Probability Distribution). Let P(X, Y) be a

joint probability distribution over a set of random variables X and Y. A condi-

tional probability distribution P(X | Y) is defined as:

P(X | Y) =
P(X, Y)

P(Y)
(2.1)

with P(Y) > 0.

It is good to realize that P(X | Y) is actually a family of probability

distributions, one for every value y of Y. The conditional probability

P(X = x | Y = y) is the probability of the event X = x given knowledge

about the event Y = y.

The concept of conditional probability is one of the most fundamen-

tal and most important concepts in probability theory. In addition, the

conditional probability plays an essential role in a wide range of do-

mains, including classification, decision making, prediction and other
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similar situations, where the results of interest are based on available

knowledge.

By moving the denominator on the right of Equation 2.1 to the left,

Equation 2.1 can also be written as:

P(X, Y) = P(X | Y)P(Y) = P(Y | X)P(X) (2.2)

By applying Equation 2.2 to a set of random variables

{X1, X2, . . . , Xn}, this creates a chain of conditional probabilities, more

formally:

Proposition 2.2.1 (Chain Rule). Let P be a joint probability distribution over

a set of random variables X = {X1, X2, . . . , Xn}. Then it holds that:

P(X1, X2, . . . , Xn) = P(Xn | Xn−1, . . . , X1) · · · P(X2 | X1)P(X1)

The chain rule allows us to compute the joint distribution of a set of

any random variables by only making use of conditional probabilities.

This rule is particularly useful in Bayesian networks, which we will in-

troduce later in this chapter. Combined with the network structures, the

use of the chain rule can facilitate the representation for a joint distribu-

tion.

Another immediate result of Equation 2.2 by rearranging terms is

Bayes’ rule:

P(X | Y) =
P(X)P(Y | X)

P(Y)

Bayes’ rule tells us how we can calculate a conditional probability

given its inverse conditional probability. For example, using Bayes’ rule

makes it possible for us to derive the conditional probability P(X | Y)
from its inverse conditional probability P(Y | X), if we also have infor-

mation about the prior probability of events X and Y.

A more general conditional version of Bayes’ rule, where all probabil-

ities are conditional on the same set of variables Z, also holds:

P(X | Y, Z) =
P(X | Z)P(Y | X, Z)

P(Y | Z)

with P(Y | Z) > 0.

Another fundamental concept in probability theory is conditional inde-

pendence. Two sets of variables X, Y are said to be conditionally indepen-

dent given a set of variable Z, denoted X ⊥⊥P Y | Z, if

P(X | Y, Z) = P(X | Z) or P(Y, Z) = 0 (2.3)
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Equation 2.3 asserts that given knowledge of a set of variables Z,

knowledge of whether Y occurs provides no extra information on the

probability of whether X occurs.

2.3 bayesian networks

Bayesian networks are a compact and natural graphical representation

of probability distributions. A Bayesian network, abbreviated as BN, is

a probabilistic graphical model that represents a set of random vari-

ables and their conditional independences via a directed acyclic graph.

For more details about Bayesian networks, we refer the reader to three

books: the seminal work by Pearl [74], the encyclopedic account by

Koller and Friedman [49], and the book by Neapolitan [66] that offers a

good introduction to the underlying mathematics.

As Bayesian networks are a graphical formalism, we will use a lot

of notions of graph theory and a small fraction of it is summarized

next. Let the pair G = (V(G), E(G)) be a graph, often abbreviated to

G = (V, E), then the set V is called its set of nodes, and the elements in

the set E ⊆ V× V are called edges. For Bayesian networks, we restrict

ourselves to directed edges or arcs, i.e., if (v, v′) ∈ E, then we assume

that it is different from (v′, v) and (v′, v) 6∈ E. An arc (v, v′) ∈ E is often

denoted v→ v′. When a graph G only contains arcs, it is called a directed

graph. Furthermore, the concept of children of a node v ∈ V is defined

as γ(v) = {v′ | v → v′ ∈ E} and the set of parents of a node v ∈ V is

defined as π(v) = {v′ | v′ → v ∈ E}. Finally, when we follow the arcs

of a graph G between two nodes v and u we have a directed path; when

there are no paths in the graph G of the form v → w → · · · → u → v

(first and last node of the directed path are equal) it is called acyclic.

A formal definition for Bayesian networks is given in the following.

Definition 2.3 (Bayesian Network). A Bayesian network B is defined as a

pair B = (G, P), where G is an acyclic directed graph and P a probability

distribution. The graph G = (V, E), consists of a set of nodes V, representing

random variables, and a set of directed edges or arcs E ⊆ V×V. Let X ∈ V

be a variable and π(X) be the parents of X in graph G. The distribution P

is defined as a joint distribution over variables V, specified by multiplying
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conditional probability distributions for each variable X ∈ V in the form of

P(X | π(X)), formally:

P(V) = ∏
X∈V

P(X | π(X))

Example 2.1

Consider the problem of modeling exacerbation for a patient with chronic

obstructive pulmonary disease (COPD), i.e., acute worsening events of

COPD-related health status, using Bayesian networks. For this problem,

we use the Bayesian network constructed based on expert knowledge

and previously discussed in detail in [42]. The network is depicted in

Fig. 2.1. The network contains two hidden variables, namely infection

(I) and lung function (LF) which cannot be observed directly, but whose

values can be derived based on indirect measures, such as body temper-

ature for infection and the forced expiratory volume in 1 second (F)

for lung function. Other important variables are the symptoms that one

might expect a patient to report, such as dyspnea (D), sputum volume

(V) and purulence (SP), cough (C), wheeze (W), malaise (M), tempera-

ture (T), whether performing daily activities is difficult due to COPD

(A), and blood oxygen saturation (O).

The joint probability distribution P over the variables in the network

is given by multiplying the conditional probabilities for each variable in

the network, that gives:

P(T, SP, SV, C, I, M, A, LF, D, E, W, O, F)

= P(T | I)P(SP | I)P(V | I)P(C | V)P(M | I)P(A | M, LF)P(E | LF)

P(F | LF)P(O | LF)P(W | LF)P(D | LF)P(I)P(LF | I)

The standard interpretation of the graph of a Bayesian network is in

terms of d-separation. When two of its disjoint sets of nodes U, W ⊆
V are connected by a path (ignoring the direction of the edges) that

contains nodes v from a third, disjoint set Z ⊆ V that only are serial

nodes (· · · → v → · · · or · · · ← v ← · · · ) or divergent nodes (· · · ←
v → · · · ), and none of the nodes v or its descendants in Z have two

incoming arcs · · · → v← · · · , the path is called blocked given Z. If every

path between node sets U and W is blocked by Z, it is said that U and

W are d-separated given Z [74], often denoted as

U ⊥⊥G W | Z.
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Fig. 2.1: Expert opinion based Bayesian network for COPD problem. A = activ-

ity, C = cough, D = dyspnea, E = exacerbation, F = FEV1, I = infection,

LF = lung function, M = malaise, O = oxygen saturation, SP = sputum

purulence, V = sputum volume, T = temperature and W = Wheeze.

D-separation implies that the two corresponding variable sets U and W

are conditionally independent given the variables corresponding to Z,

i.e.,

U ⊥⊥P W | Z

(note that we use the ⊥⊥P relation here). The graph G of the Bayesian

network B = (G, P) is said to be an independence map or I-map of P.

If sets of nodes U and W are not d-separated given Z, they are called

d-connected.

Example 2.2

Consider the network introduced in Example 2.1. According to standard

interpretation of Bayesian networks, the graph tells us that D and W are

d-connected given the empty set ∅, whereas they become d-separated

given LF, as LF has a divergent connection on the path between D and

W. In addition, M and LF are d-separated only given I but they become

d-connected also given A, as A has two incoming arcs from M and LF.
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2.4 markov processes

Now we move on to modeling dynamic systems, where we are inter-

ested in reasoning about the state of a dynamic system as it evolves

over time. The focus in this section is on modeling dynamic systems

using Markov processes or Markov chains.

A Markov process is a stochastic process for which the future only de-

pends on the present state. In other words, it has no memory of how the

present state is reached. For Markov processes, we only consider a finite

state space. Here we give a brief introduction of two widely used ver-

sions of Markov processes, discrete time Markov processes where time

may be mapped to the natural numbers, and continuous time Markov

processes where time may be mapped to the real numbers. Readers are

encouraged to refer to more comprehensive materials (e.g. [36, 51]).

We use the notation X[0,s) ≡ {Xt | 0 ≤ t < s, with t, s ∈ R
+
0 }.

Definition 2.4 (Markov Property). Let X = {Xt | t ∈ R
+
0 } be a stochastic

process with Xt taking values from a finite set. The process {Xt | t ∈ R
+
0 } is

said to have the Markov property if the following condition is met:

P(Xs+t | Xs, X′) = P(Xs+t | Xs), s, t ∈ R
+
0 , X′ ⊆ X[0,s)

with X′ a countable set of instantiations.

Such a process {Xt | t ∈ R
+
0 } is also called a continuous time Markov

process. If the Markov property holds when the time is discrete, that

is, time only takes values of natural numbers N0, the corresponding

process {Xt | t ∈ N0} is called a discrete time Markov process.

Markov chains are often assumed to be time-homogeneous, i.e., the

probabilities of a variable Xt transitioning from its current state to its

next state are the same, regardless of what the current time t is. For-

mally:

Definition 2.5 (Time Homogeneity). Let {Xt | t ∈ R
+
0 } be a continuous

time Markov process. The chain {Xt | t ∈ R
+
0 } is said to be a time homoge-

neous continuous time Markov chain if the following condition is met:

P(Xs+t | Xs) = P(Xt | X0), for all s, t ∈ R
+
0 (2.4)

If such a property also holds for a discrete time Markov process {Xt |
t ∈ N0}, the process {Xt | t ∈ N0} is called a time homogeneous

discrete time Markov process.
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In the case of discrete time, the transition probabilities P(Xt | Xt−1)
assert the probabilities that variable X transitions from its state at time

t− 1 to another at time t. Let pij be the transition probability from state

i at time t − 1 to state j at time t. For a discrete time Markov process

X with n possible states, transition probabilities for possible transitions

between any two states are given via a transition matrix A, formally:

AX =

















































p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

where pij ≥ 0 and ∑j pij = 1.

Example 2.3

Recall the variable V introduced in Example 2.1, which models whether

a patient experiences an increase in sputum volume (v = increased, v

= normal). A discrete time Markov chain can be employed to describe

the dynamics of variable V at discrete time points by a transition matrix

over its two states as given below:

AV =

v v
( )

0.9 0.1 v

0.1 0.9 v

Let the time unit in this discrete time Markov chain be days; then the

transition matrix states that a patient has a ninety percent chance to

have increased sputum volume tomorrow given that there is an increase

in sputum volume today, and there is a ninety percent chance that the

sputum volume is normal tomorrow if its level is normal today.
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In the case of continuous time, the dynamics of a continuous time

Markov process X with n possible states are defined by an n× n inten-

sity matrix:

QX =

















































−q11 q12 · · · q1n

q21 −q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · −qnn

(2.5)

where qij ≥ 0 and qii = ∑j 6=i qij. The reciprocal of the diagonal elements

1/qii gives the expected time that variable X will remain in the state i,

and once it transitions, it shifts from state i to state j with probability

qij/qii.

Example 2.4

Reconsider the problem of modeling the dynamics of variable V intro-

duced in Example 2.1. We may want to know the state of variable V

at any arbitrary time point, rather than only at discrete time points.

Then the dynamics of variable V can be described by a continuous time

Markov process, for example with the following intensity matrix:

QV =

v v
( )

−2 2 v

1 −1 v

Here the entry (2, 2) indicates that we expect on average a patient will

experience an increase in the sputum volume in a half hour (1/q22 =
1/2), if the patient’s sputum volume currently is normal and we view

units for time as hours.

2.5 temporal bayesian networks

In the previous section, we described how to model dynamic systems

using Markov processes. Now we present two formulations based on
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Markov processes to describe structured stochastic processes: dynamic

Bayesian networks (DBNs) [14, 64] and continuous time Bayesian net-

works (CTBNs) [71]. These models represent a stochastic process over a

structured state space consisting of assignments to a set of local variables.

The dynamics of the temporal evolution of the structured state space

are described in terms of the evolution of the local variables.

DBNs and CTBNs extend standard Bayesian networks by assuming

that changes in a process can be captured by a sequence of states at

either discrete or continuous time points. In both DBNs and CTBNs, time t

is modeled explicitly. Dynamic Bayesian networks are based on discrete

time Markov processes that describe structured stochastic processes at

discrete time points, while CTBNs are based on continuous time Markov

processes. We use Xt to represent the instantiation of variable X at time

t. In CTBNs for simplicity’s sake, we will also use the notation XI with

I ⊆ R
+
0 a real interval (closed I = [l, u], open I = (l, u), or half-open

I = (l, u] or I = [l, u)), where in particular X[l,u) denotes the set of

instantiations of variable Xt in the half-open time interval t ∈ [l, u), i.e.,

{Xt | l ≤ t < u, with l, t, u ∈ R
+
0 }. For DBNs, if the time index t comes

from a sequence of time points {0, 1, . . . , T} = 0 : T, T ∈ N0, we use the

notation X0:T.

2.5.1 Dynamic Bayesian Networks

Definition 2.6 (Dynamic Bayesian Network). A dynamic Bayesian network

is defined as a pair (B0,B→) over variables V, where B0 is a Bayesian network

over variables V0 representing the initial distribution over states, and B→ is

defined as a conditional distribution for a 2-time-slice Bayesian network

(2-TBN) given by:

P(Vt+1 | Vt) = ∏
X∈V

P(Xt+1 | π(Xt+1))

for every time-point t ∈ N0, where Xt is the instantiation of variable X at time

t, and the variables Vt are the instantiations of a set of variables V at time t.

The parent set π(Xt+1) may include variables from the time slice t +
1, with outgoing intra-time-slice arcs, or the previous time slice t, with

outgoing inter-time-slice-arcs in the 2-TBN. The conditional probabilities

P(Xt+1 | π(Xt+1)) in the 2-TBN do not vary over time, i.e., are stationary.

In addition, the Markov property holds for DBNs.
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(c) DBN unrolled over T steps

Fig. 2.2: A simplified DBN with three variables from the COPD network given

in Fig. 2.1 : (a) the initial model; (b) the 2-TBN; (3) the resulting un-

rolled DBN over T steps.

For any desired time span T ≥ 0, the joint distribution over V0:T,

the set of variables {Vt | t ∈ 0 : T}, is defined by a product of the

conditional probability distributions in the initial model and in the 2-

TBN:

P(V0:T) = ∏
X∈V

PB0
(X0 | π(X0)) ∏

X∈V
∏

t∈0:T−1

PB→(Xt+1 | π(Xt+1)) (2.6)

We can obtain a standard Bayesian network by ‘unrolling’ the 2-TBN

over T steps.

Example 2.5

Consider a dynamic Bayesian network over variables V, V = {D, W, C},
with an initial model in Fig. 2.2a and a 2-TBN in Fig. 2.2b. For the vari-

able Ct+1 in the 2-TBN, we have intra-time-slice arcs Wt+1 → Ct+1 and
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Dt+1 → Ct+1, and inter-time-slice arc Ct → Ct+1. The DBN can be un-

rolled over T steps, resulting in a standard Bayesian network as shown

in Fig. 2.2c. The joint distribution for the standard Bayesian network is

given:

P(V0:T)=P(D0)P(W0)P(C0 |D0, W0)

T−1

∏
t=0

P(Dt+1 | Dt)P(Wt+1 |Wt)P(Ct+1 |Dt+1, Wt+1, Ct)

2.5.2 Continuous-time Bayesian Networks

Continuous-time Bayesian networks (CTBNs) are specified in terms of

variables with temporal dynamics given by an intensity matrix as de-

fined in Equation 2.5. In CTBNs, a central concept for a variable X is

its conditional intensity matrix (CIM), denoted by QX|π(X), specifying an

intensity matrix for variable X for each value of its parents π(X). The

intensities governing the dynamics of process X vary over time. How-

ever, the intensities are not represented as a function of time, but as a

function of the current values of its parents π(X).

Definition 2.7 (Continuous-time Bayesian Network). A continuous-time

Bayesian network (CTBN) is defined as a tuple N = (B, G→, Q), where

B = (G0, P) denotes the Bayesian network that specifies the initial model;

G→ denotes the graph of the transition model and Q is a set of intensity matri-

ces for all the variables in the CTBN. The graph of a CTBN is (G0, G→), with

G0 = (V(G0), E(G0)) and G→ = (V(G→), E(G→)).

Example 2.6

Consider a variable C which models whether a patient coughs or not (c:

cough, c: not cough), and is conditioned on a variable V which models

whether a patient has an increased sputum volume. Then we can specify

two CIMs for variable C corresponding to each value of variable V as

below:

QC|v =

c c
( )

−4 4 c

3 −3 c
QC|v =

c c
( )

−6 6 c

5 −5 c
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In order to compose Markov processes in a larger network, a ‘multipli-

cation‘ operation called amalgamation is defined in CTBNs, which takes

two conditional intensity matrices and forms from them a joint intensity

matrix. For the amalgamation, an assumption is made that the intensi-

ties in the resulting intensity matrix corresponding to two simultaneous

changes are zeros.

Before we perform an amalgamation, we first need a mapping

between row or column numbers in the joint intensity matrix and

instantiations of the variables. We first define a binary total or-

der relation, denoted by ≺. Given an order on a finite set of vari-

ables V, V = {X1, X2, . . . , Xn}, and on the states of each variable

Val(Xi), i ∈ {1, . . . , n}, we say (x1, . . . , xn) ≺ (x′1, . . . , x′n), if xn < x′n,

or (x1, . . . , xn−1) ≺ (x′1, . . . , x′n−1) and xn = x′n.

Example 2.7

Consider two variables V and C with each two ordered states, {v, v}
for variable V and {c, c} for variable C. Given variables V and C,

the variable order V < C and the order on their states, v < v and

c < c, we can obtain a sequence of states over variables V, C, i.e.,
〈

v, c
〉

,
〈

v, c
〉

,
〈

v, c
〉

,
〈

v, c
〉

.

For a set of N variables with each variable having ni states, we have

n = ∏
N
i=1 ni possible joint states and the size of the resulting joint in-

tensity matrix is n × n. As the number of variables increases, the size

of the joint intensity matrix grows exponentially. To compute the joint

intensity matrix, conditional intensity matrices for each variable have to

be expanded first to the size of the resulting joint intensity matrix. A

detailed discussion of how to expand these intensity matrices is given

in [68].

Given the variable ordering defined in Example 2.7, we now can per-

form the amalgamation operation over variable V and C.

Example 2.8

Consider we have a CTBN with structure V → C with conditional in-

tensity matrices given for variable V in Example 2.4 and for variable C

in Example 2.6. We obtain a 4× 4 intensity matrix QVC from the 2× 2
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conditional intensity matrices QV for variable V and QC|V for variable

C:

QVC =

〈

v, c
〉 〈

v, c
〉 〈

v, c
〉 〈

v, c
〉

















−8 2 6 0
〈

v, c
〉

1 −5 0 4
〈

v, c
〉

5 0 −7 2
〈

v, c
〉

0 3 1 −4
〈

v, c
〉

For a homogeneous Markov process over variables V with an inten-

sity matrix QV and an initial distribution P(V0), we can compute the

distribution over the values of variables V at a particular time point or

the joint distribution at different time points. The joint distribution at a

finite set of time points of interest B is given by:

P(VB) = P(V0) ∏
t∈B\max(B)

exp(QV(s(t)− t)) (2.7)

where P(V0) and P(VB) are probability row vectors, the symbol exp

is the matrix exponential that is defined in terms of its Taylor series

expansion:

exp A =
∞

∑
k=0

Ak

k!
(2.8)

Rarely is it the case that the matrix exponential can be computed easily;

one well-known example where this is the case is a diagonal matrix,

where one can simply take the exponential of the individual diagonal

elements to obtain the matrix exponential.

2.6 model learning

As Bayesian networks are based on probability theory, statistical meth-

ods can be used to infer these models from data in the presence of

noise and uncertainty. Data can be used to restore solely the underlying

graph structure, or to estimate the parameters in a model given a prede-

termined graph structure, or to learn both structure and parameters. In

this section, we give a brief overview of basic methods to learn structure

and parameters for Bayesian networks.
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2.6.1 Structure Learning

One approach to learning an unknown directed graph structure is called

constraint-based structure learning. This approach views a Bayesian net-

work as a representation of independences. The goal of structure learn-

ing is to find a network that best explains the independences and de-

pendences by performing statistical conditional independence tests. A

fundamental question here is to determine whether two variables are in-

dependent given a third set of variables, for which various independence

testing methods are being used.

An alternative approach is score-based structure learning. This ap-

proach looks upon a Bayesian network as specifying a statistical model

and then addresses learning as a model selection problem. It considers all

possible candidate structures and selects one candidate structure that

best fits data based on a scoring function. The number of candidate

models grows more than exponentially with the number of variables.

2.6.2 Parameter Learning

The essence of parameter learning is to find the maximum likelihood es-

timate, or maximum a posteriori estimation when a prior distribution is

also considered during parameter learning. Learning parameters from

complete data, i.e., when values for all variables in a model are known,

and from incomplete data, i.e., values for some variables are missing,

are different. In the former, sufficient statistics, i.e., the counts of in-

stantiations of variables in the data, are sufficient to derive the desired

parameters, whereas additional algorithms are needed to handle miss-

ing values in the latter. Here we review two common methods, i.e., the

expectation maximization algorithm (EM) and the Markov chain Monte

Carlo (MCMC) method, to handle missing values. The former is used

in Chapter 4 and 5, and the latter is employed to estimate parameters

from incomplete data in Chapter 4.

expectation maximization algorithm The Expectation Maxi-

mization Algorithm, or EM algorithm for short, is a general framework

of maximum likelihood estimation in the presence of hidden variables

or missing values in data. Essentially, it is an iterative procedure to find

the maximum likelihood estimate in statistical models. The EM algo-

rithm alternates between performing an Expectation (E) step, which cre-



2.6 model learning 29

Start

Initialization

θ0
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Fig. 2.3: Flow chart of an MCMC procedure with θ standing for the desired

parameters and N the required number of iterations.

ates an expected log-likelihood function using the current estimate for

the parameters, and a maximization (M) step, which derives new pa-

rameters by maximizing the expected log-likelihood obtained on the E

step. The EM algorithm repeats E and M steps until the parameters con-

verge after a certain number of iterations. However, it is not guaranteed

that the global maximum will be reached, as a different starting value

may end up at a local maximum.

markov chain monte carlo method The Markov Chain

Monte Carlo method, or MCMC for short, is a generic framework for

generating samples from a posterior distribution, in cases where we can-

not efficiently sample from the posterior distribution directly. For exam-

ple, the posterior distribution is high-dimensional or cannot be written

in a closed-form for mathematical analysis. In MCMC, a Markov chain

is constructed which has the desired posterior distribution as its station-

ary distribution by iteratively generating samples that are closer and

closer to the posterior. This method has played a significant role in es-

timating parameters for Bayesian model from data containing missing

values, which is a common problem in machine learning.

A flow chart of a general MCMC framework is given in Fig. 2.3. To

summarize, the initial values of parameters θ are chosen randomly to

start a Markov chain, and set iteration i = 1. For each iteration i, a can-

didate θ∗ is sampled from a distribution, which can be any proposal dis-
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tribution, as often seen in the Metropolis-Hastings algorithm, a widely

used implementation of the MCMC framework. The candidate θ∗ is

decided to be rejected or not by a selection criterion. In the Metropolis-

Hastings algorithm, for example, it is determined by the probability

acceptance, which indicates how probable the candidate sample is with

respect to the current sample, according to the desired probability dis-

tribution. The process continues generating samples in this way until

the number of iterations is exceeded or sufficient number of samples

are collected (Note that the latter is omitted in the flow chart in Fig. 2.3

for simplicity).

There are also some challenges in the applicability of the MCMC

methods. In practise, the MCMC methods are not generally an out-

of-box solution, and many options need to be specified: the proposal

distribution, the number of iterations to run, the metrics for evaluating

mixing, etc. In addition, the stationary distribution of the constructed

Markov chain is regarded as the desired posterior distribution. However,

this is only guaranteed in the limit in theory. In practice, diagnostics

must be applied to monitor whether the Markov chain has converged.
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H Y B R I D T I M E B AY E S I A N N E T W O R K S

Capturing the behavior of a heterogeneous dynamic system in a proba-

bilistic model is a challenging problem. A single time granularity, such

as employed by dynamic Bayesian networks, provides insufficient flex-

ibility to capture the dynamics of many real-world processes. An al-

ternative is to assume that time is continuous, giving rise to contin-

uous time Bayesian networks. Here the problem is that the level of

temporal detail is too precise to match available probabilistic knowl-

edge. In this chapter, a novel class of probabilistic models is presented,

called hybrid time Bayesian networks; they combine discrete-time and

continuous-time Bayesian networks. The new formalism allows us to

more naturally model dynamic systems with regular and irregularly

changing variables. We also present a mechanism to construct discrete-

time versions of hybrid models and an expectation-maximization-based

(EM-based) algorithm to learn the parameters of the constructed mod-

els. The usefulness of the proposed models is illustrated by means of a

real-world medical problem.

3.1 introduction

Many real-world systems exhibit complex and rich dynamic behavior.

As a consequence, capturing these dynamics is an integral part of de-

veloping models of physical-world systems. Representing dynamics al-

ways involves the parameter of time. Often variation in behavior is cap-

tured by variables that are indexed by time. In order to represent the

overall behavior of systems, it is often assumed that the time indices are

equally spaced, for example as natural numbers, or take all elements of

the non-negative real axis. However, if we are dealing with real-world

observations, time indices are usually not equally spaced. This issue is

described by time granularity, i.e., the actual difference in time between

subsequent events.

31
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Time granularity is an important parameter in characterizing dynam-

ics as it determines the level of temporal detail in the model. In cases

where one time granularity is coarser than another, dealing with multi-

ple time granularities becomes significantly important, e.g., in the con-

text of mining frequent patterns and temporal relationships in data

streams and databases [7].

Bayesian networks (BNs) have been very successful in modeling com-

plex situations involving uncertainty [74]. Dynamic Bayesian networks

(DBNs) are part of the Bayesian network framework, supporting the

modeling of dynamic probabilistic systems [64]. DBNs extend standard

Bayesian networks by assuming that changes in a process can be cap-

tured by a sequence of states at discrete time points. Usually the as-

sumption is made that the distribution of variables at a particular time

point is conditional only on the state of the system at the previous time

point. A problem occurs if temporal processes of a system are best de-

scribed using different rates of change, e.g., one temporal part of the

process changes much faster than another. In that case, the whole sys-

tem has to be represented using the finest time granularity, which is

undesirable from a modeling and learning perspective. In particular, if

a variable is observed irregularly, much data on discrete-time points

will be missing and conditional probabilities will be hard to estimate.

As an alternative to DBNs, temporal processes can be modeled as con-

tinuous time Bayesian networks (CTBNs), where time acts as a contin-

uous parameter [71]. In these models, the time granularity is infinitely

small by modeling transition rates rather than conditional probabilities.

Thus, multiple time granularities, i.e., slow and fast transition rates, can

easily be captured. A limitation from a modeling perspective is that all

probabilistic knowledge, for example derived from expert knowledge,

has to be mapped to transition rates which are hard to interpret. More-

over, it is assumed that the transition time, i.e., the time until a transition

occurs, is exponentially distributed, which may not always be appropri-

ate.

In this chapter, we propose a new formalism, which we call hy-

brid time Bayesian networks (HTBNs), inspired by discrete-time and

continuous-time Bayesian networks. We develop the theoretical proper-

ties of HTBNs and show their practical use by means of a medical exam-

ple. HTBNs facilitate modeling the dynamics of both irregularly-timed

random variables and random variables whose evolution is naturally
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described by discrete time. As a result, the new formalism increases the

modeling and analysis capabilities for dynamic systems.

In the next section we introduce the clinical running example for the

rest of this chapter. Then, in Section 3.3, we define HTBNs with their as-

sociated factorization, followed by a construction that allows transform-

ing an HTBN into an equivalent BN. Subsequently, we return to our

running example and demonstrate how the equivalent BN can be used

to obtain a meaningful clinical simulation. The chapter is concluded by

a discussion.

3.2 motivating example

To illustrate the usefulness of the proposed theory, we consider the med-

ical problem of heart failure and, in particular, one possible cause of

heart failure: heart attack (myocardial infarction). This usually occurs

as the result of coronary artery disease giving rise to reduced blood

supply to the heart muscle (myocardium). One consequence is that part

of the heart muscle will die, which is revealed later in a blood sam-

ple analysis in the lab by an increased level of heart muscle proteins,

in particular troponin. Loss of heart muscle will inevitably have an im-

pact on the contractability of the myocardium, and thus heart function

will be negatively affected. This is known as heart failure. In particular,

the heart fails with respect to its function as a pump. This will enforce

an increase in the amount of extracellular fluid (the patient is flooded

with water), which can be measured quite simply by means of the body

weight. With regard to treatment, digitalis is considered as one of the

drugs to improve contractability. This causal knowledge is formalized

as a directed graph in Fig. 3.1.

Heart attacks can occur repeatedly in patients, although after some

interval of time, and this may negatively affect heart function. After

administration of digitalis it will take some time before the drug has a

diminishing effect on heart failure. Thus, the course of heart failure will

likely depend on various factors, and how they interact. Of particular

importance here is the dynamics of the probability distributions over

time.

In modeling processes such as heart failure, it is essential to notice

the existence of different time granularities. There are discrete, regular

variables which are observed regularly such as a routine checkup for

body weight and a regular intake of a drug. On the other hand, some
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CMDT LHT

HA

TROP

HFBW

Fig. 3.1: Causal model for heart failure: CM = contractility myocardium, DT =

digitalis, LHT = loss heart tissues, HA = heart attack, TROP = troponin,

HF = heart failure, BW = body weight.

variables are observed irregularly, such as the indicator troponin which

is elevated after about half an hour after damage to the heart muscle is

obtained; however its measurement is repeated with time intervals that

increase after the patient’s condition has been stabilized. Clearly, it is

not possible to obtain a satisfactory representation of the clinical evo-

lution of heart failure using only discrete time, regular or irregular, or

continuous time. In the remainder of this chapter we propose a method

to deal with these heterogeneous time aspects.

3.3 hybrid time bayesian networks

In this section, we define hybrid-time Bayesian networks and give the

semantics of these models in terms of their factorization. In the re-

minder of this chapter, symbol A denotes a set of time points, with

A = {0, 1, . . . , n} and symbol B a set of time points with A ⊆ B ⊂ R+
0 .

3.3.1 General Idea

Random variables model dynamical systems evolving in discrete time

steps or smoothly over time. DBNs are a general framework for model-

ing dynamic probabilistic systems on a set of discrete time points. The

dynamics are parameterized by a conditional probability distribution of

variables at time s(α), with s the successor function as defined in Sec-

tion 2.1, conditioned on variables at time α. Building a DBN requires

finding a single time granularity, though variables change at their own

rate. When the modeled time granularity is coarser than the time spent

between two consecutive observations, the conditional probabilities for

some observations between discrete time slices are difficult to estimate,

that is, it can give rise to information loss. In contrast, when time is

continuous, intensity matrices in CTBNs are used to describe transient
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behavior of random variables. Transition probabilities can be induced

from intensity matrices, yet, these probabilities cannot be represented

explictly in CTBNs. This implies that probabilistic knowledge from do-

main experts has to be mapped to intensity matrices which are hard to

interpret. As a result, the question arises whether it is possible to have a

probabilistic representation modeling dynamical systems with multiple

changing rates. One answer is to define a probabilistic representation

for modeling both discrete-time and continuous-time variables.

Dependences of random variables are represented by arcs in proba-

bilistic graphical models, such as DBNs and CTBNs. In discrete-time

models one can distinguish arcs which are inter-time-slice (also known

as temporal arcs), going between time slices, or intra-time-slice (called

atemporal arcs), connecting variables within the same time slice. The

decision on how to relate two variables is dependent on how tight the

coupling between them is in time. If the dependence of one variable

with another is immediate, that is, much shorter than the time granu-

larity in the model, an atemporal arc is appropriate. If the dependence

manifests after some time but longer than the modeled time granularity,

this can be modeled as an arc from one slice to the next. In contrast,

arcs in CTBNs are always temporal: the dependence between variables

manifests itself in the probability distribution of states mediated by an

intensity matrix. The time it takes for a variable to influence another can

be arbitrarily small, yet non-zero, which we denote by ǫ.

In these two modeling approaches, the common factor is that the

dependences manifest a delay. In DBNs dependences have delay zero

represented as atemporal arcs or some non-zero delay for temporal

arcs, whereas in CTBNs all arcs have the same delay ǫ. For our defi-

nition of hybrid-time Bayesian networks, we can therefore incorporate

continuous-time and discrete-time BNs in a single graph by assigning a

delay to each arc, capturing the dependence behavior over time in both

DBNs and CTBNs.

3.3.2 Model Definition

To define hybrid-time models, we first formalize the concept of arcs

that represent delayed dependence. To this end, we define an arc with

an associated attribute delay, explicitly indicating when the influence

between variables manifests. The value of a delay is either a natural

number d, d ∈ N0, or a small real number ǫ, ǫ ∈ R
+
0 , ǫ ↓ 0. Atemporal
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and temporal dependences in DBNs are represented by arcs having a

natural number as delay of either d = 0 (atemporal) or d ∈ {1, 2, . . .}
(temporal), respectively. The dependences in CTBNs are represented by

arcs with a delay having the value ǫ.

Now, we will give a formal definition of arcs in a hybrid-time graph.

Given a graph G = (V(G), E(G)), the arcs are defined as E(G) ⊆
V(G)×V(G)× (N0 ∪{ǫ}), each of which represents direct dependence

of one variable on another.

The formal definition of hybrid time Bayesian networks is given as

follows.

Definition 3.1 (Hybrid Time Bayesian Networks (HTBNs)). A hybrid time

Bayesian network is a tuple H = (B, GH, Φ, Q), where B = (G0, P) is a

Bayesian network specifying an initial distribution, GH = (V(GH), E(GH)) is

a directed graph specifying a transition model with each node in V(GH) either a

continuous-time variable, collectively denoted by C, or a discrete-time variable,

collectively denoted by D, Φ is a set of conditional probability distributions for

variables D, and Q is a set of conditional intensity matrices for variables C.

Furthermore, graph GH has the following properties:

1. An arc to a continuous-time variable has a delay ǫ;

2. An arc between discrete-time variables has a delay d, d ∈ N0;

3. An arc from a continuous-time variable to a discrete-time variable has

delay 0;

4. (V(GH), {(x, y) | (x, y, 0) ∈ E(GH)}) is acyclic.

We use natural numbers d ∈ N0 to achieve generality of the represen-

tation of delays. However, as we restrict ourselves to first-order Markov

models in this chapter, we will only deal with the subset {0, 1} of the

natural numbers N0 for delays in DBNs.

A cycle of arcs with delay 0 is not permitted, analogous to the require-

ment for BN graphs to be acyclic. A cycle containing arcs with non-zero

delay, however, is allowed as an inherited property from discrete-time

and continuous-time Bayesian networks. Although in principle arbitrary

delays are possible, we here restrict ourselves to temporal dependences

between continuous time variables with delay ǫ.

Example 3.1

In the example discussed in Section 3.2, regular variables, i.e., BW, DT,
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Fig. 3.2: A transition model of an HTBN for the heart failure problem.

Continuous-time variables are graphically represented by double-

edged shaded circles; the other circles indicate discrete-time variables.

HF and the hidden variable CM can be represented in a discrete-time

manner. The irregular variables, i.e., LHT, TROP, HA are modeled as

continuous-time variables. The example is then represented in a hybrid

time Bayesian network H as shown in Fig. 3.2.

3.3.3 Factorization

The joint probability distribution for hybrid time Bayesian networks is

defined by the multiplication of the conditional joint probabilities for

the continuous-time and discrete-time Bayesian network parts. To this

end, we first need to introduce some theoretical graph notions.

The skeleton G∼ of a directed graph G is obtained by changing

the arcs in G to (undirected) edges. Every directed graph can be de-

fined as the union of connected components by an equivalence rela-

tion X − Y, meaning that node Y can be reached by an undirected

path from node X in its skeleton. Nodes X and Y are then members

of the same equivalence class [X] and the corresponding graph is a

connected component. A graph G′ = (V(G′), E(G′)) is said to be a

continuous-time induced subgraph of G, denoted as GC, if V(G′) = C and

E(G′) = (V(G′)×V(G′)×{ǫ})∩ (V(G)×V(G)×{ǫ}). Similarly, G′ is

a discrete-time induced subgraph of G, denoted as GD, if V(G′) = D and

E(G′) = (V(G′)×V(G′)× {0, 1}) ∩ (V(G)×V(G)× {0, 1}).
Both GC and GD can be decomposed into connected components;

each individual connected component is indicated by KC and KD, re-

spectively. Clearly connected components are disjoint as they represent

equivalence classes and together the connected components form parti-

tions of the continuous-time and discrete-time subgraphs, respectively.
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A subset X ⊆ V(GD) is said to constitute the parents of V(KC), de-

noted as π(V(KC)), if and only if there exists at least an arc (D, C) in

G, C ∈ V(KC), for every D ∈ X. Parents π(V(KD)) are defined analo-

gously.

Example 3.2

In the graph shown in Fig. 3.2, there is only one continuous-time con-

nected component with V(KC) = {LHT, TROP, HA} and one discrete-

time connected component with V(KD) = {DT, CM, HF, BW}.

We are now in the position to define a conditional distribution of

connected components given their parents.

Definition 3.2 (Conditional Joint Distribution for Component KD).

Given a discrete-time component KD, the conditional joint distribution for KD

over time points of interest A is defined as:

P(V(KD)A | π(V(KD))A) = ∏
D∈V(KD)

(P(D0 | π(D)0) ∏
α∈A\{0}

P(Dα | π(D; α)))

where π(D; α) = {π(D)α−d | d ∈ {0, 1}}.

Definition 3.3 (Conditional Joint Distribution for Component KC).

Given a continuous-time component KC over variables V(KC) with an ini-

tial distribution P(V(KC)0) and corresponding parents π(V(KC)) over time

points of interest A. The conditional joint distribution for KC over a finite set

of time points of interest B, with 0 ∈ A ⊆ B ⊂ R
+
0 , is defined as:

P(V(KC)B | π(V(KC))A) = P(V(KC)0)

∏
β∈B\{max B}

exp(QV(KC)|π(V(KC))a
(s(β)− β)) (3.1)

with a = max{α | α < β, α ∈ A}, and QV(KC)|π(V(KC))a
is the conditional

intensity matrix for variables V(KC) given the values of parents π(V(KC)) at

time a.

Now we can define the full joint probability distribution of a hybrid-

time BN given sets of time points of interest.

Definition 3.4 (Joint Probability Distribution). Given a hybrid time

Bayesian network H and sets of components KD, KC with associated time

points of interest A, B. The joint distribution for H over B is defined as:

P(V(G)B) = ∏
KC∈KC

P(V(KC)B | π(V(KC))A) ∏
KD∈KD

P(V(KD)A | π(V(KD))A)

(3.2)
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Example 3.3

Consider the example in Fig. 3.2 with time points of interest A and B

and joint intensity matrix Q for continuous-time variables LHT, HA and

TROP. As the continuous component has no parents, the joint distribu-

tion over time points B \ {0} is then given by:

P = ∏
α∈A\{0}

P(DTs(α))P(BWs(α) | BWα, HFs(α))P(HFs(α) | HFα, CMα)

P(CMs(α) | CMα, DTα, DTs(α), LHTs(α)) ∏
β∈B\{max B}

exp(Q(s(β)− β))

The following propositions establish that HTBNs are proper general-

izations of both DBNs and CTBNs. For DBNs, the transition graph can

be converted to an HTBN graph, where the intra-temporal arcs are re-

placed by arcs with delay 0 and inter-temporal arcs are replaced by arcs

with delay 1.

Proposition 3.3.1. A DBN (B0,B→), as defined in Definition 2.6, and an

HTBN (B, GH, Φ,∅) define the same joint probability distribution for any set

of time points of interest A, if B0 = B, GH corresponds to the graph of B→,

and Φ are the parameters of the DBN.

Similarly, a CTBN can be interpreted as an HTBN by replacing its arcs

by arcs with ǫ delay.

Proposition 3.3.2. A CTBN (B, G→, Q), as defined in Definition 2.7, and

an HTBN (B, GH,∅, Q) define the same probability distribution for any set

of time points of interest B if GH is G→ such that each edge is replaced by an

edge with delay ǫ.

For both propositions, the results follow directly from the factoriza-

tion of CTBNs, DBNs, and HTBNs.

3.4 discrete-time characterization

A natural question is whether the joint distribution defined on an HTBN,

given the fixed time points of interest, can also be graphically repre-

sented as a regular (discrete-time) Bayesian network. The benefit is that

the parameters of the resulting Bayesian network are conditional proba-

bilities, which are easier to understand by domain experts. Furthermore,
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this construction is convenient as this implies that we can (dynami-

cally) generate discrete-time versions of the model given time points for

which we have observations, and for which we would like to compute

marginals. Given this translation, existing algorithms for probabilistic

inference in BNs can be employed.

In Section 3.4.1 we describe the procedure to construct a discrete-time

graph structure of a hybrid model. The construction for the complete

representative BN is given in Section 3.4.2, employing an EM algorithm

to obtain the parameters.

3.4.1 Structural Discretization

The discretization of a hybrid-time model requires discretizing the con-

tinuous components KC given time points of interest B. Since each

continuous component is itself a CTBN, we focus in this subsection

mainly on the discretization procedure in terms of CTBNs. The result-

ing CTBNs are subsequently combined with the discrete components

KD to obtain the discrete version of the HTBN.

The remainder of this subsection is structured as follows. In Defini-

tion 3.5 and Lemma 1 we characterize the independence structure of a

CTBN in terms of an infinite set of Bayesian networks which follow the

causal structure of the graph. Then, in Definition 3.6 and Theorem 2, we

show the existence of a single Bayesian network, called a representative

Bayesian network, that includes all possible dependences of this set of

causal networks, and therefore of the CTBN. In Theorem 3, it is shown

how to directly construct the graph of this representative Bayesian net-

work from a given CTBN. Finally, in Definition 3.7, this is tied together

with the discrete components of an HTBN.

Definition 3.5 (Associated Causal Graph). Consider a CTBN with graph

(G0, G→), with G0 = (V(G0), E(G0)) and G→ = (V(G→), E(G→)),
and time-indexed variables VB. An associated causal graph GB, GB =
(V(GB), E(GB)), is the graph with nodes V(GB) = VB such that for all

X, Y ∈ VB:

• If X → Y ∈ E(G0), then X0 → Y0 ∈ E(GB);

• If X → Y ∈ E(G→) and {β, s(β)} ⊆ B, then Xβ → Ys(β) ∈ E(GB).

and GB does not contain any other arcs.
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{0, 1, 1.5, 2}, Γ ⊇ B

Fig. 3.3: An example of causal graphs and a representative BN for a given

CTBN and time points of interest B; H stands for a hidden variable.

Example 3.4

Consider a continuous component with the initial model and transition

model shown in Fig. 3.3a and 3.3b. The associated causal graphs of the

continuous component with time points of interest B and Γ are shown

in Fig. 3.3d and 3.3e.

In the following lemma, we give a precise characterization of the re-

lationship between CTBNs and causal graphs in terms of independence

structures.

Lemma 1. Let P(V) be the distribution defined by a CTBN with graph

(G0, G→) and time-indexed variables VB, and let Xβ, Yβ′ ∈ VB. Then if for

all VΓ with Γ ⊇ B, in the associated causal graph GΓ over VΓ it holds that

Xβ ⊥⊥GΓ
Yβ′ | Z, then Xβ ⊥⊥P(V) Yβ′ | Z, Z ⊆ VB \ {Xβ, Yβ′}.

Proof. The data-generating process of CTBNs generates a sequence of

events, i.e., observations of random variables indexed by time. Since

there is no feedback, i.e., it is a causal process, the joint distribution of

these sequences can be described by a causal DAG as given by Defini-

tion 3.5 for a set of time points Γ that occur in these sequences. As a

result, each dependency Xβ 6⊥⊥P(V)Yβ′ | Z will be represented by some

DAG that includes the variables VB.



42 hybrid time bayesian networks

Next, we define a Bayesian network that represents independences of

the CTBN, using the causal graphs from Definition 3.5. Theorem 2

proves that this BN is indeed representative.

Definition 3.6 (Representative Discrete-time Bayesian Network). Con-

sider a CTBN with graph (G0, G→) and time-indexed variables VB. A repre-

sentative discrete-time Bayesian network is a Bayesian network with graph GB,

GB = (V(GB), E(GB)), which includes at least the set of nodes VB and given

any Xβ, Yβ′ ∈ VB, if:

Xβ 6⊥⊥GΓ
Yβ′ | Z

for all Z ⊆ VB \ {Xβ, Yβ′} in some associated causal graph GΓ, Γ ⊇ B, then:

• β′ = s(β) implies Xβ → Yβ′ ∈ E(GB);

• β = s(β′) implies Xβ ← Yβ′ ∈ E(GB);

• β = β′ 6= 0 implies HXY
β → Xβ ∈ E(GB), HXY

β → Yβ ∈ E(GB);

• β = β′ = 0 and X0 → Y0 in all causal graphs implies X0 → Y0 ∈
E(GB).

with HXY
β a new hidden variable, and GB does not contain any other nodes or

arcs.

Example 3.5

Recall the CTBN example from Fig. 3.3. For the causal graph GB,

with time indices B = {0, 1, 2}, it holds that LHT2 ⊥⊥ TROP2 |
{LHTB, TROPB} \ {LHT2, TROP2}, but this independence does not hold

for the causal graph GΓ, with Γ = {0, 1, 1.5, 2}. This implies that there

exists a possible dependence in the CTBN graph which can not be rep-

resented by GB. Since every causal BN contains such independence as-

sumptions that may not hold in the CTBN, which is revealed by increas-

ing the set of time points, it implies there may not exist a causal BN that

models all the CTBN’s dependences. Therefore, additional variables are

introduced in Definition 3.6 which create additional dependences, e.g. a

hidden variable with arcs to LHT1 and TROP1 in the representative BN

as shown in Fig. 3.3c.
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Theorem 2. Let P(V) be the distribution defined in a CTBN with graph

(G0, G→) and time-indexed variables VB, and let Xβ, Yβ′ ∈ VB. Then if for

the graph of the representative discrete-time Bayesian network GB it holds that

Xβ ⊥⊥GB
Yβ′ | Z, then Xβ ⊥⊥P(V) Yβ′ | Z, with Z ⊆ VB \ {Xβ, Yβ′}.

Proof. Take some dependence Xβ 6⊥⊥P(V) Yβ′ | Z, Z ⊆ VB \ {Xβ, Yβ′}.
Because of Lemma 1, we know that this dependence is included in some

causal graph associated to the CTBN. Let Γi ⊃ B be a set of time points

such that the associated causal graph GΓi
represents the ith dependence

statement over the set of variables VB in the CTBN. Observe that for

any Γ
′ ⊃ Γ ⊇ B, if Xβ 6⊥⊥GΓ

Yβ′ | Z then Xβ 6⊥⊥G
Γ′

Yβ′ | Z. Thus, all

the dependences of the CTBN over VB will be represented by a causal

graph GΓ such that Γ =
⋃

i Γi.

Now consider this causal graph GΓ. It is possible to marginalise out

all variables Γ \B using the procedure described in [78, Definition 4.2.1],

which coincides with Definition 3.6 instantiated for the structure of

these causal graphs, except that we represent bidirectional arcs in an-

cestral graphs by means of additional hidden variables. Since GΓ repre-

sents the same independence structure as GB ([78, Theorem 4.18]), we

obtain Xβ 6⊥⊥GB
Yβ′ | Z.

According to Definition 3.6, additional hidden variables H are intro-

duced for a continuous-time variable C in the associated representative

Bayesian network graph when C is d-connected with other continuous-

time variables. The introduction of hidden variables makes sure that the

states of C at any time point are correlated with the other continuous-

time variables when their temporal evolutions are taken into consider-

ation. This models entanglement, a concept that occurs in CTBNs and

DBNs [71].

The graphs of representative Bayesian network are defined above by

the existence of some causal graph of the CTBN. Clearly, it is not feasible

to go over all causal graphs and their independences. Therefore, we pro-

vide in the following theorem a simple procedure to directly construct

this Bayesian network graph from a given CTBN.

Theorem 3. Consider a CTBN, with graph (G0, G→) and time-indexed vari-

ables VB, and let GB, GB = (V(GB), E(GB)), be the graph of the rep-

resentative discrete-time Bayesian network. Then if X → Y ∈ G0, then

X0 → Y0 ∈ E(GB). Furthermore, for all X, Y ∈ V, if X and Y are d-connected

in G→ given ∅, and for all β ∈ B \ {0}:



44 hybrid time bayesian networks

• HXY
β → Xβ, HXY

β → Yβ ∈ E(GB)

• if there is a directed path from X to Y in G→, then Xβ → Ys(β) ∈ E(GB)

and GB does not contain any other nodes or arcs.

Proof. The nodes and arcs for the initial time slices are obvious because

these are exactly included in the causal graphs. Now take some β ∈
B \ {0}. We will consider the possible relationships between X and Y in

the CTBN.

(i) Suppose X and Y are d-connected. Then we need to show that

there is some causal graph such that Xβ is dependent of Yβ for any Z.

Consider the case that X and Y are d-connected through some path in

the CTBN and consider the causal graph associated to this CTBN in the

following two figures:

Xβ

Xs(β)

Yβ

Ys(β)

(a)

⇒

Xβ

Xγ

Yβ

Yγ

Xs(β) Ys(β)

(b)

In (a), Xs(β) and Ys(β) are conditionally independent, e.g., Xs(β) ⊥⊥ Ys(β) |
{Xβ, Yβ}. Now observe that by adding time slices between β and s(β),
these independences disappear, see (b). Similarly, if the shortest connect-

ing path between X and Y is of length n, any independence between

Xs(β) and Ys(β) in a set of variables VB will not hold in a causal graph

with n additional intermediate time slices between s(β) and its prede-

cessor in B. Hence, there will always be a causal graph where there are

no independences between Xs(β) and Ys(β) for some conditioning set in

VB.

(ii) Suppose that there is a directed path between X and Y. Then we

again need to show that there is some causal graph such that Xβ is de-

pendent of Ys(β) for any Z. If X and Y are directly connected, then there
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will clearly be a dependency of Xβ and Ys(β), for example a direct de-

pendency in VB. Now suppose that X and Y are not directly connected.

Consider the following figures.

Xβ

Xs(β)

Zβ

Zs(β)

Yβ

Ys(β)

(a)

⇒

Xβ

Xγ

Zβ

Zγ

Yβ

Yγ

Xs(β) Ys(β)Zs(β)

(b)

In the causal graph (a) there will be conditional independences between

Xβ and Ys(β), i.e., if we condition on parents of Ys(β). Again, by adding

intermediate time slices between β and s(β), dependences between Xβ

and Ys(β) appear that cannot be blocked by variables in (a), in particular

the path Xβ → Zγ → Ys(β). Similar to the previous case, directed paths

of length n lead to dependences if we add n− 1 time-slices between β

and s(β) that cannot be blocked by VB.

(iii) Suppose X and Y are d-connected, yet, not through a fully di-

rected path. Then we show that in all causal graphs there is a condi-

tional independence between Xβ and Ys(β). Let W be the set of variables

which are also d-connected to X and Y, i.e., this set includes all variables

on paths between X and Y. Then, the claim is that for all causal graph,

it holds that:

Xβ ⊥⊥ Ys(β) | (W \ {X, Y})B, Yβ

Consider some causal graph, for which we know that on all d-connected

paths between X and Y there is some divergent node Z (otherwise this

path would be fully directed, so case (ii) applies). Then consider the

following graph to illustrate why this is true:
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Xβ

Xγ

Zβ

Zγ

Yβ

Yγ

Xs(β) Ys(β)Zs(β)

Consider that β, s(β) ∈ B, but γ 6∈ B. In this case W = {Z}, so the

conditioning set contains at least {Zβ, Zs(β), Yβ}. To d-connect Xβ with

Ys(β) on this path of the CTBN, there should therefore be a path through

some Zγ′ , where γ′ 6∈ B. Suppose γ′ < β, then all paths will be blocked

at β, since all the variables at β are in the conditioning set, except for Xβ.

Now suppose β < γ′ < s(β). Then we have the case similar to the figure

where γ = γ′. It is clear in this case that such a path would be blocked

by Xβ because of the v-structure. Finally suppose γ′ > s(β). Then the

only way that this opens a path from Y to X is if there is a v-structure

on Z, i.e., X → Z ← Y. But then there is a directed path X → Z → Y in

the CTBN, so this contradicts the assumption.

(iv) Suppose X and Y are not d-connected. Again, we need show that

in all causal graphs there will be at least one conditional independence

between Xβ and Ys(β). This is trivial, because in all graphs Xβ ⊥⊥ Ys(β) |
∅ because either X and Y are not connected or on all paths between X

and Y, there is some v-structure, which then also occurs in the causal

graph. The case for Xβ and Yβ is analogous.

(v) For any variables X and Y it holds that Xβ ⊥⊥ Ys(s(β)) | Vs(β). That

is, the Markov property holds in CTBNs.

Finally, note that (i)—(v) together imply the claim of the theorem.

Once we have a discrete version of the continuous components, we

are able to discretize a whole HTBN by assembling the components. We

use GKD
to denote the unrolled graph for a discrete-time component KD

(given time points A). We denote by GKC
the representative Bayesian net-

work graph of the continuous component KC (given time points B). In

the following definition, we tie these two discretizations together to dis-

cretize the full HTBN. This includes the Bayesian networks associated
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to each component, together with a number of edges between these

components.

Definition 3.7 (Representative Bayesian Network Structure). Let H be

an HTBN with continuous components KC, discrete components KD, an

initial Bayesian network B = (G0, P) and a transition model with graph

GH. Given sets of time points B for continuous-time variables and A for

discrete-time variables, then a representative Bayesian network structure is a

graph G = (V(G), E(G)) where V(G) =
⋃

K∈KD∪KC
V(GK), E(G) includes

⋃

K∈KD∪KC
E(GK), and for any continuous-time variable C and discrete-time

variable D with D ∈ D, C ∈ C:

• C
0
−→ D ∈ GH implies Cα → Dα ∈ E(G), for all α ∈ A;

• D
ǫ
−→ C ∈ GH implies Da → Cβ ∈ E(G), a = max{α | α < β} for all

β ∈ B;

• D0
0
−→ C0 ∈ G0 implies D0 → C0 ∈ E(G);

• C0
0
−→ D0 ∈ G0 implies C0 → D0 ∈ E(G);

and G does not contain any other nodes or arcs.

Example 3.6

The graph of the representative Bayesian network for an HTBN is il-

lustrated in Fig. 3.4. Two cases are shown, the graph for A = B and

A 6= B.

3.4.2 Constructing Representative Bayesian Nertworks

After obtaining the structure of the discrete version of an HTBN, the

second step in the procedure of discretization is to estimate the param-

eters for the representative BN given an HTBN and sets of time points

of interest A, B. The full procedure, using the results above, is given in

Algorithm 3.1 and explained below.

The algorithm is based on an Expectation Maximization (EM) proce-

dure [15]. This well-known procedure is traditionally used to learn dis-

tributions from data with missing values. In our case, we exploit EM for
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CM LHT TROP

0
1

ǫ
ǫ ǫ

(a) A simple HTBN

CM

CM

LHT

LHT

TROP

TROPH

α = 0

α = 1

CM LHT TROP

CM LHT TROPH

α = |A| − 2

α = |A| − 1

...
...

...

H

(b) Same time points of interest

A = B

CM

CM

LHT

LHT

TROP

TROP

β = 0

β = 1

...
...

...

CM LHT TROP

LHT TROP β = 0 + ǫ

H

H

LHT TROPH

LHT TROPCM H

H β = |A| − 2

β = |A|−2+ǫ′

β = |A| − 1

(c) Different time points of interest:

A 6= B

Fig. 3.4: Discretization of an HTBN.

learning parameters of the representative Bayesian network, as this net-

work includes a number of hidden variables for the continuous compo-

nents. In order to fit the original joint distribution of a continuous com-

ponent to a distribution that includes hidden variables, we look upon

the hidden variables as if they are missing values. In an ordinary EM

procedure parameters of the model are maximized based on expected

sufficient statistics, which are determined based on the distribution of

observed data and expectations computed at each iteration. In this case,

we replace the distribution of observed data by the known distribution

given by an HTBN. This is analogous to learning from data since the

HTBN parameters are equivalent to the expected sufficient statistics of

data generated from the HTBN. As a consequence, this parameter fitting

procedure has the same properties as any other EM algorithm, in partic-

ular, the procedure results in a local minimum of the Kullback-Leibler

divergence between the distributions associated to the HTBN and the

representative BN. (see e.g. Section 11.4.7 of [63]).

In the following, the parameters in the BN for continuous-time vari-

ables and hidden variables are denoted as θ. We use θH
s(β) for the prior

probability of Hs(β). Furthermore, we use θC
s(β) to represent the condi-

tional probability of Cs(β) conditioned on its parents in the representa-
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tive Bayesian network. Finally, to distinguish between the distributions

of the hybrid model and representative BN, we use PH for the distribu-

tion of the HTBN and P for the distribution in the BN.

Algorithm 3.1: Construct representative BN

Input: A HTBN H and sets of time points A, B

Result: Representative BN for H
1 Construct the representative BN structure according to Def. 3.7

2 Inherit parameters for discrete-time variables D from H
3 Initialize parameters θ for continuous-time and hidden variables in

BN

4 while θ is not converged do

5 foreach s(β) ∈ B do

6 Compute expectation for Hs(β) in BN ⊲ E-Step

7 P(Hs(β) | Cβ, Cs(β), Da)

8 where a = max{α | α < s(β), α ∈ A}
9 Let ∆ = Hs(β) ∪ Cβ ∪ Cs(β) ∪Da

10 foreach Cs(β) ∈ Cs(β) do

11 Update parameters for Cs(β) in BN ⊲ M-Step

12 θC
s(β) ∝ ∑∆\{π(Cs(β))∪{Cs(β)}}

P(Hs(β), Cβ, Cs(β), Da) where

P(Hs(β), Cβ, Cs(β), Da) = P(Hs(β) | Cβ, Cs(β), Da)

PH(Cβ, Cs(β) | Da)PH(Da)

13 end

14 foreach Hs(β) ∈ Hs(β) do

15 Update prior probability for Hs(β) in BN ⊲ M-Step

16 θH
s(β) = ∑∆\Hs(β)

P(Hs(β), Cβ, Cs(β), Da)

17 end

18 end

19 end

20 return BN

Algorithm 3.1 outlines the procedure of constructing a representative

BN given an HTBN and time points. First, it constructs the structure

of the representative BN according to Definition 3.7. In the remainder,

it estimates parameters for continuous-time variables given their par-

ents, including the hidden variables. The estimation of parameters for
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discrete-time variables is straightforward as they can be directly copied

from the parameters defined in the HTBN H.

The parameters θC
s(β) and θH

s(β) start with an arbitrary initialization

in the BN. In the E-step, we compute the expectation for hidden vari-

ables Hs(β) given the Markov blanket of Hs(β), each of which is rep-

resented as a conditional probability as shown on line 7. In the M-

step, i.e., from Line 11 onwards, the parameters θC
s(β) and θH

s(β) are

updated by marginalizing out variables from ∆ by making use of the

expectations computed in the E-step and information derived from

the HTBN distribution PH. In particular, the distributions PH(Da) and

PH(Cβ, Cs(β) | Da) can be computed by marginalisation from the joint

distribution of the HTBN as given in Definition 3.4.

3.5 experiments

The power of HTBNs is illustrated in the domain of myocardial con-

tractability in relationship to heart attack, heart failure and its medical

treatment, introduced in Section 3.2 and summarized in Fig. 3.2. Of

particular interest is the question how the dynamics of the occurrence

of heart failure are affected by heart attacks and the administration of

digitalis. As discussed in Section 3.2, a single DBN and CTBN can not

provide a satisfactory representation of the evolution of variables with

different rates: the administering of digitalis or measurement of body

weight is regular, in contrast to the more sparse and irregular occur-

rence of heart attacks.

We now show a simplified HTBN of the heart failure problem given

time points of interest A, B. As the data were unavailable for heart tis-

sue and contractility, the model was simplified by leaving out variables

CM and LHT. The graphical representation of the resulting hybrid-time

model is shown in Fig. 3.5a and Fig. 3.5b. We parameterized the model

partly using medical expert knowledge and partly from data. The unit

of time for the transitions is weeks. There are three weekly changing

variables in the model, i.e., digitalis (DT), heart failure (HT) and body

weight (BW). The parameters of the continuous-time variables (heart at-

tack (HA) and troponin (TROP)) were derived from real data. The tran-

sition rates for troponin were parameterized using the MIMIC II Clini-

cal Database [28, 81] which contains thousands of Intensive Care Unit

(ICU) patient records gathered from 2001 to 2008. Similarly, some pa-

rameters for troponin in the initial model were obtained from the same
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(c) A representative Bayesian network

for a simplified hybrid model of

heart failure

Fig. 3.5: Simplified hybrid model of heart failure and its associated representa-

tive Bayesian network graph given time points of interest.

database. However, due to incompleteness of the clinical information

from the MIMIC II Database, we derived the distribution of troponin in

the absence of heart attack from the literature [50].

Now we show the procedure to determine the parameters of a repre-

sentative BN given the HTBN and time points of interest. According to

Def. 3.7, a representative BN was generated as shown in Fig. 3.5c, given

the sets of time points A and B, A ⊂ B, where B includes two additional

irregular time points for the heart attack events. Taking the parameters

in the hybrid model shown in Fig. 3.6 and the constructed BN as input

for the EM procedure described in Algorithm 3.1, we computed the pa-

rameters of the representative BN. The EM algorithm is implemented

in R using the CTBN-RLE reasoning engine [87] and its R interface [99].

Some of the learned parameters are shown in Table 3.1. The parame-

ters for HA at time 0.3 and 1 are different because the time points are
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P(DT0 = T) 0.01

P(HA0 = T) 0.01

P(TROP0 = N | HA0 = T) 0.15

P(TROP0 = N | HA0 = F) 0.98

P(HF0 = T | DT0 = ·, HA0 = ·) 0.01

DTt DTt+1 HFt HAt+1 HFt+1

F F F F 0.08

T F F F 0.07

F T F F 0.05

T T F F 0.04

F F T F 0.45

T F T F 0.40

F T T F 0.40

T T T F 0.30

F F F T 0.40

T F F T 0.35

F T F T 0.30

T T F T 0.25

F F T T 0.99

T F T T 0.70

F T T T 0.65

T T T T 0.70

QHA =

(

F T

F −0.002 0.002

T 0.4 −0.4

)

QTROP|HA=T =

(

N Abn

N −0.05 0.05

Abn 0.02 −0.02

)

QTROP|HA=F =

(

N Abn

N −0.01 0.01

Abn 0.015 −0.015

)

Fig. 3.6: Parameters in the hybrid model. Prior probabilities (top) and transi-

tion parameters, i.e. P(HFt+1 = T | DTt, DTt+1, HFt, HAt+1) for all

parent configurations (bottom left) and the intensity matrices for HA

and for TROP given HA (bottom right).
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Table 3.1: Parameters in the representative BN learned by EM. Parameters

for DT, HF are the same as in Fig. 3.6. Prior probabilities for hid-

den variables H in (a), transition parameters for HA, TROP for all

parent configuration, i.e. P(HAs(β) = T | HAβ, Hs(β)) in (b), (c),

P(TROPs(β) = Abn | HAβ, TROPβ, Hs(β)) in (d), (e), s(β) ∈ {0.3, 1}.

(a)

H0.3 0.51

H1 0.51

(b)

HA0 H0.3 HA0.3

F F 9 · 10−4

T F 0.84

F T 2 · 10−4

T T 0.94

(c)

HA0.3 H1 HA1

F F 2 · 10−3

T F 0.70

F T 5 · 10−4

T T 0.81

(d)

HA0 TROP0 H0.3 TROP0.3

F Abn F 0.99

T Abn F 0.99

F N F 5 · 10−3

T N F 0.02

F Abn T 0.99

T Abn T 0.99

F N T 1 · 10−3

T N T 8 · 10−3

(e)

HA0.3 TROP0.3 H1 TROP1

F Abn F 0.98

T Abn F 0.98

F N F 0.01

T N F 0.04

F Abn T 0.99

T Abn T 0.99

F N T 3 · 10−3

T N T 0.02

unevenly spaced. In the following, we illustrate the equivalence of the

HTBN with the representative BN by computing one of the marginal

probabilities, i.e. P(HA0.3).
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Fig. 3.7: Effects of heart attack and digitalis on heart failure. ‘DT’ indicates

that digitalis was administered at that moment in time. ‘HA’ indicates

that a heart attack was observed. Note that observations for HA are

continuous-time, so observed at an arbitrary point in time; digitalis is

observed once a week at most.

In the BN, we can compute the marginal of HA0.3 by:

P(HA0.3 = T) = ∑
HA0,H0.3

P(HA0, H0.3, HA0.3 = T)

= ∑
HA0,H0.3

P(HA0.3 = T | HA0, H0.3)P(HA0)P(H0.3)

= 9 · 10−4 · 0.99 · 0.49 + 0.84 · 0.01 · 0.49

+ 2 · 10−4 · 0.99 · 0.51 + 0.94 · 0.01 · 0.51

≈ 0.009

As HA has no parent in the HTBN model, we can directly compute its

distribution at time 0.3 using the intensity matrix and initial distribution

of HA described in Fig. 3.6:

P(HA0.3) = P(HA0) exp(QHA · 0.3)

= [0.99, 0.01]

(

0.9994348 0.0005652

0.1130463 0.8869537

)

≈ [0.991, 0.009]

with probability row vectors P(HA0.3) = [P(HA0.3 = F), P(HA0.3 = T)],
and P(HA0) = [P(HA0 = F), P(HA0 = T)].

Finally, to show the behavior of the model we computed the prob-

ability distribution of heart failure for a period of 19 weeks given the
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observed (regular or irregular) evidence. Results of this experiment are

plotted in Fig. 3.7. The plot shows the negative effects of a heart attack

(see the jumps at time t = 1, t = 2 and t = 16) and the positive effect

of digitalis on heart failure (see the rapid fall at time t = 5). The model

also implies that the condition of the heart stabilizes after administering

the drug through an increase in the contractility. However, a damaged

heart does not fully recover, not even with the help of digitalis.

3.6 discussion

We have described hybrid time Bayesian networks as a means to model

dynamic systems. In particular, HTBNs are suitable when a combination

of regular and irregularly changing variables best describe the domain

or when multiple time granularities need to be modeled. The proposed

approach generalizes both continuous-time and discrete-time Bayesian

networks. HTBNs allow reasoning over irregularly spaced evidence, a

property inherited from CTBNs, as well as regular time sliced evidence,

derived from DBNs. This is a significant contribution in terms of ease of

modeling complex dynamic systems. Each variable can be modeled us-

ing the appropriate mechanism, which is particularly helpful when con-

structing models from expert knowledge. Furthermore, we established

a mapping of hybrid-time networks into a standard BN given a set of

time points of interest. The inference problem in HTBNs is therefore

reduced to a problem for which efficient solutions exist.

DBNs were proposed by Dean and Kanazawa as early as 1989 [14]

and have been extensively studied and applied since then, notably by

Murphy [64]. CTBNs [71] are of a more recent date, but have seen vari-

ous applications over the last decade. Applications range from detecting

attacks in computer networks [102], analyzing social network dynam-

ics [22] and modeling heart failure [26]. Note that in this chapter we do

not aim to improve upon the medical analysis provided in the work by

Gatti et al. [26], but instead studied the heart failure domain to show an

application of HTBNs in a relevant use case.

There is also some relation between non-stationary dynamic Bayesian

networks (nsDBN) and the formalism proposed here. In nsDBNs the

structure and parameters change at particular time points [35, 80]. The

approaches are related in the sense that non-stationary Bayesian net-

works allow for different time granularities of the (complete) temporal
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process. The key difference here is that we consider the case where dif-

ferent random variables evolve at different rates.

A limitation of HTBNs is that so far the granularities of discrete-time

variables are assumed to be fixed, as the focus of this chapter has been

on the combination of continuous and discrete-time models. A future

extension of the work presented here would be combining different

discrete-time granularities within the hybrid-time framework. This is

related to the work on irregular-time Bayesian networks (ITBNs) [75]

and to the work by van der Heijden and Lucas [40].

There is also some possible future work on inference. Currently, infer-

ence in HTBNs is limited by the exponential increase of dependencies

when discretizing large continuous components, as currently all vari-

ables are connected. It appears possible to optimize the BN construction

to only take into account dependencies that have significant influence

on the temporal process. A more efficient, approximate structure would

alleviate the complexity problem. Note that CTBNs also suffer from this

problem, preventing exact inference in large networks.

Since the BN construction presented here may become infeasible for

large networks with many time points of interest, another direction for

further study would be inference methods that operate directly on the

HTBN instead of constructing a BN first. Possibilities include a sam-

pling approach to inference as well as expectation propagation, which

has been proposed for inference in CTBNs [73].

Finally, it remains of interest to study learning HTBNs from data. We

expect that a general approach to parameter learning can be constructed

based on existing work on parameter learning in BNs and CTBNs. Yet,

it will require some extensions to take the interactions between discrete

and continuous components into account. Structure learning from data

is for now an open problem. Nevertheless, hand-crafted HTBN models

can be applied already using the inference approach developed in this

chapter.



4
L E A R N I N G PA R A M E T E R S O F H Y B R I D T I M E

B AY E S I A N N E T W O R K S

In this chapter, we discuss the problem of estimating parameters for

a hybrid time Bayesian network described in the previous chapter. We

consider the parameter estimation in HTBNs where data can be com-

plete or incomplete. For time series, complete data is a set of one or more

full trajectories describing the state changes of a variable over time. In

other words, we know all the state transitions, i.e., what is the current

and the next state for the variable, and exactly when such a transition

occurs. However, complete data is rarely available for many real-world

applications. To some extent, the data almost always are incomplete or

contain missing values, partly due to technical difficulties or measure-

ment errors. For time series, the incompleteness can also be attributed

to the fact that we may know the states at two time points, but the num-

ber of transitions and states between these time points are unknown in

the data. This is even more likely for continuous-time variables because

of the continuous nature of time. In this chapter, thus, we are devoting

ourselves to discussing the learning task in HTBNs from incomplete

data where only continuous-time variables are partially observed while

discrete-time variables are fully observed.

In the case of complete data, we use a closed-form solution of max-

imum a posteriori (MAP) estimation to determine parameters for an

HTBN by exploiting the MAP for its discrete and continuous compo-

nents. In the case of incomplete data, HTBNs are described by the prob-

abilistic modeling language Stan, which allows us to use an existing

MCMC method to estimate the posterior distribution of the parameters

in HTBNs. We also present numerical experimental results of learning

parameters for HTBNs both from complete and incomplete data.

57
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4.1 the heart failure example

To provide an illustrative learning problem of HTBNs, we start with

a medical example that models the clinical condition of heart failure.

Modeling the dynamics of heart failure has been the focus of several

earlier studies as a temporal modeling problem. For example, Gatti et,

al. [26] made an attempt to predict the likely evolution of heart failure

by fully exploiting CTBNs.

Example 4.1

Heart failure is said to be cardiogenic when the cardiac muscle is the

organ from which the circulatory failure results. The strength of the

heart muscle determines the heart’s function as a pump (PP). Cardio-

genic heart failure may be caused by acute myocardial infarction (AMI).

An AMI reduces blood flow through the coronary arteries to the heart

muscle (CO). It manifests as an intense chest pain, called angina pec-

toris (AN). One consequence is that part of the heart muscle will die,

which is revealed later in a blood sample analysis in the lab by an in-

creased level of particular heart muscle proteins, in particular cardiac

enzymes (E). Representing this scenario as an HTBN, we have to decide

which variables are regular and which are irregular. For example, we

model the pump of the heart (PP) as a discrete-time variable, which can

be measured regularly, such as on a daily base. On the other hand, the

observations of acute myocardial infarction and measurements of car-

diac enzymes are usually irregular. In Fig. 4.1, the complete hybrid time

Bayesian network H is shown.

As shown in Fig. 4.1b, there is only one discrete component KD

over four discrete-time variables V(KD) = {PP, LC, LV, CO} with one

continuous-time variable as parent π(V(KD)) = {AMI}. In addition, we

have two continuous components, namely KC over two continuous-time

variables V(KC) = {AMI, E} and K′C over variables V(K′C) = {AN, SS}.
The two continuous components share a single variable CO as their par-

ent, i.e., π(V(KC)) = π(V(K′C)) = {CO}.
For the heart failure model as shown in Fig. 4.1, given time points of

interest A for discrete component KD and B for continuous components

KC and K′C, A ⊆ B, and parameters including conditional probabilities

for all discrete-time variables and joint intensity matrix Q and Q′ for

continuous components KC and K′C respectively, the joint distribution P
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(a) Initial model
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(b) Transition model

Fig. 4.1: Acute myocardial infarction network. Variables shown are AMI =

acute myocardial infarction; E = cardiac enzymes; PP = Pump; LC

= volume of blood ejected from left heart ventricle; LV = pressure

exerted by the blood; CO = reduction of blood flow; AN = parox-

ysmal attacks of chest pain; SS = sympathetic nervous system activ-

ity. In Fig. 4.1b, continuous-time variables are graphically represented

by double-edged shaded circles, and discrete-time variables by solid

nodes. An arc with a number d indicates that the dependence mani-

fests with a delay by time d, such as 0 and ǫ in Fig. 4.1b.
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over time points excluding the starting time point B \ {0} is then given

by:

P = ∏
α∈A\{0}

P(PPs(α) | PPα, AMIs(α))P(LCs(α) | LCα, PPs(α))

P(LVs(α) | LVα, LCs(α))P(COs(α) | COα, LVs(α))

∏
β∈B\{max B}

exp(QCOa(s(β)− β)) exp(Q′COa
(s(β)− β))

where a = max{α | α < β, α ∈ A}, s is the successor function that gives

the next element in an ordering, and exp is the matrix exponential.

With three components over eight variables, the model of heart failure

is considered to be a representative example to illustrate some impor-

tant issues regarding learning parameters of HTBNs. The model has a

reasonable complexity in terms of the number of components, namely

two continuous components with each having two variables and one

discrete component over four variables. In addition, it reveals an impor-

tant learning issue in HTBNs in practice, i.e., the learning performance

when the HTBN contains a cycle between components. In this case, such

an issue is demonstrated in the heart failure model by the continuous

component KC and the discrete component KD forming a cycle in the

graph.

4.2 related work

There has been some work dealing with parameter estimation for DBNs

and CTBNs from incomplete data. Expectation Maximization (EM), orig-

inally presented by Dempster et al. (1977) [15], is a widely used and

accepted algorithm to deal with incomplete data by optimizing a likeli-

hood function. The EM algorithm is a general iterative procedure with

each iteration alternating between an expectation (E) step and a maxi-

mization (M) step. In the E-step, the algorithm uses the current param-

eters to compute the expected sufficient statistics and in the M-step, it

derives a new set of parameters by performing maximum likelihood

estimation. A comprehensive reading of its history, derivation and ap-

plications in a single textbook can be found in the work by McLachlan

et al. (1997) [61].

The EM algorithm is often also used for optimizing likelihood func-

tions in cases where models are specified partly observed and partly
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unobserved. One paradigm of these models are hidden Markov mod-

els (HMMs) which contain two groups of components: the observed

components called observations, and the unobserved component called

hidden states. In HMMs, an ad-hoc learning algorithm is derived from

the general EM algorithm, known as the forward-backward or Baum-Welch

algorithm, for which a comprehensive explanation can be found in the

work by Jurafsky et al. [13]. This algorithm allows us to perform effi-

cient inference by making use of dynamic programming in two passes.

By definition, the first pass goes forward in time while the second pass

goes backward in time.

The EM algorithm is further extended to more general probabilistic

graphic models, such as Bayesian networks, which is extensively ex-

plained by Koller and Friedman [49]. As the algorithm is not restricted

to parameter estimation only, it has also been adapted for model se-

lection to search for an optimal network structure [23, 24], known as

structural EM and abbreviated as SEM. In addition, the SEM algorithm

has been recently extended to two variants of temporal Bayesian net-

works, the dynamic Bayesian networks (DBNs) [67] and the continuous

time Bayesian networks (CTBNs) [73], which also model the evolution

of a set of random variables over time. However, the sufficient statistic in

each iteration differs between CTBNs and DBNs. Besides the expected

number of transitions from one state to another, the sufficient statistic

in CTBNs also consists of the expected amount of time for a variable to

stay in a state.

In theory, the EM approach could be applied to learn parameters from

partially observed trajectories in HTBNs, as HTBNs can be roughly re-

garded as a mixture of DBNs and CTBNs. However, computing expecta-

tions in HTBNs is difficult because of the available method for inference

in HTBNs. The current approach proposed by [55] suggests to translate

an HTBN into an equivalent discrete-time Bayesian network, called a rep-

resentative Bayesian network, in which inference can be performed using

standard exact methods. This translation is computationally expensive,

which is feasible if the translation has to occur only once. In the EM

procedure, however, this translation has to be done for every iteration,

which makes it an impractical approach for parameter learning.

Another idea for addressing the problem of estimating parameters

from incomplete data in HTBNs is the use of Markov chain Monte Carlo

(MCMC) methods [27, 37]. MCMC is a large class of sampling algo-

rithms, the essence of which is the construction of a homogeneous
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Markov chain with a stationary distribution, also known as equilibrium

distribution. The algorithm generates a sequence of independent and

identically distributed samples, for the space on which the desired pos-

terior distribution is defined. Such a general approach plays a significant

role in statistics, econometrics, physics and computing science over the

last three decades. The popularity of the MCMC algorithm is at least

partly due to the fact that the algorithm provides an effective solution

within reasonable time for hard learning and inference problems. In the

context of Bayesian networks, the MCMC algorithm is widely used for

structure learning [18, 25, 34, 79, 93] and parameter estimating [17].

4.3 parameter estimation in htbns

In this section, we discuss the problem of estimating parameters for

hybrid time Bayesian networks from training data. We assume that the

network structure is known prior to parameter learning. We address the

parameter learning in two general cases. In the first case, the training

data is complete, i.e., all variables in a given network are fully observed.

In other words, we have all the information of a transition, i.e., what

is the current and next state for a variable and when such a transition

occurs. In the second case, we consider the training data as incomplete,

or partial, as the values of some variables at some time points are miss-

ing. More precisely, our focus in this chapter is on continuous-time vari-

ables which can be partially observed. This is based on the intuition that

continuous-time variables are more likely to be only observed at some

time points and to be missing for the rest of the time points.

A central concept of parameter learning is the likelihood function

that measures the probability for training data. The likelihood function

is computed by assigning a probability to each instantiation of random

variables in the training data. It therefore measures the effect of the

choice of parameters on the training data in terms of probability. Here

we focus on the basic principles behind the likelihood function in hybrid

time Bayesian networks.

In hybrid time Bayesian networks, there are two types of parameters

we need to estimate from training data: conditional probability tables

(CPTs) for discrete-time variables and intensity matrices for continuous-

time variables. Throughout this section, we make use of existing re-

sults on maximum likelihood estimation and maximum a posteriori (MAP)

in DBNs [64] and CTBNs [72] in order to learn parameters from com-
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plete data, as HTBNs can be simply viewed as a combination of DBNs

and CTBNs. In the next subsection, we will first discuss the likelihood

function for HTBNs, which can be decomposed into those for DBNs and

CTBNs. In the end of this section, we will address the issue of comput-

ing log-likelihood when training data is incomplete. In particular, we

will demonstrate that the log-likelihood can not be computed in closed

form from incomplete training data.

4.3.1 Likelihood of Complete Data

The likelihood for a hybrid time Bayesian network given a choice of pa-

rameters is the probability of each instantiation in the data. Given a

choice of parameters, we assume that each instantiation in the data is

simply a random sample from the model, i.e., the instantiations are inde-

pendent and identically distributed (IID). Consider we have an HTBN

H with a set of parameters θ (a set of conditional intensity matrices and

CPTs), and a partition over a set of continuous components KC and a set

of discrete components KD. Given training data D describing complete

trajectories over random variables in the model H, the log-likelihood

function for the HTBN H can be decomposed into its continuous and

discrete components:

ℓH(θ : D) = ∑
KC∈KC

ℓKC
(θKC

: D) + ∑
KD∈KD

ℓKD
(θKD

: D) (4.1)

where θKC
are a set of parameters for a continuous component KC and

θKD
for a discrete component KD. In Equation 4.1, the log-likelihood

function for the HTBN, denoted by ℓH(θ : D), is decomposed into the

log-likelihood function for each continuous component, indicated by

ℓKC
(θKC

: D), and for each discrete-time component by ℓKD
(θKD

: D).
The likelihood of each component of an HTBN is similar to the like-

lihood in CTBNs and DBNs. However, the variables in a component

should also be taken into consideration when they are parents for the

other components. To complete the likelihood function for an HTBN,

we need to define the likelihood functions for both the discrete and

continuous components.



64 learning parameters of hybrid time bayesian networks

likelihood of discrete-time components Given a choice of

parameters θKD
for a discrete component KD, the log-likelihood for train-

ing data D is given by:

ℓKD
(θKD

: D) = ∑
D∈V(KD)

(ln P(D[0] | π(D[0]) : θKD
)

+ ∑
α∈A\{0}

ln P(D[α] | π(D[α]) : θKD
)) (4.2)

where V(KD) are variables in the component KD, D[0] and D[α] are

assignments to discrete-time variable D at time 0 and α in the training

data D respectively, π(D[0]) and π(D[α]) are the assignments to the

parents of variable D in the initial model and in the transition model,

respectively.

When variables are fully observed over time, the computation of the

likelihood can be summarized in terms of sufficient statistics. To put it

simply, a sufficient statistic is a function of training data that summa-

rizes the relevant information for computing the likelihood. The suffi-

cient statistic is computed by counting the number of instantiation of

variables in a particular state in the training data. For a discrete-time

variable D, the sufficient statistics consist of two parts, one for the ini-

tial model and one for the transition model. For the former, the suffi-

cient statistic is indicated by M[u, d], the number of counts that vari-

able D takes the value d and its parents take the values u at time 0

in the training data. Accordingly, the sufficient statistic is indicated by

M[u′, d] in the latter, which is the count of instantiation of D[α] = d and

π(D[α]) = u′ for time points after time 0 in the data, i.e., α, α ∈ A \ {0}.

We use the notation θ
d|u
KD

to represent a parameter for discrete-time

variable D in the component KD where D takes a value d and its par-

ents in the initial model take values u. The notation θ
d|u′

KD
is defined

analogously in the transition model. Together with the sufficient statis-

tics M[u, d] and M[u′, d] given in the previous paragraph, an alternative

representation for the log-likelihood function of Equation 4.2 can be

given as follows:

ℓKD
(θKD

: D) = ∑
D∈V(KD)

(∑
u

∑
d

M[u, d] ln θ
d|u
KD

+ ∑
u′

∑
d

M[u′, d] ln θ
d|u′

KD
) (4.3)

likelihood of continuous-time components Similarly, the

log-likelihood for a continuous component KC can also be represented
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in terms of individual variables C ∈ V(KC), where V(KC) are all vari-

ables in the component KC. However, parameters for a continuous-time

variable C consist of two parts: qC
KC

represents when variable C’s next

transition will occur and θC
KC

models where variable C will transition,

that is, to what state. Given a choice of parameter θKC
and qKC

for a con-

tinuous component KC, the log-likelihood function ℓKC
(θKC

, qKC
: D)

for continuous component C is decomposed into those for each variable

in the component, as given by:

ℓKC
(θKC

, qKC
: D) = ∑

C∈V(KC)

ℓC(q
C|π(C)
KC

, θ
C|π(C)
KC

: D)

= ∑
C∈V(KC)

ℓC(q
C|π(C)
KC

: D) + ∑
C∈V(KC)

ℓC(θ
C|π(C)
KC

: D) (4.4)

where q
C|π(C)
KC

and θ
C|π(C)
KC

are parameters for a continuous-time vari-

able C in the component KC given its parents π(C). Parents π(C) may

include both continuous-time and discrete-time variables.

The likelihood of training data D described in Equation 4.4 can be

further described by two terms: the term ℓC(q
C|π(C)
KC

: D) describing the

probability of the sequence of durations (i.e. time spend in a state) and

the term ℓC(θ
C|π(C)
KC

: D) describing the probability of the sequence of

state transitions. As all the transitions are observed, we can compute

sufficient statistics T[c|u], the amount of time C spends in state c with

its parents taking values u, and M[c, c′], the number of times C transi-

tions from state c to state c′ for c 6= c′. Now we can rewrite the term

ℓC(θ
C|π(C)
KC

: D) in terms of sufficient statistics M[c, c′]:

ℓC(θ
C|π(C)
KC

: D) = ∑
u

∑
c

∑
c
′ 6=c

M[c, c
′
| u] ln θ

cc
′
|u

KC
(4.5)

It is important to keep in mind that the term T[c | u] can be decom-

posed into two different kinds of durations: the total amount of time

before a transition in variable C and the total amount of time before a

transition in one of the parents of variable C. In the following, we make

a distinction between these two types of transitions.

Let r = 〈cr, tr, c′r〉 ∈ D be the transition where variable C transitions

to state c′r after spending the amount of time tr in state cr. When one

of the parents of variable C in the transition r changes while C stays in

the same state, i.e., cr = c′r, variable C stays in the state for at least the
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duration of time tr and the probability for the duration in the transition

r is given as below:

ℓC(q
C|π(C)
KC

: r) = −q
c|u
KC
· tr (4.6)

Otherwise, variable C changes in the transition r, i.e., cr 6= c′r, the

probability for variable C staying for the duration tr is:

ℓC(q
C|π(C)
KC

: r) = ln(q
c|u
KC

exp(−q
c|u
KC
· tr))

= −q
c|u
KC
· tr + ln q

c|u
KC

(4.7)

Now we can decompose the likelihood ℓC(q
C|π(C)
KC

: D) as a sum of the

likelihood for each individual transition ℓC(q
C|π(C)
KC

: r), where the value

of variable C does or does not change, given by Equation 4.6 and 4.7,

respectively. Together with sufficient statistics T[c|u], i.e., the amount of

time variable C stays at state c and π(C) = u, computed by summing up

the duration in each transition indicated by tr in Equation 4.6-4.7, and

M[c | u] = ∑c′ M[c, c′ | u], the total number of transitions for variable

C leaving state c (implicitly indicated by 0 in Equation 4.6 and by 1 in

Equation 4.7), the term ℓC(q
C|π(C)
KC

: D) can be rewritten as:

ℓC(q
C|π(C)
KC

: D) = ∑
u

∑
c

(M[c | u] ln q
c|u
KC
− q

c|u
KC
· T[c | u]) (4.8)

Combined with Equation 4.5-4.8, the log-likelihood for variable C in

the component KC can be computed by summing out the likelihood for

all state transitions and time durations, formally:

ℓC(q
C|π(C)
KC

, θ
C|π(C)
KC

: D) = ∑
u

∑
c

M[c | u] ln q
c|u
KC
− q

c|u
KC
· T[c | u]

+ ∑
u

∑
c

∑
c
′ 6=c

M[c, c
′
| u] ln θ

cc
′
|u

KC
(4.9)

4.3.2 MAP Estimates with Complete Data

Maximum a posterior (MAP) is used to search for parameters that max-

imize the posterior probability, written as:

θ̂ = argmax
θ

ln P(θ | D) (4.10)
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By applying the Bayes’ rule, the posterior probability in Equation 4.10

can be computed from its log-likelihood and the prior for parameters θ:

argmax
θ

ln P(θ | D) = argmax
θ

ln

(

P(D | θ)P(θ)

P(D)

)

= argmax
θ

ln P(D | θ) + ln P(θ) (4.11)

According to Equation 4.11, θ̂ is the maximum of a function that sums

together the log-likelihood and the probability of parameters θ taking a

value. Therefore, it biases the parameter estimation away from undesir-

able parameter values, such as those conditional probabilities involving

zeros when the training data is relatively small.

As usual, for computational efficiency, we use a conjugate prior—one

where likelihood is in the same parametric family as the prior. For a

discrete-time variable D with a multinomial distribution parameterized

by θ
d|u
KD

, an appropriate conjugate prior is a Dirichlet distribution, where

θ
d|u
KD
∼ Dir(γ1, . . . , γk)

After conditioning on the data, the posterior is obtained by adding the

prior hyperparameters to the empirical counts:

θ
d|u
KD
| D ∼ Dir(γ1 + M[d1 | u], . . . , γk + M[dk | u])

Discrete-time variables can have different parents in the initial model

and transition model; assigning a Dirichlet prior with parameters

γ1, . . . , γk and γ′1, . . . , γ′k respectively, we obtain the MAP estimates:

θ̂
d|u
KD

=
γd|u + M[u, d]

γu + M[u]
θ̂

d|u′

KD
=

γd|u′ + M[u′, d]

γu′ + M[u′]
(4.12)

where

γu = ∑
d

γd|u γu′ = ∑
d

γd|u′

Similarly, the conjugate prior in component KC for multinomial pa-

rameters θ
c|u
KC

is the Dirichlet distribution θ
c|u
KC
∼ Dir(µcc1|u, . . . , µccn|u).

For the exponential parameter qKC
the conjugate prior is the Gamma
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distribution, qKC
∼ Γ(µu, ηu). We can then derive the MAP for a contin-

uous component:

q̂
c|u
KC

=
µc|u + M[c | u]

ηc|u + T[c | u]
θ̂

cc′|u
KC

=
µcc′|u + M[c, c′ | u]

µc|u + M[c | u]
(4.13)

where

µu = ∑
c′

µcc′|u

4.3.3 Incomplete Data

In this subsection, we address the problem of computing log-likelihood

for an HTBN given incomplete data D, where some instantiations of

all of the variables in the HTBN corresponding to given time points B

are missing in the data D. By applying the sum rule of probability, we

can compute the likelihood for the HTBN given partial trajectory D by

summing out the missing instantiations relative to the time points B

from the likelihood for the instantiations over the time points B.

More precisely, given time points B for an HTBN H with the corre-

sponding graph G, a set of parameters θ, and its associated joint distri-

bution P(V(G)B) as defined by Eq. 3.2 in the preceding chapter, we can

write the log-likelihood of the model H given the partial trajectory D

in terms of the likelihood over B in the following:

ℓH(θ : D) = ln ∑
V(G)B\ξ(V(G))

P(V(G)B) (4.14)

where ξ(V(G)) are the assignments to the variables V(G) in the data

D.

In the following, we are assuming the typical situation where

continuous-time random variables are observed at arbitrary points in

time. This also means that almost everywhere else they are unobserved.

Since other variables are typically directly related to the values of

continuous-time random variables on discrete-time points (by the defi-

nition of the factorization of an HTBN), this means that we often need

to marginalize over the continuous-time variables at those time points.

In this general situation, it is infeasible to compute the likelihood in a

closed form. This is illustrated in the following examples.
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Fig. 4.2: Two possible structures of HTBNs where continuous-time variables

are partially observed, whereas discrete-time variables are fully ob-

served: (a) C → D, (b) C ← D, and their representative BNs given time

points B = {0, 0.2, 1} for the former structure and B = {1, 1.5, 2, 2.5}
for the latter structure.

Example 4.2

Suppose we have an HTBN with parameters θ, time points B =
{0, 0.2, 1}, and a directed graph where a discrete component has a par-

ent from a continuous component. At this moment, we discuss the gen-

eral principles by demonstrating the structure in the simplest situation:

an HTBN with a single variable in each component, as illustrated in

Fig. 4.2a and its representative BN in Fig. 4.2c. We could also have in-

complete data D over time points B, where the instantiation for variable

C at time 1 is missing. Now we can compute the log-likelihood for D

given the HTBN by summing out the log-likelihood for each instanti-

ation ct and dt in the data D where ct and dt are the assignments for

continuous-time variable C and discrete-time variable D at time t in the

data D:
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ℓH(θ : d1, d0, c0.2, c0) = ln P(d1, d0, c0.2, c0 : θ)

= ln ∑
C1

P(c0 : θ)P(c0.2|c0 : θ)P(d0 : θ)

P(d1|d0, C1 : θ)P(C1|c0.2 : θ)

= ln P(c0 : θ)P(c0.2|c0 : θ)P(d0 : θ)

∑
C1

P(d1|d0, C1 : θ)P(C1|c0.2 : θ)

= ln P(c0 : θ) + ln P(c0.2|c0 : θ) + ln P(d0 : θ)

+ ln ∑
C1

P(d1|d0, C1 : θ)P(C1|c0.2 : θ)

Now we turn to another situation where the directionality of the arc

between these two components is reversed, i.e., the arc directs from the

discrete component to the continuous component, with the resulting

graph as shown in Fig. 4.2d. Similarly, we also need to sum out the

variable, of which the instantiations is missing in the data D, i.e., the

instantiation for variable C at time 2.

ℓH(θ : c2.5, d2, c1.5, d1) = ln P(c2.5, d2, c1.5, d1 : θ)

=∑
C2

ln P(d1 : θ)P(d2|d1 : θ)P(c1.5 : θ)

P(C2|c1.5, d1 : θ)P(c2.5|d2, C2 : θ)

= ln P(d1 : θ)P(d2|d1 : θ)P(c1.5 : θ)

∑
C2

P(C2|c1.5, d1 : θ)P(c2.5|d2, C2 : θ)

= ln P(d1 : θ) + ln P(d2|d1 : θ) + ln P(c1.5 : θ)

+ ln ∑
C2

P(C2|c1.5, d1 : θ)P(c2.5|d2, C2 : θ)

In order to obtain MAP estimates in this case, we resort to MCMC

sampling to maximize the posteriors. We use the probabilistic modeling

language Stan, which offers an implementation of MCMC methods as

previously described in Section 2.6.2 to iteratively sample parameters

from a given distribution. We mainly focus on the description of hy-

brid time Bayesian networks using the language, in particular describ-

ing the log-likelihood of an HTBN given the data on time-points given

in Fig. 4.2c. The description of the log-likelihood of an HTBN in Stan
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θKD
θKC

V(KD) V(KC)

γ µ η

Data:D

Fig. 4.3: A plate model for an HTBN with continuous-time variables V(KC) in

continuous component KC and discrete-time variables V(KD) in dis-

crete component KD. The prior parameters for variables V(KC) and

V(KD) are given by γ, and µ and η, respectively. Solid filled blue nodes

indicate variables, and the rest indicate parameters, including prior pa-

rameters.

is depicted by a plate model in Fig. 4.3. In the Stan program, we spec-

ified a prior distribution for parameters θKD
and θKC

with prior γ, and

µ and η for each discrete component KD and continuous component

KC, respectively. In addition, a detailed description of log-likelihood of

the discrete and continuous component from data D was given accord-

ing to Definition 4.14. The MCMC algorithm implemented in the Stan

program computed the likelihood for both the discrete and continuous

components correspondingly and increases the log-likelihood at each

iteration. The MAP estimates for parameters θKC
and θKD

were derived

by the maximum of the distribution of collected samples generated by

the algorithm, which is an approximation of the posterior distribution

of the underlying parameters.

4.4 experiments

In this section, we experimentally explore learning parameters of

HTBNs from complete and incomplete trajectories. First we define an

HTBN as a generative model by providing an algorithm that generates

the trajectories of the state transitions for variables in the HTBN. Sec-

ond, we describe the experimental setup, including software packages

used in the experiments and the measure used for evaluating learning

performance. Third, we present the numerical results for parameter es-
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timations of a number of HTBNs from both complete and incomplete

data.

4.4.1 Data Generation Process for HTBNs

An HTBN can be seen as defining a generative model over sequences

of events. In this section, we describe the procedure for generating com-

plete trajectories from a parameterized HTBN, i.e., the states of all vari-

ables and time points where a transition occurs are given. Incomplete

trajectories are generated by removing a certain amount of values for

continuous-time variables at some discrete time points from complete

trajectories. The resulting complete and incomplete trajectories are later

used for parameter estimation of HTBNs using MAP estimation and

Stan sampling. In addition, the trajectories serve as testing data to eval-

uate the performance of learned models in Section 5.4.2.

The data generation procedure can be seen as generating a sequence

of events, where an event is a pair 〈X ← x, τ〉, which indicates a variable

X that either evolves continuously over time or is observed regularly,

takes value x at time τ. Let α and s(α) be the current and next system

time for all discrete components, α, s(α) ∈ N0. Let βC be the current sys-

tem time for a continuous component KC. Each continuous component

is described by its own system time, which results from the fact that

continuous component states can evolve at different rates.

Let KC, KD be a partition of an HTBN H. We initialize σ as an empty

event sequence. The parents of a continuous component are denoted as

π(V(KC)), with π(V(KC)) ⊆ V(KD). A set of variables π(Di) refer to

the parents of a discrete-time variable Di. Initially, we have α = 0, βC =
0, and the states of components are initialized by sampling at random

from the initial BN. Let ci and di be the starting states of components

KC, KD, KC ∈ KC, KD ∈ KD. We can generate the event sequence σ

by repeating the steps in Fig. 4.4 with the following order: Fig. 4.4a →
Fig. 4.4b → Fig. 4.4c → Fig. 4.4a, where each loop selects events for

continuous components to occur between two successive time slices α

and s(α), and events for discrete components at time s(α).
The states of components are propagated between different types

of components, as shown in Fig. 4.4. Firstly, the current states of dis-

crete components at α are propagated to their corresponding contin-

uous components. We then choose the intensity matrix QKC|π(V(KC))a
,

a = max{α | α ≤ βKC
}, for a continuous component KC with the current
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1 while s(α) ≤ N do

2 foreach KC ∈ KC do

3 Let intensity matrix for KC be

QKC|π(V(KC))a
, a = max{α | α ≤ βKC

}

4 while βKC
< s(α) do

5 Let qi, qij be intensities associated with its current state ci

6 goto 4.4b

7 end

8 end

9 foreach KD ∈ KD do

10 goto 4.4c

11 end

12 α = s(α)

13 end

(a) Data generation

1 τ ∼ Exp
(

qi
)

2 if τ + βKC
≤ s(α) then

3 βKC
= βKC

+ τ

4 Choose state V(KC)← cj with probability qij/qi

5 Add event 〈V(KC)← cj, βKC
〉 to σ

6 end

7 else

8 βKC
= s(α)

9 end

(b) Generate next continuous states

1 Let D1, · · · , Dn be a topological order of V(KD)
2 for i ∈ 1 : n do

3 Sample di from P(Di
α | π(Di

α)), where π(Di) ⊆ V(KC) ∪V(KD)

4 Add event 〈Di ← di, s(α)〉 to σ

5 end

(c) Generate next discrete states

Fig. 4.4: Data generation procedure for HTBNs. 4.4b: sample an event for a

continuous component between α and s(α); 4.4c: sample events for

discrete components at time s(α).
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configuration of its parents π(V(KC)) at time a. Once we have intensity

matrices of continuous components, we search for all events of continu-

ous component that take place between time α and s(α), as shown from

line 4 to 6 in Fig. 4.4a and Fig. 4.4b. It is followed by propagating the

states of continuous components at s(α) to discrete components in order

to sample discrete variables at time s(α), as shown in Fig. 4.4c.

4.4.2 Experimental Setup

For learning from complete data, parameters of HTBNs were learned us-

ing the exact MAP estimates as discussed in the previous section. The

MCMC sampling approach for partial trajectories was implemented in

RStan1, an R-interface to the Stan probabilistic programming language2.

We set the number of total iterations to 1000, including the burn-in stage.

We drew the multinomial parameters of the network from Dirichlet dis-

tributions with parameters all equal to 1, and the exponential parame-

ters from a Gamma distribution with both parameters set to 2. We tested

the learning performance to learn parameters from complete and partial

trajectories with different length in terms of the number of discrete-time

slices A.

We tested on various synthetic data sets, generated from HTBNs ac-

cording to the procedure defined in Section 4.4.1. There are a num-

ber of methods to quantify the quality of learned models, such as the

KL-divergence. As computing this measure is computationally hard for

larger models, we evaluate on a test-set generated from the true model.

In the following, we fix a large test-set, and evaluate the quality of the

model in terms of the distance between the log-likelihood of the data

on the original model versus the learned model. Formally:

ℓd = |ℓt − ℓe| (4.15)

where ℓt is the log-likelihood given the true model, and ℓe given the

learned model.
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Fig. 4.5: Log-likelihood distance ℓd for various HTBNs learned from data. (a)

Learning with complete trajectories with structure D → C, C → D,

D ← C → C′, and the model in Example 4.1. Figures (b − d) com-

pare learning with complete and partial trajectories for three struc-

tures, with (b) C → D, (c) D → C, (d) the HTBN as shown in Example

4.1.
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4.4.3 Results

We first evaluated the approach to learn from complete trajectories, see

Fig. 4.5a. The learning of HTBNs converges very quickly to the true pa-

rameters for HTBNs that contain only a single continuous and discrete-

time variable. Similar results are obtained for larger models, conver-

gence is obviously slower since these models contain more parameters.

We further tested our ability to learn parameters of HTBNs from

partial trajectories considering missing values for continuous-time vari-

ables. We first sample complete trajectories for continuous-time vari-

ables including all the states and time points when the transitions occur.

We then randomly generated time points from an exponential distribu-

tion with rate q, to construct point-based evidence, i.e., partial trajec-

tory, where we know nothing between two time slices. The rate q is

associated with the length of the sequence, i.e., the higher the rate is,

the more observations we have on the partial trajectory. We tested our

ability to learn parameters from partial trajectories with several rates

q. As we can see in Fig. 4.5b and 4.5c, the estimation of parameters

is improved by giving a larger sequence that is generated by a higher

rate. It also suggests we can recover the true parameters from partial

trajectories that are generated from a sufficiently high rate. Finally, we

tested the learning performance on a more complicated hybrid model

as shown in Example 4.1, where there is a cycle between continuous and

discrete component. To evaluate if we have similar convergence of the

model given a small dataset, we tested the approach to learn parameters

from partial trajectories generated from a smaller rate. As one can see in

Fig. 4.5d, also in this case, models of high quality can be learned using

the sampling approach.

4.5 conclusion

In this work, we addressed the problem of parameter estimation of

HTBNs from complete and partial trajectories. For continuous-time vari-

ables that are only observed at some time points, we proposed to use

MCMC to estimate the posterior distribution over the parameters. This

1 Stan Development Team. 2016. RStan: the R interface to Stan, Version 2.9.0. http:
//mc-stan.org

2 The model description and experiments with more details: http://www.cs.ru.nl/
M.Liu/publication.html

http://mc-stan.org
http://mc-stan.org
http://www.cs.ru.nl/M.Liu/publication.html
http://www.cs.ru.nl/M.Liu/publication.html
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learning approach was tested on various HTBNs with different struc-

tures and complexities. The experiment shows that we can get a close

estimation of the distribution of HTBNs from partial trajectories. Be-

sides, the experiments also suggest that partial trajectories sampled at a

higher rate increase the learning rate.

There are several aspects that will be interesting to explore in the

future. Firstly, it will be interesting to see whether the estimated pa-

rameters of discrete-time and continuous-time variables converge to the

true parameters at the same pace. We expect that parameters related

to the continuous-time variables are harder to estimate because the ex-

act time-point where transitions occur is unknown in partial trajecto-

ries. Secondly, at the moment we focused on a comparison of learning

models with different complexities in terms of number of variables and

parameters. However, the additional complexity of HTBNs is primarily

in the dependence between discrete-time and continuous-time variables.

We expect that in real-world applications there will a significant amount

of such dependences. Therefore, in a follow-up we will also investigate

the quality of learned models for HTBNs with a varying number of

components. Third, an MCMC sampler in CTBNs is recently proposed

by Rao et al. [76], where the technique of uniformization is exploited

to approximate a continuous-time Markov process by a discrete-time

Markov chain. It is claimed that the sampler gains significant computa-

tional benefits over state-of-the-art MCMC samplers for Markov jump

process based models, such as CTBNs. It therefore appears worth inves-

tigating the computational advantage of using the MCMC sampler in

HTBNs, over the one we currently use in Stan.





5
M O D E L I N G U N E V E N LY S PA C E D T I M E S E R I E S

Recently, mobile devices, such as smartphones, have been introduced

into healthcare research to substitute paper diaries as data collecting

tools in the home environment. Such devices support collecting patient

data at different time points over a long period, resulting in clinical time-

series data with high temporal complexity, such as time irregularities.

Analysis of such time series poses new challenges for machine-learning

techniques. The goal of the research present in this chapter is to find out

which properties of the two types of temporal Bayesian networks, i.e.,

dynamic Bayesian networks and continuous time Bayesian networks, al-

low to cope best with unevenly (irregularly) spaced multivariate clinical

time-series data.

The capabilities of these temporal Bayesian networks learning from

clinical time series that vary in nature are extensively studied. In order

to compare the two types of temporal Bayesian network for regularly

and irregularly spaced time-series data, three typical ways of observing

time-series data were investigated: (1) regularly spaced in time with

a fixed rate; (2) irregularly spaced and missing completely at random

at discrete time points; (3) irregularly spaced and missing at random

at discrete time points. In addition, similar experiments were carried

out using real-world chronic obstructive pulmonary disease patient data

where observations are unevenly spaced in time.

5.1 introduction

The aging of the population is pushing governments and health-care

organizations towards improving health-care quality, yet within the

boundaries of strict budgetary constraints. At the same time, many gov-

ernments and health-care organizations are increasingly investing into

the use of electronic health technology, often referred as eHealth, with

the expectation that it will make health-care delivery cheaper, while of-

79
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fering greater control by patients (patient empowerment) [32, 97]. The

general trend in most parts of the world is that health-care costs are

increasing, sometimes quite steeply, and eHealth is seen as a way to

move part of the health care burden from expensive institutional organi-

zations, such as hospitals, to the home environment, thus contributing

to the reduction in health-care costs.

It is now becoming clear that eHealth is shifting the health-care field

to an increasingly data-driven way of working, yielding substantial

quantities of patient data. However, the data-driven paradigm also ren-

ders the quality of the collected data of paramount importance to build

and deploy sufficiently accurate models that support both patients and

doctors. A common means to collect data in many clinical studies are

paper diary cards [8, 44]. Patients are encouraged to fill out diary cards,

thereby documenting the status of their health-related symptoms in the

form of their responses to a questionnaire. Major drawbacks associated

with using paper diary cards, in general, are that the dates and times of

paper diary entries are often missing, due to the patient’s poor compli-

ance [90]. Therefore, the quality of the data collected from paper diaries

has its limitations.

Another drawback of using paper diaries is the lack of generalizabil-

ity. The time points of observations collected by paper diaries can be

viewed as regular random samples from the timeline with a certain rate,

also known as observation rate, e.g., once every day. However, having a

fixed observation rate restricts eHealth studies to shorter periods and a

smaller scale. It is unrealistic to expect that many patients are willing

to collect clinical data on a regular basis as part of a long-term study.

A more realistic assumption is that the regularity of recording an ob-

servation by the patient will vary and may be affected by many factors,

such as whether or not the patient feels ill. This implies that methods to

handle different time-regularity patterns are greatly needed.

Besides differences in time regularity, time irregularity is another com-

mon phenomenon of clinical time series. In clinical trials, the patient’s

health status, in terms of physiological data, may be observed only at

irregularly spaced points in time. In addition, it is very unlikely that

different patients are observed at the same points in time. Most of the

current literature is based on statistical analysis of periodic snapshots

of physiological measurements with a fixed time interval, such as daily

[41, 42] or weekly [8]. In this chapter, we aim to learn accurate and use-
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ful models from irregularly spaced clinical time series using temporal

Bayesian networks.

To provide a more concrete clinical context for this research, we pay

attention to chronic obstructive pulmonary disease (COPD) as an appli-

cation area. COPD is a progressive disease where a patient’s deteriora-

tion manifests itself in worsening symptoms, known as an exacerbation.

It is of clinical interest to predict whether and when an exacerbation

event will occur for a given patient. However, an exacerbation can not

be directly observed. It is defined either in terms of specific worsening

symptoms for consecutive days or if there is evidence of a patient’s hos-

pital admission due to an exacerbation. Unfortunately, clinicians have

so far not been able to agree on a clinical definition of an exacerbation

[8, 20].

Rather than focusing our research on automatically deciding on the

presence or absence of an exacerbation, using multiple definitions, we

aim at trying to understand the dynamic behavior of the symptoms of

COPD. The advantage is that we do not have to bother about the lack

of a definition of a COPD exacerbation.

The main contribution of our work consists of two parts. One con-

tribution lies in capturing COPD symptom dynamics, which we see

as representative for many other diseases that are being monitored in

the home environment. So far it is unknown which particular method

best captures disease dynamics using data from home monitoring. The

second contribution lies in the in-depth investigation of two temporal

Bayesian network methods to model the dynamics: dynamic Bayesian net-

works (DBNs), where time is assumed to be discrete, and continuous-time

Bayesian networks (CTBNs), where time is assumed to be continuous. We

also believe that this study sheds some light on the practical require-

ments of using DBNs and CTBNs in general.

The performance of DBNs and CTBNs for modeling the dynamics of

COPD symptoms is investigated given COPD time series in three forms:

• when observations are made regularly at time points but with dif-

ferent observation rates;

• when time points of observations are unevenly spaced over time

as a consequence of two missing data mechanisms, i.e.,

(1) the probability of having variables observed at a time point

is independent from other time points where variables are
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observed or unobserved, also known as missing completely at

random (MCAR);

(2) the probability of having variables observed at a time point is

dependent on other time points where variables are observed,

also known as missing at random (MAR). More specifically, the

values for variables in the system are missing at time t + 1 if

the values at time t + 1 are identical to those at time t.

In the rest of the chapter, we only focus on the situation where vari-

ables are either fully observed or completely missing at a given time

point. We investigate the performance of DBNs and CTBNs to learn

from regular and irregular COPD time series. Within CTBNs, we also

study the impact of the evidence type, i.e., point and interval evidence,

and hyper-parameters on the performance of CTBNs.

To the best of our knowledge, this is also the first work where hyper-

parameters in CTBNs are taken into consideration in the modeling pro-

cess. Within DBNs, we study the performance of DBNs interpreting

time series in three ways, namely, (1) viewing time series as a sequence;

(2) imputing values at discrete time points with the Last-Observation-

Carried-Forward (LOCF) method (See Section 5.3.4); (3) filling in missing

values at discrete time points by Expectation Maximization (EM). Our

final aim is to gather information about potential factors that practition-

ers of temporal Bayesian networks need to take into account to learn a

model from unevenly spaced clinical multivariate time series.

The rest of the chapter is organized as follows. In the following sec-

tion, we devote ourselves to describing the related work about pre-

dicting COPD exacerbation using machine-learning techniques and the

state of the art of continuous time Bayesian networks. It is followed by

a detailed description of a synthetic and real-world time series used

to conduct experiments, and a number of ways to interpret irregularly

spaced observations and the choice of hyper-parameters in CTBNs in

Section 5.3. The experimental setup is described in Section 5.4.1, includ-

ing software packages used in the experiments and evaluation methods.

Comprehensive results are given in Section 5.4.2, where we compare

the performance of dynamic Bayesian networks and continuous time

Bayesian networks both for simulated time series and for a real-world

time series. Finally, we discuss our work’s contribution, limitation, and

future work in Section 5.5.
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5.2 related work

5.2.1 The Clinical Setting: COPD Symptomatology

The availability of a widely accepted definition of an exacerbation of

COPD in the medical community would definitely help to facilitate

public communication and designing guidelines. Unfortunately, as said

above, such a definition is still not available [20, 84, 101]. There is some

work in the literature that studies the diagnostic impact of various defi-

nitions of an exacerbation [8, 42]. So far, clinicians use a variety of clin-

ical features to describe the COPD-related health status of a patient

[44, 94]. Even for the most accepted definition of an exacerbation at

this moment, the Anthonisen criteria (AC) [4], the required major and

minor symptoms are not always available partly due to design of the

clinical study (see [42]). In [46, 83], an exacerbation is defined in terms

of a patient’s hospital admission, or a non-scheduled visit to the emer-

gency unit or to the specialists because of respiratory symptoms, or self-

treatment of the patient by antibiotics. Because of their limited medical

knowledge, patients are prone to misuse of antibiotics, i.e., they use

antibiotics for a viral infection or a bacterial non-pulmonary infection.

Instead, work in [41] chooses the worsening of respiratory symptoms

at two consecutive days as an indicator of an exacerbation. It is clearly

easier to predict an exacerbation for the next day when an exacerbation

is currently observed than when it has not been observed. However, it

seems that the authors provide no clear distinction between these two

situations.

In the context of COPD management, a telehealth system [6] has been

described previously that supports decision making. However, its deci-

sion support is limited to rule-based detection of abnormal values and

to simple trend analysis. In contrast, predicting a COPD exacerbation,

i.e., when the patient’s health condition gets worse, can help to support

the patient and doctor by providing an opportunity for early interven-

tion before it is too late. To this end, some work has focused on the de-

velopment of classifiers, e.g., using K-nearest neighbors (K-NN) [46] and

K-means clustering [83] to predict the onset of an exacerbation given the

patient’s signs and symptoms. Nevertheless, there is still a lack of an ex-

plicit description of the underlying dynamics of the clinical symptoms

in these models. Capturing temporal dynamics of signs and symptoms

is the main goal of [41], where time and uncertainty are also considered
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for the first time. Given a limited amount of temporal clinical data, the

work chooses to use dynamic Bayesian networks to capture the dynam-

ics of COPD symptoms. As a consequence, the approach suffers from

the need of finding the finest time interval. Usually this is undesirable

both from a modeling and inference perspective. For example, the mod-

els described above are unable to capture the dynamics of symptoms

[46, 83], or they do not take time as a parameter [41].

We conclude that a data-driven temporal model capturing the COPD

dynamics is of clinical interest. It would not suffer from the subjective

nature of a definition of an exacerbation, and may yield much more

valuable insight into the nature of COPD in comparison to what can be

achieved by a classifier model.

5.2.2 Model Development: Temporal Bayesian Networks

In the previous section, we have already mentioned the related work

by Van der Heijden et al. [41], which uses dynamic Bayesian networks

(DBNs) for the detection of exacerbations of COPD. Another way to

model the dynamics of symptoms using Bayesian networks is offered by

continuous time Bayesian networks, i.e., time is used as a continuous pa-

rameter. The states of the symptoms satisfy a multinomial distribution,

whereas the time when a transition occurs, e.g., a symptom changes

from one state to another, is modeled as an exponentially distributed

parameter. Early work has demonstrated the powerful expressiveness

of CTBNs to model the dynamics of systems where variables are ob-

served at time points that are unevenly spaced over time [10, 102, 103].

In the specific domain of medical applications, CTBNs have been used

to diagnose cardiogenic heart failure and have been shown to anticipate

its likely evolution [26, 55]. They have also been used to construct gene

networks [1] to generate hypotheses for biological experiments [2]. Nev-

ertheless, the current clinical applications significantly suffer from the

unavailability of temporal patient data. The quantitative component of

the CTBN model in [26], i.e. the parameters, are so far mainly elicited

on the basis of clinical expertise. In our work, however, CTBNs are both

applied to clinical synthetic data and real-world data.

Like standard Bayesian networks, evidence in CTBNs is also associ-

ated with a probability to incorporate the uncertain nature of observa-

tions [92]. In addition, evidence entails the amount of time that a vari-

able stays in a state. While point evidence claims that a variable holds a
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value for an infinitely small amount of time ∆t → 0, interval evidence

states that a variable in the system remains in a certain state throughout

an interval of time. The concept of interval evidence is firstly introduced

in [29], where it is originally called negative evidence.

Another relevant extension of Bayesian networks are irregular-time

Bayesian networks [75]. These models aim to increase the expressive-

ness of the temporal dynamics to handle irregular time series, with vari-

ables having a continuous state space. In the present work, however, we

focus on discrete state spaces, which are typical for CTBNs and DBNs.

Acerbi et al.[1] attempt to study the difference in performance between

DBNs and CTBNs in a specific problem in the realm of molecular biol-

ogy, where gene expressions are unevenly distributed over time. In their

work, the focus is on the reconstruction of a gene network using DBNs

and CTBNs, where solely simulated gene data are used. In addition, it

still remains unclear whether there is a difference in the performance

of CTBNs when using point and interval evidence. Our work, however,

clarifies this difference in the practical use of CTBNs.

5.2.3 Data: Irregular Longitudinal Clinical Data

The temporal representation of clinical data has been extensively investi-

gated by researchers in Artificial Intelligence in Medicine for more than

two decades [3, 11, 47, 48]. Most of this research deals with the use of

time in clinical reasoning, e.g., for treatment planning and decision sup-

port, which is not of immediate relevance for our research. However,

the reason why there is so much research on temporal reasoning in

medicine is due to the significance of time in medical decision-making.

In the context of the current research, we are dealing with a special kind

of clinical temporal data, i.e., data that are being recorded by patients at

home.

In many longitudinal clinical trials, patients are followed over a pe-

riod of time and are scheduled to be assessed at a prespecified visit

time after being enrolled in the study. However, patients often selec-

tively miss their visits or return at non-scheduled points in time. As a

result, the times of measurements are irregular, yielding a highly im-

balanced time series. Some medical examples of this phenomenon are

given by studies on the incident rate of sexual maturation [21] and by

homeless people with mental illness [52].
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Algorithm 5.1: Generating regular time series DREG.

Data: A time series {x1, x2, . . . , xn} in the dataset DL, where n is the

number of observations in DL; observation rates

R = {1, 2, 3, 4, 5, 6, 7, 14, 21, 28};
Result: DREG

1 DREG = ∅;

2 foreach r ∈ R do

3 Dr = ∅;

4 foreach i ∈ {1, . . . , r} do

5 Create a time series Si with observations xi, xi+r, . . . , xi+mr,

where m = max{s | i + sr ≤ n};
6 Dr = Dr ∪ {Si};

7 end

8 DREG = DREG ∪ {Dr};

9 end

10 return DREG;

Advances in computer technology have turned mobile devices into

efficient data collecting tools in many scientific disciplines. One advan-

tage of a mobile, network-linked digital tool is that patients are less

likely to miss the time window of taking a measurement. However, the

novel tools also create new mechanisms for obtaining irregular time

series. One characteristic of the new mechanism is that all measured

variables are either fully observed or fully missing at a give time point.

The apparent irregularity pattern can be, in part, due to patients being

instructed to report all their symptoms only when abnormal symptoms

are detected.

5.3 materials

In this section, the time-series datasets used in the research are de-

scribed.

5.3.1 Synthetic Datasets

Data of a COPD patient cohort in London, which we obtained from the

research group of Wedzicha et al. [44], were employed to generate time
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Time (day(s))

1 2 3 4 5 6 7 8 9 10

D 0 0 0 0 1 1 1 0 0 0

SV 0 0 0 0 1 1 1 0 0 0

SC 0 0 0 0 1 1 1 0 0 0

W 0 0 0 0 1 1 1 0 0 0

C 0 0 0 0 1 1 1 0 0 0

Temp 0 0 0 0 0 0 0 0 0 0

O 0 0 1 0 1 1 1 0 0 0

(a)

Time (day(s))

1 3 5 7 9

D 0 0 1 1 0

SV 0 0 1 1 0

SC 0 0 1 1 0

W 0 0 1 1 0

C 0 0 1 1 0

Temp 0 0 0 0 0

O 0 1 1 1 0

(b)

Time (day(s))

2 4 6 8 10

D 0 0 1 0 0

SV 0 0 1 0 0

SC 0 0 1 0 0

W 0 0 1 0 0

C 0 0 1 0 0

Temp 0 0 0 0 0

O 0 0 1 0 0

(c)

Fig. 5.1: A fragment of dataset DL over ten consecutive days (a); a dataset DREG

consists of time series S1 (b) and S2 (c) generated from the fragment

given in (a) according to the Algorithm 5.1 where r = 2. For an expla-

nation of the meaning of the mentioned variables: see text. The value

’0’ stands for normal and ’1’ for abnormal.
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series with variables observed at equally and unequally spaced time

points. The symptoms and signs in the original dataset were recorded

by the patients on a daily basis. The methodology of the data collection

process was previously extensively discussed in [86]. An earlier attempt

to capture the temporal interactions in these data was made by van der

Heijden et al. [41]. The dataset, denoted as DL (where ‘L’ stands for ‘Lon-

don’), consists of time series of thirteen COPD patients; each of them

had at least one exacerbation. The data contains a total of 2,849 data

entries with values for the variables dyspnea (D), sputum volume (SV)

and purulence (SC), wheeze (W), cough (C), temperature (Temp), and

oxygen saturation (O). A fragment of dataset DL over ten consecutive

days is shown in Fig. 5.1a.

To study the behavior of CTBNs and DBNs for time series {xt | t ∈ T},
where xt denotes a vector of values for the variables (symptoms and

signs of COPD) at time point t, we generated time series from the

dataset DL given an observation rate r: the time interval between two

successive observations. Ten time series were generated according to

the algorithm described in Algorithm 5.1, collectively denoted as DREG,

with the observation rate ranging from 1–6 day(s) to 1–4 week(s). For il-

lustrative purpose, a dataset DREG is generated from the fragment given

in Fig. 5.1a by Algorithm 5.1 where r = 2, consisting time series S1 and

S2 given in Fig. 5.1b and Fig. 5.1c

Algorithm 5.2: Generating irregular time series DMCAR.

Data: A time series {x1, x2, . . . , xn} in the dataset DL, where n is the

number of observations in DL; % of removed entries

P = {5, 10, 30, 50, 60, 70, 80, 90, 95};
Result: DMCAR

1 DMCAR = ∅;

2 foreach p ∈ P do

3 Randomly sample a set of time index D from {1, 2, . . . , n},
where |D| = n ∗ p%;

4 S = {1, 2, . . . , n} \ D;

5 Select observations from DL with time indices S, yielding time

series DS;

6 DMCAR = DMCAR ∪ {DS};

7 end

8 return DMCAR;
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Algorithm 5.3: Generating irregular time series DMAR.

Data: A time series {x1, x2, . . . , xn} in the dataset DL, where n is the

number of observations in DL;

Result: DMAR

1 DMAR = {x1};
2 foreach i ∈ {2, . . . , n} do

3 if xi 6= xi−1 then

4 DMAR = DMAR ∪ {xi};
5 end

6 end

7 return DMAR;

Similarly, we investigate the capability of CTBNs and DBNs to handle

time irregularities by generating irregular time series. First, we gener-

ated time series {xt | t ∈ T}, where observations are made at discrete-

time points that are completely randomly and irregularly sampled in

time. Nine datasets, collectively denoted as DMCAR, were generated by

randomly removing entries with percentage of 5, 10, 30, 50, 60, 70, 80, 90,

and 95 from the dataset DL, as shown in Algorithm 5.2. An illustrative

dataset DMCAR as shown in Fig. 5.3a is generated from the fragment

given in Fig. 5.1a with p = 50. Second, we generated one time series

where the missingness is dependent on the observations. We removed

consecutive identical entries in the dataset DL (see Algorithm 5.3), re-

sulting in an irregular time series DMAR. The number of observations for

thirteen patients in dataset DMAR is given in Fig. 5.2. The correspond-

ing DMAR for the fragment described earlier in this section is given in

Fig. 5.3b.

Patient ID

1 2 3 4 5 6 7 8 9 10 11 12 13

111 209 173 145 257 189 145 155 147 203 152 198 137

Fig. 5.2: The number of observations in the dataset DL for thirteen patients

where there are significantly more observations indicated by the red

text for patient indexed by 5 than the other twelve .
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Time (day(s))

1 3 5 6 8

D 0 0 1 1 0

SV 0 0 1 1 0

SC 0 0 1 1 0

W 0 0 1 1 0

C 0 0 1 1 0

Temp 0 0 0 0 0

O 0 1 1 1 0

(a)

Time (day(s))

1 3 4 5 8

D 0 0 0 1 0

SV 0 0 0 1 0

SC 0 0 0 1 0

W 0 0 0 1 0

C 0 0 0 1 0

Temp 0 0 0 0 0

O 0 1 0 1 0

(b)

Time (day(s))

1 3 4 5 6 7 9 10

D 0 0 0 1 1 1 0 0

SV 0 0 0 1 1 1 0 0

SC 0 0 0 1 1 1 0 0

W 0 0 0 1 1 1 0 0

C 0 0 0 1 1 1 0 0

Temp 0 0 0 0 0 0 0 0

O 0 0 1 0 1 1 0 0

(c)

Fig. 5.3: Illustrative examples of generated datasets from the fragment of DL

given in Fig. 5.1a according to Algorithm 5.2, Algorithm 5.3 and Al-

gorithm 5.4 respectively: (a) DMCAR where p = 50 and selected time

indices S = {3, 4, 6, 7, 10}; (b) DMAR; (c) DL2A with duplicated entries

at time 2 and 8 removed.
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5.3.2 ACCESS Dataset

A real clinical dataset, independent of the London dataset discussed in

the previous section, was subsequently used to study the behavior of

DBNs and CTBNs on real-world irregular time-series. The dataset was

collected using the recently developed “Adaptive Computerized COPD Ex-

acerbation Self-management Support" (ACCESS) 1 system by Radboud Uni-

versity. The data were collected over two years for 40 patients, aged be-

tween 46 and 89 years (mean (sd): 69.5 (8.9)), from June 2015 to February

2017. All patients were recruited from hospitals and primary care prac-

tices in the Netherlands based on their willingness to participate in a

long-term study. Inclusion criteria were: post-bronchodilator FEV1/FVC

< 0.70; at least 2 self-reported exacerbations in the 12 months preceding

the time of recruitment and no severe co-morbidity. Diseases such as

diabetes, kidney diseases, and smoking habits were also recorded.

The ACCESS dataset, denoted as DA, consists of a total of 1,138 data

entries with the same variables as in DL. As part of the training, the

patients were instructed to daily self-report using the ACCESS system

for the first two weeks. As a consequence, the observations at the be-

ginning of the study are relatively regularly spaced over time with a

time interval of a day. Later in the study, most patients were reluctant

to comply to the registration of their health status on a daily basis over

a period of many months. To deal with this problem, after the two-

weeks initial registration, the patients were instructed to take the initia-

tive to make a registration of symptoms and signs when they detected

something abnormal in their symptomatology. However, not all patients

followed exactly the instruction, in particular, three patients randomly

registered their respiratory symptoms in the entire study period. As a

consequence, the time intervals between two consecutive observations

(mean (sd): 7.4 (21.5) days) varied considerably from patient to patient.

Given an irregular time series for a specific medical problem, adopt-

ing an appropriate temporal technique requires a better understanding

of the cause of the time irregularity. For the irregular time series DA

from the ACCESS study, it is reasonable to assume that the patients

did not encounter any worsening symptoms for the days when no val-

ues were filled out for the variables. This is in accordance with the in-

structions they received at the beginning of the study which stated that

symptoms only had to be recorded when something abnormal occurred.

1 see https://clinicaltrials.gov/ct2/show/NCT02553096
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Algorithm 5.4: Generating irregular time series DL2A.

Data: A time series {x1, x2, . . . , xn} in the dataset DL, where n is the

number of observations in DL and time series DA;

Result: DL2A

1 Calculate the percentage of missing entries in DA, denoted as p;

2 S = ∅;

3 foreach i ∈ {1, . . . , n} do

4 if xi indicates the symptoms are normal then

5 S = S ∪ {xi};
6 end

7 end

8 Random select a subset Dp from S with the number of entries p ∗ n;

9 DL2A = DL \ Dp;

10 return DL2A;

To have a better understanding of the behavior of CTBNs and DBNs to

handle such time irregularity, we generated another irregular time se-

ries in accordance to time series DA. More specifically, we removed the

same amount of entries where symptoms were normal from DL in com-

parison to time series DA, resulting in a time series denoted as DL2A

(‘London to ACCESS’, see Algorithm 5.4). An illustrative DL2A shown

in Fig. 5.3c is generated from the fragment given in Fig. 5.1a where the

duplicated entries at time 2 and 8 are removed.

Note that variables in all synthetic and real-time series, namely, DL,

DREG, DMCAR, DMAR, DL2A, and DA, are either fully observed or fully

missing at a given time point.

5.3.3 Interpretation of Unevenly-spaced Time Series

A time series is a set of observations {Xt = x | t ∈ T}, where the obser-

vation of variable X takes the form Xt = x, with x the value at time t.

Unlike sequential data, the actual time stamp t is an important aspect of

a time series. For example, we may have a time series recording whether

or not a patient coughs at discrete time points 9:00, 11:00, 11:30, 12:00 in

the morning.

In the statistical literature, there is some recent work on convert-

ing unevenly-spaced time series to equally-spaced data, or to directly

analyze and manipulate the unevenly-spaced time series without an
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equally-spaced transformation (see e.g. [19, 77]). In this chapter, we will

consider some natural choices when employing probabilistic graphical

models for analyzing unevenly spaced clinical time series, in particular

by transformation (e.g. by imputing the last observation) or by directly

analyzing the irregular time series.

5.3.4 Interpretation of Time Series by DBNs

For discrete-time models, we consider three ways for interpreting a time

series. An unevenly-spaced time series can be directly viewed as just a

sequence, ignoring time differences between consecutive observations.

Alternatively, the occurrence of a transition can be specified at discrete

time points with a fixed time interval. In this case, two common meth-

ods are considered to handle irregular time series, as there will be miss-

ing data at some of the discrete time-points. These methods are (1) Ex-

pectation Maximization (EM) to learn from time series with missing

data; (2) imputing the last observation (Last Observation Carried For-

ward, LOCF): values are filled in for variables at discrete time points

where there is missing data.

Example 5.1

Consider a time series of observations for coughing at time points 9:00,

11:00, 11:30 and 12:00. The time series can be interpreted as a sequence

by discarding the time stamps as shown in Fig. 5.4a, i.e., we assume

we have complete data for this sequence of observations. If we select

a half hour as the fixed time interval, the time series then contains a

number of missing data points as shown in Fig. 5.4b. Using this data,

EM can be applied to learn from this time series directly. Imputing the

last observation in the time series, which again leads to complete data

(see Fig. 5.4c).

5.3.5 Interpretation of Time Series by CTBNs

In continuous-time models, there are two natural choices for interpret-

ing time series. An observation is interpreted as point evidence when it

only describes momentary behavior of a variable or system. For exam-

ple, a patient is observed to have a cough at a certain point of time

during the day. The counterpart of point evidence, interval evidence, on
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Cough

No cough

(a)

9:00 9:30 10:00 10:30 11:00 11:30 12:00

? ? ?Cough

No cough

(b)

9:00 9:30 10:00 10:30 11:00 11:30 12:00

Cough

No cough

(c)

Fig. 5.4: Three DBN interpretations of clinical time series for the COPD symp-

tom cough at time points 9:00, 11:00, 11:30 and 12:00. (a): just as a

sequence with time stamps discarded; (b) missing data at some of the

discrete time points are indicated by a question mark ‘?’; (c) with im-

puting the last observation at some of the discrete time points with

missing data.



5.3 materials 95

9:00 9:30 10:00 10:30 11:00 11:30 12:00

Cough

No cough

(a)

9:00 9:30 10:00 10:30 11:00 11:30 12:00

Cough

No cough

(b)

Fig. 5.5: Two CTBN interpretations of clinical time series for cough at time

points 9:00, 11:00, 11:30 and 12:00. The observations are interpreted as

point evidence in (a) and as interval evidence in (b).

the other hand, states that a variable stays in a state for a given period of

time. Formally, interval evidence on a right-open interval [t1, t2), t1 < t2,

can be denoted by X[t1,t2) = x, asserting that X stays in state x during

the given time interval [t1, t2).

Example 5.2

Reconsider the time series from Example 5.1. The observations can be

interpreted as point evidence (see Fig. 5.5a) or as interval evidence (see

Fig. 5.5b). In the former, the interpretation states that the patient only

coughs at time point 9:00, 11:00, 11:30 and 12:00. In the latter, however,

the interpretation states that the patient keeps coughing in the time

intervals [9:00, 9:30) and [11:00, 11:30) and does not stop in the time

interval [11:30, 12:00).

5.3.6 Choice of Hyperparameters in CTBNs

An issue that arises when learning CTBNs from clinical time series is

choosing values for the associated hyperparameters. CTBN behavior is

characterized by hyperparameters that are distinct from those of other
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temporal probabilistic models; together they give a prior estimate of the

time that a variable stays in a given state. When a time series is suffi-

ciently large to capture all possible transitions, in particular for variables

which change at a very slow rate, the hyperparameter τ has little impact

on the learned models. However, this appears to be a rare situation for

clinical time series. For chronic diseases, such as COPD in our case, a

change of relevant symptoms can take so much time that it will never

be observed in the limited clinical datasets that normally are available.

This shortcoming of clinical time series is, in part, due to the difficulty

of collecting data for many patients with sufficient temporal detail during

a long period of time.

While some search algorithms have been devised to optimize hyper-

parameters (see e.g. [60, 96]), they often come at the expense of high

computational costs. Instead, a more cost-efficient approach can be used

to constrain the state space of hyperparameters by the utilization of do-

main knowledge. In the present research, we use such an approach to

select an appropriate hyperparameter for CTBNs to model the dynam-

ics of COPD symptoms. Theoretically speaking, one symptom might

have a hyperparameter configuration that differs from that of the other

ones. In the chapter, however, it is assumed that all COPD symptoms

have the same configuration.

For COPD, we hypothesized that it is reasonable to assume that a

change of symptoms expressed by the hyperparameter τ (See Section

2.5.2) takes less than 100 days but no less than 0.1 day. Therefore, we con-

sidered six possible values, i.e., τ ∈ {0.1, 1, 10, 20, 50, 100}. Irrespective

of the difference in value of the hyperparameter τ, the other hyperpa-

rameter α is set to 1. In Fig. 5.6, we present the result of this experiment

where we subtract the log-likelihood from CTBNs with the hyperparam-

eter having the value of 10 by those having one of the other five values.

The results also show the impact of time granularity on the subtracted

log-likehood. The results suggest that there is a relatively smaller differ-

ence in terms of log-likelihood for CTBNs using the values between 1

and 20. The results indicate that CTBNs in general achieve the best per-

formance using the value of 20 for the hyperparameter τ in the given

five choices. Neverthess, they are still outperformed by those learned

by using τ = 10. Thus, in the following experiments in which CTBNs

are compared to DBNs, the hyperparameter τ is fixed to 10, both when

learning CTBNs from regular and irregular clinical time series.
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Fig. 5.6: Log-likelihood difference of CTBNs with interval evidence between a

value of τ = 10 and other values of τ ∈ {0.1, 1, 20, 50, 100} for various

time granularities (1–7 days and 2–4 weeks). A higher positive value

in log-likelihood indicates a performance for a CTBN with a value for

τ 6= 10 that is worse in comparison that that for τ = 10.
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5.4 experiments

In this section we describe the experimental setup for learning and eval-

uating temporal probabilistic models, CTBNs and DBNs, of the evolu-

tion of COPD symptoms and signs.

5.4.1 Experimental Settings

The purpose of the experiments is, firstly, to obtain insight into the be-

havior of CTBNs and DBNs for synthetic data, where observations are

made at time points that are (1) equally spaced, and (2) unevenly spaced;

secondly, the model types were also studied for their capability to han-

dle time irregularity in a real-world situation. For this purpose, we gen-

erated several synthetic datasets, as described in Section 5.3.1, from an

existing dataset that contained daily data, and consider one real-world

time-series dataset, described in Section 5.3.2, for which patients entered

data in an irregular way.

A number of software packages and tools were used in the experi-

ments. With respect to learning DBNs, tools needed to learn from regu-

lar and irregular clinical time series were different. For the former, we

first used Banjo2 to learn a structure from regular time series DREG, and

subsequently used bnlearn3 package in R to learn its parameters. For

the latter, a choice to learn both structure and parameters using EM

may seem reasonable. However, such an approach has been shown to

offer limited capability to recover the underlying dependences between

random variables [41, 104]. In this paper, we chose to predefine a unique

structure for the remaining irregular time series. We chose to learn the

structure from the regular time series DL, which ensures that differ-

ences in performance between models are not due to a poor structure

obtained from using the EM algorithm. Given the learned structure, we

used BNT tools4 with the implementation of EM to learn parameters

from irregular time series, i.e., DMCAR, DMAR, DA, DL2A. Furthermore,

the R interface5 for “Continuous Time Bayesian Network Reasoning and

Learning Engine (CTBN-RLE)" was used to learn both structure and pa-

rameters for CTBNs.

2 https://users.cs.duke.edu/∼amink/software/banjo
3 http://www.bnlearn.com
4 https://www.cs.utah.edu/∼tch/notes/matlab/bnt/docs/bnt_pre_sf.html
5 http://rlair.cs.ucr.edu/ctbnrle/Rinterface
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D
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O

(a)

D
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W SC

SV Temp

O

(b)

Fig. 5.7: Learned structures of a DBN and a CTBN from the London dataset

with seven variables: O) Oxygen saturation; SC) sputum purulence;

W) Wheeze; D) Dyspnea; C) Cough; SV) sputum volume; Temp) tem-

perature. (a): A DBN; (b): A CTBN, where the value of hyperparameter

τ is set to 20. Solid arcs indicate atemporal dependence and dashed

arcs temporal dependence.

To prevent overfitting, a K-fold cross-validation procedure was used

where the data was randomly split into K partitions, with K − 1 parti-

tions for learning and one partition for testing. The data for testing did

not contribute to the learning of models. The number of folds K was set

to 13 (the number of patients in the London data cohort) for time-series

DREG, DMCAR, DMAR, DL2A and to 10 for the time series DA, respectively.

For each fold, the performance of DBNs and CTBNs was evaluated in

terms of log-likelihood. However, the evaluation of CTBNs with point

evidence was slightly different as the CTBN learning algorithm using

point evidence led to a significant variation in the quality of the learned

models. For this reason, we used an additional validation set to select a

good-quality CTBN model when using point evidence.
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5.4.2 Results

In this subsection, we will investigate and discuss the performance of

DBNs and CTBNs when learned from regular and irregular time series.

More specifically, their learning performance in terms of log-likelihood

will be studied using a number of both synthetic and real-world time-

series datasets. In the following, we will use the notation iCTBN and

pCTBN for a learned CTBNs using interval and point evidence, respec-

tively, and sDBN, iDBN and emDBN for DBNs learned from a sequence,

from an imputed dataset, and using the EM algorithm, respectively.

5.4.2.1 Results for Synthetic Data

Synthetic time series are valuable for obtaining an understanding of

how well CTBNs or DBNs can capture temporal knowledge when learn-

ing from a regular or irregular time series, as it is clearly impossible to

obtain real-world time series that conform to any possible temporal pat-

tern. In that sense, learning DBNs and CTBNs from synthetic data can

act as a benchmark. The results were obtained by using the clinical time

series previously described in Section 5.3.1.

regular data with different observation rates Given reg-

ular time series, we first study the impact of variations in observation

rate on the performance of both DBNs and CTBNs. We learned both

the structures and parameters from the data; the learned DBN and CTBN

network structures, with the observation rate set to one day, are shown

in Fig. 5.7. The results for the various models are shown in Fig. 5.8,

where the log-likihood is the sum of those for all the thirteen folds. A

decrease in the number of observations from the time series DREG ac-

counts for an increase in the log-likelihood if the observation rate is

higher than 14 days. Overall, it is not surprising that the results show

a declining performance for both DBNs and CTBNs when the observa-

tion rate increases, as it makes it more difficult to learn the underlying

transition probabilities. Irrespective of the observation rate, the results

also show that DBNs have a higher performance than iCTBNs in terms

of log-likelihood, although the differences do not reach statistical sig-

nificance (see Fig. 5.8b). When the observation rate is not larger than

a week, DBNs also have a higher log-likelihood than pCTBNs. Other-

wise, pCTBNs have a better performance. In both cases, the difference
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(a)

Observation rates (day(s))

1 2 3 4 5 6 7 14 21 28

DBNs vs iCTBNs 0.31 0.24 0.25 0.26 0.18 0.08 0.14 0.09 0.10 0.10

DBNs vs pCTBNs 0.06 0.10 0.42 0.14 0.82 0.74 0.65 0.11 0.10 0.03

pCTBNs vs iCTBNs 0.24 0.86 0.52 0.56 0.08 0.12 0.15 0.01 0.00 0.01

(b)

Fig. 5.8: Performance of CTBNs and DBNs for regular time series DREG where

observations are made at different rates. (a):log-likelihood of CTBNs

and DBNs; (b): p-values based on the paired t-test with bold text indi-

cating a higher log-likelihood and with underline indicating a signifi-

cant difference.

between DBNs and pCTBNs is not always statistical significant (in the

experiments, the significance is reached only when the observation rate

is 28 days).
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Fig. 5.9: Performance of CTBNs and DBNs for irregular time series DMCAR

where observations are made completely at random in time. (a): log-

likelihood of CTBNs and DBNs; (b): p-values based on the paired t-test

with bold text indicating a higher overall log-likelihood and with un-

derline indicating a significant difference.
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observations made completely at random Given irregular

time series with observations made completely at random in time, we

study the impact of the data removal on the performance of DBNs and

CTBNs. The log-likelihood of these models learned from a number of

time series with a wide range of data removals is summarized in Fig. 5.9.

Data removal is represented by a given percentage of removal of entries

from the regular time series DL.

Overall, the results suggest a positive correlation between the per-

formance of DBNs and CTBNs with the data removal. When we take

a closer look, the results indicate that it is significantly more difficult

for emDBNs to capture the underlying dynamics when more than half

of the entries are removed from DL (see the p-value for emDBNs in

Fig. 5.9b). In particular, when 60% of the entries are removed, the drop

in the performance of emDBNs also indicates that it is most likely that

the EM search does not reach a global optimum. In addition, DBNs

using the imputation method have a significantly higher performance

than CTBNs for the most of the removal percentages, irrespective of the

evidence type.

When studying the behavior of DBNs alone, we also find significant

differences of the performance of DBNs using the three distinct ways

of interpreting time series. In particular, we find that the performance

of DBNs using the EM algorithm declines at an increasing speed, while

the performance of the other two DBNs declines relatively slowly. In

DBNs, a consistent higher performance is also achieved by exploiting

the imputation technique rather than simply discarding time stamps in

irregular time series, although the difference is statistically insignificant

based on the results on our synthetic datasets.

Now we switch our attention to the behavior of CTBNs. The results

indicate that the learned CTBNs using interval evidence are better at

capturing the underlying dynamics than these learned using point evi-

dence, while the difference is not statistically significant.

observations made at random For irregular time series where

observations are made at random in time, the performance of DBNs and

CTBNs learned from the reduced irregular time series DMAR is shown

in Fig. 5.10. Unlike the previous two cases, the results from time series

DMAR are presented at the patient level. In general, the iDBNs learned

by filling in missing values at discrete time points and CTBNs learned

using interval evidence perform best. For the other two DBNs, however,
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Fig. 5.10: Performance of CTBNs and DBNs for irregular time series DMAR

where observations are made at random in time. (a):log-likelihood

of CTBNs and DBNs; (b): p-values based on paired t-test with bold

text indicating a higher overall log-likelihood and with underline in-

dicating a significant difference.
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the CTBNs with point evidence perform significantly better. When the

focus is on the performance of iDBNs, the performance of these models

appear to be rather vulnerable to the reduction of non-transition entries,

i.e., when there is no transition between two consecutive entries. This is

illustrated by their significantly worse performance on the time series

DMAR than on the time series DREG with the observation rate set to one

day. Moving to the performance at patient level, we also find that the

performance of modeling individual patient using all the temporal mod-

els is similar, whereas the log-likelihood is much lower when evaluating

on patient 5 and 12.

5.4.2.2 Results for the ACCESS Dataset

Next, we investigate the performance of DBNs and CTBNs on the real-

world irregular clinical time-series DA; the results are summarized in

Fig. 5.11. In general, the results show that sDBNs and pCTBNs have the

best performance. By contrast, learning sDBNs performs poorly on the

irregular time series DMAR, as shown in Fig. 5.10. The difference can be

explained by noting that the time series DA differs from the time series

DMAR mainly in the number of non-transition entries. More specifically,

the number of non-transitions in DMAR is zero since it is generated by

removing all the transitions from the time series DL.

To further validate that the difference in the number of non-

transitions may be the explanation for the better performance of sDBNS

on the time series DMAR, we considered its performance on the irreg-

ular time series DL2A. Indeed, we do see an improved performance of

sDBNs with an increasing number of non-transition entries in the time

series DL2A (see the increased log-likelihood of sDBNs in Fig. 5.12).

Therefore, the results from the two irregular time series DL2A and

DA suggest that treating irregular time series as a sequence by leaving

out time stamps may be sufficient to capture the transition probabilities

of COPD symptoms. However, the pCTBNs provide a competitive and

attractive alternative to these simple DBN models.

5.4.3 Discussion

regular data with different observation rates Given a

regular time series, the performance of DBNs and CTBNs deteriorates

when the number of transitions in the time series DREG decreases. The
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Fig. 5.11: Performance of CTBNs and DBNs for a real-world irregular time se-

ries DA. (a):log-likelihood of CTBNs and DBNs; (b): p-values based

on the paired t-test with bold text indicating a higher overall log-

likelihood and with underline indicating a significant difference.
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Fig. 5.12: Performance of DBNs and CTBNs on a synthetic time series DL2A,

derived from DL based on DA.



108 modeling unevenly spaced time series

time series DREG were generated from the time series DL by removing

all transitions that occur within the amount time of a given observation

rate. With fewer transitions, the task of learning DBNs becomes more

difficult, and restoring the underlying transition probabilities degra-

dates. In addition, it negatively affects the performance of CTBNs using

interval evidence, as long time intervals can overestimate the length that

a symptom stays in a particular state.

Conversely, increasing the observation rate can be expected to have a

less negative impact on learning CTBNs with point evidence, thanks to

the presence of intact information at discrete time points in the time se-

ries DREG. This is confirmed by the results as shown in Fig. 5.8b: the un-

derlined numbers indicate that CTBNs with point evidence can achieve

a significantly higher performance than interval evidence given a suffi-

ciently high observation rate.

The performance difference between DBNs and CTBNs may be due

to the ability of DBNs to represent atemporal dependence relative to

a given observation rate. In particular, an atemporal dependence can

be exploited by DBNs to represent correlations between symptoms that

are not evolving over a long time span. For example, in the context of

COPD, symptoms may influence each other within days. For a regular

time series with larger time granularity (e.g. a week), the correlations

within a week can not be captured by temporal dependences. Given

that CTBNs do not contain atemporal dependences, we speculate that

CTBNs using interval evidence may suffer most from this limitation in

expressiveness for regular time series with a large time granularity.

observations made completely at random The iDBNs gain

their advantage over sDBNs and emDBNs by imputing correctly most

values of the symptoms at discrete time points. Consider the entries

removed from the fragment in Fig. 5.1a, in particular at time 2,9 and 10,

standing for normal symptoms and also dominating in the dataset DL,

can be successfully restroed using the imputation method. Discarding

time stamps, sDBNs may suffer more from removing entries from the

time series DL, which results in a different probability distribution in

the time series DMCAR.

The lower performance of CTBNs with point evidence compared to

interval evidence indicates that they may be more vulnerable to infor-

mation loss than their counterpart with interval evidence. More specif-

ically, the decrease in the number of observations in a time series can
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significantly increase the learning search space for CTBNs with point ev-

idence. In contrast, this decrease has a less negative impact on CTBNs

with interval evidence. This may be attributed to a better approximation

of the duration of the presence and absence of a symptom using interval

evidence.

observations made at random The much lower log-likelihood

for patient 5 is partly because there are significantly more observations

for the patient in comparison to the others, as shown in Fig. 5.2. Hav-

ing more observations often implies a lower log-likelihood. Moreover,

patient 12 also differs from the other patients by experiencing a fever,

having a cough after the presence of sputum volume, and having more

often an abnormal level of oxygen saturation. Such a variance may not

be captured by a model that was also learned from data of the other

patients, leading to a model that fits less well. Combined with the small

size of the study patient population, the results also indicate that there

is a need for the development of personalized clinical models, which

can be flexibly adapted to each individual patient’s behavior.

5.5 conclusion

The main motivation for this research was the wish to provide an al-

ternative to the medically common way of managing symptom wors-

ening of a chronic disease in terms of the static occurence of particular

symptoms. As an example we used COPD, worldwide a very common

chronic disease that increasingly is managed in the home environment

through eHealth technology [42, 97]. Methods to capture symptom dy-

namics with their associated uncertainty was seen as a way to make

progress here. However, as we discussed, there are significant challenges

with respect to learning from clinical data that is collected in a home

environment. In order to gain more insight into the most appropriate

modeling technique for clinical time series with observations that are

unevenly spaced over time, we have studied the performance of dy-

namic Bayesian networks and continuous-time Bayesian networks on

both synthetic and real-world datasets with the final goal to build a

predictive model for COPD. For simple cases, such as regularly-spaced

time series, discrete-time Bayesian-network models are appropriate, as

one might expect. However, for complex clinical time-series data that

motivated this research, the continuous-time models are at least compet-
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itive and sometimes better than their discrete-time counterparts. Given

that CTBNs also provide more fine-grained predictions over time, they

are an attractive alternative to discrete time probabilistic models.

Besides this general conclusion, we also studied the usage of DBNs

and CTBNs in more detail. Firstly, we have studied different manners

to interpret data with temporal Bayesian networks. We showed that the

evidence type has a significant impact on the results in different situa-

tions. Secondly, we have considered the impact of the hyperparameters

(i.e. imaginary counts) in CTBNs. To the best of our knowledge, we are

the first to explore the impact of hyperparameters on learned the mod-

els, which again has a significant impact on the results that one can

obtain with CTBNs.

Our work also has some limitations. First, we only investigate one

possible missingness case where variables are either all missing or all

observed at each time point. If some random variables are missing and

some others are observed at particular points in time, then this would

create an additional complexity for learning and reasoning with tempo-

ral Bayesian networks.

Besides other types of missing data, we believe that there are a num-

ber of other interesting questions to investigate in the future. First of all,

choosing the length of the interval when using interval evidence could

have a significant impact on the results, as a larger interval provides a

stronger bias. While in this paper we have chosen a fairly arbitrary in-

terval determined by the time granularity of the data, it might be more

sensible to assist the learning process with domain knowledge about

the maximum length of the interval, e.g. a week. Second, it is an intrigu-

ing but challenging task to provide theoretical evidence to support the

superiority of one method over the other under certain missingness con-

ditions. Third, inspired by data with different time granularities, there

is still some room to study the difference between short-term and long-

term dynamics for COPD symptoms. Models with multiple time scales,

such as provided by continuous-time models, can provide information

about the evolution of symptoms from a different perspective. For the

final purpose of COPD prediction, this is one of the attractive aspects of

CTBNs compared to discrete-time models with a single time granular-

ity.

To conclude, in this paper, the capability of DBNs and CTBNs to han-

dle time series data was studied with a specific medical problem in

mind, i.e., COPD patient management. However, the principles concern-
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ing their use in practice also apply to other real-world problems where

multivariate time series are involved. For example, having an appropri-

ate interpretation of time series is crucial for choosing between DBNs

and CTBNs for a given problem. Through close collaboration with do-

main experts, we can use domain knowledge to better determine the fac-

tors for preferring one technique over another. In the medical domain,

it may be of clinical interest to have a more fine-grained prediction for

the evolution of a disease. In that case, CTBNs are a powerful modeling

tool to deal with such predictions. In addition, it is better to use domain

knowledge to choose between point and interval evidence in CTBNs. Fi-

nally, domain knowledge about the time that a variable would typically

stay in a particular state can assist the model learning process.





6
M A K I N G C O N T I N U O U S T I M E B AY E S I A N N E T W O R K S

M O R E F L E X I B L E

The time duration in continuous time Bayesian networks (CTBNs), i.e.,

the time that a variable stays in a state until it transitions to another

state, follows an exponential distribution. The exponential distribution

is widely applied to describe the waiting time between events in a Pois-

son process, which describes the number of events in one unit of time.

The exponential distribution is parameterized by a single rate and has

mode zero. This implies that it is probable that the next event occurs

shortly after the last event, which means that we cannot easily model de-

lays between events. Therefore, for biological processes, the exponential

distribution is not always realistic. For example, the adaptive immune

system typically responds to a viral infection after a few days if it has

not encountered the pathogen before. As a consequence, one would not

expect that the mode for the duration of an infection is zero.

In this chapter, we make CTBNs more flexible by supporting a richer

time duration distribution, which is called the hypoexponential dis-

tribution. A hypoexponential distribution is a distribution where its

mode can take a positive value. We provide a new extension of CTBNs

where the time duration is hypoexponentially distributed. The pro-

posed CTBNs are better-suited for modeling temporal processes, in par-

ticular those where the most probable time between events is non-zero.

6.1 introduction

Describing waiting time, the time between one event and its consecutive

events, is an important part of modeling real-world problems involving

time. For example, a question of clinical interest concerning viral infec-

tions is how much time it takes for an individual to become infected

after contact with an infected other individual. Waiting time, however,

is usually described by an exponential distribution in CTBNs, where

113
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the most probable time between events is assumed to be zero. This as-

sumption is not realistic for biological processes. Clearly, an individual

can not immediately get a viral infection or recover immediately from a

viral disease. Thus, there is a need to seek more versatile distributions

to describe non-zero most probable waiting time to handle realistic real-

world problems.

The limitation of exponential distributions in CTBNs was first de-

scribed by Nodelman and Horvitz [69], and they proposed to extend

the methodology by replacing the exponential distributions with Er-

lang distributions. Subsequently, Gopalratnam et al. [29] proposed to

use Erlang-Coxian distributions for the duration distribution. These two

distributions, Erlang and Coxian distributions, are two special cases of

a more general distribution called a phase-type distribution. A phase-

type distribution is a probability distribution constructed by a mixture

of exponential distributions. More importantly, a phase-type distribu-

tion can provide an appropriate approximation of any positive-valued

distribution, and provide a greater variety of rates than the exponential

distribution.

More recently, Nodelman et al. [73] described two approaches to de-

scribe phase-type duration distributions in CTBNs. The phase-type dis-

tribution is described by a Markov chain over variables with exponential

time distributions. In CTBNs, such a distribution can be represented

by the structure of parameters using additional hidden states of ran-

dom variables, which is called the direct approach. The direct method

can explicitly give us the transitions between exponentially distributed

variables in the Markov chain representing the phase-type distribution.

Alternatively, Nodelman suggested another more elegant and cleaner

approach by using additional hidden variables [73], which is called the

hidden approach. Using the hidden approach, a phase-type distributed

variable carries a clear contextual meaning, which is lacking in the di-

rect approach. Nodelman et al. also observed that many complex duration

distributions expressible by the direct method can not be expressed by using hid-

den variables. The parameters corresponding to a simultaneous change

in the states of a variable and its hidden variable are restricted to ze-

ros in the hidden approach, whereas there is no such restriction in the

direct approach.

In addition to the lack of contextual meaning, a number of problems

arise when using the direct approach in both learning and inference.

From a learning perspective, there are many challenges of learning from
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data, in particular due to the lack of an appropriate interpretation of ev-

idence. This stems from the fact that we can only observe the current

state of a variable, but not its associated hidden states. This makes it

more challenging to learn from data with missing values. From an infer-

ence point of view, the query whether a variable stays in a given state

has to be represented by a disjunction of its associated hidden states,

which is not always appropriate, in particular for describing interval ev-

idence. Interval evidence takes the form of a variable staying in a given

state during a given time interval. Although the state of the variable

does not change in the time interval, there are myriad interpretations of

the evidence by using the combinations of hidden states associated to

the state of the variable. For example, we can choose an arbitrary hid-

den state for the entire time interval or any arbitrary combinations of

hidden states at each time point in the given time interval.

The hidden approach is a cleaner and more elegant representation

where the contextual meaning of a phase-type variable and its phase-

type time distribution are separated by employing an additional hid-

den variable. In other words, the phase-type variable itself still carries

the meaning of the problem in a given domain, while its associated

phase-type distribution is controlled by an additional hidden variable

which allows the phase-type variable to have a phase-type time du-

ration distribution. Such a separation is particularly useful for many

real-world systems, such as medical diagnostic systems, where the con-

textual meaning of a phase-type variable is important to understand

the underlying dynamics. In addition, the hidden approach has the po-

tential to gain computational advantage by factorizing parameters of a

phase-type variable in the direct approach.

In this chapter, we propose a new extension of CTBNs by introducing

a more flexible distribution using the hidden approach. First, we show

that the hidden approach can actually be used to represent a large and

useful subclass of phase-type distributions, known as hypoexponential dis-

tributions, with the resulting models called hypoexponential continuous

time Bayesian networks, or HCTBNs for short. The hypoexponential dis-

tributions significantly generalize the existing exponential distribution.

Second, we give precise conditions on the CTBN graphs and discuss the

exact constraints on the parameter structure for representing hypoexpo-

nential distributions using the hidden method, which was not discussed

by Nodelman [73]. Third, we investigate the performance of the direct

and hidden approaches to estimate parameters of HCTBNs from com-
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plete data. The direct approach is expected to be more computationally

efficient at the expense of the quality of learned models than the hidden

approach. To compare these two methods, a number of measures are

used, such as the learning speed in terms of computation time and the

quality of learned models in terms of log-likelihood.

6.2 motivating example

To illustrate the usefulness of the proposed theory, we reconsider the

COPD example, previously introduced in Example 2.1 of Chapter 2. Ob-

taining some insight into the evolution of a chronic disease is an impor-

tant aspect of disease management, as often the disease will not disap-

pear. In the context of COPD, it is of particular importance to study the

effect of a viral infection on lung function, as a viral infection is a major

risk factors of a COPD exacerbation, i.e., the disease gets worse. Having

a better understanding of the incubation time, i.e., the time for a COPD

patient to get a viral infection, and the recovery time, i.e., the time that a

COPD patient will recover from a worsening in lung function, is impor-

tant for standardizing and optimizing the duration of medical treatment.

As an example to illustrate the potential of the developed methods, we

consider in this chapter the modeling of incubation and recovery time

of a viral infection of a COPD patient.

There have been many previous efforts to model the incubation time

of viral infections. For example, according to Bailey [5] and Gough [31]

the incubation time duration can not be approximated by an exponen-

tial distribution, as the mode (the maximum value of the associated den-

sity) of the underlying distribution can be far away from zero, whereas

the mode of the exponential distribution is actually zero. One example

of such non-zero mode distributions is illustrated in Fig. 6.1, which is

generated by simulating the incubation time distribution from empir-

ical data from [5, 31]. It is obvious that such a distribution can not be

well-captured by the exponential distribution. Exponentially distributed

events tend to occur close together, which is not an accurate model for

the incubation time of viral infectious diseases. Incubation may take

a certain amount of time, due to the fact that virus particles have to

be replicated before they are present in sufficient quantity to affect the

body.

For COPD patients, the lung function can deteriorate over time, char-

acterized by worsening lung-related symptoms, such as dyspnea. In clin-
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ical practice, a peak flow meter is often used as a tool to measure lung

function. In the literature, Seemungal et al. [86] have shown that it takes

one to two weeks for the majority of moderate to severe COPD patients

to recover from their worsening lung function in terms of peak flow.

This implies that the mode of the underlying time distribution for re-

covering from decreased lung function is non-zero.

The examples of incubation time and lung function recovery both in-

dicate that the exponential distribution can not offer a satisfactory rep-

resentation for many disease processes. As the exponential distribution

is a limitation of present CTBNs, we seek more versatile and flexible

distributions to handle more complicated real-world problems.
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Fig. 6.1: A time distribution generated according to the incubation time in the

work by Bailey [5] and Gough [31] based on non-zero mode.

6.3 preliminaries

Before introducing the hypoexponential distribution, we will first briefly

introduce the phase-type distribution, which is the generalization of the

hypoexponential distribution.

A phase-type distribution is a probability distribution that is a mix-

ture of exponential distributions. The distribution is represented by a

random variable describing the time that a finite-state absorbing contin-

uous time Markov chain reaches its only absorbing state, i.e., a state that
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once entered cannot be left. Each state of the Markov chain represents

a stochastic process with an exponential time distribution. Before the

chain reaches its absorbing state, it moves through its transient states,

i.e., a state that once it is reached, there is a non-zero probability that

it will never return to the state [98]. In other words, the probability of

returning to the state is less than one after visiting it.

Since an n-order phase-type distribution is described by a Markov

chain {Xt | t ∈ R
+
0 } with n transient states 1, 2, . . . , n and one absorbing

state n + 1, its parameters are fully specified by an initial distribution

vector p = [p1, . . . , pn]T (pT is the transpose of p), pi = P(X0 = i),
i ∈ {1, . . . , n}, with ∑

n
i=1 pi = 1 (the probability for the absorbing state

is zero, i.e., P(X0 = n + 1) = 0), and an intensity matrix Q as previously

introduced in Section 2.4. The intensity matrix Q differs from general

intensity matrices by the fact that transitioning away from the absorb-

ing state has zero intensity. More specifically, the intensity matrix Q is

defined as follows:

Q =

(

A v

0T 0

)

where A is an n× n dimensional (square) matrix, specifying the inten-

sities for transitioning between transient states, v is a column vector

where vi is the intensity leaving transient state i to the absorbing state,

and 0T is a zero row vector of dimension n. The matrix A is called the

phase-type generator, and n is called the order of the phase-type distri-

bution. Every row in matrix Q sums to zero, from which it follows that

v = −Ae, where e = [1, 1, . . . , 1]T is an n-dimensional column vector of

ones.

The density function for the phase-type distribution is defined as:

f (t) = pT exp(At) · −Ae = pT exp(At)v
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and the distribution function is:

F(t) =
∫ t

0
f (s)d s

=
∫ t

0
pT exp(As) · −Ae d s

=
[

−pT exp(As)e
]t

0

= −pT exp(At)e + pT exp 0

= −pT exp(At)e + pTe

= 1− pT exp(At)e

For an n-order phase-type distribution, its associated continuous time

Markov chain can be graphically represented by a state transition dia-

gram. The diagram is a convenient graphical representation by specify-

ing the initial probabilities p, i.e., the distribution over the all the tran-

sient states when the chain starts, the rates between the transient states,

and the exit rates, i.e., the rate for a transient state entering the absorb-

ing state. More details about phase-type distributions can be found in [9,

98].

In this chapter, we mainly focus on the hypoexponential distribution,

also known as generalized Erlang distribution. It is a rich and flexible

phase-type distribution. For a hypoexponential distribution, a transient

state is only allowed to enter its consecutive transient state or the ab-

sorbing state in the corresponding Markov chain. In addition, it starts

only in one of the transient states and traverses all the other transient

states until it reaches the absorbing state. The n-order hypoexponential

distribution is graphically represented by a Markov chain with its state

diagram as shown in Fig. 6.2. The diagram asserts that the chain enters

transient state 1 with probability one and enters the absorbing state with

rate λn. The specification of the hypoexponential distribution consists of

the vector of initial probabilities p = [1, 0, . . . , 0]T, the matrix A:

A =













−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 0 · · · 0
...

...
...

...
...

...

0 0 0 0 0 −λn













and v = [0, 0, . . . , λn]T.
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1 1
λ1

· · ·
λ2

n
λn−1 λn

Fig. 6.2: A state transition diagram for an n-order hypoexponential distribution.

A solid node indicates a transient state and a dashed node indicates an

absorbing state. The number ‘1’ at the left-hand side denotes the initial

probability of entering a state. Arcs stand for temporal dependences,

same for all the arcs in the remainder of this chapter.

6.4 hidden continuous time bayesian networks

In this section, we define a new extension of CTBNs, which we call hid-

den continuous time Bayesian networks, abbreviated to HCTBNs, where

the time duration follows a more versatile distribution. In HCTBNs,

the time duration, i.e., the time that a variable stays in a state until

a transition occurs, is described by the hypoexponential distribution.

An auxiliary hidden variable is introduced to a hypoexponential vari-

able to model the hypoexponential distribution. These auxiliary hidden

variables only serve as mediators and convey no contextual meanings.

In HCTBNs, variables are categorized into three groups, hypoexponen-

tially distributed variables, their corresponding auxiliary hidden vari-

ables, and exponentially distributed variables. For a hypoexponential

variable, the time duration follows a hypoexponenital distribution while

it can only take two possible values, indicated by 1 and 2,

In the remainder of this section, we define an HCTBN in terms of

its graphical structure and the structure of its intensity matrices. More

specifically, a set of constraints on intensity matrices are imposed, in

particular for hypoexponential variables and auxiliary hidden variables.

In the remainder of this chapter, hypoexponential variables are assumed

to be binary-valued.

6.4.1 Structure

First, we define the graphical structure associated to an HCTBN, with

labeled nodes X for binary hypoexponential variables, labeled nodes

H for auxiliary hidden variables and labeled nodes Y for exponential

variables. The set of possible values of a binary variable X are denoted
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by {1, 2} and of an n-valued hidden variable or exponential variable by

{1, 2, . . . , n}.

Definition 6.1 (HCTBN Graph). An HCTBN graph is a node-labeled graph

defined by a tuple G = (V, E, b, l), where V = X ∪H ∪ Y denotes a set of

nodes where X, H and Y are mutually disjoint, E ⊆ V× V a set of arcs on

V, b a bijective function b : X → H, and l a label function such that l(X) =
hypoexponential, l(H) = hidden, and l(Y) = exponential. Furthermore, the

graph G has the following properties:

1. For any X ∈ X, b(X)→ X ∈ E and X → b(X) ∈ E;

2. For any Z ∈ Y ∪ X, Z → X ∈ E iff Z → b(X) ∈ E, X ∈ X;

3. For any H ∈ H, H → Y 6∈ E;

4. For any H, H′ ∈ H, H → H′ 6∈ E.

Definition 6.1 states that for any X ∈ X, there is exactly one associ-

ated hidden variable H, H = b(X). This also implies that in an HCTBN

X and H have the same cardinality. In addition, there are three main

restrictions on the arcs in the HCTBN graph. First, Property 1 asserts

that node X is connected to its associated hidden node b(X) by a bidi-

rected arc. Second, Property 2 asserts that the associated hidden node

b(X) has an exponential node Y, Y ∈ Y, as a parent if and only if Y

is also a parent of X. Of course, Y can be a parent of more than one

hypoexponential nodes, and thus be a parent of more than one hidden

nodes. For example, we may have an exponential node Y be a parent of

two distinct hypoexponential variables X, X′, i.e., Y → X and Y → X′.

According to Definition 6.1, node Y is also a parent of the associated hid-

den nodes b(X) and b(X′), i.e., we also have Y → b(X) and Y → b(X′)
in the graph. The graph properties imply that for each hypoexponential

node X, the node has the same number of parents as its associated hid-

den node b(X). Thus, the number of parameters for the hidden node

b(X) grows exponentially with the number of parents of node X. Third,

Property 3-4 state that a hypoexponential node X is the only child for its

associated hidden node b(X). This also implies that there are no direct

connections between any two distinct hidden nodes. Property 1-4 make

sure that a hidden variable is only used as an auxiliary variable to de-

scribe the hypoexponential distribution for a hypoexponential variable.
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Example 6.1

Consider two simple HCTBN graphs where we only have one single

hypoexpoential node X and its corresponding hidden node b(X) = H,

i.e., X = {X}, H = {H}, as given in Fig. 6.3. In the first graph, we

have no exponential nodes, i.e., Y = ∅. In the second graph, we have

one exponential node Y, i.e., Y = {Y}, and node Y is a parent of the

hypoexponential node X, and thus a parent of the hidden node H. In

both graphs, nodes X and H are connected by a bidirected arc.

X H

S

(a)

XY

H

S

(b)

Fig. 6.3: Two HCTBN graphs with a single hypoexponential node X and a sin-

gle hidden node H, i.e., X = {X}, H = {H}, where X has no exponen-

tial variables as children. (a) Y = ∅, π(X) = {H} and π(H) = {X}; (b)

Y = {Y}, π(X) = {H, Y} and π(H) = {X, Y}. Arcs stand for temporal

dependences, same for all the arcs for the HCTBNs in the remainder

of this chapter.

Now we can also describe the time duration for infection I and lung

function LF in the COPD network with a more versatile distribution by

modeling them as hypoexponential variables in an HCTBN.

Example 6.2

For the COPD problem, the eight variables are categorized into three

groups, hypoexponential variables X = {I, LF}, exponential variables

Y = {V, C, D, W} and hidden variables H = {H1, H2} with b(I) = H1

and b(LF) = H2. The corresponding HCTBN graph is depicted in Fig.

6.4. Hypoexponential nodes I and LF have hidden nodes H1 and H2

as parents, respectively. In addition, hypoexponential node LF has the

hypoexponential variable I as a parent, thus its corresponding hidden

node H2 also has an incoming arc from node I. Furthermore, all the

exponential variables are either a child of the hypoexponential node I
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or V or LF. It is important to mention that hidden nodes H1 and H2 are

not directly connected with the exponential variables.

I LF

V C

W

D

H2H1

Fig. 6.4: An HCTBN graph for COPD problem. I = infection, V = sputum vol-

ume, C = cough, LF = lung function, D = dyspnea, W = wheeze, and

H1 and H2 are hidden nodes corresponding to I and LF, respectively.

Dashed nodes correspond to hidden variables H, solid blue nodes to

hypoexponential variables X, and solid nodes to the rest nodes Y.

6.4.2 Model Definition

Now we give a formal definition of an HCTBN in terms of both its graph

and the structure of its intensity matrices for variables in the HCTBN, in

particular for hypoexponential variables and auxiliary hidden variables.

Definition 6.2 (Hidden Continuous Time Bayesian Networks

(HCTBNs)). A hidden continuous time Bayesian network (HCTBN) is

a triple N = (G, Q, P0) with the HCTBN graph G as defined in Defini-

tion 6.1. In addition, Q is a set of conditional intensity matrices and P0

is the initial distribution for the variables associated to the nodes in the

graph G. For each X ∈ X with nX-order hypoexponential distribution and

H = b(X), nX ∈ N, nX ≥ 2, we have either P0(X = 1, H = 1) = 1 or

P0(X = 2, H = nX) = 1, and for each configuration u of the parents U of

variable X, with U = π(X) \ {H}, intensity matrices for variable X and H

are given in Fig. 6.5.

In Definition 6.2, there are two restrictions on the intensity matrices

of a hypoexponential variable X and its associated nX-valued hidden
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variable H, H = b(X). First, the hidden variable H is only allowed to

transition from state i to its previous state i− 1 or next state i + 1 and it

stops at either state 1 or state nX, after it visits all the other nX − 1 states.

The state that variable H transitions to depends on the value of X. For

example, when variable X is in state 1, variable H reaches state nX after

it visits the other states in the order 1 → 2 → · · · → nX − 1. Second,

variable X is only allowed to make a transition when variable H is in

either one of the end states 1 or nX. These two restrictions impose that

variable X does not transition until variable H visits its intermediate

states. Once variable H reaches state 1 or nX, variable X transitions to

its other state.

Note that the order for the hypoexponential distribution may differ

from one hypoexponential variable to another, hence the use of the sub-

script X in nX.

Example 6.3

Consider an HCTBN with its HCTBN graph given in Fig. 6.4. In the

model, we consider the intensity matrices for the hypoexponential vari-

able LF and its corresponding hidden variable H2. Suppose the hypo-

exponential variable LF has an nLF-order hypoexponential distribution,

where nLF = 4, and we have parameters λ1 = 1, λ2 = 2, λ3 = 3, λ4 =
4, γ1 = 5, γ2 = 6, γ3 = 7, γ4 = 8 when I = 1, and λ1 = 9, λ2 = 10, λ3 =
11, λ4 = 12, γ1 = 13, γ2 = 14, γ3 = 15, γ4 = 16 when I = 2, this gives

the intensity matrices for variable LF and H2 shown in Fig. 6.6.

In addition, hypoexponential variable LF has a number of exponential

variables as children and we also consider the structure of the intensity

matrix for one of its children D. There are no restrictions on the intensity

matrices for variable D:

QD|LF=1 =

(

−29 29

30 −30

)

QD|LF=2 =

(

−31 31

32 −32

)

For each hypoexponential variable X and its associated hidden vari-

able H, we can view variable X and H as a whole by amalgamating

them into a single variable S, whose state space is the joint state space

over X and H. Each state of X now corresponds to a set of instantia-

tions to S. When we amalgamate over the hypoexponential variable X

and the hidden variable H, their joint intensity matrix follows a partic-

ular structure. Suppose we have the variable order X < H as defined in

Section 2.5.2, the joint states over X, H in the intensity matrix are given
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QH|X=1,U=u =

































































−λu
1 λu

1 . . . 0 0

0 −λu
2 λu

2 · · · 0

...
...

. . .
...

...

0 0 0 −λu
nX−1 λu

nX−1

0 0 0 0 0

QH|X=2,U=u =

































































0 0 0 0 0

γu
nX−1 −γu

nX−1 . . . 0 0

0 γu
nX−2 −γu

nX−2

... 0

...
...

. . .
...

...

0 0 0 γu
1 −γu

1

QX|H=1,U=u =

(

0 0

γu
nX
−γu

nX

)

QX|H=nX ,U=u =

(

−λu
nX

λu
nX

0 0

)

If nX ≥ 3, QX|H=2:nX ,U=u =

(

0 0

0 0

)

Fig. 6.5: The structure of intensity matrices for an hypoexponential variable X

and its corresponding auxiliary hidden variable H, where H = b(X),

given the parents U = π(X) \ {H}.
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QH2|LF=1,I=1 =













−1 1 0 0

0 −2 2 0

0 0 −3 3

0 0 0 0













QH2|LF=2,I=1 =













0 0 0 0

7 −7 0 0

0 6 −6 0

0 0 5 −5













QH2|LF=1,I=2 =













−9 9 0 0

0 −10 10 0

0 0 −11 11

0 0 0 0













QH2|LF=2,I=2 =













0 0 0 0

15 −15 0 0

0 14 −14 0

0 0 13 −13













QLF|H2=1,I=1 =

(

0 0

8 −8

)

QLF|H2=2:3,I=1 =

(

0 0

0 0

)

QLF|H2=4,I=1 =

(

−4 4

0 0

)

QLF|H2=1,I=2 =

(

0 0

16 −16

)

QLF|H2=2:3,I=2 =

(

0 0

0 0

)

QLF|H2=4,I=2 =

(

−12 12

0 0

)

Fig. 6.6: Parameters for hypoexponential variable LF and its associated hidden

variable H2 in the HCTBN with its structure given in Fig. 6.4.
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〈1, 1〉, 〈2, 1〉, 〈1, 2〉, 〈2, 2〉, 〈1, 3〉, 〈2, 3〉, · · · , 〈1, nX− 2〉, 〈2, nX− 2〉, 〈1, nX−
1〉, 〈2, nX − 1〉, 〈1, nX〉, 〈2, nX〉.

Proposition 6.4.1. Let X be an nX-order hypoexponential variable in an

HCTBN. The time that variable X stays in each of its states follows an nX-

order hypoexponential distribution.

Given the joint intensity matrix of an nX-order hypoexponential vari-

able X and its associated hidden variable H, H = b(X), now we can

reinterpret the time duration of variable X in terms of the joint state

over variable X and H. More specifically, the time of variable X staying

in a state is then reinterpreted as the absorbing time of a Markov chain

with a sequence of joint states over variable H and X where variable

X in the joint states remains in the given state. For example, the time

that variable X stays in state 1 is thus viewed as the absorbing time of

a Markov chain with a sequence of joint states 11, 12, . . . , 1nX, where

X always stays in state 1 and the final transition in such a chain is the

transition from state 1nX to 2nX. As noted, there is no explicit absorbing

state. It is clear that such a Markov chain describes an nX-order hypoex-

ponential distribution. Analogously, we can construct another Markov

chain corresponding to state 2 for variable X. Together, we can obtain

a single Markov chain that is graphically represented by a cyclic state

transition diagram as shown in Fig. 6.7a.

6.5 equivalent direct models

An important task for any probabilistic graphical model is to estimate

parameters from data. As HCTBNs fit naturally into CTBNs framework,

the existing learning algorithms can be directly applied to estimate pa-

rameters in HCTBNs. Alternatively, HCTBNs can be transformed into

their equivalent direct models which have the same time distribution for

hypoexponential variables. In this section, we define such equivalent di-

rect models from given HCTBNs. The introduction of these models only

serves as a tool to estimate parameters in HCTBNs.

Definition 6.3 (Equivalent Direct Graph). Let G = (V, E) be an HCTBN

graph with hypoexponential nodes X, hidden nodes H and exponential nodes

Y and V = X ∪H ∪ Y. An equivalent direct graph G′ is defined as a graph

G′ = (V′, E′), with nodes V′ = X ∪ Y and arcs E′ = E ∩ (V′ ×V′).

For an HCTBN graph G, an equivalent direct graph G′ is a graph that

excludes all the hidden nodes H from the graph G while it includes all
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11 12
λ1

· · ·
λ2

1nX

λnX−1

2nX

λnX

· · ·
γ1

22
γnX−2

21
γnX−1

γnX−1

(a)

1 2
λ1

· · ·
λ2

nX

λnX−1

nX+1

λnX

· · ·
γ1

2nX−1
γnX−2

2nX

γnX−1

γnX−1

(b)

Fig. 6.7: State transition diagram for joint states over an nX-order hypoexpo-

nential variable X and hidden variable H where H is a parent of X in

an HCTBN (a) and for states of its extended variable X′ in its equiva-

lent Markovian model (b).
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the hypoexponential and exponential nodes. Any arcs corresponding to

a hidden node are also omitted in graph G′. For example, the hidden

nodes are omitted in the equivalent direct model graphs as shown in

Fig. 6.8 and Fig. 6.9 with their associated HCTBNs given in Fig. 6.3 and

in Fig. 6.4.

X

(a)

X Y

(b)

Fig. 6.8: Equivalent direct graphs associated to HCTBNs as introduced in Fig.

6.3: (a) Y = π(X) = ∅; (b) Y = π(X) = {Y}.

I LF

V C

W

D

Fig. 6.9: An equivalent direct graph for the HCTBN of the COPD problem as

given in Fig. 6.4. I = infection, V = sputum volume, C = cough, LF =

lung function, D = dyspnea, W = wheeze.

Definition 6.4 (Equivalent Direct Models). Let N be an HCTBN with in-

tensity matrices Q and graph G. An equivalent direct modelM is defined as a

tripleM = (G′, Q′, P′0) where graph G′ = (X, Y, E′) is defined in Definition

6.3 and Q′ is a set of intensity matrices over the nodes in graph G′ and P′0 is

the initial distribution with P′0(X = 1) = 1 or P′0(X = nx + 1) = 1, for any

X ∈ X.

In addition, intensity matrices for any variable Y ∈ Y satisfy the fol-

lowing conditions:

• If for any X ∈ X, X 6∈ π(Y), QM
Y|π(Y) = QN

Y|π(Y) where QM
Y|π(Y)

and QN
Y|π(Y) are the intensity matrix for variable Y in M and N

respectively; otherwise, QM
Y|K=kM,K′=k′

= QN
Y|K=kN ,K′=k′

, where

K = π(Y) ∩ X and K′ = π(Y) ∩ Y, kM and kN are the values

of variables K in M and N respectively, and for any K ∈ K, if

kM ∈ {1, · · · nK}, where nK is the number of possible values for

variable K inM, then kN = 1; otherwise kN = 2.
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Furthermore, for each variable X ∈ X, the intensity matrices

QM
X|π(X)=u

are defined by re-ordering the states of QN
XH|π(X)\{H}=u

from

current indices [1, . . . , 2nX] to [1, 3, . . . , 2nX− 1, 2nX, . . . , 4, 2], where H =
b(X) in N .

Definition 6.4 gives a general procedure to transform the intensity

matrices for variables Y and X from an HCTBN N to its equivalent

direct model M. The transformation involves two parts, one part for

exponential variables Y and one part for hypoexponential variables X.

For variable Y ∈ Y, its intensity matrices in M are simply a copy of

those in N if its parents do not contain any hypoexponential variables.

Otherwise, we also need to transform the values of hypoexponential

variables from M to N before copying intensity matrices from N . For

example, variable X is an nX-order hypoexponential variable and is a

parent of Y. Then the intensity matrices QM
Y|X=1:nX

for variable Y in M

corresponds to QN
Y|X=1

in N , and QM
Y|X=nX+1:2nX

to QN
Y|X=2

. For a hy-

poexponential variable X, its intensity matrices in M are transformed

from N by amalgamating the joint intensity matrix of variable X and

its associated hidden variable H and then reordering the resulting joint

intensity matrix in a particular order.

For a binary variable X with nX-order hypoexponential distribution

in an HCTBN, the hypoexponential distribution is encoded in the asso-

ciated nX-valued hidden variable H, H = b(X). In its equivalent direct

model, the hypoexponential distribution is represented by adding ad-

ditional states to its corresponding variable X′. Thus, the size of the

state-space of variable X′ grows to 2 ∗ nX in the equivalent direct model

from 2 states in the HCTBN.

Definition 6.4 also implies that HCTBNs have the same number of

parameters in their equivalent direct models.

Example 6.4

For the HCTBN N as parameterized in Example 6.3, the structure of its

equivalent Markov model M is given in Fig. 6.9 and we have an 8× 8

intensity matrix for variable LF inM as given in the following:
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QMLF =

1 2 3 4 5 6 7 8




































































−1 1 0 0 0 0 0 0 1

0 −2 2 0 0 0 0 0 2

0 0 −3 3 0 0 0 0 3

0 0 0 −4 4 0 0 0 4

0 0 0 0 −5 5 0 0 5

0 0 0 0 0 −6 6 0 6

0 0 0 0 0 0 −7 7 7

8 0 0 0 0 0 0 −8 8

The size of the intensity matrix of variable LF in M expands from 2 to

8. In model M, variable LF has eight states and states 1-4 correspond

to state 1 for its associated variable in N , and the rest states correspond

to state 2.

In addition, we also need to transform the intensity matrices for vari-

able D. Since variable D has the hypoexponential variable LF as a par-

ent, we need to copy intensity matrices from N corresponding to each

state of LF inM, this gives:

QMD|LF=1:4 =

(

−29 29

30 −30

)

QMD|LF=5:8 =

(

−31 31

32 −32

)

Proposition 6.5.1. Let X be an nX-order hypoexponential variable in an

HCTBN and X′ the extended variable of X in its associated equivalent Markov

model. The absorbing time in a Markov chain described by a sequence of states

1, 2, . . . , nX of variable X′ follows the same distribution as the time X stays in

state 1, and the absorbing time in a Markov chain described by a sequence of

states nX + 1, nX + 2, . . . , 2nX of variable X′ follows the same distribution as

the time X stays in state 2.

Similar to an HCTBN, we can also construct a state transition diagram

for its equivalent direct model, as shown in Fig. 6.7b. The time that

X stays in state 1 has an nX-order hypoexponential distribution with

rates λ1, λ2, . . . , λnX
. The same distribution can also be represented by

a Markov chain of a sequence of states of variable X′, 1, 2, . . . , nX. It is

similar for the variable X staying in state 2.
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6.6 experiments

In the experiments, we investigate two aspects of HCTBNs. First, we in-

vestigate whether HCTBNs provide a better approximation than CTBNs

when the underlying temporal processes are governed by a hypoexpo-

nential time duration distribution. Second, we studied a number of as-

pects regarding parameter estimation in HCTBNs using the direct and

hidden approaches. In both approaches, the EM algorithm is used to

estimate parameters as either the hidden variables in HCTBNs are un-

observed or the hidden states are unknown in their corresponding di-

rect models. For the EM algorithm used in the methods, we compared

the time and the number of iterations until the EM algorithm converges,

and the quality of learned models in terms of log-likelihood.

In the experiments, a number of software packages were used to learn

parameters for HCTBNs. We used the existing CTBNs learning algo-

rithms in the package CTBN-RLE1 to estimate parameters in HCTBNs

directly. For the direct approach, the transformation between a given

HCTBN and its equivalent direct representation was implemented in R.

We also employed EMpht2 to learn parameters for this direct representa-

tion from right censored data, i.e., a variable staying in a state for at least a

given amount of time. A more detailed discussion about censored data

can be found in [29].

For the first part of the experiments, we generated a number of

datasets from temporal processes where the time distribution follows

a complex hypoexponential distribution, rather than the simple expo-

nential distribution. With respect to learning parameters for HCTBNs,

we also considered the impact of the number of states for the hidden

variables on the quality of the approximation in the learned HCTBNs.

The number of hidden states in the learned models was set to 2,3 and

10 when the underlying hypoexponential distribution has an order 10,

and to 3 and 5 when the distribution has order 5.

For illustrative purposes, we considered learning parameters for a hy-

poexponential variable with complex time distribution without parents

as shown in Fig. 6.8a and in the presence of one exponential parent as

shown in Fig. 6.8b. The underlying time distribution was approximated

by using the proposed HCTBNs in this chapter and the standard CTBNs.

The dynamics of the hypoexponential variable X in the learned models

1 http://rlair.cs.ucr.edu/ctbnrle/
2 http://home.math.au.dk/asmus/pspapers.html
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Fig. 6.10: Probability of X staying at state 1, given evidence X = 2 and Y = 2 at

time 8, 10 and 12. (6.10a): the true process has 10-order hypoexponen-

tial distribution and no parents. (6.10b): the true process has 5-order

hypoexponential distribution and one parent. The rates in the distri-

bution follow a Gamma distribution with rate = 1 and shape = 2. The

number of hidden states for the learned HCTBNs is indicated by the

number n.
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and the underlying models are shown in Fig. 6.10. The results suggest

that HCTBNs have a better approximation of the underlying hypoex-

ponential distribution than CTBNs. It also indicates that other complex

distributions may be better approximated using HCTBNs. In addition,

we obtained a better approximation by increasing the number of hid-

den states. More importantly, the memory in the underlying temporal

processes can be easily captured by HCTBNs, but not by CTBNs.
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Fig. 6.11: Learning for COPD networks using the direct and hidden approaches

with the number of hidden states ranging from 2 to 10 in the learned

models, while is fixed to 4 in the underlying model: the time until

convergence in (a) and the number of iterations until convergence in

(b).

For the second part of the experiments, we considered learning pa-

rameters for a more complicated and realistic HCTBN for the COPD

network as given in Fig. 6.4, where we have six variables, two of which

are hypoexponential variables. The synthetic training datasets for the

COPD network consisted of approximately 6000 observations on aver-
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age. The number of hidden states for hidden variables H1 and H2 in the

underlying model was both set to 4.

The number of iterations and the time until the EM algorithm con-

verges are shown in Fig. 6.11a and Fig. 6.11b, respectively. The results

in Fig. 6.11a suggest that the time until the EM algorithm converges

grows exponentially with the number of states of the hidden variable

using existing CTBNs learning algorithms, whereas there is little im-

pact of the choice of the hidden states on the equivalent direct models

(see the exponentially increasing time for HCTBNs when the number of

hidden states increases from 6). Similarly, the number of iterations until

convergence grows faster using existing CTBN learning algorithms than

the equivalent direct models, whereas the difference is relatively small.

By combining the results in Fig. 6.11a and Fig. 6.11b together, we can

conclude that the time for each iteration in CTBNs grows exponentially

with the number of hidden states. This is mainly attributed to the rela-

tively large number of variables in the models, leading to a significant

increase in the computation at each iteration.

We further evaluated the quality of the learned models in terms of

log-likelihood. To rule out the randomness of starting parameters in the

EM algorithms, we learned models with 30 different starting param-

eters for each approach. To test the performance for general models,

these learning methods were used to estimate parameters for 30 under-

lying models with the same structure but different parameters. The test

data were generated independently from the training data and the log-

likelihood difference was subtracted the mean log-likelihood on the test

data of learned models from those of the underlying models, as shown

in Fig. 6.12. A lower log-likelihood difference indicates higher quality

of the learned models. It is clear that the hidden approach has a better

and more stable estimation of parameters for the underlying models.

We also obtained the p−value < 0.05 based on a paired T−test for the

mean log-likelihood for both methods, which suggests that the quality

of the learned models achieved by the hidden approach is significantly

higher than the direct approach.

6.7 conclusions

In this paper, we provide a new formalization HCTBN where time dura-

tion is governed by hypoexponential distributions by employing auxil-

iary hidden variables. We also demonstrate that these hidden variables
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Fig. 6.12: Test log-likelihood for learned models using the direct and hidden

approaches from 30 different underlying models. For a given under-

lying model, models are learned using each approach with 30 differ-

ent starting parameters for the EM algorithms. The number of hidden

states in both learned models and underlying models is set to 4. The

log-likelihood difference is computed by subtracting the mean log-

likelihood of learned models from those of the underlying models.

Lower values indicate a better parameter estimation. The p-value <

0.05 was computed using the paired t-test on the mean log-likelihood

of the learned models using direct and hidden approaches.
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introduce memory, which is lacking in standard CTBNs. This memory

will make CTBNs better-suited as a modeling tool for more general

real-world problems in many domains, such as biology where mem-

ory plays a central role. In addition, the experimental results show that

HCTBNs indeed can learn these more complex distributions. Transform-

ing the learning task into equivalent direct models has the advantage of

lower computational cost at the expense of the quality of learned mod-

els. Nevertheless, such an approach is infeasible when some observable

variables, i.e., the hypoexponential and exponential variables, are par-

tially known.

A limitation of HCTBNs so far is that the hypoexponential variables

are restricted to be two-valued, as the focus of this paper has been on

introducing a richer time distribution and memory. In future work, we

aim to overcome this limitation by introducing more states for the hid-

den variables to allow hypoexponential variables to transition from one

state to any other state. Using existing learning algorithms in CTBNs

has the advantage of learning from partial trajectories, where observ-

able variables are not fully known. However, these algorithms so far

suffer from costly computation time. One possible solution to solve

this problem is to decompose the EM algorithm into two parts, one

part consisting of partially observed variables another part consisting of

fully observed variables. This decomposition will significantly reduce

the computation time, in particular when the exponential variables and

their parents are fully observed.





7
C O N C L U S I O N S A N D F U RT H E R R E S E A R C H

In this thesis, we have investigated various methods to model complex

dynamic systems that evolve over time. Most of these methods are based

on continuous time Bayesian networks (CTBNs), which are powerful

probabilistic tools to model complex dynamic systems. In this chapter

we take a step back, and summarize what we see as the main contri-

butions of the research in the field of CTBNs. In addition, we provide

some views on possible directions for future research topics.

7.1 main contributions

CTBNs are an elegant modeling language for complex dynamic systems

that evolve over continuous time. CTBNs are suitable for querying a

probability distribution at arbitrary time points when particular events

of interest occur. In addition, dynamic systems that consist of parts that

evolve at different rates can be modeled. Nevertheless, modeling time as

a continuous parameter is not always appropriate, in particular when

only expert knowledge in a domain is available. In this case, it is a

hurdle to derive parameters from expert knowledge to construct CTBNs.

Besides, the exponential time duration distribution, as it is assumed in

CTBNs, is not always appropriate. To address these issues, we have

developed two useful extensions of the existing CTBN formalism to

better deal with real-world problems that require more general time

durations.

One extension is a hybrid model of DBNs and CTBNs, where time

can be both discrete and continuous in the model. This is a significant

contribution as each part of dynamic systems can be modeled using its

own appropriate mechanism. Parts of systems that change regularly can

be modeled as DBNs, and thus expert domain knowledge can be used

to facilitate the modeling process. Meanwhile, other parts of the system
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that transition at continuous rates can be represented as CTBNs, where

such rates are well captured.

We also relax the assumption that the time duration follows an expo-

nential distribution in CTBNs. Instead, we extend CTBNs to support a

richer and more flexible time duration, as described in Chapter 6. The re-

search in this thesis demonstrates that the proposed models can indeed

better capture more complex underlying distributions that can not be

captured by the exponential distribution. Furthermore, another signifi-

cant contribution is that the proposed models also introduce memory

behavior, which is lacking in the existing CTBNs. This is an important

feature for CTBNs to be more competitive as a modeling tool as it allows

modelling dynamic system where the future behaviour is determined by

events from the past.

Theoretically, these two extensions make the existing CTBNs more

powerful and better suited to a wider spectrum of real-world problems.

Practically, we also have investigated the use of DBNs and CTBNs to

model a medical problem from real data. It was shown that CTBNs

are at least competitive with DBNs in terms of modeling both regular

and irregularly spaced observations. Moreover, CTBNs provide more

detailed temporal information.

7.2 further research

The work described in this thesis leaves various opportunities for fur-

ther research. In this section, we will briefly discuss some of them.

For hybrid time Bayesian networks, supporting both regularly and ir-

regularly changing parts of systems, there is still a need to develop more

efficient inference algorithms. Currently, the only inference approach is

to transform these models into an equivalent Bayesian network. On the

one hand, this approach is indeed an advantage as the existing infer-

ence algorithms in Bayesian networks can be directly applied. On the

other hand, it can come at a high computational cost. For this reason

we tried to avoid the use of the approach in the EM algorithm, where

the transformation is needed at each iteration. Thus, one of interesting

future research questions is to seek more efficient inference algorithms.

For the second extension, hypoexponential CTBNs, variables with a

more complex time distribution are currently restricted to be binary.

This restriction is mainly due to the fact that two or more variables in

CTBNs are not allowed to change at the same time. Another interest-
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ing research direction involves a comparison to neural networks that

model time series, which are currently widely used. As graphical mod-

els, CTBNs provide a clear representation of the structure of a problem

of interest, whereas neural networks act as a black box in the sense that

they give us little insight in the underlying structure and meaning of

the model, which limits interpretation and explanation of the results.

Another possible research question for the second proposed models

is whether the existing EM algorithm can be further decomposed. It has

been shown in this thesis that the existing EM algorithm in CTBNs is

rather computationally expensive at each iteration. In the current EM

algorithm, the expectation has to be computed for all variables in the

model, even for those which are themselves fully observed and their

parent variables as well. One possible solution is to decompose the EM

algorithm by learning parameters based on sufficient statistics, rather

than using iteratively computed expectations. In that case the expecta-

tion of fully observed variables does not change in the entire learning

procedure.





A
E V I D E N C E T Y P E S A N D I N F E R E N C E I N C T B N S

The evidence type in CTBNs, i.e. point and interval evidence, is a rel-

evant factor for inference algorithms to answer a query over time. In

the following, we first give two inference algorithms corresponding to

point and interval evidence in CTBNs. It is then followed by a concrete

example to illustrate the difference between these two types of evidence.

Consider a CTBN over a set of random variables X with a joint in-

tensity matrix QX. We are interested in querying the probability dis-

tribution of variables X at time t given evidence Z = z before time t,

Z ⊆ X. To query the distribution at a particular time point t as given in

Equation 2.7, we have

P(Xt | Zs = z) = exp(QX(t− s)), s < t (A.1)

where QX is the joint intensity matrix over variables X, a mixture of

conditional intensity matrices for variables X incorporated with the evi-

dence Z = z.

When the evidence Z = z is interpreted as point evidence, i.e., we

only know that variables Z have the values of z at a particular time point,

such as at time s, s < t, and the values of Z in the open time interval

(s, t) are unknown. This also implies that the transitions of variables Z

in the interval [s, t) can start at an arbitrary time and end at an arbitrary

time. Besides, variables Z can have zero or more than one transitions

from one state to another in the given interval [s, t). For point evidence,

the intensity matrix QX in Equation A.1 is the joint intensity matrix Q
p
X

computed by the amalgamation over all conditional intensity matrices

in the CTBN.

The situation is different when the evidence before time t is inter-

preted as interval evidence, i.e., variables Z have the values z in the

half-open interval [s, t). In this situation, the dynamics of the system

are governed by a subset of conditional intensity matrices in the model,

rather than intensity matrices for all the variables. Alternatively, it can
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W D

C

Fig. A.1: A CTBN over three variables W, C, D.

be viewed that the transitions in the time interval [s, t) that are incon-

sistent with evidence Z = z are blocked. In other words, the transitions

for variables Z between state z and z′, z 6= z′, are not allowed in the

interval [s, t).
To account for the interval evidence, it is addressed by zeroing out

non-diagonal intensities in Q
p
X that correspond to impossible transitions

for variables Z. This approach was firstly discussed in [70] where expec-

tation propagation was proposed to reason using interval evidence. In-

corporated with evidence Z = z, we get a new joint intensity matrix Qi
X,

Qi
X 6= Q

p
X. Note that in most cases each row Qi

X does not sum up to 0.

Instead, it sums up to negative numbers. This gives us an unnormalized

distribution characterized by Qi
X.

In the following, we further illustrate the inference difference using

point and interval evidence with a concrete example.

Example A.1. Consider a CTBN over three variables W, C, D with its graph

structure as shown in Fig. A.1. The intensity matrices for the CTBN are given

in Fig. A.2. Variables change quickly in some situations and change slowly

in other situations, which can be dependent on their parents. For example,

the intensity matrices for C, QC|W=w and QC|W=w indicate that, the average

time for variable C transitioning from state c to c when W = w is ten times

(0.001/0.0001) as its transition from state c to c when W = w.

Given the variables W, C, D, the variable order W < C < D and the order

on their states w < w, c < c, d < d, we have a sequence of states over variables

W, C, D in the following, which is also the order of their joint intensity matrix:

〈w, c, d〉, 〈w, c, d〉, 〈w, c, d〉, 〈w, c, d〉, 〈w, c, d〉〈w, c, d〉, 〈w, c, d〉, 〈w, c, d〉

We are also given a uniform distribution as prior distribution, which will be

later used to compute the joint distribution:

P(W0, C0, D0) = (0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125)
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QW|D=d =

(

w w

w −0.17 0.17

w 100 −100

)

QW|D=d =

(

w w

w −2 2

w 18 −18

)

QD|C=c =

(

d d

d −0.8 0.8

d 0.001 −0.001

)

QD|C=c =

(

d d

d −0.01 0.01

d 5 −5

)

QC|W=w =

(

c c

c −0.001 0.001

c 0.5 −0.5

)

QC|W=w =

(

c c

c −5 5

c 0.0001 −0.0001

)

Fig. A.2: Conditional intensity matrices for a CTBN over three variables

W, C, D with its structure as given in Fig. A.1. The intensity matrices

for W given D (top), D given C (middle) and C given W (bottom).

Example A.2. We reconsider the Example A.1 to query the dynamics of vari-

ables using point evidence and interval evidence. Assume we have point evi-

dence D = d at time 6, 7, 8, W = w at time 8, 10, 13. By comparison, we

have interval evidence D = d in the interval [6, 8) and W = w in the interval

[8, 13). We want to compute the distribution in the interval [0, 20] using point

and interval evidence.

For illustrative purpose, we compute the distribution in the time in-

terval [6, 8) and the distribution in other intervals can be computed sim-

ilarly. To compute probability distribution in the interval [6, 8) using

point and interval evidence, we first need to obtain their correspond-

ing intensity matrices used to answer the query. For the point evidence

D = d at time 6, the joint intensity matrix is computed by the amalgama-

tion on all the conditional intensity matrices given in Fig. A.2, resulting

in the joint intensity matrix QWCD as shown in the following:
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For the interval evidence D = d in the time interval [6, 8), however,

the dynamics of the system are governed by a new intensity matrix

which is computed by zeroing out rows and columns in the matrix

QWCD that are inconsistent with evidence D = d, i.e., we zero out the

rows (from 1 to 4) and columns (from 1 to 4), resulting the following

joint intensity matrix Q′WCD, Q′WCD 6= QWCD.
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Obviously, the distributions for variables W, C, D after time 6 given

point evidence D = d at time 6 and interval evidence D = d in the
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interval [6, 8), as shown in Fig. A.3, are different as the system dynamics

are determined by two different intensity matrices QWCD and Q′WCD,

QWCD 6= Q′WCD. Another difference can also be seen in the time interval

[8, 13) where we have point evidence W = w at time 8, 10 and interval

evidence W = w in the interval [8, 13).
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Fig. A.3: Marginal distributions for variables in a CTBN over theree variables

W, C, D in the time interval [0.20] using point and interval evidence.

In the interval [0, 13), we have point evidence) D = d at time 6, 7, 8

and W = w at time 8,10, and interval evidence) D = d in the interval

[6,8) and W = w in the interval [8, 13). In the interval [13, 20], we only

point evidence only at time 13 for all variables in the model, i.e., the

values of W, C, D are known at time 13. In this case, we have W = w,

D = d, C = c at time 13. Green line indicates the distribution given

point evidence and red given interval evidence.
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S U M M A RY

This doctoral thesis is concerned with the theoretical and practical as-

pects of continuous-time and discrete-time Bayesian networks, in par-

ticular their use to model dynamic systems. The six research papers

included in the thesis offer contributions to the existing theory of contin-

uous time Bayesian networks, in addition to experimental investigations

into the expressive power of different temporal Bayesian networks.

One of the theoretical contributions are the new notion of hybrid-

time Bayesian networks, a combination of dynamic Bayesian networks

and continuous-time Bayesian networks. In hybrid-time models, time is

allowed to be either discrete or continuous. Parts of dynamic systems

can be modeled as discrete-time Bayesian networks, and thus expert

domain knowledge can be used to facilitate the modeling process. Other

parts can be modeled as a continuous-time Bayesian network, which

are very suitable when learning from data where variables are observed

irregularly in time.

Another theoretical contribution to standard continuous-time

Bayesian networks is obtained by relaxing the assumption that the time

duration, i.e., the amount of time that a variable stays in a state be-

fore it transients to another, follows an exponential distribution. In the

extended model, the exponential distribution is replaced by a hypoex-

ponential distribution (the exponential distribution is one of its special

cases), a richer and more flexible distribution. The research in this thesis

demonstrates that continuous-time Bayesian networks with hypoexpo-

nential distributions can indeed capture more complex underlying dis-

tributions than the exponential distribution is capable of. Furthermore,

two methods for parameter estimation from complete data are proposed

and experimentally compared.

The experimental research is devoted to an in-depth investigation of

the practical use of dynamic Bayesian networks and continuous-time

Bayesian networks to model dynamic systems. The research makes use

of a medical problem with real-world data to investigate several aspects

of Bayesian network representations that one may need to take into con-

sideration. This study sheds some light on the practical requirements of

using these two temporal models in practice.

181





S A M E N VAT T I N G

Dit proefschrift betreft theoretische en praktische aspecten van continue-

tijd Bayesiaanse netwerken om dynamische systemen te beschrijven. De

zes wetenschappelijke artikelen in dit proefschrift resulteerden in bijdra-

gen aan de bestaande theorie van continue-tijd Bayesiaanse netwerken

en experimenteel onderzoek naar de uitdrukkingskracht van verschil-

lende soorten temporele Bayesiaanse netwerken.

Eén van de theoretische bijdragen betreft de introductie van hybride-

tijd Bayesiaanse netwerken waarbij dynamische Bayesiaanse netwerken

en continue-tijd Bayesiaanse netwerken worden gecombineerd. Tijd kan

zowel discreet of continu zijn in de voorgestelde hybride-tijd-modellen.

Dynamische systemen kunnen gedeeltelijk worden gemodelleerd als

discrete-tijd Bayesiaanse netwerken, waardoor kennis van domeinex-

perts het modeleerproces kunnen faciliteren. Andere delen kunnen

worden gerepresenteerd als een continue-tijd Bayesiaanse netwerk dat

geschikt is om te leren uit gegevens waarbij variabelen onregelmatig

worden geobserveerd.

Standaard continue-tijd Bayesiaanse netwerken nemen aan dat de

verblijftijd van het proces in een bepaalde toestand een exponentiële

distributie volgt. In dit proefschrift wordt deze aanname verzwakt door

de exponentiële distributie te vervangen door een hypoexponentiële

distributie, een rijkere en meer flexibele distributie waarvan de expo-

nentiële distributie één van de speciale gevallen is. Het onderzoek in

dit proefschrift toont aan dat de voorgestelde modellen inderdaad in

staat zijn om complexere onderliggende distributies vast te leggen dan

wat mogelijk was met de exponentiële distributie. Bovendien worden

twee methoden voorgesteld voor het schatten van parameters voor deze

modellen uit volledige data en worden deze experimenteel met elkaar

vergeleken.

Het experimentele onderzoek richt zich op de studie van de mogeli-

jkheden van dynamische Bayesiaanse netwerken en continue-tijd Bayesi-

aanse netwerken om dynamische systemen te modelleren. In dit on-

derzoek worden medische praktijkgegevens gebruikt om verschillende

aspecten van Bayesiaanse-netwerk-representaties te onderzoeken waar

potentieel rekening mee moet worden gehouden. Deze studies werpen
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licht op de eisen voor het gebruik van deze twee temporele modellen

voor praktische doeleinden.
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