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Abstract. Authentication is increasingly relevant to data management.
Data is being outsourced to untrusted servers and clients want to securely
update and query their data. For example, in database outsourcing, a
client’s database is stored and maintained by an untrusted server. Also,
in simple storage systems, clients can store very large amounts of data
but at the same time, they want to assure their integrity when they
retrieve them. In this paper, we present a model and protocol for two-
party authentication of data structures. Namely, a client outsources its
data structure and verifies that the answers to the queries have not been
tampered with. We provide efficient algorithms to securely outsource a
skip list with logarithmic time overhead at the server and client and log-
arithmic communication cost, thus providing an efficient authentication
primitive for outsourced data, both structured (e.g., relational databases)
and semi-structured (e.g., XML documents). In our technique, the client
stores only a constant amount of space, which is optimal. Our two-party
authentication framework can be deployed on top of existing storage
applications, thus providing an efficient authentication service. Finally,
we present experimental results that demonstrate the practical efficiency
and scalability of our scheme.

1 Introduction

Data authentication has lately been very important due to the expansion of the
Internet and the continuing use of it in daily transactions. Data authentication
provides assurance for integrity of data, namely that data have not been cor-
rupted (for example modified or deleted) by an adversary. Imagine for example
the following scenario. There a lot of internet companies that provide cheap
storage space. Clients that use this service are assigned a special account which
they can use to store, query and update their data. They basically outsource
their data in the storage servers provided by the companies. This is an amazing
service but raises the following security issue. How can the client be assured that
the data it is putting in the storage servers have not been tampered with? Each
time the client issues a query, it would like to be assured that the data it re-
ceives is consistent with the previous state and nobody has changed something.
Hence the server (the entity where data have been outsourced) and the client
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(the entity that outsources the data) have to engage in an efficient two-party
authentication protocol during which the client can send updates and queries to
the server and be able to verify the answers it is receiving. Ideally, we would like
this protocol not only to be secure (the security definition will be given later)
but also to involve low computational overhead at the client’s side, low commu-
nication cost between the server and the client and possible low computational
overhead at the server’s side.

One application of this model is database outsourcing [9]. In database out-
sourcing, a third party database service provider offers software, hardware and
network resources to host its clients’ data. Since the clients outsource their
databases in an environment which is susceptible to attacks, the security of
the hosted data is a big issue. These attacks can be caused by malicious out-
siders or by the service provider itself. In any case, the client should be able
to verify the integrity of its data. Yet another important problem in database
outsourcing, orthogonal to what we investigate in this paper (data integrity), is
ensuring data secrecy and privacy [8, 10]. Another application of this model is
converting the widely known authenticated data structures model [12, 19], which
is a three-party model, to a two-party model, where we want to maintain the
efficiency of the corresponding authenticated data structure and have the client
execute both updates and queries.

In this paper, we develop and analyze time- and space-efficient algorithms
for outsourcing an authenticated skip list [5]. We aim at providing integrity
checking of answers received from the data structure (privacy is orthogonal to our
approach). Our technique is further applicable to other hash-based authenticated
data structures [1, 7, 13] (for example, Merkle trees or dynamic trees), given
that we can develop the respective algorithms for the operations defined on the
specific data structure. We present algorithms for outsourcing a skip list [18] that
run (both on the client and on the server side) in logarithmic time (in the size
of the outsourced data) and incur logarithmic communication cost. Our method
requires constant space (a single hash value) at the client side, which is optimal.

1.1 Related Work

There is considerable previous work on authenticated data structures in the
three-party model, where a data owner outsources the data to a server, which
answers queries issued by clients on behalf of the data owner. See [19] for a
survey. In particular, the authentication of outsourced databases in the three-
party model, using an authenticated B-tree for the indices, is presented in [11].
Client storage bounds in the three-party model are discussed in [21].

In [4], data integrity in the two-party model and solutions for multi-authored
dictionaries are explored, where users can efficiently validate a sequence of up-
dates. The authentication of outsourced databases using signature schemes ap-
pears in [15, 16], where it is mentioned that this approach is inefficient due to
the high cost of the client’s computation and the fact that the client has to en-
gage in multi-round protocol in order the perform an update. In [2], a method for
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outsourcing a dictionary is presented, where a skip list is stored by the server into
a table of a relational database management system (DBMS) and the client issues
SQL queries to the DBMS to retrieve authentication information. A related
solution is presented in [14]. This DBMS-based approach relies on external-
memory storage of authentication information. Thus, it scales to large data sets
but incurs a significant computational overhead.

1.2 Our Contributions

In this paper we provide a model and protocol for two-party authentication of
data structures. Namely, a client outsources its data structure and verifies that
the answers to queries are valid. Our framework is fairly general and can be
extended to outsourcing a variety of authenticated data structures [1, 7, 13]. We
focus on efficient algorithms to outsource a dictionary by using a skip list, which
is a well known efficient randomized realization of a dictionary. Our authentica-
tion protocol is simple, and efficient. It is based on cryptographic hashing and
requires the client to store only a single hash value. The computational overhead
for the server and the client and the communication cost are logarithmic, which
is optimal for hash-based authentication structures. We have fully implemented
our scheme and we provide experimental results that confirm its efficiency and
scalability in practice. Our protocol can be deployed on top of existing storage
applications to provide a transparent authentication service.

1.3 Preliminaries

We briefly introduce some useful terminology for the authenticated skip list (the
non-authenticated skip list was proposed by Pugh [18] and provides a dictionary
functionality), since it will be the underlying data structure for our authentica-
tion protocol. In an authenticated skip list, every node of the skip list is asso-
ciated with a hash value that is computed as a function of neighboring nodes
according to a special DAG scheme [5]. The importance of the authenticated
skip list comes in the verification of the result. When the client queries about
the membership of an element x in the dictionary, the server returns a collection
of hash values that allows the client to verify the result. For more details on
authenticated data structures see [1, 5, 12].

2 Two-Party Authentication Model

In the two-party authentication model, there are two entities participating, an
untrusted server S and a client C. The server stores a data collection, which
is owned (and has been outsourced) by the client C, in a data structure (for
example a dictionary) and the client issues updates (insertions, deletions) to
its data. Also the client can issue queries (for example membership queries in
a dictionary, connectivity queries in a graph) to the data structure. Since the
server is untrusted, we want to make sure that if the server returns a wrong
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answer to a client’s query (namely if the server tampers with the data of the
client), then the client rejects the answer w.h.p.

An obvious solution to this, which has been adopted in practice (see for exam-
ple [17]), is to have the client store and update hash values of the data objects
it wants to outsource. In this way the client can always tell if the answers that
it gets back from the untrusted server are correct or not. However, this solution
is very space inefficient. Ideally, we would like the client to hold a constant size
state (digest of the data) and to execute very simple algorithms in order to up-
date this state, whenever it issues an update. We will assume that initially the
server and the client share the same digest that correspond to the data. This
digest (which later we will be calling s) can be computed and updated using
any existing hashing scheme [21]. Then we are going to present protocols and
algorithms that securely update this digest whenever updates occur, for the case
of the skip list data structure.

2.1 The Protocol and Its Security

In the following we describe the protocol that ensures authentication of op-
erations (insertions, deletions, queries) issued by the client. Then we give the
definition of security and also prove that it is satisfied by the presented protocol.
Before presenting the protocol, we give some necessary definitions:

Definition 1 (Sequential Hashing). Given an ordered sequence of hash val-
ues Λ = λ1 ◦ λ2 ◦ . . . ◦ λm and a collision-resistant hash function h(., .), then the
sequential hashing S(Λ) maps Λ to a hash value such that S(λ1 ◦λ2 ◦ . . .◦λm) =
h(S(λ1 ◦ λ2 ◦ . . . ◦ λm−1) ◦ λm) for m ≥ 2. For m = 1, we define S(λ1) = λ1.

The complexity of sequential cryptographic hashing S(Λ) is a function of its
input size, namely a function of |Λ| (if we assume that λi is of fixed length, then
|Λ| = O(m)). Moreover, it can be proved [20] that the time needed to perform
a sequential hashing of Λ is O(|Λ|). This means that the hashing complexity is
proportional to the size of the data being hashed. Based now on the definition
of collision resistance of the function h, we can prove the following:

Lemma 1. Given an ordered sequence of hash values Λ = λ1◦λ2◦ . . .◦λm, there
is no probabilistic polynomial-time adversary than can compute another sequence
of hash values Λ′ = λ′

1 ◦ λ′
2 ◦ . . . ◦ λ′

m such that S(Λ) = S(Λ′) with more than
negligible probability.

In the following we present one execution of the authentication protocol (for
either an update or a query), which we call Auth2Party. The protocol uses three
main procedures, namely certify, verify and update:

– Let s be the state (digest) that corresponds to the current data at the server’s
side. We assume that the client stores s (for the case of the skip list the digest
is the hash of the top-left node with key −∞).
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– The client issues an operation o ∈ {I(x), D(x), Q(x)} with respect to an
element x that can be either an insertion (I), a deletion (D) or a query (Q).

– The server runs an algorithm (π, a(o)) ← certify(o) that returns a proof π
and an answer (with reference to the specific operation o) a(o). Then it sends
the proof and the answer to the client. If the operation is an update, the
server executes afterward the update in its local data and a(o) = null.

– The client runs an algorithm ({0, 1}, s′) ← verify(o, a(o), π, s) and we have
the following cases:
1. If o ∈ {I(x), D(x)} (if the operation issued by the client is either an

insertion or a deletion) then we distinguish the following cases for the
output of verify:
a. If the sequential hashing (which is the main body of verify)1 of the

proof π hashes to s, i.e., if S(π) = s, then the output is (1, s′). In
this case the client accepts the update, it runs an algorithm update
on input π and computes the new digest s′.

b. If the sequential hashing of the proof π does not hash to s, i.e., if
S(π) �= s, then the output is (0, ⊥). In this case the client rejects
and the protocol terminates.

2. If o = Q(x) (if the operation issued by the client is a query) then if
the sequential hashing of the proof π hashes to s, i.e., if S(π) = s, then
verify outputs (1, ⊥) and the client accepts. Otherwise it outputs (0, ⊥)
and the client rejects. Note that in this case the state of the client is
maintained, since there are no structural changes in the data.

To distinguish between the proof returned when the client issues a query or
when the client issues an update, we define as verification proof to be the proof
returned to a query and as consistency proof to be the proof returned to an
update. In the following we present the security definition for our protocol.

Definition 2 (Security of Two Party Authentication Protocol). Suppose
we have a two-party authentication protocol D with server S, client C and se-
curity parameter k. We say that D is secure if no probabilistic polynomial-time
adversary A with oracle access to algorithm certify, given any query Q(x), can
output an answer a′(Q(x)) and a verification proof π′, such that a′(Q(x)) is an
incorrect answer that passes the verification test. That is, there exists negligible2

function ν(k), such that for every probabilistic polynomial-time adversary A and
every query Q(x)

Pr [(π′, a′(Q(x))) ← A(Q(x)) ∧ (1, s′) ← verify(Q(x), a′(Q(x)), π′, s)] = ν(k).

1 In [5], it is described how one can use sequential hashing on a carefully constructed
proof in order to compute the digest of the skip list. We use this scheme without loss
of generality for the description of the protocol but we note that the computation
of the digest depends on the data structure and the algorithms used.

2 Formally, ν : N → � is negligible if for any nonzero polynomial p, there exists m
such that ∀n > m |ν(n)| < 1

p(n) .
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We can now state the result for the security of our scheme (its proof is deferred
to the full version of the paper):

Theorem 1. If algorithm update correctly computes the new digest (i.e., the
new digest is consistent with the issued update) and algorithm verify is correct,
then protocol Auth2Party is secure.

3 Operations

In this section, we describe our authentication protocol for a skip list. We de-
scribe how to use the proof returned by a contains() query in order to compute
the digest of the skip list resulting from the insertion of a new element x. For
more details on authenticated skip lists, see Section 1.3.

3.1 Search Path and Proof Path

For every node v of a skip list (if level(v) > 0 we consider as node every node that
“makes” a difference in hashing, i.e., nodes with both right and down pointers
not null) we denote with key(v) the key of the tower that this node belongs to,
with level(v) the respective level of this node, with f(v) the hash of the node of
the skip list and with right(v) and down(v) the right and down pointers of the
v. We finally write u ← v3 if there is an actual link in the skip list from v to u
(either a right or a down pointer). We also write u ←↩ v if there is no actual link
between u and v but level(v) = level(u) = 0 and u is a successor of v (this means
that u belongs to a tower of height > 0).

Definition 3 (Search Path). Given a skip list SL and an element x, then the
search path Π(x) = v1 ←↩ v2 ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm is an
ordered sequence of nodes in SL satisfying the following properties:

– vm is the top-leftmost node of the skip list.
– v2 ← v3 ← . . . ← vm is a path in the skip list consisting of the zero-level path

v2 ← v3 ← . . . ← vj and the path vj+1 ← vj+2 ← . . . ← vm which contains
nodes of level > 0.

– There is 2 ≤ t ≤ j such that key(vt) < key(x) ≤ key(vt−1).
– Index j is defined as the ”boundary” index.
– Index t is defined as the ”insertion” index.

Definition 4 (Proof Path). Given an authenticated skip list SL, an element x
and the respective search path Π(x) = v1 ←↩ v2 ← . . . ← vm with boundary index
j and insertion index t, we define the proof path Λ(x) = λ(v1)◦λ(v2)◦ . . .◦λ(vm)
to be the following ordered sequence of values with the following properties:

– For all i ≤ j λ(vi) = key(vi).
– For all i > j, λ(vi)=f(right(vi)) if right(vi) �=vi−1 else λ(vi)=f(down(vi)).

3 Although it is more intuitive to write v → u, we use this notation because the
hashing proceeds from the last to the first element of the proof. This means that
there are no actual pointers from v to u in the skip list and this notation is only
used for indicating the hashing procedure.
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Lemma 2. Given an authenticated skip list SL and an element x (x ∈ SL or
x /∈ SL), then there exist unique search and proof paths Π(x) and Λ(x) for x.

Proof. By contradiction. Suppose there is another search or proof path for x.
Then there would be a cycle of links in SL. This is a contradiction since pointers
in SL define a tree structure.

Definition 5 (Node Removal). Given a search path Π(x) = v1 ←↩ v2 ←
. . . ← vm and the respective proof path Λ(x) = λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vm), then,
for every 1 < i ≤ m, we denote with rem(Π(x), vi) and rem(Λ(x), λ(vi)) the
search path v1 ←↩ v2 ← . . . vi−1 ← vi+1 ← . . . ← vm and the proof path λ(v1) ◦
λ(v2) ◦ . . . ◦ λ(vi−1) ◦ λ(vi+1) ◦ . . . ◦ λ(vm) respectively.

Theorem 2. Given an authenticated skip list SL and an element x, then
S(Λ(x)) (the sequential hashing of the proof path of x) is equal to the digest
of SL.

Suppose now we are given a search path Π(x). For each element vi of the search
path we define Dx(vi) to be 1, if key(vi) ≥ x, else 0. Also, we define Lx(vi)
to be 0, if i ≤ j (j is the boundary index) else it is defined as the level of vi.
An example of an authenticated skip list implemented with pointers is shown
in Figure 1. In the following, we describe algorithms for the computation of the
new digest from the client side after operations insert(x) and delete(x). From the
definition now of the search path we have:

Lemma 3. Every search path Π(x) is sorted in increasing Lx order. Moreover,
any elements u and v such that Lx(v) = Lx(u) are sorted in decreasing key
order.

- oo 

39 + oo 

v1v8

0

4

- oo 

- oo 

25

25

25

31

31 38 44 55

v3v4v5

v7

v6 v9

w 3
w 4

w 5
w 6

w 7

3 55

55

58 67

67

80

67

81

Fig. 1. An authenticated skip list implemented with pointers. For the non-existing
element 41 (and also for the existing element 44), we have that the search paths are
Π(41) = Π(44) = v1 ←↩ v3 ← v4 ← v5 ← w3 ← w4 ← w5 ← w6 ← w7 while the
respective proof paths are Λ(41) = 44 ◦ 39 ◦ 38 ◦ 31 ◦ f(v1) ◦ f(v6) ◦ f(v7) ◦ f(v8) ◦ f(v9).
Also note that L41 = (0◦0◦0◦0◦2◦2◦3◦3◦4) and D41 = (1◦0◦0◦0◦1◦0◦1◦0◦1).
Note that the insertion index is 2 while the boundary index is 4.
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3.2 Insertion and Deletion

Suppose now that x /∈ S. The client wants to insert x in the skip list at level �.
The client gets the proof path Λ(x) (non-membership proof) together with the
vectors Lx and Dx. We show how it can compute the new proof path (the proof
returned to a contains() query after the insertion of x). Suppose

Π(x) = v1 ←↩ v2 ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm

where j is the boundary index. Also

Λ(x) = λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vj−1) ◦ λ(vj) ◦ λ(vj+1) ◦ . . . ◦ λ(vm)

is the initial proof path as defined in 4. Let 2 ≤ t ≤ j be the insertion index.
In the following we give an algorithm for the computation of the new search

path Π ′(x) and the new proof path Λ′(x) on input Π(x), Λ(x), Dx, Lx (and t).
We have the following cases for insert(x, �).

1. if � = 0 we output the final paths

Π ′(x) = v1 ←↩ . . . ← vt−1 ← x ← vt ← . . . ← vm (1)
Λ′(x) = λ(v1) ◦ . . . ◦ λ(vt−1) ◦ λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vm) (2)

2. if � > 0 we set

Π(x) = x ←↩ vt ← . . . ← vj−1 ← vj ← vj+1 ← . . . ← vm (3)
Λ(x) = λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vj−1) ◦ λ(vj) ◦ λ(vj+1) ◦ . . . λ(vm) (4)
temp = S(λ(v1) ◦ λ(v2) ◦ . . . ◦ λ(vt−1) ◦ λ(x)) (5)

Then we sequentially process the hash values λ(vi) for i = j + 1, . . . , m of
the proof path and at each iteration we distinguish the following cases:
– If λ(vi) is such that � < Lx(vi) or (� = Lx(vi) and Dx(vi) = 0) then we

create a new node r at level � and we output the final paths (nodes vi−1
and vi are linked through the newly created node r in the search path)

Π ′(x) = x ←↩ vt ← . . . ← vj ← . . . ← vi−1 ← r ← vi ← . . . ← vm (6)
Λ′(x) = λ(x) ◦ λ(vt) ◦ . . . ◦ λ(vj) ◦ . . . ◦ λ(vi−1) ◦ temp ◦ λ(vi) ◦ . . . ◦ λ(vm )(7)

– If λ(vi) is such that � ≥ Lx(vi) and Dx(vi) = 1 then we set

Π(x) = rem(Π(x), vi) (8)
Λ(x) = rem(Λ(x), λ(vi)) (9)
temp = h(temp ◦ λ(vi)) (10)

Definition 6. Let x be any element in a skip list at height �. We define as
guard(x) the first tower on the left of x of height ≥ �.

We can now have the following main results (their proofs are deferred to the full
version of the paper):

Lemma 4. Let x be an element in a skip list at height �. Then there is always
a node s(x) called spy of x that belongs to guard(x) such that right(s(x)) points
to a node of the tower defined by x. Moreover, s(x) always belongs to Π(x).
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Lemma 5. The sequence Π ′(x) is the correct search path after the insertion of
element x at level � and it can be computed in expected O(log n) time w.h.p..

Lemma 6. The sequence Λ′(x) is the correct proof path after the insertion of
element x at level � and it can be computed in expected O(log n) time w.h.p.,
incurring expected O(log n) hashing complexity w.h.p..

As we are going to show later, the proof path Λ(x) should be extended to include
information about the levels of the elements of the proof so that we could ensure
security. Consider for example the following scenario. Suppose, the server in the
beginning contains only the sentinel values +∞ and −∞. The client issues the
command insert(x, �). Suppose the server chooses another level �′ and inserts x
at �′. Obviously, the digest of the data structure will be exactly the same since
the level of the element does not matter at all. However, the efficiency of the
data structure is not assured, since the level was not chosen by flipping a coin.
Therefore, the server could insert elements at arbitrary levels while the client
would not notice anything.

Definition 7 (Extended Proof Path). Let Λ(x) be a proof path with respect to
an element x. Let Lx and Dx be the vectors as defined before. We define as extended
proof path Q(x) the ordered sequence of triples Qi = (λ(vi), Lx(vi), Dx(vi)) for
i = 1, . . . , |Λ(x)|.

The client, however, does not need to compute the new proof and search paths.
All it needs to do is to update the digest. In the following we give a very simple
algorithm that updates the digest. Algorithm update, shown in Figure 2, takes
as input the extended proof path Q = Q(x) as defined in 7 (in the case that the
client wants to insert x in the data structure), the desired level of insertion � and
the element x the client wants to insert. Note that the levels of the nodes are also
taken into consideration in the hash computations, since we use the extended
proof path. In the following we outline the algorithm used for verification at the
client’s side, verify(Q(x)): On input Q(x), it sequentially hashes Q(x) to see if
the computed digest matches the existing one. If not, it rejects, else it replaces
the current digest by the one returned by calling update (if the operation is
an update) and finally accepts. We now reduce an authenticated deletion to
an authenticated insertion as follows. Suppose at some point the client and the
server share the common digest s. The client then executes delete(x), where
element x is at level � in the skip list. The server deletes x and then constructs
a proof π′ by issuing a contains(x) query. Next, the server sends π′ and the level �
to the client. The client runs the update algorithm on input π′, x, �. If the output
digest is s, then the deletion is accepted and the new digest is s′ = S(π′).

3.3 Analysis

In the data authentication model through hashing, where a three-party model is
used, any hashing scheme with k digest nodes that implements an authenticated
dictionary of size n has Ω(log(n

k )) update, verification and communication cost



10 C. Papamanthou and R. Tamassia

Algorithm update(Q, �, x, t)
1: if � == 0
2: return S(Q1 ◦ . . . ◦ Qt−1 ◦ (key(x), 0, 1) ◦ Qt ◦ . . . ◦ Qm);
3: else
4: let r be the smallest index ≥ t such that � < Lx(vr) or � = Lx(vr) and Dx(vr) = 0;
5: if � == Lx(vr)
6: set U = Qr+1 ◦ . . . ◦ Qm;
7: else
8: set U = Qr ◦ . . . ◦ Qm;
9: L = (key(x), �, 1);

10: R = S(Q1 ◦ . . . ◦ Qt−1) ◦ (key(x), �, 1);
11: for i = t, . . . , r
12: if � ≥ Lx(vi) and Dx(vi) = 1
13: R = R ◦ Qi;
14: else
15: L = L ◦ Qi;
16: return S(L ◦ S(R) ◦ U);

Fig. 2. Algorithm executed by the client to update the digest after the insertion of an
element x. The inputs to the algorithm are the extended proof path Q, the insertion
level �, the inserted element x, and the insertion index t. Variable m denotes the length
of the extended proof sequence Q.

(see [21]). Using this result, we can prove that our protocol is optimal. To see
this, suppose there exists a two-party authentication scheme that uses hashing
and achieves better performance than O(log n) (update, verification, communi-
cation). Then we can use these algorithms and implement a three party protocol
in the data authentication model through hashing with the same bounds, vio-
lating the existing lower bounds [21]. In addition, by using Theorem 1, the proof
of correctness of the insertion algorithm and the results on the complexity of
authenticated skip list operations [5], we obtain the main result of our paper:

Theorem 3. Assume the existence of a collision-resistant hash function.Our two-
party authentication protocol for outsourcing a dictionary of n elements supports
authenticated updates insert() and delete() and authenticated query contains() and
has the following properties:

1. The protocol is secure;
2. The expected running time of updates/queries is O(log n) at the server and

at the client w.h.p.;
3. The expected communication complexity of updates/queries is O(log n) w.h.p.;
4. The expected hashing complexity of updates/queries is O(log n) w.h.p.;
5. The client uses space O(1);
6. The server uses expected space O(n) w.h.p.;
7. The protocol has optimal time, space, and communication complexity, up to

a constant factor, over all hash-based authentication protocols.

Taking into account constant factors (see the definitions in [21]), the communi-
cation and hashing complexity can be shown to be at most 1.5 logn with high
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probability. Moreover, the client keeps a single hash value (e.g., a 128-bit or
256-bit digest, using standard hash functions).

4 Experimental Results

We have conducted experiments on the performance of the presented authen-
tication protocol. The time needed for querying the server (construction of the
proof) and for query verification have been reported extensively in [3]. Here we
report times concerning the time needed for the client to securely update the di-
gest (after doing a verification of the proof it receives) when it does an insertion
or a deletion and also for the server to perform the respective update on the skip
list. Concerning the client’s side, insertion times include an initial verification
of the proof and then the processing of the proof in order to update the digest.
Also we give plots that indicate the size of the consistency and verification proof
(bytes). From the plots we will see that the actual communication overhead of
our protocol is very small; Only at most 1KB of information (for 1,000,000 el-
ements) needs to be communicated from the server to the client so that the
client can update the digest. For each operation, the average running time (or
the average size in the case of proofs) was computed over 10,000 executions. The
experiments were conducted on a 64-bit, 2.8GHz Intel based, dual-core, dual
processor machine with 8GB main memory and 2MB cache, running Debian
Linux 3.1 with Linux kernel 2.6.15 and using the Sun Java JDK 1.5. The Java
Virtual Machine (JVM) was most of the times launched with a 7GB maximum
heap size. Cryptographic hashing was performed using the standard Java im-
plementation of the MD5 algorithm. We report the running times obtained in
our experiments excluding the time consumed by the garbage collector. Our ex-
perimental results provide a measure of the computational and communication
overhead. The results of the experiments concerning insertions and deletions are
summarized in Figure 3. One can see that insertion/deletion at the client’s side
takes more than insertion/deletion at the server’s side (Figures 3(a) and 3(b)).
This is because for client insertions we count exactly the following time: The
time needed for verifying that the consistency proof π hashes to the current
digest and the time needed to run update on the current consistency proof in
order to update the digest. For client-side deletions (see Figure 3(b)) we firstly
have to run update and then do a verification. On the other hand, server side
insertions and deletions do not have to do any verification at all. They are just
a usual insertion/deletion in a skip list. This is enough to justify that differ-
ence in the execution times, since verification is a costly operation as it involves
O(log n) hash computations. Finally, as we can see the times needed for insertion
and deletion follow a logarithmic increase, verifying in this way our theoretical
findings. Also, the actual time needed at the client’s side is roughly 80μs which
shows the efficiency of the method. The results of the experiments concerning
the size of the proof are summarized in Figure 4. The size of the proof in bytes
is computed as follows. First of all we compute the size of the structure Λ which
is the input in update(). Let N be that size. It is easy to see that the maximum
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(a) Client/Server Insertion at the client’s and server’s side.
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(b) Deletion at the client’s and server’s side.

Fig. 3. Insertion and deletion times. The times shown are the average of 10,000 exe-
cutions on data structure sizes varying from 0 to 106 elements.

size (the size of vector Λ) of the proof in our experiments (for 106 elements) is 30
and it validates the theory since 1.5 log(106) � 30. Since now for each element
of Λ, Λi, it is Λi = (λ(vi), �x(λ(vi)), kx(λ(vi))), we have that each element of the
extended proof needs exactly (128 + log(maxlevel) + 1) bits. Here maxlevel is the
maximum level of the skip list towers and for our experiments is 20. Hence for a
consistency proof of size N we need exactly N

8 ×134 bytes. This holds for the case
of the dictionary. If we want to use the map functionality (i.e., to bind a key with
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(a) Size of the consistency proof for a dictionary and a map.
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(b) Size of the verification proof for a dictionary and a map.

Fig. 4. Communication overhead (proof size). The sizes shown are the average of 10,000
executions on data structure sizes varying from 0 to 106 elements.

a value), which is something that has more applications, then the size of the proof is
N
8 (2×128+log(maxlevel)+1) bytes, since we also need to hold a digest for the value.
The plot for the size of the consistency proof is shown in Figure 4(a). One can ob-
serve the logarithmic increase. Also, for the case of the dictionary the average size
of the proof is 0.5KB. The plot for the verification proof is shown in Figure 4(b).
Finally the communication overhead of a consistency versus a verification proof is
only a few bits (namely 6 per element).
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5 Conclusions and Future Work

In this paper, we have presented an efficient protocol for two-party authenti-
cation based on cryptographic hash functions. Namely, we have given efficient,
lightweight and provably secure algorithms that ensure the validity of the answers
returned by an outsourced dictionary. We have implemented our protocol and we
have provided experimental results that confirm the scalability of our approach.
As future work, we envision developing a general authentication framework that
can be applied to other data structures, such as dynamic trees [7]. Additionally,
we could investigate realizations of two-party authenticated protocols based on
other cryptographic primitives, (for example cryptographic accumulators [6]).
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