
ar
X

iv
:1

20
8.

28
32

v1
 [

cs
.D

S]
 1

4
A

ug
 2

01
2

Time- and space-efficient evaluation of the complex

exponential function using series expansion

Sergey V. Yakhontov

Ph.D. in Computer Science

Faculty of Mathematics and Mechanics

Saint Petersburg State University

Russian Federation

SergeyV.Yakhontov@gmail.com

Phone: +7-911-966-84-30

14-Aug-2012

Abstract

An algorithm for the evaluation of the complex exponential function is proposed
which is quasi-linear in time and linear in space. This algorithm is based on a
modified binary splitting method for the hypergeometric series and a modified Karat-
suba method for the fast evaluation of the exponential function. The time complexity
of this algorithm is equal to that of the ordinary algorithm for the evaluation of the
exponential function based on the series expansion: O(M(n) log(n)2).

1. Introduction. In this paper we introduce a measure of the space complexity of
calculations on a Schonhage machine [1] and give an upper bound for the time and space
complexity of a proposed algorithm for the computation of the exponential function of
a complex argument in each area |z| ≤ 2p where p is a natural number, p ≥ 0, on the
Schonhage machine.

The Schonhage machine is in fact an ordinary computer. Therefore, we describe an
algorithm which is quasi-linear in time and linear in space on an ordinary computer.
Hence, the phrase ‘fast algorithm’ refers to evaluations on a Schonhage machine. In
particular, the estimate O(n log(n) log log(n)) refers to this machine [1].

Basic information on dyadic rational numbers and constructive real numbers and
functions can be found in [2]. The notation Sch(FQLINTIME//LINSPACE) will
be used for the class of algorithms which are quasi-linear in time and linear in space on
a Schonhage machine. Quasi-linear means that the complexity function is bounded by
O(n log(n)k) for some k.

From now on, n will denote the length of the record of accuracy 2−n of dyadic
rational approximations; x will be used for a real argument, z wiil be used for a complex
argument. We will use log(k) for logarithms base 2.

The basic subject of interest is the algorithms for the evaluation of elementary
functions based on series expansions, as such algorithms are important for practical
computer science due to the relative simplicity of their implementation.

Algorithms for the fast evaluation of the exponential function and some other ele-
mentary functions with a time complexity of O(M(n) log(n)2) are offered in [3] (where
M(n) denotes the complexity of multiplication of n-bit integers); the space used by

1

http://arxiv.org/abs/1208.2832v1

these algorithms is bounded by O(n log(n)), as will be shown below. In [4], algorithms
for the calculation of elementary functions, based on Taylor series, which are quasi-
linear in time are considered; the space used by the algorithms from [4] is bounded by
a quasi-linear function as the classical binary splitting method uses O(n log(n)) space
for the intermediate results.

That is, elementary functions are computable using quasi-linear time and quasi-
linear space. There is a question: whether it is possible to evaluate elementary functions
using quasi-linear in time and linear in space algorithms based on series expansions?

This paper shows that the answer to this question for the complex exponential
function and some other complex elementary functions is Yes. We use the combi-
nation of two algorithms for the construction of an algorithm of complexity class
Sch(FQLINTIME//LINSPACE) for the evaluation of the exponential function:
a modified binary splitting method for the evaluation of the hypergeometric series, and
a modified Karatsuba method [3] for the fast evaluation of the exponential function.

Note that the residual sum of the series (7) satisfies the following inequality:

|Rν(r)| < C2−(r log(r)+m);

here r = m2−ν+1. Therefore, |Rν(r)| = O(2−m log(m)) doesn’t hold, and we cannot get
the result about FLINSPACE computability of exp(x) from this equation.

2. Description of the computation model (machine Schonhage). This
machine, introduced in [1], operates on symbols of the alphabet Σ = {0, 1, . . . , 2λ−1}
and sequences of such symbols (we can take, for example, a constant λ equal to 32).
The machine consists of arrays T0, . . . , Tτ to read and write symbols from Σ, registers
A, B, C, M for arithmetic operations, and a control unit CPU. The arrays are infinite
in both directions. For each array there is a pointer pi to the current symbol written
in the array. The record < p + j > means the symbol referenced by pointer p + j.
There is also an additional register Y which is a pointer to the current operation, and
an optional array S which serves as the stack of recursive calls; S is infinite in one
direction. A bit register E acts as an overflow register for arithmetic operations.

A program for Schonhage consists of several modules written in the language TPAL,
which is similar to an assembly language for a RISC processor. In TPAL there are
commands for loading a symbol written in an array into a register, for reading a symbol
from a register and writing it to an array, for increasing and decreasing the content of
a register, the shift command, the call and return from a procedure commands, the
jump to a label command, and the conditional jump command. Integers on which the
machine operates are encoded as symbol sequences in the alphabet Σ:

a = a0 + a12
λ + a2(2

λ)2 + . . .+ ak−1(2
λ)k−1, 0 ≤ ai ≤ 2λ − 1.

The sign bit is written in the symbol which is before the senior symbol ak−1.
Schonhage can call procedures and perform recursive calls. After the return from a

procedure the memory occupied by the parameters and local variables is released.
The time computational complexity of an algorithm on Schonhage is defined as the

number of instructions in the language TPAL. Arithmetic operations on symbols and
calls of procedures are counted as a constant number of steps. The memory used in an
array during the calculation is defined as the maximum of the number of array elements
involved in the calculation.

As constructive functions are functions that compute approximations of functions
using approximations of arguments, we define the oracle machine Schonhage. This
machine has some oracle functions that compute approximations of arguments; the
machine calculates approximations of a function using these approximations of argu-
ments. A request to an oracle is written in array T0 as the record of an accuracy of

2

the computation; approximations of arguments are recorded in array T0 too. A query
to an oracle is treated as one operation in the time computational complexity of the
oracle machine Schonhage.

Definition 1. The space computational complexity of an algorithm on the oracle ma-

chine Schonhage is defined as the sum of the memory used for all the arrays plus the

maximum of the memory used for the stack.

3. Constructive complex numbers and functions. A complex number z′

such that |z − z′| ≤ 2−n is called an approximation of the complex number z with
accuracy 2−n.

Suppose that there are complex numbers ω = x + iy, ω′ = x′ + iy′ such that
|x− x′| ≤ 2−(n+1) and |y − y′| ≤ 2−(n+1). Then

|ω − ω′| =
√
(x− x′)2 + (y − y′)2 ≤

√
2 · 2−2(n+1) < 2−n. (1)

That is, to calculate an approximation of complex number ω with accuracy 2−n it is
sufficient to calculate an approximation of the real and imaginary parts of the complex
number with accuracy 2−(n+1).

We say that a sequence φ : N → D × D, where φ(n) = (φx(n), φy(n)), D is the
set of dyadic rational numbers, converges dyadic-rationally to the complex number z
if for any n ∈ N the following holds: prec(φx(n)) = n + 2, prec(φy(n)) = n + 2, and
|z(n)−z| ≤ 2−n, where z(n) = φx(n)+iφy(n). The set of all functions φ which converge
dyadic-rationally to a number z is denoted by CFz. A complex number z is called a
CF constructive complex number if CFz contains a computable function φ.

Definition 2. A complex number z ∈ C is called a Sch(FQLINTIME//LINSPACE)
constructive complex number if there exists a function φ ∈ CFz which belongs to the

class Sch(FQLINTIME//LINSPACE).

Let f be a function f(z) : A → C, where A = {z ∈ C : |z| ≤ R} is an area in the
set of complex numbers.

Definition 3. The function f(z) is called a Sch(FQLINTIME//LINSPACE) con-

structive complex function in the area A if for any z from this area there is a function

ψ from CFf(z) which belongs to the class Sch(FQLINTIME//LINSPACE).

Note that to calculate the values of a constructive complex function of the argument
z = x + iy we need to specify functions u(x, y) = Re(f(z)) and v(x, y) = Im(f(z)),
and in order to calculate these functions we need to have two oracle functions that
correspond to the real and imaginary parts of the argument.

4. Binary splitting method. This method is used to calculate the values of
series with rational coefficients, in particular, to calculate the hypergeometric series of
the form

S =
∞∑

i=0

a(i)

b(i)

i∏

j=0

p(j)

q(j)
,

where a, b, p, and q are polynomials with integer coefficients. Linearly convergent
hypergeometric series are used to calculate many constants of analysis and elementary
functions at rational points; this series is linearly convergent if its partial sum

S(µ(k)) =

µ(k)∑

i=0

a(i)

b(i)

i∏

j=0

p(j)

q(j)
, (2)

3

where µ(k) is a linear function of k, differs from the exact value by not more than 2−k:

|S − S(µ(k))| ≤ 2−k.

In its classical variant, the binary splitting method works as follows. Put k1 = µ(k).
We consider the partial sum (2) for some integers i1 and i2, 0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k1,
i1 ≤ i2:

S(i1, i2) =

i2∑

i=i1

a(i)p(i1) . . . p(i)

b(i)q(i1) . . . q(i)
.

We calculate P (i1, i2) = p(i1) . . . p(i2), Q(i1, i2) = q(i1) . . . q(i2), B(i1, i2) = b(i1) . . . b(i2),
and T (i1, i2) = B(i1, i2)Q(i1, i2)S(i1, i2). If i1 = i2 then these values are calculated di-
rectly. Otherwise, the series is divided into two parts, left and right, and P (i1, i2),
Q(i1, i2), and B(i1, i2) are calculated for each part recursively. Then the values ob-
tained are combined:

P (i1, i2) = PlPr, Q(i1, i2) = QlQr, B(i1, i2) = BlBr,

T (i1, i2) = BrQrTl +BlPlTr.
(3)

The algorithm starts with i1 = 0, i2 = k1. After calculating T (0, k1), B(0, k1), and
Q(0, k1), we divide T (0, k1) by B(0, k1)Q(0, k1) to get the result with the given accuracy.
We write out the binary splitting method explicitly.

Algorithm BinSplit.

Approximate value of the partial sum (2) with accuracy 2−k.

Input: Record of accuracy 2−k.
Output: Approximate value of (2) with accuracy 2−k.
Description:

1) k1 := µ(k);

2) [P,Q,B, T] := BinSplitRecurs(0, k1);

3) perform division r := T
BQ

with accuracy 2−k;

4) return result r.

This algorithm uses the following subalgorithm computing recursively the values P ,
Q, B, and T .

Algorithm BinSplitRecurs.

Calculation of P , Q, B, and T .

Input: Bounds i1, i2 of the interval.
Output: Tuple [P (i1, i2), Q(i1, i2), B(i1, i2), T (i1, i2)].
Description:

1) if i1 = i2 then T := a(i1)p(i1) and return tuple [p(i1), q(i1), b(i1), T];

2) imid := i1+i2
2 ;

3) calculate [Pl, Ql, Bl, Tl] := BinSplitRecurs(i1, imid);

4) calculate [Pr, Qr, Br, Tr] := BinSplitRecurs(imid, i2);

5) T := BrQrTl +BlPlTr and return tuple [PlPr, QlQr, BlBr, T].

The lengths of T (0, k1) and B(0, k1)Q(0, k1) are proportional to k log(k); there-
fore the binary splitting method is quasi-linear in space; the time complexity of this
algorithm is O(M(k) log(k)2) [4].

4

5. Karatsuba’s method for fast evaluation of exp(x). We consider the
Taylor series of the real exponential function

exp(x) =

∞∑

i=0

xi

i!
= 1 +

x

1!
+
x2

2!
+ . . .+

xn

n!
+ . . . (4)

at x0, −
1
4 + 2−m < x0 <

1
4 − 2−m. We compute the value of this series with accuracy

2−n3 , n3 > 7, at the dyadic rational point xm, |xm − x0| ≤ 2−m, −1
4 < xm < 1

4 . Let k
be the smallest value such that

n3 + 1 ≤ 2k, m = 2k+1. (5)

We represent xm = ±0.00α3α4 . . . αmαm+1 as

xm = ±0.00α3α4 +±0.0000α5α6α7α8 + . . . +±0.00 . . . 0am−2k+1am−2k+2 . . . αmαm+1 =

=
β2
24

+
β3
28

+
β4
216

+ . . .+
βk+1

2m
= γ2 + γ3 + . . .+ γk+1,

where β2 = ±α3α4, β3 = ±α5α6α7α8, . . ., βk+1 = ±am−2k+1am−2k+2 . . . αmαm+1;
γν = βν2

−2ν , 2 ≤ ν ≤ k+1; βν is a 2ν−1-digit number. We write exp(xm) as a product:

exp(xm) = exp(γ2) exp(γ3) . . . exp(γk+1). (6)

In Karatsuba’s method (FEE method, fast evaluation of the exponent; this method is
also known as the Brent trick [5]) the values exp(γν) are then calculated using a Taylor
series (4):

exp(γν) = 1 +
βν

1!22ν
+

β2ν
2!22·2ν

+ . . .+
βrν

r!2r·2ν
+Rν(r) = ξν +Rν(r); (7)

here r = m2−ν+1. As for the residual sum, the following inequality is satisfied [3]:

|Rν(r)| < 2
|βν |

r+1

(r + 1)! · 2(r+1)2ν
,

then |Rν(r)| < 2−m. The values ξν are obtained from the formulas

ξν =
aν
bν
, aν = ξνbν , bν = r!2r2

ν

,

where the integers aν are computed using a sequential process of grouping members of
the series (7). Note that the formula for bν contains the factorial of r, and r varies from
m2−1 to m2−k. Hence there are values which are proportional to n3!, and therefore the
length of the intermediate results is proportional to n3 log(n3).

6. Modification of the binary splitting method. We will modify the bi-
nary splitting method for the evaluation of the hypergeometric series (7) so that the
calculations are in the class Sch(FQLINTIME//LINSPACE).

We take r = m2−ν+2, k1 = log(r), and r1 = ⌈ r
k1
⌉ (k1 is a natural number), and

write the partial sum of (7) as

P (γν) = σ1 + τ2[σ2 + τ3[σ3 + . . .+ τk1−1[σk1−1 + τk1σk1]]], (8)

5

where

σ1 = 1 +
βν

1!22ν
+

β2ν
2!22·2ν

+ . . .+
βr1−1
ν

(r1 − 1)!2(r1−1)·2ν
,

τ2 =
βr1ν

r1!2r1·2
ν ,

σ2 = 1 +
βν

(r1 + 1)22ν
+

β2ν
(r1 + 1)(r1 + 2)22·2ν

+ . . . +
βr1−1
ν

(r1 + 1) . . . (2r1 − 1)2(r1−1)·2ν
,

τ3 =
βr1ν

(r1 + 1) . . . 2r12r1·2
ν ,

σ3 = 1 +
βν

(2r1 + 1)22ν
+

β2ν
(2r1 + 1)(2r1 + 2)22·2ν

+ . . .+
βr1−1
ν

(2r1 + 1) . . . (3r1 − 1)2(r1−1)·2ν

· · ·

The σt are calculated by the classical binary splitting method for the sum (2), where

µ(k) = r1 − 1, a(i) = 1, b(i) = 1,

p(j) =

{
1 j = 0

βν j 6= 0
, q(j) =

{
1 j = 0

((t− 1)r1 + j)22
ν

j 6= 0
.

(9)

We estimate the computational complexity of the calculation of σt and τt in the
following two lemmas.

Lemma 1. The time complexity of the binary splitting method for the calculation of

σt on the Schonhage machine is bounded above by (r log(r) +m) log(m) log log(m); the

space complexity is bounded above by O(m), where m is given by (5).

Proof. We consider an arbitrary maximal chain of recursive calls derived from the
calculations in accordance with algorithm BinSplitRecurs. We consider pairs (P, i),
(Q, i), (B, i), and (T, i) where i is the number of an element of the chain of recursive
calls and P , Q, B, and T are in the ith element of the chain. We suppose that the
numbering in the chain begins with its deepest element: i = 1, . . . , ς, where ς is the
length of the chain, ς ≤ ⌈log(2r1)⌉.

Using mathematical induction on i, we show that the length of the representation
of T in the pair (T, i) satisfies l(T) < 2il(u) + 2i, where u = r22

ν

. We note that
l(βν) < l(u) since βν is a 2ν−1-digit integer. Next, l(P) < 2il(u), l(Q) < 2il(u) for pairs
(P, i), (Q, i), since increasing i leads to doubling the length; B is always 1.

The induction begins with i = 1: l(T) ≤ l(u) < 21l(u) + 21. This inequality follows
from (9) and the formula T = a(i1)p(i1) for (T, 1). Next, the induction step is

l(T) < 2il(u) + 2il(u) + 2i + 1 ≤ 2i+1l(u) + 2i+1.

This inequality follows from (3): there are two multiplications of numbers of length
2il(u) and 2il(u) + 2i and one addition.

We note that, based on this inequality, T of the pair (T, ς) has length O(m) because

l(T) < C12
ς l(u) ≤ C2

r

log(r)
(log(r) + 2ν) ≤ C2

[
r +

m2−ν+12ν

log(r)

]
≤ C3m.

We estimate the time complexity of the calculation of σt. We must take into account the
property of the complexity of integer multiplication: 2M(2−1m) ≤M(m) (quasi-linear
and polynomial functions satisfy this property). Since at a tree node of recursive calls
at level i there are C4 multiplications of 2ς−i numbers of length at most 2il(u)+2i and

6

h ≤ C log(m), we obtain the following estimate for the number of operations required
to calculate σt:

T ime(σt) ≤ C4

ς∑

i=1

2ς−iM(2il(u) + 2i) ≤ C5

ς∑

i=1

2ς−iM(2i+1l(u))

= C5

ς∑

i=1

2ς−iM(2ς−(ς−(i+1))l(u)) ≤ C6

ς∑

i=1

2ς−i2−ς+(i+1)M(2ς l(u))

≤ C7ςM(2ς l(u)) ≤ C8 log(r)M

(
r +

m

log(r)

)

(here we use the inequality for 2ς l(u) from the estimate of l(T) for the pair (T, ς)). The
final division gives O(M(m)) operations. If we use the Schonhage–Strassen algorithm
for integer multiplication, then

T ime(σt) ≤ C9

(
r +

m

log(r)

)
log(r) log(m) log log(m) =

= C9(r log(r) +m) log(m) log log(m).

(10)

Now we estimate the space complexity of the computation of σt. At an element
of a chain of recursive calls with number i, the amount of memory consumed for the
temporary variables is C10(2

il(u)+2i). Hence, we conclude that the amount of memory
in all the simultaneously existing recursive calls in the chain is estimated as follows:

Space(σt) ≤
ς∑

i=1

C10(2
il(u) + 2i) ≤ C11(2

ς l(u) + 2ς) ≤ C12m = O(m).

Lemma 2. The time complexity of the calculation of τt using binary splitting method

on a Schonhage machine is bounded above by (r log(r)+m) log(m) log log(m); the space

complexity is bounded above by O(m) where m is given by (5).

Proof. The estimates of the computational complexity of τt are the same as those for
σt due to the fact that the inequalities in the proof of Lemma 1 are also suitable for
τt (we can calculate the numerator and denominator of σt using the binary splitting
method for products).

We calculate approximate values P (γν)
∗ with accuracy 2−(m+1) by (8) using the

following iterative process:

h1(m1) = σ∗k1 ,

ĥi(m1) = σ∗k1−i+1 + τ∗k1−i+2hi−1, i = 1, . . . , k1,

hi(m1) = ĥi(m1) + εi;

(11)

for i = k1 we set P (γν)
∗ = hk1(m1). Here m1 ≥ m (m1 will be chosen later), and σ∗i and

τ∗i are approximations of σi and τi with accuracy 2−m1 . The hi(m1) are obtained by

discarding bits qm1+1qm1+2 . . . qm1+j of numbers ĥi(m1) after the binary point starting
with the (m1 + 1)th bit:

|εi| = |hi(m1)− ĥi(m1)| = 0.0 . . . 0qm1+1qm1+2 . . . qm1+j, (12)

and the sign of εi is the same as the sign of ĥi(m1) (it is clear that |εi| < 2−m1).
We note that the accuracy of exp(γν) is 2−m since we compute ξ∗ν = P (γν)

∗ with
accuracy 2−(m+1) and

| exp(γν)
∗ − exp(γν)| ≤ |ξ∗ν − ξν |+ |Rν(r)| < 2−(m+1) + 2−(m+1) = 2−m.

7

Lemma 3. For every i ∈ 1 . . . k1

|hi(m1)| < 2. (13)

Proof. We apply mathematical induction on j for hj(m1) using the estimates

|σi| < exp(γν) <
4

3
, τi < γν

r1 ≤
1

4
.

The induction base for j is j = 1: |h1(m1)| ≤ σk1 + 2−m1 < 2. The induction step for
(j + 1) ≥ 2:

|hj+1(m1)| = |σ∗k1−(j+1)+1 + τ∗k1−(j+1)+2hj + εj+1|

≤
4

3
+

[
1

4
+ 2−m1

]
2 + 2−m1 < 2.

Lemma 4. The error of the calculation of hk1(m1) using the scheme (11) is estimated

to be

∆(k1,m1) < 2−m1+k1 .

Proof. We put

H1 = σk1 , Hi = σk1−i+1 + τk1−i+2Hi−1, η(i,m1) = |hi(m1)−Hi|.

We use mathematical induction for η(j,m1) on j. The induction base for j is 1:

η(1,m1) = |h1(m1)−H1| = |σ∗k1 − σk1 | < 2−m1+1.

The induction step is (j + 1) ≥ 2:

η(j + 1,m1) = |σ∗k1−(j+)+1 + τ∗k1−(j+1)+2hj(m1) + εj+1 − σk1−(j+1)+1 − τk1−(j+1)+2Hj|

< |τ∗υhj(m1)− τυhj(m1) + τυhj(m1)− τυHj|+ 2 · 2−m1

≤ 2−m1hj(m1) + 2−2η(j,m1) + 2 · 2−m1 .

Since (13), |hj(m1)| < 2. By the induction hypothesis, η(j,m1) < 2−m1+j, and so we
get

η(j + 1,m1) < 2 · 2−m1 + 2−22−m1+j + 2 · 2−m1 < 2−m1+(j+1).

From ∆(k1,m1) = η(k1,m1) we now obtain the required inequality.

Lemma 4 implies that it is sufficient to take m1 = 2m + 1 to compute P (γν) with
an accuracy of 2−(m+1).

We denote the algorithm for the calculation of the hypergeometric series using
scheme (11) by RLinSpaceBinSplit (linear space binary splitting).

Algorithm RLinSpaceBinSplit.

The approximate value of the hypergeometric series.

Input: Record of the accuracy 2−m.
Output: The approximate value of (7) with accuracy 2−m.
Description:

1) m1 := 2m+ 1;

8

2) h := σ∗k1 (using the classical binary splitting method with accuracy 2−m1);

3) make a loop through i from 2 to k1:

a) calculate v1 := σ∗k1−i+1 with accuracy 2−m1 using the classical binary splitting
method and v2 := τ∗k1−i+2 with accuracy 2−m1 ,

b) calculate ĥ := v1 + v2h,

c) assign value ĥ to h rounded in accordance with (12);

4) write h on exit.

We estimate the time computational complexity of this algorithm on a Schonhage
machine, taking into account that m dependends linearly on n3:

• log(r) computations of σt give the following (from inequality (10)):

T ime(all(σt)) ≤

log(m)∑

ν=2

C9(r log(r) +m) log(m) log log(m) ≤

≤ C13(m log(m)2 log log(m)) = O(M(n3) log(n3));

• O(log(n3)) computations of τt give O(M(n3) log(n3));

• O(log(n3)) multiplications of numbers of the length O(n3) give O(M(n3) log(n3));

in total we obtain O(M(n3) log(n3)). The space complexity of the modified binary
splitiing method RLinSpaceBinSplit is O(n3) since in all calculations in this algorithm
we process numbers of length O(n3).

Proposition 1. The modified binary splitting algorithm RLinSpaceBinSplit belongs to

the class Sch(FQLINTIME//LINSPACE).

7. Modification of FEE. We construct a modification of the method FEE so
that our calculations are in class Sch(FQLINTIME//LINSPACE).

In the classical algorithm FEE the values exp(xm)∗ are calculated by (6) using
a pairwise summation of the numbers exp(γi)

∗; in FEE we need to keep in memory
O(log(log(n3))) numbers of length O(n3) and, as already mentioned, n3! values are
processed in this algorithm, so it does not have linear space complexity.

We calculate exp(xm)∗ with accuracy 2−n3 using the following iterative process:

h2(m) = exp(γ2)
∗,

ĥi(m) = hi−1(m) exp(γi)
∗, i = 2, . . . , k + 1,

hi(m) = ĥi(m) + εi;

(14)

for i = k + 1 we put exp(xm)∗ = hk+1(m). Here exp(γi)
∗ are approximations for the

values exp(γi) with accuracy 2−m obtained from formula (7). The values hi(m) are
obtained by discarding bits qm+1qm+2 . . . qm+t of the numbers ĥi(m) after the binary
point starting with the (m+ 1)th bit, i.e.,

|εi| = |hi(m)− ĥi(m)| = 0.0 . . . 0qm+1qm+2 . . . qm+t, (15)

and the sign of εi is the same as the sign of ĥi(m) (it is clear that |εi| < 2−m).

Lemma 5. For every i ∈ 2 . . . k + 1

|hi(m)| < 2i−1. (16)

9

Proof. We apply mathematical induction on j for hj(m). The induction base is j = 2:

|h2(m)| ≤ | exp(γ2)|+ 2−m <
3

2
+ 2−16 < 22−1

(here we take into account that |γi| <
1
4 , m ≥ 16). The induction step is (j + 1) ≥ 3:

|hj+1(m)| = |hj(m) exp(γj+1)
∗ + εj+1| < hj(m)(exp(γj+1) + 2−m) + 2−m

< 2j−1

[
3

2
+ 2−m

]
+ 2−m < 2j .

Lemma 6. The error of the calculation of hk+1(m) using scheme (14) is estimated to

be

∆(k + 1,m) < 2−m+2(k+1).

Proof. We put

H2 = exp(γ2), Hi = exp(γ2) exp(γ3) . . . exp(γi), η(i,m) = |hi(m)−Hi|.

We use mathematical induction for η(j,m) on j. The induction base is j = 2:

η(2,m) = |h2(m)−H2| = | exp(γ2)
∗ − exp(γ2)| ≤ 2−m < 2−m+2(1+1).

The induction step is (j + 1) ≥ 3:

η(j + 1,m) = |hj(m) exp(γj+1)
∗ + εj+1 −Hj exp(γj+1)|

< |hj(m) exp(γj+1)
∗ − hj(m) exp(γj+1)+

hj(m) exp(γj+1)−Hj exp(γj+1)|+ 2−m

≤ hj(m)2−m + η(j,m) exp(γj+1) + 2−m.

Since (16), |hj(m)| < 2j−1. Then by the induction hypothesis, η(j,m) < 2−m+2j , and
so we get

η(j + 1,m) < 2j−12−m +
[
2−m+2j

] 3
2
< 2−m+2(j+1).

From ∆(k + 1,m) = η(k + 1,m), we now get the required inequality.

Lemma 6 implies that the accuracy 2−m of the calculation of exp(γi)
∗ is sufficient

to calculate exp(xm)∗ with accuracy 2−n3 , since

−m+ 2(k + 1) ≤ −n3 ⇒ 2k+1 − 2(k + 1) ≥ n3 and

2k+1 − 2(k + 1) > 2k+12−1 = 2k ≥ n3 + 1

(here we recall that n3 + 1 ≤ 2k).
We denote the algorithm of the calculation of the real exponential function using

scheme (14) by RLinSpaceFEE (linear space fast exponential evaluation).

10

Algorithm RLinSpaceFEE.

The approximate value of the real exponential function on the interval[
−1

8
, 1
8

]
.

Input: Record of the accuracy 2−n3 .
Output: The approximate value exp(x) with accuracy 2−n3 .
Oracles: φx.
Description:

1) h := exp(γ2)
∗ (using algorithm RLinSpaceBinSplit with accuracy 2−m);

2) make a loop through i from 3 to k + 1:

a) calculate v1 := exp(γi)
∗ using algorithm RLinSpaceBinSplit with accuracy

2−m,

b) calculate ĥ := h · v1,

c) assign the value ĥ to h rounded in accordance with (15);

3) write h on exit.

The time complexity of this algorithm on a Schonhage is O(M(n3) log(n3)
2) as

the algorithm of the calculation of the hypergeometric series RLinSpaceBinSplit uses
O(M(n3) log(n3)) operations, and in scheme (14) there are O(log(n3)) such calculations
and O(log(n3)) multiplications of numbers of the length O(n3); the space complexity
of RLinSpaceFEE is O(n3) since in all the calculations in this algorithm numbers of
length O(n3) are used.

Proposition 2. The modified FEE algorithm RLinSpaceFEE for the calculation of the

exponential function belongs to the class Sch(FQLINTIME//LINSPACE).

9. Calculation of the real function exp(x). Let p be a positive integer, p ≥ 0.
We compute the function exp(x) with accuracy 2−n in the interval [−2p, 2p].

We perform the multiplicative reduction of the interval of the complex argument.
Namely, we take an integer s = 2p+3 and x′ = x

s
; then |x′| = |x|

s
, i.e., x′ is in the interval

[−2−3 ≤ x′ ≤ 2−3]. Thus the calculation of exp(x) is reduced to the computation of
exp(x′) and then we raise this value to the power s to get the result. It is easy to see
that the dependency function for n1 of the accuracy of exp(x′) is n1 = L(n) + C(p),
where L(n) is a linear function of n, and C(p) is a constant which is independent of p
(constant in the sense that it doesn’t depend on n).

Put m ≥ n1 + 3. We then have: xm = x0 + θ12
−m, |θ1| ≤ 1; |x0| ≤ 2−3, and

| exp(x0)− exp(xm)| = | exp(x0)− exp(x0) exp(θ12
−m)| = exp(x0)|1 − exp(θ12

−m)|.

Since exp(θ12
−m) < 1

1−2−m , | exp(θ12
−m) − 1| < 2−m

1−2−m < 2−m+1. Therefore we have
the estimate

| exp(x0)− exp(xm)| < 2 · 2−m+1 = 2−m+2 ≤ 2−(n1+1),

which shows provided the accuracy of the calculation of xm is better than 2−(n1+3),
then one achieves an accuracy 2−n2 , n2 = n1 + 1 for exp(x0). Since m = 2k+1, this
condition is satisfied.

Now we need to keep in mind that we calculate the approximate value of exp(xm)∗.
If this approximation is calculated with accuracy 2−n3 , n3 = n1 + 1, then

| exp(x0)− exp(xm)∗| ≤ | exp(x0)− exp(xm)|+ | exp(xm)− exp(xm)∗|

< 2−(n1+1) + 2−(n1+1) = 2−n1 .

This implies that we can take n3 = n1 + 1 in algorithm RLinSpaceFEE.
We are now ready to describe the algorithm.

11

Algorithm RLinSpaceExpValue.

The approximate value of the complex exponential function.

Input: Record of the accuracy 2−n.
Output: The approximate value exp(z) with accuracy 2−n.
Parameters: φx for the argument x.
Oracles: Constant p.
Description:

1) n1 := L(n) + C(p);

2) n3 := n1 + 1;

3) calculate k, m so that (5) holds;

4) p1 := p+ 3

5) s := 2p1 ;

6) compute x∗ := φx(max(1,m− p1));

7) perform the reduction of the interval: (x∗)′ = x∗

s
(the accuracy of the arguments

will be 2−m);

8) using algorithm RLinSpaceFEE, calculate v := exp(x∗)∗ with accuracy 2−n3 ;

9) write complex number vs to the output.

The properties of algorithms TLinSpaceBinSplit and TLinSpaceFEE allow us assert the
following propositions.

Proposition 3. Algorithm RLinSpaceExpValue of the calculation of the complex expo-

nential function belongs to the class Sch(FQLINTIME//LINSPACE).

The estimates of the computational complexity of algorithm RLinSpaceExpValue on
the Schonhage machine are the same as those for algorithm RLinSpaceFEE: that is,
the time complexity is O(M(n3) log(n3)

2) and the space complexity is O(n3). If we use
the Schonhage–Strassen algorithm for integer multiplication, then the time complexity
of algorithm RLinSpaceExpValue is bounded above by O(n3 log(n3)

3 log log(n3)).

Proposition 4. The real function exp(x) is a Sch(FQLINTIME//LINSPACE)
constructive real function in any interval [−2p, 2p].

8. Calculation of the function exp(i · y). It is easy to show that all the
algorithms, lemmas, and estimates can be formulated for the evaluation of the function
exp(i · y).

1. Calculate (2), where p(j) = i · preal(j); P , Q, B are integers, and T is complex.
The estimates of the computational complexity are the same as the estimates in
Lemmas 1 and 2. The hi(m) are obtained by discarding bits qm1+2qm1+3 . . . qm1+j

of the numbers ĥi(m1) after the binary point starting with the (m1 + 2)th bit.
Lemmas 3 and ?? are true for the new scheme. Algorithm CLinSpaceBinSplit is
the same as RLinSpaceFEE.

2. In the FEE method, we calculate

exp(i · xm) = exp(i · γ2) exp(i · γ3) . . . exp(i · γk+1).

The estimate for |Rν(r)| is the same as that for exp(x), that is, the series Eq :
RealExp : GammaNuSeries converges linearly for exp(i · y).

3. In the formulas for σi and τi, we use i ·βν and we use algorithm CLinSpaceBinSplit

for the computation of P (i · γν)
∗.

12

4. In the scheme for the computation of P (i · γν)
∗, the hi(m) are obtained by dis-

carding bits qm1+2qm1+3 . . . qm1+j of the numbers ĥi(m1) after the binary point
starting with the (m1 + 2)th bit; Lemmas 5 and 5 are true for the new scheme;
algorithm CLinSpaceFEE is the same as RLinSpaceFEE.

Denote the algorithm for the computation of exp(i · y) by CLinSpaceExpValue.

9. Calculation of the complex function exp(z). Let p be a positive integer,
p ≥ 0. We compute the function exp(z) with accuracy 2−n in the area |z| ≤ 2p (we
have |x| ≤ 2p, |y| ≤ 2p).

We perform the multiplicative reduction of the interval of the complex argument.
Namely, we take an integer s = 2p+3 and z′ = z

s
; then |z′| = |z|

s
, i.e., z′ is in the area

|z′| ≤ 2−3 and both |x| ≤ 2−3 and |y| ≤ 2−3. Thus the calculation of exp(z) is reduced
to the computation of exp(z′) and then we raise this value to the power s to get the
result. It is easy to see that the dependency function for n1 of the accuracy of exp(z′)
is n1 = L(n)+C(p), where L(n) is a linear function of n, and C(p) is a constant which
is independent of p (constant in the sense that it doesn’t depend on n).

Next we consider the function exp(z) in the area |z| ≤ 2−3. Put ζx = exp(x) and
ζy = exp(i · y). According to (1), we need to calculate ζx and ζy with accuracies of
2−n2 , n2 = n1+1 respectively, in order to calculate exp(z) with an accuracy of 2−n1+1.

Put m ≥ n1 + 3. We have the following: xm = x0 + θ12
−m, |θ1| ≤ 1; at that

|x0| ≤ 2−3 and

| exp(x0)− exp(xm)| = | exp(x0)− exp(x0) exp(θ12
−m)| = exp(x0)|1 − exp(θ12

−m)|.

Since exp(θ12
−m) < 1

1−2−m , | exp(θ12
−m) − 1| < 2−m

1−2−m < 2−m+1, and therefore we
have the estimate

| exp(x0)− exp(xm)| < 2 · 2−m+1 = 2−m+2 ≤ 2−(n1+1),

which shows that if accuracy of the calculation of xm is better than 2−(n1+3), then
one achieves an accuracy of 2−(n1+1) for exp(x0). Since m = 2k+1, this condition is
satisfied. A similar estimate can be obtained for | exp(i · y0)− exp(i · ym)|.

Now we need to keep in mind that we calculate the approximate value of exp(zm)∗.
If this approximation is calculated with accuracy 2−n3 , n3 = n1 + 1, then

| exp(z0)− exp(zm)∗| ≤ | exp(z0)− exp(zm)|+ | exp(zm)− exp(zm)∗|

< 2−(n1+1) + 2−(n1+1) = 2−n1 .

This implies that we can take n3 = n1+1 in algorithms RLinSpaceFEE and CLinSpace-

FEE.
We are now ready to describe the basic algorithm.

Algorithm LinSpaceExpValue.

The approximate value of the complex exponential function.

Input: Record of the accuracy 2−n.
Output: The approximate value exp(z) with accuracy 2−n.
Parameters: φx and φy for the argument z = x+ iy.
Oracles: Constant p.
Description:

1) n1 := L(n) + C(p);

2) n3 := n1 + 1;

13

3) calculate k, m so that (5) holds;

4) p1 := p+ 3

5) s := 2p1 ;

6) compute x∗ := φx(max(1,m− p1)), y
∗ := φy(max(1,m− p1));

7) perform the reduction of the interval: (x∗)′ = x∗

s
, (y∗)′ = y∗

s
(the accuracy of the

arguments will be 2−m);

8) using algorithm RLinSpaceFEE, calculate v1 := ζ∗x with accuracy 2−n3 ; using
algorithm CLinSpaceFEE, calculate v2 := ζ∗y ; here the arguments are (x∗)′, (y∗)′;

9) write to the output the complex number (v1 + i · v2)
s.

The properties of algorithms RLinSpaceBinSplit, RLinSpaceFEE, CLinSpaceBinSplit,
and CLinSpaceFEE allow us to assert the following propositions.

Proposition 5. Algorithm CLinSpaceExpValue of the calculation of the complex expo-

nential function belongs to the class Sch(FQLINTIME//LINSPACE).

The estimates of the computational complexity of algorithm CLinSpaceExpValue

on a Schonhage machine are the same as those of algorithms RLinSpaceFEE and
CLinSpaceFEE; that is, the time complexity is O(M(n3) log(n3)

2) and the space com-
plexity is O(n3). If we use the Schonhage–Strassen algorithm for integer multiplica-
tion, then the time complexity of algorithm CLinSpaceExpValue is bounded above by
O(n3 log(n3)

3 log log(n3)).

Theorem 1. The complex function exp(z) is a Sch(FQLINTIME//LINSPACE)
constructive complex function in any area |z| ≤ 2p.

10. Computation of the complex functions sin(z), cos(z), sh(z), ch(z).
Based on the formulas for the trigonometric functions

sin(z) =
eiz − e−iz

2i
= i

eiz − e−iz

−2
, cos(z) =

eiz + e−iz

2
,

we obtain the following:

Proposition 6. The complex function sin(z) is a Sch(FQLINTIME//LINSPACE)
constructive complex function in any area |z| ≤ 2p.

Proposition 7. The complex function cos(z) is a Sch(FQLINTIME//LINSPACE)
constructive complex function in any area |z| ≤ 2p.

The following two propositions also follow directly from the formulas for the hyper-
bolic sine and cosine:

sh(z) =
ez − e−z

2
, ch(x) =

ez + e−z

2
.

Proposition 8. The complex function sh(z) is a Sch(FQLINTIME//LINSPACE)
constructive complex function in any area |z| ≤ 2p.

Proposition 9. The complex function ch(z) is a Sch(FQLINTIME//LINSPACE)
constructive complex function in any area |z| ≤ 2p.

14

11. Conclusion. Constructed algorithm CLinSpaceExpValue can be used in com-
puter science as the basis of the Sch(FQLINTIME//LINSPACE) constructive com-
plex functions exp(z), sin(z), cos(z), sh(z), ch(z), defined on the set of Sch(FQLINTI-
ME//LINSPACE) constructive complex numbers.

Note also that if we use a simple recursive method for integer multiplication with
time complexity O(nlog(3)), then the time complexity of algorithm CLinSpaceExpValue

is O(nlog(3) log(n)2).
As future research plans, we could note the problem of the construction of algo-

rithms based on series expansions for the Sch(FQLINTIME//LINSPACE) com-
putable analogues of other elementary functions as well as the importance of the prob-
ably more difficult problem of the construction of computable analogues of elementary
functions (also based on algorithms that use series expansions) with a time complexity
of O(n log(n)k), k ≤ 3, and with linear space complexity.

References

[1] Schonhage A., Grotefeld A. F. W, Vetter E. Fast Algorithms. A Multitape Turing

Machine Implementation. // Germany: Brockhaus, 1994.

[2] Ko K. Complexity Theory of Real Functions. // Boston: Birkhauser, 1991.

[3] Karatsuba E. A. “Fast evaluation of transcendental functions.” // Problems of

Information Transmission. Vol. 27, Issue 4, 1991. pp. 76–99. (in Russian).

[4] Haible B., Papanikolaou T. Fast multiple-presicion evaluation of series of rational
numbers. // Proc. of the Third Intern. Symposium on Algorithmic Number Theory.

June 21–25, 1998. pp. 338–350.

15

