
Time- and Space-Optimality in B-Trees 

ARNOLD L. ROSENBERG 

IBM Thomas J. Watson Research Center 

and 

LAWRENCE SNYDER 

Yale University 

A B-tree is compact if it is minimal in number of nodes, hence has optimal space utilization, among 

equally capacious B-trees of the same order. The space utilization of compact B-trees is analyzed and 

compared with that of noncompact B-trees and with (node)-visit-optimal B-trees, which minimize the 

expected number of nodes visited per key access. Compact B-trees can be as much as a factor of 2.5 

more space efficient than visit-optimal B-trees; and the node-visit cost of a compact tree is never 

more than 1 + the node-visit cost of an optimal tree. The utility of initializing a B-tree to be compact 

(which initialization can be done in time linear in the number of keys if the keys are presorted) is 

demonstrated by comparing the space utilization of a compact tree that has been augmented by 

random insertions with that of a tree that has been grown entirely by random insertions. Even after 

increasing the number of keys by a modest amount, the effects of compact initialization are still felt. 

Once the tree has grown so large that these effects are no longer discernible, the tree can be 

expeditiously compacted in place using an algorithm presented here; and the benefits of compactness 

resume. 
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1. INTRODUCTION 

The B-tree data structure of Bayer and McCreight [l, 3, Sect. 6.2.41 is an effective 
method of organizing an external file when the operations of searching, insertion, 
and deletion must be supported since these operations on B-trees require time at 
most logarithmic in the size of the file. This logarithmic performance is achievable 
[6] because the B-tree definition is underconstrained: One file has numerous legal 

B-tree representations. Specifically, a finite rooted tree must satisfy two condi- 
tions to be a B-tree of order M. 
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Colt&ion 1. Each internal node must have at least [M/2] descendants (except 
the root which can have as few as two) and at most M descendants. 

Condition 2. All root-to-leaf paths must be of equal length. 

To illustrate that these conditions do not constrain B-trees to a unique 
structure, let Yf denote the set of all order M B-trees with a capacity of 12 keys. 
Then ST6 contains 10 (structurally) distinct B-trees of order 3 (also called 2,3- 
trees) each capable of containing 15 keys. Figure 1 exhibits these 10 trees. 

The main purpose of this paper is to characterize the optimally space-efficient 

trees in the forest Ff”. Space is measu red by the total number of internal nodes. 

(The leaves may be ignored since all trees in S;l” have k + 1 leaves.) Our use of 
the number of internal nodes as a cost measure for externally stored B-trees is 

motivated by the usual policy of allocating for each node a fixed-size block of 
storage (page, track, etc.) capable of holding the maximum of M descendant 
pointers and M - 1 keys. Should a node actually have fewer than the maximum 

descendants and keys, then the remaining space is unused, and therefore, wasted. 
Thus for a given number of keys, fewer internal nodes imply a greater average 
number of keys per node and hence less wasted space. Table I illustrates this 
point for the trees of 5%. 

A second purpose of this paper is to measure the time performance of space- 
minimal trees and the space utilization of time-efficient trees in Yf. Time costs 
are measured by the expected root-to-key path length for equally likely keys. 
This measure was used in [4] where it was called “node-v&t cost.” It is motivated 
by the fact that external reference to a node usually requires an expensive disk 

fetch. Thus a smaller number of nodes visited to reference an arbitrarily selected 
key, implies a smaller expected searching time. See Table I for the node-visit 
costs of elements S&. 

It is evident from Table I that in S$ no single 15-key tree minimizes both 
space and time costs, although for other numbers of keys it does occasionally 
happen. In general, as Table I suggests, there is a trade-off between time and 
space. Our study of this trade-off indicates that 

space-optimal trees are nearly time optimal, but 
(*) 

time-optimal trees are nearly space pessimal. 

Thus the trade-off is strongly biased in favor of space-minimizing B-trees. This 
observation is important because a “heuristic” has, we are told, gained reasonably 
wide acceptance among B-tree users1 as a means of constructing “better” B-trees: 
Keep the nodes near the root filled, “thereby increasing the branching degree of 
the nodes near the root, where a high branching degree is most beneficial” [2, 
p. 131. In light of (*), this “heuristic” is of dubious merit if not wrong, since 
keeping nodes near the root filled reduces space efficiency. 

Although any element of Yf might be created during the dynamic operation 
of the B-tree algorithms, we can arrange matters so that the more efficient trees 
are more likely to be chosen. This is accomplished by acknowledging certain 
pragmatic considerations in the use of B-trees. For example, very large B-trees 

I Private communication. 
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Fig. 1. The ten structurally distinct B-trees of.F&, 
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Table I. Comparison of Time and Space 
Costa for Trees of Figure 1 

Tree from Time cost Space cost 

Figure 1 (node visit) (internal nodes) 

(a) 3.27 15 

b) 2.60 9 

(4 2.60 9 

(d) 2.53 10 

(e) 2.53 10 

(0 2.47 11 
k) 2.47 11 

(h) 2.47 11 

(9 2.47 11 

W 2.40 12 

are often quite stable, tending to change only by a small percentage each day. 
Furthermore, B-tree files are periodically “backed up” for error recovery or 
archival purposes. These two considerations suggest that if the tree were com- 
pactified, i.e., made space minimal, during a daily “backup” operation, then the 
benefits indicated by (*) would be realized at the beginning of each day. As the 
tree is modified, the magnitude of the benefits would diminish as the insertions 
and deletions cause it to depart further and further from its compact profile. But 
by our assumption of only modest modifications in a given day, this decay would 
not be rapid. 

To implement this approach, we present a linear time (in the size of the file) 

in-place compactification algorithm. We also give an analysis of the expected 
departure from optimal performance of a compact tree as a function of the 
number of random insertions into that compact tree. From the analysis and a few 
statistics about the use of a B-tree, one can easily compute the benefits of the 
“compactify during backup” approach. 

This paper is organized as follows: Section 2 of the paper gives a characteriza- 
tion of space- and time-minimal B-trees, Section 3 an analysis of time/space 
trade-offs, Section 4 an analysis of the “rate of decay” of a compact tree under 
random insertions, Section 5 an in place-compactification algorithm, and Section 
6 a summary and discussion. 

2. CHARACTERIZATIONS OF SPACE- AND TIME-MINIMAL 
B-TREES 

Given the use of B-trees as search trees, one can identify at least three natural 
measures of the efficiency of a B-tree, namely, the expected number of nodes 
visited per access, the expected number of key comparisons per access, and the 
space requirements of the tree. The node-visit cost of B-trees is studied at some 
length in [4], where the visit-optimal B-trees are characterized. The comparison 
cost of 2,3-trees is studied in [5], where the comparison-optimal trees are char- 
acterized and are compared with their visit-optimal forest mates. This section is 
devoted to studying the space cost of B-trees and to reviewing the results from 
[4] on the time cost of B-trees. 

An order M B-tree (M L 3, an integer) is a finite, rooted tree satisfying 

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 
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Conditions 1 and 2 from Section 1. The maximum degree of a node is M, we 

denote the minimum degree by M = [M/2]. The root of a B-tree is said to be at 
level 0 of the tree, and, in general, the sons of a level 1 node are said to reside at 
level 1 + 1. The (common) level of the tree’s leaves is the depth of the tree. (Recall 
‘from the introduction that the number of leaves equals the key capacity plus 
one.) 

An order M B-tree is used as a search tree by loading its nonleaf nodes with 
keys from a totally ordered set in such a way that (a) each s-son node contains 
s - 1 keys; and (b) if the s-son node N contains keys 

kl<kz< . . . <KS-l, 

then for 1 < i < s 

k1 > (all keys in subtree 1 of IV), 

kSP1 < (all keys in subtree s of IV), 

ki-1 < (all keys in subtree i of IV) < ki. 

Knuth [3, Sect. 6.2.41 describes in some detail procedures for accessing, inserting, 
and deleting keys in an order M B-tree in time bounded above by a small multiple 

of log,(number of keys in 7’). 
Two descriptors of B-trees will facilitate the following exposition. The profile 

of a depth d B-tree T E Sf;” is a length d + 1 integer sequence 

II(T) = ~0, VI, . . . , vd 

where each VI is the number of nodes at level 1 of T. Thus vo = 1 and Vd = k + 1. 
The detailed profile of T is the length d sequence of integer (M - 1)-tuples 

A(T) = (a&u& . . . , af), . . . , (&I, &, . . . , a&) 

where each us is the number of s-son nodes at level 1 of T. Note that if 1 I 1, all 
al = 0 for s < m. These notions and the notation for them originate in [4]. 

We now define precisely the costs to be studied. For an order M B-tree T with 
profile 

I-I(T) = ~‘0,. . . , Z’d 

the node-number cost of T is 

NNCOST(T) = iTd vi. c-m 

This is clearly the “space” cost referred to informally. We measure space efficiency 
by the node utilization 

v,j - 1 

NU(T) = (M - 1) NNCOST(T) ’ 
(2.2) 

The node utilization, NU, which never exceeds 1, gives the expected proportion 
of a node that contains keys. From the definition it is clear that a space-minimal 
tree T may not have NU( T) = 1 since some space may be wasted simply to honor 
the “equal path length” condition (Condition 2 from Section 1) on B-trees. 
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Next we define the “time” cost measure to be used. The node-visit cost of a 
B-tree Tin SF with detailed profile 

A(T) = (a;, . . . , af), . . . , (d-1,. . .,&I) 

is 

NVCOST(T) = xOsl<d ~2sssM (1 + l)(s - l)d 

k 
(2.3 

Clearly, 

NVCOST(T) = (expected number of nodes visited when accessing a key in T). 

Although the presented definition of node-visit cost is intuitively appealing, we 
prefer the following less perspicuous but more useful definition. 

PROPOSITION 2.1 [4]. The node-visit cost of the B-tree T with profile II(T) = 
‘vo, . . . , vd is precisely 

NVCOST(T) = dvdv; ,i;d vi. 

Having completed the definitions, we are now ready to characterize the space- 
and time-minimal trees. It is convenient for comparison purposes to characterize 

the space- and time-maximal trees as well. These trees are referred to by the 
names 

compact: node-number cost minimal, 
sparse: node-number cost maximal, 
bushy: node-visit cost minimal [4]; 

scrawny: node-visit cost maximal [4]. 

THEOREM 2.2. An order MB-tree T with profile II(T) = vo, . . . , Vd minimizes 
NNCOST over all elements of SF if and only if for 0 5 I< d, v1 = [v~+~/M]; T 
maximizes NNCOST over all elements of Ff if and only if for 0 5 I< d, vl = 
m-&l, Ln+dml). 

PROOF. To minimize (respectively, maximize) NNCOST( T), it is necessary to 
minimize (respectively, maximize) C &dV[ of T, which is equivalent, in turn, to 
maximizing (respectively, minimizing) the branching ratios of T’s nodes. The 
indicated profiles accomplish the desired shaping. Cl 

COROLLARY 2.3. IfI”I(T) = vo, . . . , trd is the profile of a compact B-tree, then 
d = rlogM Vdl; if it iS theprofile of a sparse B-tree, then d = LkIgrn(Vd/2)~ + 1. 

Thus compact B-trees are as “shallow” as possible for their size, while the 
sparse B-trees are as “deep” as possible for their size. (For sparse B-trees, the 
maximum depth is not Llog, Vdj as might be expected because the root is allowed 
to be binary.) 

Using Proposition 2.1, among other facts about node-visit costs, the following 
computationally attractive characterization of visit-optimal and visit-pessimal 
B-trees was established. 
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Table II. Characteristics of the Optimal and 

Pessimal B-Trees 

Depth 

Minimum Maximum 

Fullest nodes near to 

Root bushy sparse 

Leaves compact scrawny 

THEOREM 2.4 [4]. The order M B-tree T with profile II(T) = VO, . . . , Vd has 
minimal NVCOST over all trees in Y? if and only if d = [logM vd] and VI = 
min(M’, [vl+l/mj) for 0 5 I< d; T has maximal NVCOST over all trees inY$? 
if and only if d = [log,(vd/2)] + 1, v. = 1, v1 = 2, and VI = max(m’, rv~+~/M]). 

Notice that both bushy and compact B-trees have a lot of M-ary nodes; but 
bushy trees have these nodes concentrated as close to the root as possible; while 
compact trees have them concentrated as close to the leaves as possible. This 
difference is restated in the following less constructive but no less illuminating 
characterization of bushy B-trees, whose proof is direct from Proposition 2.1 and 
Theorem 2.4. 

PROPOSITION 2.5. The B-tree T in Yf has minimal NVCOST over the class 
if and only if T is minimal in depth and, for that depth, maximal in number of 
nonleaf nodes. 

Scrawny trees also have their M-ary nodes concentrated near the leaves, but 
unlike compact trees, they must have maximal depth. Sparse trees have their 
“fullest” nodes as near the root as possible, but as the following easily proved 
proposition indicates, they are so rare that it is difficult to say where they are 

concentrated. 

PROPOSITION 2.6. Let T be a maximal NNCOST B-tree in F-nd. If M is even, 
then T has no M-ary nodes. If M is odd, then T has at most one M-ary node per 
level. 

This classification is summarized in Table II. 
Our main interest, of course, is in the space- and time-minimal trees. Occasion- 

ally, the depth requirement is so restrictive that the two notions actually coincide. 

FACT 2.7. For all sufficiently large k, there is a B-tree in Yf that is both visit- 
optimal and space-optimal precisely when Md - M < k + 1 I Md. “Sufficiently 
large” here means k + 1~ 4M when M is even, and k + 1~ 4M( 1 + 2/(M - 2)) 
when M is odd. 

PROOF. By direct calculation using the profile-oriented characterization of the 
two notions of optimality. Cl 

Thus the two notions of optimality coincide very infrequently. The major 
thrust of the next section is to determine how much they differ the rest of the 
time. 
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3. SPACE AND TIME COMPARISONS 

In this section we establish time and space bounds on the advantage derivative 
from the use of optimal B-trees-both bushy and compact. First we set forth the 
obvious limits within which the space utilization of B-trees can vary. 

PROPOSITION 3.1. As k + m, 

(a) for space-optimal order M B-trees, 

NU(T) - 1; 

(b) for space-pessimal k-key order M B-trees, 

m-l 
NU(T) -M-l; 

(c) for “random” k-key order M B-trees, and fixed, large M, 

NU(T) = log, 2 =: 0.69. 

PROOF. (a) and (b) by direct calculation from (2.2); (c) see [7]. 0 

PROPOSITION 3.2. Let TO, TP, and T, be respectively, space-optimal, space- 
pessimal, and “random” (in Yao’s sense) trees from SF. Then asympotically 
(ask + m), 

(a) for M even, 

NUT,) - (2 + $+JKJ; 

(b) for M odd, 

NU(T,) - 2+NU(T,J; 

(c) for large fixed M, 

NU(T,) =: 1.45.NU(T,.). 

Hence the space-optimal trees use their nodes between two (at odd M) and 

three (at M = 4) times more efficiently as do their space-pessimal forest mates. 
For the sake of completeness it should be noted that these asymptotics take hold 
at rather modest values of k, as Table III indicates. 

One might argue, with some justification, that the bounds of Proposition 3.2 
are only of academic value in that the pessimal trees are arbores non gratae in 
the context of large trees and, it is to be hoped, will never occur. (One should 
note, however, that these trees are very often minimal in number of comparisons 
per expected access [5].) In light of this criticism, we also investigate the 
disparities in space utilization between compact and bushy trees. We find these 
disparities to be only marginally less than the ones just exhibited. 

THEOREM 3.3. Let Tb be a space-pessimal element of all visit-optimal 

* We use the word “random” here in the same sense as Yao [7]: The tree is grown from the empty tree 
by a sequence of k insertions, with each insertion equally likely to fall between any pair of the already- 
inserted keys or to either side of these keys. 
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Table III 

B-tree Optimal profile II(T) Pessimal profile II ( T) 

Pessimal NNCOST 

Optimal NNCOST 

M=3,k=127 1, 2, 5, 15, 43, 128 1, 2, 4, 8, 16, 32, 64, 128 127/66 > 1.9 

M=4,k=15 1, 4, 16 1, 2, 4, 8, 16 3 

(i.el, bushy) trees in SF and T, a compact tree in SF. Then asymptotically 
(ask + m), 

(a) for M even, 

M2 

M-2 (M-2)M’OgM 
*NU(Tb); 

(b) for M odd, 

iVU(T,) 2 (2 + Ml-” - 2’+‘(M + l)‘)*NU(Tb); 

where 

Hence, the space-optimal trees use their nodes between 18 (at M = 3) and 23 
(at M = 4) times as efficiently as do their visit-optimal forest mates. 

PROOF. Let Tb be a visit-optimal n-leaf order M B-tree with profile 

vo, Vl, . . . , V&l, Vd = n. 

By Theorem 2.4, n lies in the range 

Md-’ + 1 I n I Md. (3.1) 

We shall compute NU(Tb) by using Lemma A in the appendix to compute the 
number xi<& of nonleaf nodes of TL,. 

(a) Say first that M is even. Let 

I = log2 n + (1 - log2 M)d. 

By Lemma A, those levels of Tb numbered less than I contribute (M’ - l)/ 
(M - 1) nonleaf nodes, and those levels of Tb numbered 1 to d - 1 contribute 

nonleaf nodes, where 0 P 01 5 1. Now, since n lies in the range (3.1), the ratio of 
the number of nonleaf nodes of TI, to n, hence to the number of keys in Tb, is 
maximized (thus minimizing NU(Tb)) when n = Md-’ + 1. In this case we find 
that Tb has 

( & - (M _ ct _ 2) M-logM) n + o(n) (3.2) 
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nonleaf nodes. One now invokes Proposition 3.1 and definition (2.1) to complete 
the proof for the case of even M. 

(b) When M is odd, one proceeds via a similar chain of reasoning, except that 
one must now be satisfied with asymptotic inequalities. Let 

z _ logz n + (1 - log,(M + l))d 

log2(2M/(M + 1)) ’ 

By Lemma A, the number of nonleaf nodes of Tt, residing on levels 0 through 
I - 1 is given by (M’ - l)/(M - 1) and the number residing on level I through 

d- lis 

for some 0 I (Y I 1. Now as in the case of even M, one verifies easily that NU( Tt,) 
is minimized when n = Md-’ + 1. In this case we find that Tb has at least 

nonleaf nodes, where 

log M 

log(2M/(M + 1)) 

Once again, we invoke definition (2.1) and Proposition 3.1 to derive the desired 
ratio and complete the proof of the theorem. Cl 

From Theorem 3.3 the reader can easily compute the node utilization cost of 
bushy trees for comparison with Proposition 3.1. However, the resulting equations 
are not likely to be perspicuous. Therefore, we illustrate some sample trees that 
may be more enlightening. 

For M = 3, the most benign of the orders since its bushy trees waste the least 
space, we have a bushy 312-key tree with profile 

II = 1,3,9, 27,81,243, 729, 2187,6561, 19683, 59049, 132860, 265721, 531442 

and 

NU(Z’b) = 0.545455. 

The compact tree with 312-key capacity has profile 

II = 1,2,4,10,28,82,244,730,2188,6562, 19684, 59050,177148,531442 

and 

NU(T,) = 0.99995. 

Thus there is a premium of 1.8332 which is rather close to the asymptotic value 

of lg. 
For M = 4, the most malevolent of orders, a visit-optimal B-tree with 4” keys 

has the profile 
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Table IV 

Order Leaves 

Premium 

asd+m 

3+’ + 1 15 

M=3 4.3+2 11 
2.3+1 II 

qd-’ + 1 ‘4 
M=4 2 .qd-’ 2 

3.4d-’ 11 

II(T,,) = 1,4, 16,64,256,1024,4096, 16384,65536,262144,524288,1048577 

and 

Nu(Tt,) = 0.4000002. 

The compact tree of order 4 has profile 

l-I(T,) = 1,2,5, 17, 65,257, 1025,4097,16385, 65537, 262145, 1048577 

and 

NU(T,) = 0.99997. 

The ratio is thus 2.4999 which approaches the asymptotic value of 2.5. 
Although our comparison results have emphasized the cases most favorable to 

space minimahty, Table IV illustrates that the situation arises throughout Ff. 
To complete the comparison, we next consider the node-visit cost of bushy and 

compact trees. 

PROPOSITION 3.4. Let Tb be a bushy order M B-tree and let T, be a compact 
order M B-tree each with n leaves. As n + M, 

NVCosT(Tb) 2 rk@ nl - j&+ (M- ;;- 2)“-‘“gM 

1 
NVCOST(T,) - [logs n1 - -. 

M-l 

In particular, independent of M, as n + co, 

NVCOST(T,) - NVCOST(Tt,) = 1. 

PROOF. The bound on NVCOST(Tb) is immediate by Proposition 2.1 and the 
derivation, in the proof of Theorem 3.3, of the expression (3.2) for the number of 
nonleaf nodes in an even order B-tree. The expression for NVCOST( TJ follows 
directly from Propositions 2.1 and 2.4. Cl 

Both visit-optimal and space-optimal B-trees have minimum depth for a given 
number of keys (Corollary 2.3 and Theorem 2.4, respectively); however, given 
this depth, the visit-optimal trees are maximal in the number of nonleaf nodes 
(Propositions 2.1 and 2.5), while the space-optimal trees are minimal in the 
number of nonleaf nodes (definition (2.1)). What has emerged in this section is 
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that, notwithstanding their minimal depths, visit-optimal trees can be very 
wasteful of space (Theorem 3.3); indeed, as the maximum branching, or order, of 
the trees grows without bound, visit-optimal trees can waste space with a 
profligacy approximating that of space-pessimal trees (Proposition 3.2 and Theo- 
rem 3.3). In sharp contrast, notwithstanding their node-visit pessimality given 
their depths (Corollary 2.3), space-optimal trees have virtually the same NVCOST 

as do visit-optimal trees (Proposition 3.4): Depth is the prime determinant of 
NVCOST, with the number of nonleaf nodes playing only a secondary role. 

The moral of the tale thus seems to be that compact B-trees are the preferred 
ones when one is initially loading a large database into a B-tree. But how long 
will the tree remain compact? 

4. THE PERSISTENCE OF COMPACTNESS 

The three notions of optimality that have been studied in [4, 51 and the present 
paper are static notions, and fragile ones at that: Insertion or deletion in an 
optimal B-tree is likely to destroy its optimality. One can easily verify that space- 
optimal B-trees are statistically more fragile for insertions than are visit-optimal 
B-trees, which in turn are more fragile for deletions. (This is due to the space- 

optimal trees’ preference for dense nodes at high-numbered levels and the visit- 
optimal trees’ preference for sparse nodes at those levels.) It is the purpose of this 
section to quantify this statistical fragility of space-optimal trees. The major 
conclusion of the section is that compact B-trees are always desirable when one 
initializes a database (this follows from the previous section); they are reasonable 
to maintain for a stable database (say one with no more than a 10 percent 
insertion rate between “backup” reorganizations); but they are too fragile to use 
directly with a volatile database. 

Since the analysis we present here is only suggestive and not definitive, we 
content ourselves with an analysis under simplified conditions. Specifically, we 
consider only order 3 B-trees (i.e., 2,3-trees), and we carry out only a “f&t-order” 
analysis (in the sense of Yao [7]) of these trees. 

Definition. We define the real-valued function ENU with domain N X N (N 
denotes the positive integers) as follows: For no < n, ENU(n, no) is the expected 
NU of an n-leaf 2,3-tree that is obtained from a space-optimal no-leaf 2,3-tree by 
a sequence of n - no “random” insertions. Here as in [7] an insertion into a k-key 
2,3-tree is termed “random” if it is equally likely to fall in any of the k + 1 
intervals defined by the order on the keys. 

The competition for our compact-initialized B-trees are the purely random 
B-trees studied by Yao. 

PROPOSITION 4.1 [7]. As n + co, 

0.64 I ENlJ(n, 1) 5 0.72. 

To evaluate the effect of compact initialization, we contrast Proposition 4.1 
with the following. 
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Table V 

Percent random Expected node utilization 
increase a n-+m 

1 100/101 0.74 5 ENU (n, an) 5 0.98 
2.5 40141 0.72 5 ENU (n,an) 50.96 
5 20121 0.69 5 ENU (n, an) 5 0.92 

10 lO/ll 0.66 5 ENU (n, an) 5 0.88 

THEOREM 4.2. For 0 < a I 1, as n + 00, 

21 
18 _ 4a7 5 ENWn, 4 

14 
5 9 _ 2a7. 

Theorem 4.2 dictates, and Table V illustrates for various values of (Y, the range 
in which the expected node utilization will fall in the presence of random 
insertions. Thus even after moderate growth of the database, the expected 
benefits of compact initialization are still discernible. 

The remainder of this section is devoted to proving Theorem 4.2. 

PROOF. The proof follows the strategy of Yao’s proof of his Theorem 2.6 [7], 
the first-order version of Proposition 4.1. 

LEMMA 4.3 [7]. If the 2,3-tree T hasprofile II(T) = VO, VI,. . . , V&I, Vd, then the 

number of nonleaf nodes of T satisfies 

&d-l - + 5 NNCOST(T) 5 2,‘d-1 - 1. 

Define the following quantities: For i = 1, 2, let 

Ai(n, Q,) =&f the expected number of (i + l)-son nodes at leveld - 1 
of the tree constructed from an no-leaf space-optimal 
tree via a sequence of n - no random insertions. 

N*(n, no) =def the expected NNCOST of the tree just described. 

LEMMA 4.4 [7]. LettingA(n, no) = Al(n, no) + A&, no), 

#Ah no) -4 5 N*h, no) I 2Ah no) - 1. 

PROOF. Lemma 4.3. q 

LEMMA 4.5. For 0 < a 5 1, as n + m, 

Al(n, an) = +z(l - a’) + O(1) 

and 

A&z, an) = n($ + &a’) + O(1). 

PROOF. Yao, in his Lemma 2.6 [7], shows that when n > an, 

Al(n, an) = 
( 1 

1 - i Al(n - 1, an) + 2. 

Since the m-leaf tree we start with is space optimal, we have the initial condition 
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Al(an, cuz) 5 2. We find, therefore, as n grows without bound, 

Al(n, an) = 2 

This simple form is found by just expanding the recurrence and noting the 
resulting cancellations. This sum is easily seen to evaluate to 

Al(n, an) = 2nm6 6sizon (n - d6 + O(l), 

whence the asserted value of Al. The value of A&, cun) now follows directly from 

the obvious equation 2Al(n, an) + 3Az(n, an) = n. Cl 

Lemmas 4.4 and 4.5 combine to yield the following lemma. 

LEMMA 4.6. For 0 < a 5 1, as n + 00, 

n($ - )(u7) 5 N*(n, an) 5 n(t - $a’). 

The theorem is now immediate by definition of ENU. 0 

Thus if a compact tree grows (by random insertions) by less than 24 percent, 
the expectation of its space utiliztion is strictly greater than that for randomly 
grown trees. In order to use compact trees for these stable files, we present in the 

next section an in situ compactification algorithm that can be used as a “backup” 
procedure for essentially no additional cost over the naive “backup” operation. 

5. ALGORITHMS 

The import of Section 3 is that compact B-trees minimize space and nearly 
minimize time. The import of Section 4 is to quantify the robustness of compact 
B-trees in the presence of insertions. An obvious way to apply these results in 
practice would be (1) to initialize a B-tree to compact form, (2) to monitor the 
NVCOST and NU functions as the file is modified, and (3) when NU begins to 
stray too far from unity, to recompact the entire file. An alternative approach 
would be to dispense with the monitoring operation and simply recompact during 

routine “backup” of the file. This latter approach depends on the (likely) condition 
that large databases do not grow so rapidly that recompactification would be 
required more often than the frequency of the “backup” operation. 

It is, perhaps, worthwhile to emphasize the importance of taking special 
precautions when initializing B-trees from sorted or “nearly” sorted files. In [4] 
it was observed that construction of a B-tree by repeated insertion from a sorted 
file frequently results in a scrawny tree. In fact, if the file has size 2md (for odd 
M), the repeated insertion produces a tree with a binary root whose descendants 
are both complete m-at-y trees. This result is both sparse and scrawny and is thus 

space- and time-pessimal. 
The purpose of this section is to address the algorithmic issues involved in 

initialization, monitoring, and compactification. (All complexity bounds are for a 
uniform cost random-access machine.) 

Initialization Algorithm 

In [4] a linear-time (in the size of the file) algorithm was presented for constructing 
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a 2,34ree given a (detailed) profde for the tree and a sorted list of records.3 
Conversion of that algorithm to operate on B-trees of arbitrary order is a 

straightforward matter requiring no further discussion. Construction of the proper 

compact profile can be performed in logarithmic time using the characterization 
Theorem 2.2. From the profile, a detailed profile can be constructed by observing 
that at level 1 the vl vertices must have vl+l outedges and a vertex containing s 
keys has s + 1 outedges. In the absence of any other criterion, we simply distribute 
the keys “evenly” throughout the VI vertices by assigning s keys to r of the 
vertices and s + 1 to the remaining vertices. Thus 

R+1 
SC - -1 L 1 Vl 

and 

r=v[- VI+I mod vl. 

Finally, the records can be sorted by any external sorting algorithm. 

Monitoring Algorithm 

As insertions and deletions change the structure of the B-tree, the profile and/or 
detailed profile can be updated easily in time proportional to that of insertion or 

deletion. For example, if an insertion changes t internal levels in the tree, then 

t + 1 entries in the profile and 2t entries in the detailed profile must be changed. 
Maintenance of these profiles gives a current description of the structure of the 

tree. 
If, however, only the NU and NVCOST are to be monitored, then these values 

can be updated in constant time since by Proposition 2.1 and eq. (2.1) they both 
depend on k, the number of keys, the current depth, and J&d vi, the number of 
internal nodes. If I is the current number of internal nodes and an insertion or 
deletion changes t internal levels, then the number of internal nodes in the new 

tree is I + (t - 1) where the sign depends on whether the operation is an insertion 
(+) or a deletion (-). 

Compactification Algorithm 

Obviously, compactification can be accomplished simply by using the initializing 
algorithm with the existing tree as input. However, this approach requires two 
copies of the tree to exist simultaneously, and if space were that plentiful, compact 
trees would have only limited benefit. So we present an in situ compactification 
scheme that requires at most d free nodes. These d nodes need not, all be available 
when the algorithm starts; it is sufficient, after having compacted n keys, to have 

freed [logM nl + 1 nodes. 
In order to simplify the presentation, we give the compactification algorithm 

only for 2,34rees, assuming that the generalization to arbitrary M is obvious. The 
algorithm takes three inputs: a 2,3-tree T, a depth d, and a detailed profile for the 
desired compact. tree. Since 2,3-trees have such simple detailed profiles (a& al), 
. . . ) ( u:-~, 8-l), it is sufficient to know only one component. of each pair. 
Accordingly, the array variable sigma3[0 : d - l] gives the number of ternary 

a This algorithm was used in conjunction with Theorem 2.4 to construct visit-optimal 2,3-trees. 
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Fig. 2. Partial construction of a 2,3-tree for Algorithm 1. 

nodes at each level of the new compact tree. The output from COMPACT is a 
reference (i.e., pointer) to the root of the compacted tree. 

The details of the tree representation are purposely left obscure except that we 
follow the initialization algorithm of [4] in assuming that each node has fields: 

LEFT, KEY 1, MIDDLE, KEYB, RIGHT with the obvious meanings. By conven- 
tion, binary nodes have NIL as values in the last two fields. Also, by convention, 
the resulting compact tree will have all ternary nodes “left justified” on a level. 
Clearly, other distributional disciplines can be implemented easily. 

The overall structure of the algorithm can be viewed abstractly as a “producer/ 
consumer” solution. That is, two procedures are used: one to fetch keys from the 
existing tree (producer) and one to construct a compact tree given its keys one at 
a time (consumer). These two abstract operations could be implemented by 
means of recursive coroutines, but such exotic control structures are unnecessary. 
Instead, the,producer operation is implemented explicitly by a recursive depth- 
first traversal (DFT) procedure and at each point where a key is “produced,” a 
nonrecursive subroutine (BUILD) which implicitly implements the consumer 

operation is called. 
The only subtlety in this approach is that the BUILD routine must keep track 

of the subtrees currently “under construction.” Say that a subtree is under 
construction at level i if a subtree rooted at level i has at least one but not all of 
its immediate descendant subtrees completed. For instance, if the portion of the 
tree shown in bold in Figure 2 has so far been constructed, then subtrees at levels 
1 and 3 are under construction. In order to keep track of this progress, then, a 
variable UCIO : d - l] (mnemonic for under construction) is used to record a 
reference to each node under construction. Initially, UC contains only NIL’s, 
indicating that no nodes are under construction. 

Algorithm 1 

Input. T = a 2,3-tree to be compacted; 
d = depth of the new compact tree; 
sigma3[0 : d - 11 = a vector of the number of ternary nodes at each 
level in the new compact tree. 

Output. A reference to the root of the compact tree. 
ACM Transactions on Database Systems, Vol. 6, No. 1, March 1961. 
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1. function compact(T, d, sigma3); 

2. tree T, integer d; 
3. integer array sigma3; 

4. begin integer level; 
5. ref n, 

6. desc; 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 
30. 
31. 

32. 

ref array UC[O:d-11; 

procedure dft (node); 
ref node; 

begin 
if node nodeleft = NIL 

then {build(node.keyl); 

if node.key2 # NIL 

then buiId(node.key2)) 

else 

{dft(node.left); 

build(node.keyl); 

dft(node.middIe); 

if node.key2 # NIL 

then {build(node.keyZ); 

dft(node.right)} ) ; 

free(node) 

end 
procedure build(key); incrementahy constructs tree, adding 

integer key; “key” at each call This is the 

begin consumer operation. 

comment global var. “level” is set at the 

level of last key placement; initially, -1; 

while level + d - 1 do 

[level c level + 1; 
UC[level] + NIL} ; 

desc c NIL, 

33. while key # NIL A level 2 0 do 

34. (if UC[level] = NIL 

35. then n t UC[level] t getspace 

36. else n + UC[level]; 

37. 

38. 

39. 
40. 

41. 

42. 

43. 

44. 

45. 

46. 

cond 

n.keyl = NIL 

* {n.left c desc; 

n.keyl + key; 

key t NIL) 

n.key2 = NIL A sigma3[level] > 0 

+ (n.middle c desc; 

n.key 2 c key; 

key + NIL} 

n.key2 = NIL A sigma3[level] = 0 

47. 

48. 

49. 

50. 

* (n.middle t desc; 

desc c n; 

level c level - 1) move to next higher level 

nkeyl # NIL A n.key2 # NIL (4) both keys placed in ternary node 

index into UC 

node currently under construction 

descendant of node currently under con- 

struction 

table of all nodes under construction 

recursively performs depth-first traver- 

sal of T starting at “node.” This is the 

producer operation. 

is this the lowest nonleaf level? 

yes, produce key for consumer 

is there a second key? 

yes, produce key for consumer 

this is an interior node 

traverse to lower depth, and return 

back now, produce key for consumer 

traverse to lower depth, and return 

is this a ternary node 

yes, produce key for consumer 

traverse to lower depth, and return 

release the space 

set all levels below last key placement 

to be not under construction 

descendant of node under construction 

is NIL 

perform the following til key placed or 

tree done 
are we beginning construction at this 

level? 
yes, then get a clean record 

no, then get the record we were work- 

ing on 

there are four possible cases 

(1) clean record, no keys present 

record reference to left subtree 

place key 

signal that placement has been done 
(2) one placed in record of ternary node 

record reference to middle subtree 

place key 
signal that placement has been done 

(3) one key placed in record of binary 

node 
record reference to middle subtree 

this binary node done, save reference 

for parent 
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51. * (n.right + desc; 

52. dew + n; 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. compact c UC[O] 

61. end 

end; 

sigma3[level] + sigma3[level] - 1; 

level +- level - 1)) 

comment declaration completed, 

level t - 1; 

dft(root(T)); 

build(l); 

record reference to right subtree 

this ternary node done, save refer- 

ence for parent 

record completion of ternary node 

move next to higher level 

traverse entire tree 

dummy call to link pointers on right 

spine 

return reference to root. 

To see that the algorithm halts, we observe first that the basic control flow is 
determined by DFT and amounts to a simple depth-first traversal of a 2,3-tree 
that obviously halts if its. subparts do. Second, we note that the two other loops 
(lines 29-31 and 33-54 of the BUILD procedure) cannot possibly cycle forever for 
positive d. The (lines 29-31) while-loop always terminates since the initial value 
of LEVEL is always less than or equal to d - 1 upon entry to the loop. The loop 
(lines 33-54) clearly terminates since in each clause of the conditional some 
change is made that effects the disjunction controlling the loop. 

The tree that results from BUILD (if it is a tree at all), will evidently be 
compact since binary and ternary nodes are built according to the dictates of the 
profile. To see that a valid 2,3-tree results from BUILD, say that in a tree 
containing keys kl < kg < . . . < k, and leaves 11, 12, . . . , 1,+1 (numbered left to 
right), that the left leaf of ki is li. Then BUILD is called n times by the DFT 
routine and on the ith call, BUILD (1) begins by moving to the left leaf of ki, (2) 
creates all edges from Zi to the vertex containing ki, (3) “completes” the vertices 
between li and the vertex containing ki according as they are either binary (lines 
46-49) or ternary (lines 50-54), and (4) places ki in the proper position in the 
vertex according to whether it is in the first key position (lines 39-41) or the 
second key position (lines 42-45). Thus the calls from DFT complete all portions 
of the tree except the edges on the right spine. The dummy call from COMPACT 
(line 59) completes this feature and the algorithm halts. 

Evidently, COMPACT operates in linear time on a uniform-cost random-access 
machine since it is simply the composition of two depth-first tree traversals. The 
total number of tree records that are required in excess of the number freed is d 
(i.e., if a compact tree were compacted, d extra cells would be needed for the 
algorithm to operate). 

6. SUMMARY AND DISCUSSION 

In the set Y,, of all order M B-trees with capacity k, we have characterized the 
space-minimal elements. We have bounded the time performance of these space- 
minimal B-trees as well as the space utilization of the time-minimal B-trees. The 
main result of this analysis is that the space-minimal trees are nearly time- 
minimal, but the time-minimal trees are nearly space-maximal. 

This bias in favor of using space-minimal trees when possible motivated our 
analysis of the robustness of space-minimal trees in the presence of random 
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insertions. Though space-minimal B-trees are only modestly robust, pragmatic 

considerations such as file stability suggest that they could be beneficial with 
periodic recompactification, e.g., during routine file “backup.” This compactifi- 
cation can be accomplished inexpensively using the linear time algorithm pre- 

sented here. 
Many issues remain to be investigated. For example, are there variants on the 

B-tree theme that enhance the robustness of space-efficient trees? How robust 
are compact B-trees under “random” insertions? How do variable length keys 
affect the analysis presented here-is it better to have smaller nodes when the 
keys are variable in length? What are the time and space characteristics of 

random B-trees created by random insertions and deletions? 

APPENDIX 

LEMMA A. Let T be a visit-optimal n-leaf order M B-tree with profile 

II(T) = VO, ~1, . . . , vd. 

If M is even, then 

for all 

and 

for all 

If M is odd, then 

for all 

1~ log2 n + (1 - log2 M)d - 1, 

v1 = 

12 log2 n + (1 - log2 M)d. 

l % loa n + (1 - l&M + l))d + o(l) 
logz.(2M/(M + 1)) 

asn+ co; and 

n 
Vl = L 1 d-l m 

for all 

l ~ log2 n + (1 - logz(M + l))d 

log2(2M/(M + 1)) ’ 

(Al) 

W) 

PROOF. Assume first that M is even. Inequality (Al) on 1 yields 

ISlog M I log2 n - (d - 1) (log2 M - 1) - 1 
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so that 

and the lemma follows by Theorem 2.4. By similar calculations, inequality (A2) 
on 1 yields 

so again the lemma follows by Theorem 2.4. 
The case of odd M follows by similar reasoning, using the fact that m = (M + 

1)/2 when M is odd. Cl 
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