
Time- and Space-Optimality in B-Trees

ARNOLD L. ROSENBERG

IBM Thomas J. Watson Research Center

and

LAWRENCE SNYDER

Yale University

A B-tree is compact if it is minimal in number of nodes, hence has optimal space utilization, among

equally capacious B-trees of the same order. The space utilization of compact B-trees is analyzed and

compared with that of noncompact B-trees and with (node)-visit-optimal B-trees, which minimize the

expected number of nodes visited per key access. Compact B-trees can be as much as a factor of 2.5

more space efficient than visit-optimal B-trees; and the node-visit cost of a compact tree is never

more than 1 + the node-visit cost of an optimal tree. The utility of initializing a B-tree to be compact

(which initialization can be done in time linear in the number of keys if the keys are presorted) is

demonstrated by comparing the space utilization of a compact tree that has been augmented by

random insertions with that of a tree that has been grown entirely by random insertions. Even after

increasing the number of keys by a modest amount, the effects of compact initialization are still felt.

Once the tree has grown so large that these effects are no longer discernible, the tree can be

expeditiously compacted in place using an algorithm presented here; and the benefits of compactness

resume.

Key Words and Phrases: B-tree, compact B-tree, bushy B-tree, 2,3-tree, node-visit cost, space

utilization

CR Categories: 3.73, 3.74, 4.33, 4.34

1. INTRODUCTION

The B-tree data structure of Bayer and McCreight [l, 3, Sect. 6.2.41 is an effective
method of organizing an external file when the operations of searching, insertion,
and deletion must be supported since these operations on B-trees require time at
most logarithmic in the size of the file. This logarithmic performance is achievable
[6] because the B-tree definition is underconstrained: One file has numerous legal

B-tree representations. Specifically, a finite rooted tree must satisfy two condi-
tions to be a B-tree of order M.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.
Material included in this paper was presented under the title of “Compact B-Trees” at the 1979 ACM

SIGMOD International Conference on Management of Data.

his work was supported by the National Science Foundation under Grant MCS78-04749.
Authors’ present addresses: A. L. Rosenberg, Mathematical Sciences Department, IBM Thomas J.

Watson Research Center, Yorktown Heights, NY 10598; L. Snyder, Department of Computer Sciences,

Purdue University, West Lafayette, IN 47907.

0 1981 ACM 0362-5915/81/0300-0174 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981, Pages 174-183.

Time- and Space-Optimality in B-Trees * 175

Colt&ion 1. Each internal node must have at least [M/2] descendants (except
the root which can have as few as two) and at most M descendants.

Condition 2. All root-to-leaf paths must be of equal length.

To illustrate that these conditions do not constrain B-trees to a unique
structure, let Yf denote the set of all order M B-trees with a capacity of 12 keys.
Then ST6 contains 10 (structurally) distinct B-trees of order 3 (also called 2,3-
trees) each capable of containing 15 keys. Figure 1 exhibits these 10 trees.

The main purpose of this paper is to characterize the optimally space-efficient

trees in the forest Ff”. Space is measu red by the total number of internal nodes.

(The leaves may be ignored since all trees in S;l” have k + 1 leaves.) Our use of
the number of internal nodes as a cost measure for externally stored B-trees is

motivated by the usual policy of allocating for each node a fixed-size block of
storage (page, track, etc.) capable of holding the maximum of M descendant
pointers and M - 1 keys. Should a node actually have fewer than the maximum

descendants and keys, then the remaining space is unused, and therefore, wasted.
Thus for a given number of keys, fewer internal nodes imply a greater average
number of keys per node and hence less wasted space. Table I illustrates this
point for the trees of 5%.

A second purpose of this paper is to measure the time performance of space-
minimal trees and the space utilization of time-efficient trees in Yf. Time costs
are measured by the expected root-to-key path length for equally likely keys.
This measure was used in [4] where it was called “node-v&t cost.” It is motivated
by the fact that external reference to a node usually requires an expensive disk

fetch. Thus a smaller number of nodes visited to reference an arbitrarily selected
key, implies a smaller expected searching time. See Table I for the node-visit
costs of elements S&.

It is evident from Table I that in S$ no single 15-key tree minimizes both
space and time costs, although for other numbers of keys it does occasionally
happen. In general, as Table I suggests, there is a trade-off between time and
space. Our study of this trade-off indicates that

space-optimal trees are nearly time optimal, but
(*)

time-optimal trees are nearly space pessimal.

Thus the trade-off is strongly biased in favor of space-minimizing B-trees. This
observation is important because a “heuristic” has, we are told, gained reasonably
wide acceptance among B-tree users1 as a means of constructing “better” B-trees:
Keep the nodes near the root filled, “thereby increasing the branching degree of
the nodes near the root, where a high branching degree is most beneficial” [2,
p. 131. In light of (*), this “heuristic” is of dubious merit if not wrong, since
keeping nodes near the root filled reduces space efficiency.

Although any element of Yf might be created during the dynamic operation
of the B-tree algorithms, we can arrange matters so that the more efficient trees
are more likely to be chosen. This is accomplished by acknowledging certain
pragmatic considerations in the use of B-trees. For example, very large B-trees

I Private communication.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

176 * A. L. Rosenberg and L. Snyder

(a)

h

(4

(9)

4
(9

W

04

(j)

Fig. 1. The ten structurally distinct B-trees of.F&,

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees * 177

Table I. Comparison of Time and Space
Costa for Trees of Figure 1

Tree from Time cost Space cost

Figure 1 (node visit) (internal nodes)

(a) 3.27 15

b) 2.60 9

(4 2.60 9

(d) 2.53 10

(e) 2.53 10

(0 2.47 11
k) 2.47 11

(h) 2.47 11

(9 2.47 11

W 2.40 12

are often quite stable, tending to change only by a small percentage each day.
Furthermore, B-tree files are periodically “backed up” for error recovery or
archival purposes. These two considerations suggest that if the tree were com-
pactified, i.e., made space minimal, during a daily “backup” operation, then the
benefits indicated by (*) would be realized at the beginning of each day. As the
tree is modified, the magnitude of the benefits would diminish as the insertions
and deletions cause it to depart further and further from its compact profile. But
by our assumption of only modest modifications in a given day, this decay would
not be rapid.

To implement this approach, we present a linear time (in the size of the file)

in-place compactification algorithm. We also give an analysis of the expected
departure from optimal performance of a compact tree as a function of the
number of random insertions into that compact tree. From the analysis and a few
statistics about the use of a B-tree, one can easily compute the benefits of the
“compactify during backup” approach.

This paper is organized as follows: Section 2 of the paper gives a characteriza-
tion of space- and time-minimal B-trees, Section 3 an analysis of time/space
trade-offs, Section 4 an analysis of the “rate of decay” of a compact tree under
random insertions, Section 5 an in place-compactification algorithm, and Section
6 a summary and discussion.

2. CHARACTERIZATIONS OF SPACE- AND TIME-MINIMAL
B-TREES

Given the use of B-trees as search trees, one can identify at least three natural
measures of the efficiency of a B-tree, namely, the expected number of nodes
visited per access, the expected number of key comparisons per access, and the
space requirements of the tree. The node-visit cost of B-trees is studied at some
length in [4], where the visit-optimal B-trees are characterized. The comparison
cost of 2,3-trees is studied in [5], where the comparison-optimal trees are char-
acterized and are compared with their visit-optimal forest mates. This section is
devoted to studying the space cost of B-trees and to reviewing the results from
[4] on the time cost of B-trees.

An order M B-tree (M L 3, an integer) is a finite, rooted tree satisfying

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

178 . A. L. Rosenberg and L. Snyder

Conditions 1 and 2 from Section 1. The maximum degree of a node is M, we

denote the minimum degree by M = [M/2]. The root of a B-tree is said to be at
level 0 of the tree, and, in general, the sons of a level 1 node are said to reside at
level 1 + 1. The (common) level of the tree’s leaves is the depth of the tree. (Recall
‘from the introduction that the number of leaves equals the key capacity plus
one.)

An order M B-tree is used as a search tree by loading its nonleaf nodes with
keys from a totally ordered set in such a way that (a) each s-son node contains
s - 1 keys; and (b) if the s-son node N contains keys

kl<kz< . . . <KS-l,

then for 1 < i < s

k1 > (all keys in subtree 1 of IV),

kSP1 < (all keys in subtree s of IV),

ki-1 < (all keys in subtree i of IV) < ki.

Knuth [3, Sect. 6.2.41 describes in some detail procedures for accessing, inserting,
and deleting keys in an order M B-tree in time bounded above by a small multiple

of log,(number of keys in 7’).
Two descriptors of B-trees will facilitate the following exposition. The profile

of a depth d B-tree T E Sf;” is a length d + 1 integer sequence

II(T) = ~0, VI, . . . , vd

where each VI is the number of nodes at level 1 of T. Thus vo = 1 and Vd = k + 1.
The detailed profile of T is the length d sequence of integer (M - 1)-tuples

A(T) = (a&u& . . . , af), . . . , (&I, &, . . . , a&)

where each us is the number of s-son nodes at level 1 of T. Note that if 1 I 1, all
al = 0 for s < m. These notions and the notation for them originate in [4].

We now define precisely the costs to be studied. For an order M B-tree T with
profile

I-I(T) = ~‘0,. . . , Z’d

the node-number cost of T is

NNCOST(T) = iTd vi. c-m

This is clearly the “space” cost referred to informally. We measure space efficiency
by the node utilization

v,j - 1

NU(T) = (M - 1) NNCOST(T) ’
(2.2)

The node utilization, NU, which never exceeds 1, gives the expected proportion
of a node that contains keys. From the definition it is clear that a space-minimal
tree T may not have NU(T) = 1 since some space may be wasted simply to honor
the “equal path length” condition (Condition 2 from Section 1) on B-trees.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees * 179

Next we define the “time” cost measure to be used. The node-visit cost of a
B-tree Tin SF with detailed profile

A(T) = (a;, . . . , af), . . . , (d-1,. . .,&I)

is

NVCOST(T) = xOsl<d ~2sssM (1 + l)(s - l)d

k
(2.3

Clearly,

NVCOST(T) = (expected number of nodes visited when accessing a key in T).

Although the presented definition of node-visit cost is intuitively appealing, we
prefer the following less perspicuous but more useful definition.

PROPOSITION 2.1 [4]. The node-visit cost of the B-tree T with profile II(T) =
‘vo, . . . , vd is precisely

NVCOST(T) = dvdv; ,i;d vi.

Having completed the definitions, we are now ready to characterize the space-
and time-minimal trees. It is convenient for comparison purposes to characterize

the space- and time-maximal trees as well. These trees are referred to by the
names

compact: node-number cost minimal,
sparse: node-number cost maximal,
bushy: node-visit cost minimal [4];

scrawny: node-visit cost maximal [4].

THEOREM 2.2. An order MB-tree T with profile II(T) = vo, . . . , Vd minimizes
NNCOST over all elements of SF if and only if for 0 5 I< d, v1 = [v~+~/M]; T
maximizes NNCOST over all elements of Ff if and only if for 0 5 I< d, vl =
m-&l, Ln+dml).

PROOF. To minimize (respectively, maximize) NNCOST(T), it is necessary to
minimize (respectively, maximize) C &dV[of T, which is equivalent, in turn, to
maximizing (respectively, minimizing) the branching ratios of T’s nodes. The
indicated profiles accomplish the desired shaping. Cl

COROLLARY 2.3. IfI”I(T) = vo, . . . , trd is the profile of a compact B-tree, then
d = rlogM Vdl; if it iS theprofile of a sparse B-tree, then d = LkIgrn(Vd/2)~ + 1.

Thus compact B-trees are as “shallow” as possible for their size, while the
sparse B-trees are as “deep” as possible for their size. (For sparse B-trees, the
maximum depth is not Llog, Vdj as might be expected because the root is allowed
to be binary.)

Using Proposition 2.1, among other facts about node-visit costs, the following
computationally attractive characterization of visit-optimal and visit-pessimal
B-trees was established.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

180 * A. L. Rosenberg and L. Snyder

Table II. Characteristics of the Optimal and

Pessimal B-Trees

Depth

Minimum Maximum

Fullest nodes near to

Root bushy sparse

Leaves compact scrawny

THEOREM 2.4 [4]. The order M B-tree T with profile II(T) = VO, . . . , Vd has
minimal NVCOST over all trees in Y? if and only if d = [logM vd] and VI =
min(M’, [vl+l/mj) for 0 5 I< d; T has maximal NVCOST over all trees inY$?
if and only if d = [log,(vd/2)] + 1, v. = 1, v1 = 2, and VI = max(m’, rv~+~/M]).

Notice that both bushy and compact B-trees have a lot of M-ary nodes; but
bushy trees have these nodes concentrated as close to the root as possible; while
compact trees have them concentrated as close to the leaves as possible. This
difference is restated in the following less constructive but no less illuminating
characterization of bushy B-trees, whose proof is direct from Proposition 2.1 and
Theorem 2.4.

PROPOSITION 2.5. The B-tree T in Yf has minimal NVCOST over the class
if and only if T is minimal in depth and, for that depth, maximal in number of
nonleaf nodes.

Scrawny trees also have their M-ary nodes concentrated near the leaves, but
unlike compact trees, they must have maximal depth. Sparse trees have their
“fullest” nodes as near the root as possible, but as the following easily proved
proposition indicates, they are so rare that it is difficult to say where they are

concentrated.

PROPOSITION 2.6. Let T be a maximal NNCOST B-tree in F-nd. If M is even,
then T has no M-ary nodes. If M is odd, then T has at most one M-ary node per
level.

This classification is summarized in Table II.
Our main interest, of course, is in the space- and time-minimal trees. Occasion-

ally, the depth requirement is so restrictive that the two notions actually coincide.

FACT 2.7. For all sufficiently large k, there is a B-tree in Yf that is both visit-
optimal and space-optimal precisely when Md - M < k + 1 I Md. “Sufficiently
large” here means k + 1~ 4M when M is even, and k + 1~ 4M(1 + 2/(M - 2))
when M is odd.

PROOF. By direct calculation using the profile-oriented characterization of the
two notions of optimality. Cl

Thus the two notions of optimality coincide very infrequently. The major
thrust of the next section is to determine how much they differ the rest of the
time.

ACM Transactions on Database System, Vol. 6, NO. 1, March 1981.

Time- and Space-Optimality in B-Trees - 181

3. SPACE AND TIME COMPARISONS

In this section we establish time and space bounds on the advantage derivative
from the use of optimal B-trees-both bushy and compact. First we set forth the
obvious limits within which the space utilization of B-trees can vary.

PROPOSITION 3.1. As k + m,

(a) for space-optimal order M B-trees,

NU(T) - 1;

(b) for space-pessimal k-key order M B-trees,

m-l
NU(T) -M-l;

(c) for “random” k-key order M B-trees, and fixed, large M,

NU(T) = log, 2 =: 0.69.

PROOF. (a) and (b) by direct calculation from (2.2); (c) see [7]. 0

PROPOSITION 3.2. Let TO, TP, and T, be respectively, space-optimal, space-
pessimal, and “random” (in Yao’s sense) trees from SF. Then asympotically
(ask + m),

(a) for M even,

NUT,) - (2 + $+JKJ;

(b) for M odd,

NU(T,) - 2+NU(T,J;

(c) for large fixed M,

NU(T,) =: 1.45.NU(T,.).

Hence the space-optimal trees use their nodes between two (at odd M) and

three (at M = 4) times more efficiently as do their space-pessimal forest mates.
For the sake of completeness it should be noted that these asymptotics take hold
at rather modest values of k, as Table III indicates.

One might argue, with some justification, that the bounds of Proposition 3.2
are only of academic value in that the pessimal trees are arbores non gratae in
the context of large trees and, it is to be hoped, will never occur. (One should
note, however, that these trees are very often minimal in number of comparisons
per expected access [5].) In light of this criticism, we also investigate the
disparities in space utilization between compact and bushy trees. We find these
disparities to be only marginally less than the ones just exhibited.

THEOREM 3.3. Let Tb be a space-pessimal element of all visit-optimal

* We use the word “random” here in the same sense as Yao [7]: The tree is grown from the empty tree
by a sequence of k insertions, with each insertion equally likely to fall between any pair of the already-
inserted keys or to either side of these keys.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

182 * A. L. Rosenberg and L. Snyder

Table III

B-tree Optimal profile II(T) Pessimal profile II (T)

Pessimal NNCOST

Optimal NNCOST

M=3,k=127 1, 2, 5, 15, 43, 128 1, 2, 4, 8, 16, 32, 64, 128 127/66 > 1.9

M=4,k=15 1, 4, 16 1, 2, 4, 8, 16 3

(i.el, bushy) trees in SF and T, a compact tree in SF. Then asymptotically
(ask + m),

(a) for M even,

M2

M-2 (M-2)M’OgM
*NU(Tb);

(b) for M odd,

iVU(T,) 2 (2 + Ml-” - 2’+‘(M + l)‘)*NU(Tb);

where

Hence, the space-optimal trees use their nodes between 18 (at M = 3) and 23
(at M = 4) times as efficiently as do their visit-optimal forest mates.

PROOF. Let Tb be a visit-optimal n-leaf order M B-tree with profile

vo, Vl, . . . , V&l, Vd = n.

By Theorem 2.4, n lies in the range

Md-’ + 1 I n I Md. (3.1)

We shall compute NU(Tb) by using Lemma A in the appendix to compute the
number xi<& of nonleaf nodes of TL,.

(a) Say first that M is even. Let

I = log2 n + (1 - log2 M)d.

By Lemma A, those levels of Tb numbered less than I contribute (M’ - l)/
(M - 1) nonleaf nodes, and those levels of Tb numbered 1 to d - 1 contribute

nonleaf nodes, where 0 P 01 5 1. Now, since n lies in the range (3.1), the ratio of
the number of nonleaf nodes of TI, to n, hence to the number of keys in Tb, is
maximized (thus minimizing NU(Tb)) when n = Md-’ + 1. In this case we find
that Tb has

(& - (M _ ct _ 2) M-logM) n + o(n) (3.2)

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees . 183

nonleaf nodes. One now invokes Proposition 3.1 and definition (2.1) to complete
the proof for the case of even M.

(b) When M is odd, one proceeds via a similar chain of reasoning, except that
one must now be satisfied with asymptotic inequalities. Let

z _ logz n + (1 - log,(M + l))d

log2(2M/(M + 1)) ’

By Lemma A, the number of nonleaf nodes of Tt, residing on levels 0 through
I - 1 is given by (M’ - l)/(M - 1) and the number residing on level I through

d- lis

for some 0 I (Y I 1. Now as in the case of even M, one verifies easily that NU(Tt,)
is minimized when n = Md-’ + 1. In this case we find that Tb has at least

nonleaf nodes, where

log M

log(2M/(M + 1))

Once again, we invoke definition (2.1) and Proposition 3.1 to derive the desired
ratio and complete the proof of the theorem. Cl

From Theorem 3.3 the reader can easily compute the node utilization cost of
bushy trees for comparison with Proposition 3.1. However, the resulting equations
are not likely to be perspicuous. Therefore, we illustrate some sample trees that
may be more enlightening.

For M = 3, the most benign of the orders since its bushy trees waste the least
space, we have a bushy 312-key tree with profile

II = 1,3,9, 27,81,243, 729, 2187,6561, 19683, 59049, 132860, 265721, 531442

and

NU(Z’b) = 0.545455.

The compact tree with 312-key capacity has profile

II = 1,2,4,10,28,82,244,730,2188,6562, 19684, 59050,177148,531442

and

NU(T,) = 0.99995.

Thus there is a premium of 1.8332 which is rather close to the asymptotic value

of lg.
For M = 4, the most malevolent of orders, a visit-optimal B-tree with 4” keys

has the profile

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

184 * A. L. Rosenberg and L. Snyder

Table IV

Order Leaves

Premium

asd+m

3+’ + 1 15

M=3 4.3+2 11
2.3+1 II

qd-’ + 1 ‘4
M=4 2 .qd-’ 2

3.4d-’ 11

II(T,,) = 1,4, 16,64,256,1024,4096, 16384,65536,262144,524288,1048577

and

Nu(Tt,) = 0.4000002.

The compact tree of order 4 has profile

l-I(T,) = 1,2,5, 17, 65,257, 1025,4097,16385, 65537, 262145, 1048577

and

NU(T,) = 0.99997.

The ratio is thus 2.4999 which approaches the asymptotic value of 2.5.
Although our comparison results have emphasized the cases most favorable to

space minimahty, Table IV illustrates that the situation arises throughout Ff.
To complete the comparison, we next consider the node-visit cost of bushy and

compact trees.

PROPOSITION 3.4. Let Tb be a bushy order M B-tree and let T, be a compact
order M B-tree each with n leaves. As n + M,

NVCosT(Tb) 2 rk@ nl - j&+ (M- ;;- 2)“-‘“gM

1
NVCOST(T,) - [logs n1 - -.

M-l

In particular, independent of M, as n + co,

NVCOST(T,) - NVCOST(Tt,) = 1.

PROOF. The bound on NVCOST(Tb) is immediate by Proposition 2.1 and the
derivation, in the proof of Theorem 3.3, of the expression (3.2) for the number of
nonleaf nodes in an even order B-tree. The expression for NVCOST(TJ follows
directly from Propositions 2.1 and 2.4. Cl

Both visit-optimal and space-optimal B-trees have minimum depth for a given
number of keys (Corollary 2.3 and Theorem 2.4, respectively); however, given
this depth, the visit-optimal trees are maximal in the number of nonleaf nodes
(Propositions 2.1 and 2.5), while the space-optimal trees are minimal in the
number of nonleaf nodes (definition (2.1)). What has emerged in this section is

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1961.

Time- and Space-Optimality in B-Trees * 185

that, notwithstanding their minimal depths, visit-optimal trees can be very
wasteful of space (Theorem 3.3); indeed, as the maximum branching, or order, of
the trees grows without bound, visit-optimal trees can waste space with a
profligacy approximating that of space-pessimal trees (Proposition 3.2 and Theo-
rem 3.3). In sharp contrast, notwithstanding their node-visit pessimality given
their depths (Corollary 2.3), space-optimal trees have virtually the same NVCOST

as do visit-optimal trees (Proposition 3.4): Depth is the prime determinant of
NVCOST, with the number of nonleaf nodes playing only a secondary role.

The moral of the tale thus seems to be that compact B-trees are the preferred
ones when one is initially loading a large database into a B-tree. But how long
will the tree remain compact?

4. THE PERSISTENCE OF COMPACTNESS

The three notions of optimality that have been studied in [4, 51 and the present
paper are static notions, and fragile ones at that: Insertion or deletion in an
optimal B-tree is likely to destroy its optimality. One can easily verify that space-
optimal B-trees are statistically more fragile for insertions than are visit-optimal
B-trees, which in turn are more fragile for deletions. (This is due to the space-

optimal trees’ preference for dense nodes at high-numbered levels and the visit-
optimal trees’ preference for sparse nodes at those levels.) It is the purpose of this
section to quantify this statistical fragility of space-optimal trees. The major
conclusion of the section is that compact B-trees are always desirable when one
initializes a database (this follows from the previous section); they are reasonable
to maintain for a stable database (say one with no more than a 10 percent
insertion rate between “backup” reorganizations); but they are too fragile to use
directly with a volatile database.

Since the analysis we present here is only suggestive and not definitive, we
content ourselves with an analysis under simplified conditions. Specifically, we
consider only order 3 B-trees (i.e., 2,3-trees), and we carry out only a “f&t-order”
analysis (in the sense of Yao [7]) of these trees.

Definition. We define the real-valued function ENU with domain N X N (N
denotes the positive integers) as follows: For no < n, ENU(n, no) is the expected
NU of an n-leaf 2,3-tree that is obtained from a space-optimal no-leaf 2,3-tree by
a sequence of n - no “random” insertions. Here as in [7] an insertion into a k-key
2,3-tree is termed “random” if it is equally likely to fall in any of the k + 1
intervals defined by the order on the keys.

The competition for our compact-initialized B-trees are the purely random
B-trees studied by Yao.

PROPOSITION 4.1 [7]. As n + co,

0.64 I ENlJ(n, 1) 5 0.72.

To evaluate the effect of compact initialization, we contrast Proposition 4.1
with the following.

ACM Transactions on Database System, Vol. 6, No. 1, March 1981.

186 l A. L. Rosenberg and L. Snyder

Table V

Percent random Expected node utilization
increase a n-+m

1 100/101 0.74 5 ENU (n, an) 5 0.98
2.5 40141 0.72 5 ENU (n,an) 50.96
5 20121 0.69 5 ENU (n, an) 5 0.92

10 lO/ll 0.66 5 ENU (n, an) 5 0.88

THEOREM 4.2. For 0 < a I 1, as n + 00,

21
18 _ 4a7 5 ENWn, 4

14
5 9 _ 2a7.

Theorem 4.2 dictates, and Table V illustrates for various values of (Y, the range
in which the expected node utilization will fall in the presence of random
insertions. Thus even after moderate growth of the database, the expected
benefits of compact initialization are still discernible.

The remainder of this section is devoted to proving Theorem 4.2.

PROOF. The proof follows the strategy of Yao’s proof of his Theorem 2.6 [7],
the first-order version of Proposition 4.1.

LEMMA 4.3 [7]. If the 2,3-tree T hasprofile II(T) = VO, VI,. . . , V&I, Vd, then the

number of nonleaf nodes of T satisfies

&d-l - + 5 NNCOST(T) 5 2,‘d-1 - 1.

Define the following quantities: For i = 1, 2, let

Ai(n, Q,) =&f the expected number of (i + l)-son nodes at leveld - 1
of the tree constructed from an no-leaf space-optimal
tree via a sequence of n - no random insertions.

N*(n, no) =def the expected NNCOST of the tree just described.

LEMMA 4.4 [7]. LettingA(n, no) = Al(n, no) + A&, no),

#Ah no) -4 5 N*h, no) I 2Ah no) - 1.

PROOF. Lemma 4.3. q

LEMMA 4.5. For 0 < a 5 1, as n + m,

Al(n, an) = +z(l - a’) + O(1)

and

A&z, an) = n($ + &a’) + O(1).

PROOF. Yao, in his Lemma 2.6 [7], shows that when n > an,

Al(n, an) =
(1

1 - i Al(n - 1, an) + 2.

Since the m-leaf tree we start with is space optimal, we have the initial condition

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees * 187

Al(an, cuz) 5 2. We find, therefore, as n grows without bound,

Al(n, an) = 2

This simple form is found by just expanding the recurrence and noting the
resulting cancellations. This sum is easily seen to evaluate to

Al(n, an) = 2nm6 6sizon (n - d6 + O(l),

whence the asserted value of Al. The value of A&, cun) now follows directly from

the obvious equation 2Al(n, an) + 3Az(n, an) = n. Cl

Lemmas 4.4 and 4.5 combine to yield the following lemma.

LEMMA 4.6. For 0 < a 5 1, as n + 00,

n($ -)(u7) 5 N*(n, an) 5 n(t - $a’).

The theorem is now immediate by definition of ENU. 0

Thus if a compact tree grows (by random insertions) by less than 24 percent,
the expectation of its space utiliztion is strictly greater than that for randomly
grown trees. In order to use compact trees for these stable files, we present in the

next section an in situ compactification algorithm that can be used as a “backup”
procedure for essentially no additional cost over the naive “backup” operation.

5. ALGORITHMS

The import of Section 3 is that compact B-trees minimize space and nearly
minimize time. The import of Section 4 is to quantify the robustness of compact
B-trees in the presence of insertions. An obvious way to apply these results in
practice would be (1) to initialize a B-tree to compact form, (2) to monitor the
NVCOST and NU functions as the file is modified, and (3) when NU begins to
stray too far from unity, to recompact the entire file. An alternative approach
would be to dispense with the monitoring operation and simply recompact during

routine “backup” of the file. This latter approach depends on the (likely) condition
that large databases do not grow so rapidly that recompactification would be
required more often than the frequency of the “backup” operation.

It is, perhaps, worthwhile to emphasize the importance of taking special
precautions when initializing B-trees from sorted or “nearly” sorted files. In [4]
it was observed that construction of a B-tree by repeated insertion from a sorted
file frequently results in a scrawny tree. In fact, if the file has size 2md (for odd
M), the repeated insertion produces a tree with a binary root whose descendants
are both complete m-at-y trees. This result is both sparse and scrawny and is thus

space- and time-pessimal.
The purpose of this section is to address the algorithmic issues involved in

initialization, monitoring, and compactification. (All complexity bounds are for a
uniform cost random-access machine.)

Initialization Algorithm

In [4] a linear-time (in the size of the file) algorithm was presented for constructing

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

188 * A. L. Rosenberg and L. Snyder

a 2,34ree given a (detailed) profde for the tree and a sorted list of records.3
Conversion of that algorithm to operate on B-trees of arbitrary order is a

straightforward matter requiring no further discussion. Construction of the proper

compact profile can be performed in logarithmic time using the characterization
Theorem 2.2. From the profile, a detailed profile can be constructed by observing
that at level 1 the vl vertices must have vl+l outedges and a vertex containing s
keys has s + 1 outedges. In the absence of any other criterion, we simply distribute
the keys “evenly” throughout the VI vertices by assigning s keys to r of the
vertices and s + 1 to the remaining vertices. Thus

R+1
SC - -1 L 1 Vl

and

r=v[- VI+I mod vl.

Finally, the records can be sorted by any external sorting algorithm.

Monitoring Algorithm

As insertions and deletions change the structure of the B-tree, the profile and/or
detailed profile can be updated easily in time proportional to that of insertion or

deletion. For example, if an insertion changes t internal levels in the tree, then

t + 1 entries in the profile and 2t entries in the detailed profile must be changed.
Maintenance of these profiles gives a current description of the structure of the

tree.
If, however, only the NU and NVCOST are to be monitored, then these values

can be updated in constant time since by Proposition 2.1 and eq. (2.1) they both
depend on k, the number of keys, the current depth, and J&d vi, the number of
internal nodes. If I is the current number of internal nodes and an insertion or
deletion changes t internal levels, then the number of internal nodes in the new

tree is I + (t - 1) where the sign depends on whether the operation is an insertion
(+) or a deletion (-).

Compactification Algorithm

Obviously, compactification can be accomplished simply by using the initializing
algorithm with the existing tree as input. However, this approach requires two
copies of the tree to exist simultaneously, and if space were that plentiful, compact
trees would have only limited benefit. So we present an in situ compactification
scheme that requires at most d free nodes. These d nodes need not, all be available
when the algorithm starts; it is sufficient, after having compacted n keys, to have

freed [logM nl + 1 nodes.
In order to simplify the presentation, we give the compactification algorithm

only for 2,34rees, assuming that the generalization to arbitrary M is obvious. The
algorithm takes three inputs: a 2,3-tree T, a depth d, and a detailed profile for the
desired compact. tree. Since 2,3-trees have such simple detailed profiles (a& al),
. . .) (u:-~, 8-l), it is sufficient to know only one component. of each pair.
Accordingly, the array variable sigma3[0 : d - l] gives the number of ternary

a This algorithm was used in conjunction with Theorem 2.4 to construct visit-optimal 2,3-trees.

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees l 189

Fig. 2. Partial construction of a 2,3-tree for Algorithm 1.

nodes at each level of the new compact tree. The output from COMPACT is a
reference (i.e., pointer) to the root of the compacted tree.

The details of the tree representation are purposely left obscure except that we
follow the initialization algorithm of [4] in assuming that each node has fields:

LEFT, KEY 1, MIDDLE, KEYB, RIGHT with the obvious meanings. By conven-
tion, binary nodes have NIL as values in the last two fields. Also, by convention,
the resulting compact tree will have all ternary nodes “left justified” on a level.
Clearly, other distributional disciplines can be implemented easily.

The overall structure of the algorithm can be viewed abstractly as a “producer/
consumer” solution. That is, two procedures are used: one to fetch keys from the
existing tree (producer) and one to construct a compact tree given its keys one at
a time (consumer). These two abstract operations could be implemented by
means of recursive coroutines, but such exotic control structures are unnecessary.
Instead, the,producer operation is implemented explicitly by a recursive depth-
first traversal (DFT) procedure and at each point where a key is “produced,” a
nonrecursive subroutine (BUILD) which implicitly implements the consumer

operation is called.
The only subtlety in this approach is that the BUILD routine must keep track

of the subtrees currently “under construction.” Say that a subtree is under
construction at level i if a subtree rooted at level i has at least one but not all of
its immediate descendant subtrees completed. For instance, if the portion of the
tree shown in bold in Figure 2 has so far been constructed, then subtrees at levels
1 and 3 are under construction. In order to keep track of this progress, then, a
variable UCIO : d - l] (mnemonic for under construction) is used to record a
reference to each node under construction. Initially, UC contains only NIL’s,
indicating that no nodes are under construction.

Algorithm 1

Input. T = a 2,3-tree to be compacted;
d = depth of the new compact tree;
sigma3[0 : d - 11 = a vector of the number of ternary nodes at each
level in the new compact tree.

Output. A reference to the root of the compact tree.
ACM Transactions on Database Systems, Vol. 6, No. 1, March 1961.

190 * A. L. Rosenberg and L. Snyder

1. function compact(T, d, sigma3);

2. tree T, integer d;
3. integer array sigma3;

4. begin integer level;
5. ref n,

6. desc;

7.

8.
9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.

ref array UC[O:d-11;

procedure dft (node);
ref node;

begin
if node nodeleft = NIL

then {build(node.keyl);

if node.key2 # NIL

then buiId(node.key2))

else

{dft(node.left);

build(node.keyl);

dft(node.middIe);

if node.key2 # NIL

then {build(node.keyZ);

dft(node.right)}) ;

free(node)

end
procedure build(key); incrementahy constructs tree, adding

integer key; “key” at each call This is the

begin consumer operation.

comment global var. “level” is set at the

level of last key placement; initially, -1;

while level + d - 1 do

[level c level + 1;
UC[level] + NIL} ;

desc c NIL,

33. while key # NIL A level 2 0 do

34. (if UC[level] = NIL

35. then n t UC[level] t getspace

36. else n + UC[level];

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

cond

n.keyl = NIL

* {n.left c desc;

n.keyl + key;

key t NIL)

n.key2 = NIL A sigma3[level] > 0

+ (n.middle c desc;

n.key 2 c key;

key + NIL}

n.key2 = NIL A sigma3[level] = 0

47.

48.

49.

50.

* (n.middle t desc;

desc c n;

level c level - 1) move to next higher level

nkeyl # NIL A n.key2 # NIL (4) both keys placed in ternary node

index into UC

node currently under construction

descendant of node currently under con-

struction

table of all nodes under construction

recursively performs depth-first traver-

sal of T starting at “node.” This is the

producer operation.

is this the lowest nonleaf level?

yes, produce key for consumer

is there a second key?

yes, produce key for consumer

this is an interior node

traverse to lower depth, and return

back now, produce key for consumer

traverse to lower depth, and return

is this a ternary node

yes, produce key for consumer

traverse to lower depth, and return

release the space

set all levels below last key placement

to be not under construction

descendant of node under construction

is NIL

perform the following til key placed or

tree done
are we beginning construction at this

level?
yes, then get a clean record

no, then get the record we were work-

ing on

there are four possible cases

(1) clean record, no keys present

record reference to left subtree

place key

signal that placement has been done
(2) one placed in record of ternary node

record reference to middle subtree

place key
signal that placement has been done

(3) one key placed in record of binary

node
record reference to middle subtree

this binary node done, save reference

for parent

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees * 191

51. * (n.right + desc;

52. dew + n;

53.

54.

55.

56.

57.

58.

59.

60. compact c UC[O]

61. end

end;

sigma3[level] + sigma3[level] - 1;

level +- level - 1))

comment declaration completed,

level t - 1;

dft(root(T));

build(l);

record reference to right subtree

this ternary node done, save refer-

ence for parent

record completion of ternary node

move next to higher level

traverse entire tree

dummy call to link pointers on right

spine

return reference to root.

To see that the algorithm halts, we observe first that the basic control flow is
determined by DFT and amounts to a simple depth-first traversal of a 2,3-tree
that obviously halts if its. subparts do. Second, we note that the two other loops
(lines 29-31 and 33-54 of the BUILD procedure) cannot possibly cycle forever for
positive d. The (lines 29-31) while-loop always terminates since the initial value
of LEVEL is always less than or equal to d - 1 upon entry to the loop. The loop
(lines 33-54) clearly terminates since in each clause of the conditional some
change is made that effects the disjunction controlling the loop.

The tree that results from BUILD (if it is a tree at all), will evidently be
compact since binary and ternary nodes are built according to the dictates of the
profile. To see that a valid 2,3-tree results from BUILD, say that in a tree
containing keys kl < kg < . . . < k, and leaves 11, 12, . . . , 1,+1 (numbered left to
right), that the left leaf of ki is li. Then BUILD is called n times by the DFT
routine and on the ith call, BUILD (1) begins by moving to the left leaf of ki, (2)
creates all edges from Zi to the vertex containing ki, (3) “completes” the vertices
between li and the vertex containing ki according as they are either binary (lines
46-49) or ternary (lines 50-54), and (4) places ki in the proper position in the
vertex according to whether it is in the first key position (lines 39-41) or the
second key position (lines 42-45). Thus the calls from DFT complete all portions
of the tree except the edges on the right spine. The dummy call from COMPACT
(line 59) completes this feature and the algorithm halts.

Evidently, COMPACT operates in linear time on a uniform-cost random-access
machine since it is simply the composition of two depth-first tree traversals. The
total number of tree records that are required in excess of the number freed is d
(i.e., if a compact tree were compacted, d extra cells would be needed for the
algorithm to operate).

6. SUMMARY AND DISCUSSION

In the set Y,, of all order M B-trees with capacity k, we have characterized the
space-minimal elements. We have bounded the time performance of these space-
minimal B-trees as well as the space utilization of the time-minimal B-trees. The
main result of this analysis is that the space-minimal trees are nearly time-
minimal, but the time-minimal trees are nearly space-maximal.

This bias in favor of using space-minimal trees when possible motivated our
analysis of the robustness of space-minimal trees in the presence of random

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

192 * A. L. Rosenberg and L. Snyder

insertions. Though space-minimal B-trees are only modestly robust, pragmatic

considerations such as file stability suggest that they could be beneficial with
periodic recompactification, e.g., during routine file “backup.” This compactifi-
cation can be accomplished inexpensively using the linear time algorithm pre-

sented here.
Many issues remain to be investigated. For example, are there variants on the

B-tree theme that enhance the robustness of space-efficient trees? How robust
are compact B-trees under “random” insertions? How do variable length keys
affect the analysis presented here-is it better to have smaller nodes when the
keys are variable in length? What are the time and space characteristics of

random B-trees created by random insertions and deletions?

APPENDIX

LEMMA A. Let T be a visit-optimal n-leaf order M B-tree with profile

II(T) = VO, ~1, . . . , vd.

If M is even, then

for all

and

for all

If M is odd, then

for all

1~ log2 n + (1 - log2 M)d - 1,

v1 =

12 log2 n + (1 - log2 M)d.

l % loa n + (1 - l&M + l))d + o(l)
logz.(2M/(M + 1))

asn+ co; and

n
Vl = L 1 d-l m

for all

l ~ log2 n + (1 - logz(M + l))d

log2(2M/(M + 1)) ’

(Al)

W)

PROOF. Assume first that M is even. Inequality (Al) on 1 yields

ISlog M I log2 n - (d - 1) (log2 M - 1) - 1

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981.

Time- and Space-Optimality in B-Trees * 193

so that

and the lemma follows by Theorem 2.4. By similar calculations, inequality (A2)
on 1 yields

so again the lemma follows by Theorem 2.4.
The case of odd M follows by similar reasoning, using the fact that m = (M +

1)/2 when M is odd. Cl

ACKNOWLEDGMENT

The authors are indebted to Mark R. Brown of Yale for his helpful comments on
an earlier version of this paper. We also wish to thank Michele Boucher for her
patience and her skillful preparation of this document and the innumerable drafts
that preceded it.

REFERENCES

1. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Informutica 1, 3 (1972), 173-189.

2. BAYER, R., AND UNTERAUER, K. Prefm B-trees. ACM Trans. Database Syst. 2,1 (March 1977),
11-26.

3. KNUTH, D.E. The Art of Computer Programming, vol. 3. Addison-Wesley, Reading, Mass., 1973.
4. MILLER, R.E., PIPPENGER, N., ROSENBERG, A.L., AND SNYDER, L. Optimal 2,3 trees. SIAM J.

Cornput. 8,l (1979), 42-59.

5. ROSENBERG, A.L., AND SNYDER, L. Minimal comparison 2,3 trees. SIAM J. Cornput. 7,4 (1978),

465-480.

6. SNYDER, L. On uniquely represented data structures. Proc. 18th Annu. Conf Foundations of
Computer Science, 1977, pp. 412-417.

7. YAO, A.C. On random 2,3 trees. Actu Informutica 9, 3 (1978), 159-170.

Received July 1979; accepted April 1980

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981

