
Time and Time Again: The Many Ways to Represent Time

James F Allen

The University of Rochester

This paper originally appear in the International Journal of Intelligent Systems, 6(4), July 
1991.pp341-355 As a result, there are no references to papers past 1990. On the other hand, the 
issues remain essentially the same.

One of the most crucial problems in any computer system that involves representing the world is the 
representation of time. This includes applications such as databases, simulation, expert systems and 
applications of Artificial Intelligence in general. In this brief paper, I will give a survey of the basic 
techniques available for representing time, and then talk about temporal reasoning in a general setting as 
needed in AI applications. Quite different representations of time are usable depending on the assumptions 
that can be made about the temporal information to be represented. The most crucial issue is the degree of 
certainty one can assume. Can one assume that a time stamp can be assigned to each event, or barring that, 
that the events are fully ordered? Or can we only assume that a partial ordering of events is known? Can 
events be simultaneous? Can they overlap in time and yet not be simultaneous? If they are not 
instantaneous, do we know the durations of events? Different answers to each of these questions allow 
very different representations of time.

I. Representations Based on Dating Schemes

A good representation of time for instantaneous events, if it is possible, is using an absolute dating 
system. This involves time stamping each event with an absolute real-time, say taken off the system clock 
on the machine, or some other coarser-grained system such as we use for dating in everyday life. For 
instance, a convenient dating scheme could be a tuple consisting of the year, day in the year, hour in the 
day, minutes and seconds, say. For example, (1990 110 10 4 50) would be the 110th day of 1990, at 
10:04 (AM) and 50 seconds. The big advantage of dating schemes is that they provide for constant time 
algorithm for comparing times and use only linear space in the number of items represented. Time 
comparisons are reduced to simple numeric comparisons. Date-based representations are only usable, 
however, in applications where such information is always known, i.e. applications where every event 
entered has its absolute date identified. There are many applications where this is a reasonable assumption. 
For instance, applications involving real-time data gathering, databases of transactions on a single 
machine, say a central machine maintaining banking records, or a system to maintain one's appointment 
calendar. In these applications, a date-based representation should be the representation of choice. In 
addition, with absolute dating, we also have information about the duration of time between events - we 
simply subtract the date of the later event from the date of the earlier one.

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 1



Even if absolute dating is not available, if the events are always known in a full linear ordering, then a 
variant of this approach using pseudo-dates is possible. For instance, assume that the events are always 
fully ordered when entered. In this case, we can arbitrarily assign a number to each event such that the 
numeric ordering reflects the linear ordering. When a new event is added to an existing database, say 
between two known events e1 and e2, then a new number is computed for the new event that is between 
the numbers for e1 and e2. One simple technique is to take the midpoint between the times, namely 
(Time(e1)+Time(e2))/2. This scheme will work until the limits of precision on the machine is reached. In 
this unlikely event, a new numbering would need to be reassigned to the set of events. On average, this 
representation is as efficient with regards to space and time as the original dating scheme since all time 
comparisons are again reduced to numeric comparisons. With pseudo-dates, however, we have lost all 
information about durations between events.

More complicated representations are needed if the strong assumptions above cannot be met. For instance, 
what if the exact time of each event is not necessarily known? Rather, the system is given ranges within 
which the event is known to occur. Assuming that events are still instantaneous and that specific event-to-
event relationships are not known except by means of the ranges specified, we can use a modified dating 
scheme where the time of each event is constrained by the earliest possible and latest possible time for the 
event. Consider this with an absolute dating scheme first. Each event is entered into the system with a pair 
of dates (e,l) specifying the earliest and latest possible time of occurrence. Temporal comparison is now a 
comparison of intervals as follows. Given two events with times (e1,l1) and (e2,l2) respectively, then we 
have the following method of comparing the event times:

If l1 < e2 then event 1 is before event 2

If l2 < e1 then event 2 is before event 1

Otherwise, the ordering is unknown

If the dates are real-time dates, then we can also derive bounds on the duration between events as well. For 
example, if event 1 is before event 2, then we know the duration between them is at least (e2 - l1) and at 
most (l2 - e1).

Unfortunately, the same representation does not directly work with pseudo-times. Consider a simple 
scheme that might appear to work at first glance: To insert an event between two events with times (e1,l1) 
and (e2,l2), where l1 < e2, we simply assign the new event the time (l1,e2). If event 1 and event 2 were 
previously unordered, and now we are adding that event 1 precedes event 2, we would need to pick a new 
pseudo date, say dividing the interval that contains both events into thirds, using the first third for event 1 
and the last third for event 2. This would leave room for the possible addition of an event between them at 
a later stage. Unfortunately, undesired interactions may occur between the partial orderings. In particular, 
consider the partial ordering with the following events start, mow, rake, gotobank, buyfood, eat, where 
you must both mow and rake the lawn before lunch, and you get money and buy food before lunch, as 
shown in Figure 1. Each partial ordering, shown by the arrows, is encoded correctly by the pseudo times 
as shown. But we inadvertently have added undesired orderings between the partial orders: mow now 
precedes buyfood, for instance, whereas the two events are really unordered with respect to each other.  

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 2



No simple modification of this representation can resolve this problem, although the technique can be used 
as part of a more complex representation. Miller and Schubert (1990), for instance, use a pseudo-date 
scheme for subsets of events that form a total ordering, and use a graph structure for capturing partial 
ordering constraints. This allows some queries to be answered in constant time, while others may require a 
graph search (an order n algorithm). The advantage of this scheme over the constraint -based approaches 
to be discussed next is mainly the amount of space required. By using a pseudo-date scheme, the Miller & 
Schubert representation is considerably more space-efficient in the average case.

II. Constraint Propagation Approaches

There has been a considerable amount of work in Artificial Intelligence in defining temporal reasoning 
systems that used the technique of constraint propagation. These systems use a graph-based representation 
where each time is linked to each other time with an arc labeled with the possible temporal relationships 
between the times. Specifically, the possible relations between any two time points are <,>, and =. An arc 
labeled (<,=) between two time points e1 and e2 would represent the fact that e1 < e2 or e1 = e2. No 
information between two time points would be indicated by the label (<,=,>), i.e. every relationship is 
possible. Note that such disjunctions can be represented on an arc label, whereas an arbitrary disjunction 
involving more than two time points, say e1<e2 or e2<e3, cannot. Thus this representation provides a 
very limited form of disjunctive reasoning.When new information is added to this representation, it may 
constrain existing information because of transitivity constraints. In particular, we know that if e1<e2 and 
e2<e3, then e1 must be before e3. These constraints, based on transitivity, can be used to incrementally 
update the graph. For example, say originally that e1 is before or equal to e2, and e2 is before or equal to 
e3. This allows us to infer that e1 must be before or equal to e3. This situation is shown in the constraint 
graph in Figure 2. Now if we add an event e4 such that e1<e4<e2, then this introduces a new constraint 
by transitivity that e1 < e2 . So the arc between e1 and e2 is updated, and now transitivity can be applied 
again, since e1<e2<=e3 implies that e1<e3 , and the arc between e1 and e3 is updated. The result is 
shown in Figure 3. Vilain and Kautz (1986) show that such a constraint propagation algorithm operating 
on constraints that exclude the restriction e1 (<,>) e2, i.e. the two events are not equal but are otherwise 
unordered, is sound and complete and operates in order n3 time. van Beek(1989) develops an order n4 
algorithm that is sound and complete for the complete algebra including every possible form of constraint 
between points.

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 3

start (1,3)

mow(3,6) rake(6,9)

eat(9,12)

gotobank(3,6) buyfood(6,9)

Figure 1: An attempt to encode a partial ordering with pseudo times



The situation becomes more complicated as we relax the assumption that all events are instantaneous. In 
this case, events now take place over intervals. We can express intervals as pairs of points - the start time 
and the end time, but there are quite natural interval relationships that cannot be captured in a simple point-
based representation. In particular, using a constraint-based point reasoner as described above to 
implement an interval-based reasoner will impose some restrictions. 

First consider some examples. Say event 1 occurs over the interval E1 (= (e1,l1)) and event 2 occurs over 
the interval E2 ( =(e2,l2)). Now the interval relationship that E1 is :before E2  is easily captured, namely 
by the point constraint l1 < e2 . A more complicated example is that E1 :overlaps E2 , which is captured 
by the conjunction e1 < e2 & e2 < l1 & l1 < l2. Figure 4 shows the example of this situation in both 
representations. Allen (1983) defines the thirteen possible interval relationships, each one expressible as a 
conjunction of point relationships. Seven are shown in Figure 5, and the remaining ones are simply the 
inverses (i.e. reversing the order of the two arguments to get :after, :metBy, etc). The complication arises 
when uncertainly is introduced. A simple disjunction at the interval level, say that E1 is :before or :after 
E2, becomes a complex disjunction at the point level, namely l1 < e2 or  l2 < e1 . Figure 6 shows an 
interval relation that cannot be expressed as a simple point-based constraint graph because such 
disjunctions involving more than two points are not expressible in a single arc label between two points

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 4

e1 e2 e3
(<) (<,=)

(<)

e4

(<)
(<)

Figure 3: After adding e1<e4 and e4<e2

e1 e2 e3
(<,=) (<,=)

(<,=)

Figure 2: A simple point-based constraint graph



Allen (1983) developed a constraint propagation algorithm based on intervals rather than points that can 
capture such relationships directly. Because it can represent any disjunction of the thirteen possible simple 
relationships between intervals, this representation can capture 213 different possible constraints between 
any two intervals. Only 181 of these are expressible as simple point-based constraints (Ladkin & Maddux, 

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 5

e1 e2 l2
(<) (<)

l1
(<)

E1 E2
(:overlaps)

Figure 4: Interval E1 overlaps E2 in an interval-based representation and the equivalent 

point-based representation

E1 :before E2

E1 :meets E2

E1 :overlaps E2

E1 :starts E2

E1 :during E2

E1 :finishes E2

E1 :equals E2

E1 E2

E1 E2

E1 E2

E1
E2

E1
E2

E2
E1

E2
E1

Figure 5: The interval relationships



personal communication). This representation is powerful enough that any complete algorithm that 
guarantees consistency on the temporal information is NP-complete in the worse case (Vilain & Kautz, 
1986). Allen (1983), however, presents a heuristic order n3 algorithm that captures most or all intuitively 
simple cases. Vilain and Kautz show that this  algorithm is complete if all the constraints obey the property 
of "continuity" - that is that all constraints on endpoints could be expressed by a continuous range between 
some maximum and minimum point-time. In other words, it is complete with respect to any situation that 
could be expressed by point-based constraints as described above. But the algorithm also handles more 
complex situations as well, but without the guarantee of completeness. In particular, the algorithm could 
accept a set of disjunctive labels in the graph, where there is no actual labeling that would be consistent. 
Allen (1983) gives an example of such a graph. In general, such situations are rather hard to construct and 
none have yet been found that correspond to some intuitively natural situation. The most intuitive 
situations devised so far resemble logic puzzles that people have difficulty with as well. So it may be that 
this algorithm captures those aspects of temporal reasoning that people find intuitively simple, but this is 
pure speculation. At the present time, however, if you need an efficient algorithm in an application that 
requires that two intervals might be disjoint, but are not otherwise ordered, there is no choice but to accept 
the incompleteness.

In some cases, the temporal intervals can be roughly partitioned into subsegments where all the complexity 
is within the subsegments rather than between them. This can lead to substantial actual efficiency 
improvements. Koomen (1989) developed a system that can automatically compute such clustering within 
the framework of Allen's algorithm. Generalizing even further, to arbitrary disjunctions about temporal 
intervals transforms the problem into general theorem proving techniques, which are not typically efficient 
enough for use in applications.

A formal definition of interval time can be found in Allen & Hayes (1989). This logic uses one primitive 
relation, :meets, and one primitive object, the time period. Allen & Hayes present a brief axiomatization of 
interval logic (5 axioms), and show how the logic can be extended to distinguish between time points, 
moments of time, and time intervals. Ladkin (1987) shows that all the semantic models of this 
axiomatization are isomorphic to an interval structure based on an unbounded linear order. Ladkin (1987) 
and van Benthem (1983) present similar axiomatizations that are characterized by interval structures on an 
unbounded, dense, linear order. Thus the Allen & Hayes model is weaker in that it does not require the 
time line to be dense (i.e. if t1 < t3, the dense time requires that there exists a t2 such that t1<t2<t3).

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 6

E1 E2
(:before :after)

Figure 6: An interval constraint not representable in a point-based constraint graph



III. Duration-Based Representations

With the exception of the first technique using absolute dates, we have been ignoring the problem of 
representing temporal durations. In this section we will examine some representations that operate 
primarily using duration information. The basic technique for dealing with duration information is seen in 
PERT networks. This representation maintains a partial ordering of events in an acyclic directed graph that 
has both a distinguished beginning and ending event. Each node in the graph represents an event and has 
an associated duration. An example is shown in Figure 7, which represents the initial dependencies 
between the events needed to build a simple hut.  Events are represented by arcs, which are labeled by the 
duration of the event. The initial node is labeled with (0,0), indicating that the earliest possible starting time 
is 0, and the latest starting time, given that the task is completed as soon as possible, is also 0. This state 
represents the beginning of the task. We can now calculate the earliest starting time for every node in the 
network by starting at the beginning node and assigning it time 0. Each node directly linked to the starting 
node then has an earliest start time greater or equal to the duration of the event represented by the arc. In 
general, if node i is linked to node j, then node j's earliest start time must be equal or greater to the earliest 
start time of i plus the duration of the arc from i to j. Since there may be many different paths from the 

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 7

Figure 7: A simple PERT network showing durations of each event (i.e. arc)

e1e1

0,0

3

6

4

5

7
8

2

3

?,? ?,?

?,? ?,?

?,? ?,?
Buy Wood

Build Window
Frames

Build 
      Wall
            units

Dig
Foundation

Lay Foundation

Glaze
  Windows

Install
Wall units

Install Windows

e1e1

0,0

3

6

4

5

7
8

2

3

3,? 10,?

6,? 10,?

18,? 21,?

Figure 8: the same network after finding the earliest possible starting times



beginning node to an arbitrary node  j, the earliest start time for j will be the maximum computed over any 
path. The results of computing the earliest start times for the example network is shown in Figure 8. 
Essentially the same algorithm can then be run backwards from the end node once its earliest start time is 
derived, to compute the latest start time for each node in order to complete the entire task by the earliest 
possible time. The results of this step are shown in Figure 9. Thus we have derived a window for the start 
of each event in order to minimize the total time of the event sequence. This technique is very useful in 
scheduling applications, for which it was originally developed. As a general representation of time, 
however, it is lacking. In particular, it is only useful if the duration of each event is known. While we 
could generalize the algorithm to use a range of possible durations for each event rather than an exact 
duration, one unknown duration (i.e. an arc with range 0 to infinity) defeats the algorithm. Furthermore, 
ordering constraints that are not representable by a partial ordering of endpoints are impossible to 
represent. In cases where duration information is available, the technique yields a representation that is 
similar in power to the pseudo-date system described earlier. Incrementally adding new events into the 
network becomes an expensive task however, which can involve recomputing the entire network in the 
worst case.

Dean & McDermott (1987) develop a representation that encodes all temporal information in terms of 
duration constraints. Rather than using durations of events as a base, as described above, they represent all 
information as durations between time points. More qualitative relationships between points can be 
captured by allowing the use of infinity as a value. Thus the fact that p is before or equal to q is expressed 
as stating that the duration between p and q is between 0 and infinity. For instance, Figure 10 shows a 
simple time map encoding an example from Dean & McDermott (1987, p 41). This encodes the constraints 

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 8

e1e1

0,0

3

6

4

5

7
8

2

3

3,3 10,10

6,12 10,16

18,18 21,21

Figure 9: The network after computing the latest possible start times

e1e1pt3
(4,5) (1,2) (1,2)

pt5 pt1 pt6pt2 pt4
(3,4)

Figure 10: A simple time map



that 

there is between 4 and 5 units of time between pt3 and pt5, 1 to 2 units between pt5 and pt1, etc. Using 
simple transitivity of durations over paths, they could derive that the duration between pt3 and pt1 must be 
between 5 and 7 (i.e.by adding up the lower and upper bounds along the path). If we now add the 
constraint that pt2 is exactly one unit of time after pt1, then the system uses path finding techniques to infer 
certain consequences. For instance, we could infer that pt3 is between 7 and 10 units before pt4, as shown 
in Figure 11. Their system does not automatically compute all consequences of new information as is done 
with the constraint-based approaches. Rather the user indicates relationships that are of interest and these 
are monitored as new information is added. For instance, if the user has indicated that the fact that pt3 is 
before pt4, (i.e. pt3 (0,+inf) pt4) is of interest, this would be inferred in the example discussed above.

If there is no information about the relationship between two points, this is equivalent to asserting the 
duration between them to be between minus-infinity and plus-infinity.  For their algorithm to be effective, 
duration information must be fairly well known for the most part. Since the algorithm depends on heuristic 
graph search, it is hard to characterize the actual complexity or power of the system. Using a complete 
search algorithm however, the algorithm appears to be similar in expressive power to the interval 
representation restricted to continuous constraints as described in Vilain and Kautz (1986), except that they 
have durations represented in addition to the qualitative temporal ordering. 

IV. Temporal Logics

So far we have only discussed the representation of temporal information. For such a capability to be 
useful it must be embedded within a more general representation that can encode general assertions about 
the world. The simplest form of such a representation assumes a linear time model and indexes each fact 
with a time - e.g. in a logic-based representation the time could simply be an extra argument. Thus 
Green(FROG1,T1) might assert that the object FROG1 was green at time T1. With a predicate like green, 
it does not matter whether T1 is an interval or a time point. In fact, if T1 were an interval, we could define 
the meaning of this formula as an abbreviation of an assertion that FROG1 is green over all time points 
contained in T1. 

This technique does not work with all predicates, however. Consider the predicate stating that some event 
occurred - say that the sun rose. While we can say that the sun rose over some interval of time, this is not 
equivalent to asserting that the sun rose over every point in that interval. In fact, the sun didn't rise over 
any point in time. Such predicates representing events necessarily take intervals as arguments. In a point-

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 9

e1e1pt3
(4,5) (1,2) (1,2)

pt5 pt1 pt6pt2 pt4
(3,4)(1,1)

(7,10)

Figure 11: The same map after adding pt1 (1,1) pt2



based temporal representation, this means that the predicate Rise would take two time points, i.e. 
Rise(t1,t2) is true only if the sun rose between times t1 and t2. In an interval-based representation, there 
need be only one temporal argument, i.e. Rise(T1) is true only if the sun rose over interval T1. The 
difference between predicates such a Green and Rise has been noticed for a long time. Vendler (1957) 
pointed out these distinctions in his work analyzing the verbs of English. We can define different 
properties of predicates:predicates like Green are homogeneous - if the predicate holds over an interval, it 
holds over all subintervals and points in that interval. Predicates like Rise, have the opposite property: if it 
holds over an interval T then it doesn't hold over any subinterval of T; and the processes, such as the 
predicate Running, which if it holds over two intervals T1 and T2 such that T1 meets T2, then it also holds 
over the union of these two intervals. These observations have been made and formalized in many 
different ways (e.g. see Allen, 1983, Dowty, 1986, Shoham, 1987) and have interesting consequences. In 
particular, if one starts with a point-based logic, which defines intervals as the set of points in the interval, 
and defines a predicate to be true over an interval only if its true over all the points that make up the 
interval, then such a logic cannot represent non-homogeneous predicates.

More complex models of time have been developed in formal work but have rarely been explicitly 
incorporated into temporal reasoning systems. For instance, one very common model of time involves 
forward branching time. In this case, all times are not directly comparable, as they are when we think of 
times as linearly ordered.Rather, some times are incomparable. Branching time is used to represent the 
notion of future possibility. There might be two futures of interest, for instance, one where the agent eats 
lunch, and the other where the agent goes jogging instead. In the first possible future, there might be a 
time tgain when the agent has gained weight. In the latter, there might be a time tloss where the agent has 
lost weight. Because these represent two possibilities, it might not make sense to ask whether tloss is 
before or after tgain. The times simply can't be compared. McDermott (1982) outlines such a model in 
detail and discusses its application to AI reasoning problems. 

Another common temporal representation, variants of which are found in philosophy, linguistics (e.g. 
tense logic, Prior (1967)) and theoretical computer science (e.g. dynamic logic, Pratt, 1978, Harel, 1979), 
involve modal "tense" operators.  Rather than having explicit time in the logic, modal operators such a 
PAST  are introduced. Thus the formula PAST(Green(Frog1)) means that FROG1 was green sometime in 
the past. A similar operator can be defined for Future, and in models that use discrete time, an operator 
NEXT can be defined as well. For example, NEXT(Green(Frog1)) would be true only if FROG1 was 
green at the next time step. While this logics have been useful in certain applications, such as the 
representation of tense in natural language, and in the formal semantics of programs, they have not been 
found to be generally useful in AI. In particular, without an explicit representation of time, they do not 
provide a fine-grained enough representation to capture complex situations, external events, the changing 
world over time, or other issues important in AI applications.

V. Temporal Knowledge Representation Systems

Given this discussion, it remains to be seen how a temporal reasoner such as the ones described above can 
be embedded into an actual reasoning system. In some cases, the representation is restricted enough that 
Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 10



the temporal reasoning can be incorporated directly. For example, consider a database application where all 
relations are homogeneous predicates, and time intervals are represented by pairs of dates, or pseudo-
dates. The temporal reasoning is then built into the retrieval mechanism: to retrieve a relation R between 
dates d1 and d2, the system uses its normal retrieval mechanism to find candidate matches - say R between 
d3 and d4, and then checks if d3 <= d1 and d4>= d2. If so the retrieval succeeds. A similar technique 
would be used for a variant on the retrieval, namely to find any instances of relation R during the interval 
between d1 and d2. The only difference would be the temporal constraint check at the end of the retrieval 
process.

In many AI applications, we would like to integrate a temporal reasoner into a general purpose reasoning 
system. Here we briefly describe such a system that has been developed at Rochester. RHET (Allen & 
Miller, 1989) is a Horn-clause based AI representation language that has as a subcomponent the 
TIMELOGIC temporal reasoning system developed by Koomen (1989) and based on Allen's interval 
logic. RHET is a hybrid system, rather than using a single uniform proof technique, each predicate defined 
in RHET could potentially use its own specialized techniques for computing its truthhood. To the user, 
however, each predicate appears to be represented uniformly. Thus the Horn-clause 

[P ?x ?y] < [Q ?x] [R ?x ?y] 

has its usual interpretation: To prove [P ?x ?y], we must first prove [Q ?x] and then prove [R ?x ?y], 
where ?x and ?y are variables and unification is used throughout the proof process. 

In RHET, however, a predicate may be proved by calling a specialized reasoner rather than simply 
recursively matching into the Horn-clause database as done in PROLOG. In particular, all temporal 
relations are interpreted through a special predicate [TimeReln ?t1 ?r ?t2], where ?t1 and ?t2 must be times 
and ?r is a list of the possible temporal relationships between ?t1 and ?t2. If all three variables are bound, 
then the truth of this formula is computed simply by directly inspecting the temporal database. If one or 
more of the variables are not bound, then TIMELOGIC is called to find all possible bindings of the 
variable. RHET subsequently stores this list of values and iterates through them as needed throughout the 
rest of the proof (i.e. it binds the variable to the first value, and if the proof ever backtracks to this 
predicate again, it uses the next value, and so on until all values are tried). To the user, it appears that the 
[TimeReln ?t1 ?r ?t2] literal is being proven by successive matches into the RHET database just as it would 
in a normal Horn-clause proof. When a literal of the form [TimeReln ?t1 ?r ?t2] is asserted, RHET 
intercepts the operation and passes the information to TIMELOGIC and the constraint propagation 
algorithm is run to compute the consequences of the new information. This simple technique provides a 
conceptually simple, but powerful, temporal logic reasoning system. All other aspects of the temporal 
logic can be encoded simply as Horn clauses. For instance, the predicate BEFORE can be defined simply 
as follows: 

[BEFORE ?t1 ?t2] < [TimeReln ?t1 :before ?t2] 

and the predicate IN as 

[IN ?t1 ?t2] < [TimeReln ?t1 (:starts :during :ends :equal) ?t2].

Given these definitions, a predicate HOLDS for homogeneous properties can be defined as followed, 

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 11



where ?p is a variable over such properties: 

[HOLDS ?p ?t] < [HOLDS ?p ?t1] [IN ?t ?t1]. 

Koomen (1989) and Allen & Miller (1989) contains more details on the implementation of this system.

More general interfaces between a specialized temporal reasoner and a theorem prover can be obtained 
using the techniques of theory resolution (Stickle, 1985). Miller and Schubert (1990) use this technique in 
their system.

VI. The Limits of Deductive Temporal Models

A significant number of applications can be covered by the techniques described so far. But there are still 
some very difficult problems remaining. One of the most crucial issues relating to time is the persistence 
problem. Given that we know that some property P holds over some time interval T1, what can we say 
about P being true after T1? Logically, we can say nothing. If my car was in the driveway when I arrived 
home tonight, I can't know for sure that the car is still there. It might have been stolen, for instance. 
Nevertheless, for the purposes of my everyday reasoning, I would like to assume that it is still there. I do 
not want to have to go check again and again if the car is still there as I plan to make a shopping trip in the 
next hour. Such assumptions are called persistence assumptions  because the reflect that the world 
generally remains the same from one moment to the next.

Any technique that uses a persistence assumption to conclude that a given proposition is true must be non-
monotonic - i.e. it may make conclusions that it may later have to retract as further information is obtained. 
Thus I may conclude my car is still in the driveway, but will have to revise this assumption if I receive a 
call from the police saying they just found my car in a ditch somewhere. In general, non-monotonic 
persistence rules are of the form: If I know P is true at time t, and it is consistent that P is still true now, 
then I may assume that P still holds. Dean & McDermott (1987) use such a technique to make persistence 
assumptions into the future: if P started to be true somewhere between times t1 and t2, and is not known 
to become false before time t3, where t3 is after t2, then their system can assume that P is still true at time 
t3 if persistence assumptions are allowed. The only requirement is that P must definitely be known to have 
become true prior to the time t3. Allen (Allen et al, 1990) defines a more general persistence rule. If we 
know that P is true over some interval T1, and we are interested in whether it could be true over interval 
T2. If it is consistent that T1=T2 given the known temporal constraints, then we can assume P is true by 
persistence. In cases where T1 could not possibly start after T2 starts, this is equivalent to Dean & 
McDermott's technique. In cases where the relationship between the start of the two intervals is not 
known, Allen allows the assumption while Dean & McDermott do not. These techniques remain quite 
crude because they depend heavily on assumptions based on consistency checks.  For instance, they do 
not apply well to situations where the agent only has limited knowledge about the world, for in these 
situations many contradictory conclusions can be consistent. More plausible models are being developed 
that deal with the probability that a given fact remains true given that it is true over some interval (e.g. see 
Dean & Kawazawa, 1988, Weber, 1989).

VII. Conclusion
Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 12



The representation of time is crucial to many applications of artificial intelligence, and work in 
computational models of time is still in its early stages. Given the lower-bound complexity results for 
various forms of temporal inference, however, we know that there are not significantly better general 
techniques possible than those that have been developed so far. However, within particular applications, 
efficient complete techniques might yet be developed. In this paper, I have given a brief description of the 
most common techniques and attempted to identify the conditions under which they are applicable. The 
result is a wide range of different techniques, each effective under differing basic assumptions.

Acknowledgements

Many thanks to Josh Tenenberg and Lou Hoebel for their helpful comments on earlier drafts. This work 
was supported in part by ONR/DARPA grant N00014-80-C-0193 and ONR grant N00014-80-C-0197.

References

Allen, J.  (1983) Maintaining Knowledge About Temporal Intervals, Communications of the ACM 
26(11) pp 832-843.

Allen, J. (1984) Towards a General Theory of Action and Time, Artificial Intelligence 23(2), pp 123-15

Allen, J.  & Hayes, P. (1989) Moments and Points in an Interval-based Temporal Logic, Computational 
Intelligence, 5, pp225-238.

Allen, J, Kautz, H, Pelavin, R and Tenenberg, J. (1990) Reasoning about Plans, Morgan-Kaufman.

Allen, J. and Miller, B. (1989) The RHET System,  TR 325, Dept. of Computer Science, University of 
Rochester.

Dean, T and Kanazawa, K. (1988) Probabilistic Temporal Reasoning, Proc. of the National Conference 
of the American Association for Artificial Intelligence (AAAI-88), Morgan-Kaufman.

Dean, T. and McDermott, D.(1987) Temporal data base management, Artificial Intelligence, 32, pp1-55

Dowty, D (1986) The effects of aspectual class on the Temporal Structure of Discourse, Linguistics and 
Philosophy 9, p37-61.

Harel, D. (1979) First-Order Dynamic Logic, Springer-Verlag, NY.

Koomen, H. Localizing Temporal Constraint Propagation, Proc. Principles of The First International 
Conference on Knowledge Representation (KR89), Morgan-Kaufman, 1989.

Ladkin, P.  Models of Axioms for Time Intervals, (1987) Proc. of the National Conference of the 
American Association for Artificial Intelligence  (AAAI-87), Morgan-Kaufman.

Ladkin, P. and Maddux, (1988) R. Representation and Reasoning with Convex Time Intervals, TR 
KES.U.88.2, Kestrel Institute, Palo Alto, Ca.

McDermott, D. (1982) A temporal logic for reasoning about processes and plans, Cognitive Science 6, 
pp101-155

Miller, S and Schubert, L. (1990) Time Revisited, Computational Intelligence, 6:108-118.

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 13



Pratt, V. (1978) Six Lectures on Dynamic Logic, Tech. Report MIT/LCS/TM-117, MIT.

Prior, A.N. (1967) Past, Preset and Future, Oxford University Press.

Shoham, Y. (1987) Temporal Logics in AI: Semantical and Ontological Considerations, Artificial 
Intelligence 33, pp89-104.

Stickel, M.(1985) Automated Deduction by Theory Resolution, Proc. International Joint Conference on 
Artificial Intelligence (IJCAI-85), Morgan-Kaufman. pp1181-1186

van Beek, Peter (1989) Approximate Algorithms for Temporal reasoning, Proc. International Joint 
Conference on Artificial Intelligence (IJCAI-89), Morgan-Kaufman.

van Benthem, J. (1983) The Logic of Time, Reidel.

Vendler, Z. (1957) Verbs and Times, Philosophical Review 66. pp143-160.

Vilain, M. and Kautz, H. (1986) Constraint Propagation Algorithms for Temporal Reasoning, Proc. of 
the National Conference of the American Association for Artificial Intelligence  (AAAI-86), Morgan-
Kaufman.

Weber, J. (1989) A Parallel Algorithm for Statistical Refinement and its use in Causal reasoning, Proc. 
International Joint Conference on Artificial Intelligence (IJCAI-89), Morgan-Kaufman.

Allen: Time and Time Again, Intl J. of Intelligent Systems 6(4) 1991 14


