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ABSTRACT 

We developed two photo browsers for collections with 
thousands of time-stamped digital images. Modern digital 
cameras record photo shoot times, and semantically related 
photos tend to occur in bursts. Our browsers exploit the 
timing information to structure the collections and to 
automatically generate meaningful summaries. The 
browsers differ in how users navigate and view the 
structured collections. We conducted user studies to 
compare the two browsers and an un-summarized image 
browser. Our results show that exploiting the time 
dimension and appropriately summarizing collections can 
lead to significant improvements.  For example, for one 
task category, one of our browsers enabled a 33% 
improvement in speed of finding given images compared to 
the commercial browser. Similarly, users were able to 
complete 29% more tasks when using this same browser.  
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1.  INTRODUCTION 

Given the importance of multimedia digital libraries, 
several project have developed techniques for searching 
video, images, and geographic data (e.g. [1, 2, 3]). A 
majority of other digital library efforts focused on text, 
because text is most accessible to a variety of search and 
processing algorithms. Certainly, Personal Digital Library 
(PDL) facilities remained overwhelmingly textual. By 
PDLs we mean bodies of information that are mostly of 
importance to individuals or small groups. 

Two changes over the recent years have made the 
development of PDLs with image content urgent. (i) 
Desktop machine storage has grown cheap and plentiful 
and (ii) entry-level, point-and-shoot digital cameras have 
reached large numbers of consumers who are not 
necessarily deeply computer-savvy. As digital cameras do 
not require expensive film that can only be used once, users 
tend to take large numbers of pictures. This in turn results 
in an image management quagmire similar to the shoebox 
phenomenon of paper prints. Professional photographers 
and news reporters face the same challenge. 

There have been several approaches to improving the 
experience of browsing and managing collections of 
personal digital photographs. The most basic photo browser 
available is a file manager with integrated support for 
viewing images and thumbnails. Such functionality is 
found in Windows XP, Mac OS X, and standalone 
browsers such as ACDSee [4, 5, 6]. Although simple to 
use, these tools tend to be limited, and do little to help users 
organize their pictures more effectively than they can in the 
physical world. 

Using a database to manage photographs is another 
approach to this problem, used in systems such as  FotoFile 
and PhotoFinder [7, 8]. Although these systems offer 
powerful search functionality, they have failed to catch on, 
largely because they require time-intensive manual 
annotation.  

PhotoMesa and iPhoto are both examples of photo 
browsers which automatically group images for display. 
PhotoMesa groups by folder, year, and month, and iPhoto 
groups by “roll” (batch of photos downloaded to a 
computer at once) [9, 10]. This approach helps give more 
structure to the images than an enhanced file manager, but 
requires none of the time-intensive annotation of the 
database systems. 

Our approach to this problem builds on the idea of 
automatically grouping photographs. Instead of using 
metadata that is directly available in the file system, we 
analyze the photo creation process and construct a variety 
of organizational structures. For instance, we can 
automatically organize photographs by event, realizing that 
sequences of photos of one event will be taken closer 
together in time than sequences of other photos. 
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Photo browsers are notoriously poor at scaling, often 
unable to provide useful visual information for more than a 
few hundred images. Through our summarization 
techniques, we are able to browse tens of thousands of 
photographs. 

These techniques are part of the two-phased approach the 
Stanford Digital Library Project is taking to PDL image 
management. During the first phase, we are exploring 
algorithms that organize and summarize digitally created 
photographic image collections without any curator 
assistance, using current, mature technologies only. While 
heuristic and therefore imperfect, we are trying to push this 
area as far as possible. We are careful during this phase to 
design our systems such that machine image analysis 
technologies can be integrated later on. 

During the second phase we will examine how gracefully 
we can take advantage of incremental image captioning 
efforts that a curator might be willing to invest. The goal is 
for the collection's user interface to take advantage of 
coarse, as well as fine-grained captioning as curators create 
and refine such captions over time. In this paper we present 
the current state of our phase I work, which is implemented 
in prototypes. 

We begin with a description of one of our two browsers, 
the Calendar Browser. Next, we describe the heuristic 
algorithms that underlie this browser. The subsequent 
section introduces our second Hierarchical Browser, and a 
commercial browser used for comparisons.  Finally, we 
present our experimental comparisons. 

2.  CALENDAR BROWSER 

The Calendar Browser (CB) takes advantage of photo time 
stamps. When taking a picture with a digital camera, the 
equipment records the date and time when the photo was 
taken, as well as technical details, such as aperture settings, 
distance from the focal plane, and whether a flash was 
used. This data is encoded into the image files, and is 
available to applications that access these files. The 
Calendar Browser (Figures 1a and 1b) is an intentionally 

extremely simple interface that uses these date/time stamps 
to enable drill-down browsing and summarization. 

The application window is partitioned into two panes, the 
control panel and the display panel. The display panel 
contains space to hold a constant number of fixed-size 
thumbnails (in our implementation we always show up to 
25 images). At any given moment, the user is viewing 
images from one single time granularity. For example, 
Figure 1a shows a screenshot of the Calendar Browser at a 
'one-year' granularity. At this granularity, all images in the 
display panel will have been taken during the same year, in 
this case 2001. Usually, the collection will contain many 
more than the 25 images. The challenge, therefore, is to 
select representative images from among the 2001 subset of 
the collection. The images in the display panel are sorted 
by time and are labeled with time designations of the next-
lower time granularity. In Figure 1a the labels are therefore 
the months of the year 2001. 

Notice that not every month is represented with the same 
number of images. While the browser dedicates only one of 
the 25 precious display slots to each of January and 
February, four slots are invested in the month of August. 
We will explain the allocation strategy in the next section, 
but roughly speaking, the allocated space is proportional to 
the number of photos taken during the respective time 
interval. 

The two buttons in the control panel allow users to move 
through time at the current granularity. In Figure 1a this 
means moving backward and forward by year. 

The user 'drills down' into the collection by left clicking on 
an image. (Right clicking moves us in the reverse 
direction.) Figure 1b shows the screen after the user left 
clicked on a June image. Notice that the control panel now 
indicates that the time granularity has changed to the month 
level. The control button labels have correspondingly been 
changed to 'previous month' and 'next month'. Images in the 
display panel are now labeled by days within the month of 
June when the respective photos were taken. Again, not 

Figure 1a: Calendar Browser, Year View 

 

Figure 1b: Calendar Browser, Month View 



every day is represented by the same number of images, but 
all of the 25 slots are filled. 

Inspecting the display panel of Figure 1b further, we find a 
clue to how representative images are selected for a 'next-
coarser' time granularity level. Notice that the largest 
sequences of image slots in Figure 1b are allocated for the 
17th and the 30th of June, which contain five and four 
images, respectively. The 24th and the 27th are tied with 
three images. Referring back to Figure 1a, notice that one 
image from each of the two largest June sequences, and one 
image from the 27th were picked to represent June for the 
year 2001. 

Users may now left click on an image in one of the June 
days to see a summary of the photos that were taken on that 
day.  If a user left-clicks on an image at the day granularity, 
that image will be placed in the center of the display panel, 
and the space around the image will be filled with the 
photos taken immediately before and after the center 
image. No summarization is applied at this level. Users 
may  navigate using the previous and next buttons, to move 
through the un-summarized photographs 25 images at a 
time.  

Earlier versions of this browser had several more controls 
that afforded the sliding of time windows to control image 
display down to minute granularity, and other powerful 
manipulations. Preliminary, informal user tests made it 
very clear that we were best off with the exceedingly 
simple design exemplified in the figures. Both novices and 
experts preferred this simpler interface. 

3.  TIME BASED SUMMARIZATION 

People tend to take personal photographs in bursts. For 
instance, lots of pictures may be taken at a birthday party, 
but few, if any, pictures may be taken until another 
significant event takes place. We can derive information 
about personal collections of photographs based on these 
irregular, “bursty” patterns, which we analyze through 
clustering techniques. 

The goal of clustering is to expose the structure that is 
present in a set of personal photographs as a result of the 
way the user has taken the pictures. Without realizing it, the 
user gives structure to his image collection by the pattern in 
which he chooses to take the photographs. Based on these 
patterns, we can organize the images without any further 
user intervention. For instance, someone may take a series 
of photographs at a birthday party. By identifying this 
burst, we can group these images together, thus creating a 
structural unit. We call this structural unit a cluster. 

In many cases, we can derive even more specific 
information about the set of photographs in a cluster. Much 
as we were able to identify the "Birthday burst" by noticing 
an increased rate of activity, we are able to identify "sub-
bursts" by comparing relative rates of activity within the 
cluster. For example, the rate at which pictures are taken is 
likely to be higher when someone is opening presents or 
blowing out candles on a cake. By encoding these sub-
events within our cluster structure, we gain an even more 
accurate portrayal of the collection. 

More generally, we can say that the burst structure within 
collections of personal photographs tends to be recursive, 
where bursts make up bursts etc. We represent this 
recursive burst structure using a tree of clusters, where 
photographs are stored only at the leaf nodes. 

Figure 2 shows an example excerpt from a cluster tree. The 
labels of the nodes are added here for clarity. Our system 
does not generate them automatically. Each cluster node's 
internal 'label' is the time span that the images underneath 
the node cover. 

Our clustering machinery is the substrate that underlies 
both phases of our project. First, we can query the cluster 
structure for information about the patterns present in the 
collection, such as: the number of images in a cluster, the 
number of clusters in a time span, the time span of the 
images within a cluster etc. Based on this information, we 
can create summarization schemes for a whole class of 
browsing interfaces. For instance, the Calendar Browser 
introduced above queries the cluster structure when it 
populates the screen at different time granularities.  

Second, instead of operating on an image at a time, we are 
able to create user interfaces that operate on entire clusters. 
This will allow us, for example, to build an interface for 
incrementally adding metadata to a collection (Phase II of 
project).  

Figure 3 shows the architecture that underlies the Calendar 
Browser. The raw image files at the bottom are accessed by 
the Metadata Extraction module. In our case, we extract the 
time stamps from the digital camera files. As global 
positioning systems (GPS) are integrated into digital 
cameras, the location where a photograph was taken could 

Brian’s birthday Trip to Europe 4th of July

Root cluster

Friends arriving Opening presents Sub-clusters with

photos at leaves

Sub-clusters with

photos at leaves

Photos Photos

Figure 2: Example of Photo Cluster Tree 
Figure 3: Browser system Architecture 



also be extracted from the image files and introduced as a 
clustering criterion. 

Alternatively, one might acquire an image analysis tool that 
extracts useful metadata other than what is stored textually 
within the image files. For example, if we integrated a tool 
that detects faces in images, we could enable clustering of 
images by whether they contain one or more people. 

The Cluster Engine uses the extracted metadata to compute 
clusters. Our time-based engine, for example, computes the 
cluster tree introduced earlier. It is equally easy to cluster 
the data based on location when GPS data is available. The 
engine's output is a store of Cluster Structures, such as the 
cluster tree.  

Client applications access the Cluster Structures store 
through a Cluster Query Processor. This processor solves 
queries such as 'find all images taken during July 4, 2001.' 
Browsers may submit queries to the Cluster Query 
Processor directly. 

Another of the Cluster Query Processor's clients is the 
Summarizer module. In our case, the module uses time to 
compute the set of images that are to populate the browser's 
display panel. Other summarizer algorithms might base 
screen allocation decisions on other criteria. 

The top layer of the architecture contains the photo 
browsers, of which the Calendar Browser is one example. 
The currently unimplemented captioning machinery will be 
another client (shown in white). 

3.1.  Time Cluster Engine 

There are many ways to cluster images based on time 
metadata. For instance, one might use a K-means algorithm 
to cluster photos taken at about the same time. Another 
approach is to use time data to help improve the accuracy 
of clustering photographs using image analysis. 
AutoAlbum is a clustering method that works this way 
[11]. 

Our goal is to cluster photographs according to the burst 
patterns discussed earlier. The goal is achieved by grouping 
pictures that are taken at about the same rate. K-means 
clustering is difficult to use in this case because the specific 
number of bursts is not known. As well, the clusters 
AutoAlbum creates are not representative of bursts, since 
bursts are likely to contain pictures that are visually 
diverse. However, the basic time clustering present in 
AutoAlbum serves as a useful starting point for clustering 
by burst. 

In order to determine where a burst begins and ends, we 
need to know the rate at which pictures were taken within 
the burst. However, in order to find out this rate, we need to 
know when the burst begins and ends. We overcome this 
cyclical dependency by initially clustering the images by a 
constant time difference. That is, we compare consecutive 
photographs, and if they differ in time by more than a 
specified amount (see below), we create a new cluster. This 
gives a reasonable approximation of medium-sized clusters.  
We then create new clusters by splitting and combining 

these initial clusters.  We next describe this three-step 
process in more detail. 

Step 1: Create initial clusters. 

We sort the list of photographs in the collection with 
respect to time, and create the root node of the cluster tree, 
which is empty. We create the first child cluster and add it 
to the tree.  We then iterate through the sorted list of 
photographs. Every time two consecutive photographs 
differ by more than a specified constant time difference, we 
create a new cluster and add it to the root cluster. 
Regardless of whether we just created a new cluster, we 
add the current image to the most recently created cluster. 
By the time we reach the end of the list, we have a root 
cluster with as many child nodes as there are initial 
clusters. This simple, one-tiered cluster tree represents an 
approximation of the medium-sized bursts in the set of 
photographs.  (This process is equivalent to the time-based 
clustering used in AutoAlbum [11].) 

In step 2 of the clustering process, these initial clusters are 
split into finer clusters based on the time differences 
between photographs within each initial cluster. In step 3, 
the initial clusters are combined into more general clusters 
based on the time differences between the initial clusters. 
Thus, the final cluster tree is not heavily dependent on the 
specific time difference used during initial clustering. We 
found that choosing initial time differences between 1 and 
24 hours resulted in similar final cluster trees. Our current 
prototype uses an initial time difference of 1 hour. 

Step 2: Split initial clusters. 

In Step 2 we want to further refine these clusters, by 
splitting them into appropriate sub-clusters (i.e. adding 
child nodes to the initial clusters). 

During clustering, Step 1 could not take into account the 
rate at which photographs were taken within a cluster. Now 
that we have approximate clusters, we are able to consider 
these intra-cluster rates. This enables more accurate 
clustering, as the rate at which photographs are taken is 
likely to differ significantly between types of events. For 
instance, while taking a hike through a forest, someone 
may take a picture every couple of minutes. In contrast, 
when photographing a newborn baby for the first time, the 
time between pictures is likely to be in seconds. 

We take these differing rates into account by comparing 
each pair of consecutive photographs to the ‘basic’ (see 
below for details) photographic rate of the cluster. When 
we come across a pair with a time difference that appears to 
be outside the normal range for the cluster (an outlier), we 
create a new cluster. This new cluster contains the images 
between the previous outlier (or the beginning of the cluster 
if no previous outlier exists) and the new outlier. This new 
cluster is then added to the original cluster as a child node. 
Since photographs are only stored in leaf nodes, the 
photographs contained by the new cluster are removed 
from the original cluster. 

Figure 4 shows a snapshot of this stage in the process. 
Initial cluster 1 has been subdivided into new clusters 1.1 



and 1.2. Cluster 1.2 still contained image bursts that were 
separated by significant spans of time, so it has been 
subdivided again. In contrast, cluster 1.1 now contains only 
images taken during a single burst of picture-taking. 

Since bursts in collections of personal photographs tend to 
be recursive, we repeat this process over each newly 
created cluster until no outliers remain. 

To find outliers in a cluster, we compute all the time 
differences between consecutive photographs. We then find 
Q1, the value that divides the lower 1/4 of the values from 
the upper 3/4, and Q3 that divides the lower 3/4 from the 
upper 1/4.  A difference is an outlier if is greater than Q3 + 

2.5×(Q3-Q1). (The value 2.5 was selected empirically.)  For 
each outlier, we split the cluster at the time that the large 
difference occurred. 

Step 3: Create parent clusters. 

This step is much like Step 2, except that instead of 
splitting initial clusters into more specific clusters, we 
combine initial clusters into more general clusters. One 
way is to use a fixed year-month-day hierarchy for the 
higher levels.  That is, for each cluster C discovered in Step 
1, we determine the date of its first photograph, and then 
we make C a child of the appropriate day in the year-
month-day hierarchy.  Any C children determined in Step 2 
will continue to be children.  Note that a given day may 
have multiple clusters in it.  This approach is used in our 
prototype, and is useful for creating summaries that are 
intended to be navigated using time-based interfaces, as is 
the case with the Calendar Browser. 

An alternative is to create the higher levels of the hierarchy 
using statistical techniques analogous to the ones of Step 2. 
For example, instead of analyzing the time between 
photographs as we did in Step 2, we could analyze the time 
between clusters. Clusters that are relatively closer together 
to each other than other groups of clusters could then be 
combined into parent nodes at a higher, possibly newly 

created, tier in the cluster tree. This process would be 
repeated, building the tree upwards from the initial clusters. 

Initial cluster 1 Initial cluster n

Root cluster

New cluster 1.1 New cluster 1.2

Photos

New cluster 1.2.1 New cluster 1.2.2

Photos Photos

...

New cluster n.1 ... ...

...

Figure 4: Partially Completed Cluster Tree 

3.2.  Creating Summaries 

Collections of personal photographs typically contain many 
more photographs than can be displayed on screen at once. 
This problem applies not only to desktop photo browsers, 
but even more so to low resolution devices such as 
televisions, hand-held computers, and displays on digital 
cameras. Most systems overcome this limitation by 
allowing users to scroll through sets of images. 
Unfortunately, scrolling also has limitations. Most notably, 
scrolling gives no sense of overview, making it easy for 
users to feel lost in a sea of images. 

An alternative to scrolling is summarization, as in the 
display panel of Figures 1a and 1b. Instead of displaying all 
images, a set of representative images is shown. Once the 
user finds an image from the event he is looking for, he is 
able to "zoom in" and see the event in greater detail. When 
he is finished examining the event, he may "zoom out" to 
return to the summary view. Detail is hidden when 
unnecessary, but available whenever needed. Overviews 
are easily seen by zooming out. 

The input to our summarization procedure is a set of 
sequential clusters C at level k in the hierarchy, plus a 
target T, the desired number of representative photographs.  
With the Cluster Browser, summarization always starts 
with a single day, month or year cluster, but in general we 
can summarize a set of consecutive clusters.  The following 
two steps perform the recursive summarization process: 

Step 1: Screen space assignment 

If there are T or fewer photographs in C, creating a 

summary is trivial  we assign screen space to each of the 
images. Otherwise, we use the following rules to assign 
screen space: 

1. Assign one space to each cluster in C.  This ensures that 
there will be at least one photograph from each cluster in 
the summary.  If we are unable to give one space to every 
cluster, we give priority to larger clusters. 

2. Say we assigned M spaces in Step 1.  We then assign the 
remaining T – M spaces to clusters in proportion to their 
sizes. 

For example, say we are summarizing three clusters. 
Cluster C1 (including its children) has 20 photos, C2 has 10 
and C3 has 5.  Our target is 10 summary photos.  After we 
assign one slot for each cluster, we are left with 7 spaces, 
so we give 4 more to C1, 2 to C2 and one to C3.  Thus, C1 
gets a total of 5 spaces, C2 gets 3, and C3 gets 2. 

These rules are based upon the notion that summaries 
should show as much variety as possible within the given 
time range. This is achieved by giving summary space to as 
many clusters as possible, regardless of cluster size. For 
instance, a given time range may contain two bursts: a 
vacation when 100 photographs were taken, and an old 
friend's visit when two photographs were taken. If we 
simply assigned screen space based on cluster size, a 



 

Figure 5: The Hierarchical Browser 

summary of ten images would contain only images from 
the vacation. Images from different clusters tend to be more 
distinct than images within a single cluster. Thus, by 
prioritizing summary images from different clusters, we 
ensure more variety. 

Step 2: Selection of summarization photographs 

As a result of Step 1, each cluster Ci in C has been assigned 
a target number of photos Ti.  If Ci is not a leaf cluster, then 
we recursively repeat Step 1 to allocate the Ti spaces to Ci’s 
children.  (Recall that if Ci has children, only its children 
have actual photographs.)  Eventually we obtain a number 
of spaces assigned to each leaf cluster in C. 

There are several options for choosing representative 
images in leaf clusters: 

• photographs separated by smallest difference in 

time - Images with little time between one another 
are likely to be of the same subject. Any event that 
warrants multiple photographs is significant 
enough to be considered representative. Thus, one 
of the photographs of the sequence would be a 
good candidate for the summary. 

• photographs separated by smallest difference in 

time - Images with little time between one another 
are likely to be of the same subject. Any event that 
warrants multiple photographs is significant 
enough to be considered representative. Thus, one 
of the photographs of the sequence would be a 
good candidate for the summary. 

• photographs separated by largest difference in 

time - Images with lots of time between one 
another may visually differ greatly from one 
another. Thus, the photographs right before or 
after the long time interval may be of interest. 

• photographs separated by largest difference in 

time - Images with lots of time between one 
another may visually differ greatly from one 
another. Thus, the photographs right before or 
after the long time interval may be of interest. 

• contrast and resolution information within 

photographs - In some cases, choosing a 
representative image is not as important as 
choosing a highly visible image. Images with high 
contrast and resolution tend to be easier to identify 
within summaries. 

• contrast and resolution information within 

photographs - In some cases, choosing a 
representative image is not as important as 
choosing a highly visible image. Images with high 
contrast and resolution tend to be easier to identify 
within summaries. 

• cluster-wide image analysis - Based on the image 
properties of the cluster, it may be good to include 
an image that best represents the visual 
characteristics of the cluster. 

• cluster-wide image analysis - Based on the image 
properties of the cluster, it may be good to include 
an image that best represents the visual 
characteristics of the cluster. 

In our prototype, we use the first two heuristics only. First, 
we look for the smallest time difference between 
consecutive photographs, and we select one of the two 
involved. If we still need additional summary photographs 
for the leaf cluster, we look at the largest time differences 
and select the photographs involved.  For example, say we 
need 4 summary photos.  If a and b are the closest photos, b 
is our first choice.  Then say that c, d is the pair with the 
largest difference, and that e, f follows.  Our remaining 
choices would be c, d, and either e or f.  In practice, we 
have found that the actual details of how photographs are 
selected are not critical, as long as a reasonable strategy is 
used. 
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4.  OTHER BROWSERS 4.  OTHER BROWSERS 

As we informally tested our Calendar Browser on various 
users, we found that they liked the time-based approach and 
the summarizations, but they were in disagreement on the 
user interface. Some liked the browser's simplicity, others 
suggested that we borrow the explicitly hierarchical 

browsing controls of the Windows File Explorer and 
Macintosh Finder utilities. Figure 5 shows the resulting 
alternative browser, which we also implemented. 
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Macintosh Finder utilities. Figure 5 shows the resulting 
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The left panel contains a tree widget whose nodes at its 
different levels correspond to times at a given granularity. 
Outermost nodes correspond to years. Once a year is 
opened up by clicking on the square next to the year's label, 
months are shown indented. Users may open and close 
nodes at various levels, just as they do when browsing a 
hierarchical file structure. The numbers in parentheses next 
to each node label are the numbers of images nested below 
that node. For example, Figure 5 shows that on June 30, 
2001, 25 photos were taken between 3:20pm and 5:48pm. 
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The number of entries on each level depend on the results 
of the clustering process.  For example, while all the 
images taken on June 20 are combined in a single entry, 
June 30 ended up containing five sub-clusters, each being a 
burst of picture-taking. 
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The right pane is the same as the display panel of the 
Calendar Browser, except that clicking on an image has no 
effect. The functionality of 'drilling down' is instead 
covered in the tree control widget.  Note that, unlike the 
Calendar Browser, the Hierarchical Browser allows one to 
drill down to sub-clusters smaller than a day.  

The right pane is the same as the display panel of the 
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effect. The functionality of 'drilling down' is instead 
covered in the tree control widget.  Note that, unlike the 
Calendar Browser, the Hierarchical Browser allows one to 
drill down to sub-clusters smaller than a day.  

Although the Calendar and Hierarchical interfaces can, of 
course, be combined, we chose to keep them separate for 
the purpose of our user experiments. We wanted to test the 
constituent interface aspect in isolation before considering 
combination designs. In addition, we were curious how 
well either design held up against an un-summarized 
scrollable photo browser. In particular, we were interested 
in the following questions: 
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well either design held up against an un-summarized 
scrollable photo browser. In particular, we were interested 
in the following questions: 

• How quickly can users find a given image, 
especially when multiple similar images are also 
part of the collection?  

• How quickly can users find a given image, 
especially when multiple similar images are also 
part of the collection?  



• How effectively will users find images when 
given a description, such as "mountains with a 
sunset", "a red telephone", "a woman in a blue T-
shirt?" 

• Will the time-based summaries facilitate searches 
for time-related images, e.g., a Halloween or a 
Christmas picture? 

• Do users spontaneously take advantage of the 
summarizations and time-based organization?  

• How good is the summarization when compared 
to random selections of images?  

• Are there browser-related differences among 
computer novices and experts?  

We therefore conducted a controlled study covering our 
Calendar Browser, our Hierarchical Browser, and a 
specially configured commercial ACDSee browser. Figure 
6 shows a screenshot of ACDSee. 

ACDSee is a file manager optimized for browsing 
directories of images. When a specific directory is selected, 
as many thumbnails as possible are displayed. When a 
directory contains more thumbnails than can fit on a single 
screen, users can scroll vertically using a standard scroll 
bar.  We copied all of the images from our set of test 
images to a single directory and configured ACDSee to 
display these images chronologically. Thus, for the 
purposes of our tests, subjects did not have to navigate 
through file system folder hierarchies, as typical users of 
this browser would. Instead, this specially configured 
browser gave subjects an un-summarized chronological 
view of our test image sets, similar to the time-based 
interface used in iPhoto [10]. We refer to this browser as 
the Scrollable Browser. As well, subjects could find the 
specific date and time of each image by briefly hovering 
the mouse pointer over the image. 

Both of our browsers are particularly effective for users 
who originally took the photographs they are exploring. In 

the case of photographic Personal Digital Libraries, it is 
very common for the curator also to be the creator of the 
collection. Nevertheless, as our user experiments show, 
even strangers to a collection benefit greatly from these 
browsers. 

5.  EXPERIMENTS 

We tested 12 subjects, six computer 'novices', and six 
'experts'. We defined a novice as someone who uses 
computers at most to read email, create text documents, and 
browse the Web. If subjects also used other applications or 
programmed, they were classified as experts. Ages ranged 
from 18 to 55+. Among the twelve subjects, six were male, 
six female. Professions included students, school teachers, 
and university professors of varying disciplines, other than 
Computer Science.  

 

Figure 6: ACDSee: Un-summarized scrollable view 

We videotaped and recorded all test sessions. The sequence 
of the subjects' exposure to the three browsers throughout 
the experiment was balanced to neutralize learning effects 
across browsers. We timed all interactions with the 
browsers. 
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Figure 7: Average Completion Times for Tasks  of 

Categories 0 and 1 

We used two image sets, A and B. Set A contained 1000 
images, set B contained 3500. All photographs were in 
color and taken in a variety of locations, seasons, and times 
of day. 

All values reported in this paper vary in their margins of 
error between ±5% and ±23% at 85% confidence level. 
Unless otherwise stated, all results reported below are 
statistically significant at 85% confidence level. 

We asked subjects to complete a variety of tasks in six 
different categories, within a maximum time limit. Tasks in 
category 0 involved dataset A, all other tasks operated on 
dataset B.   In what follows we describe the task categories, 
and as we do so, we describe the results obtained. 

Category 0: Find a given image in dataset A. Time limit: 
5min.  



Category 1: Find a given image in dataset B, given also the 
month during which the image was taken. Time limit: 
2.5min.  

Category 2 was designed to measure performance when 
classes of images were desired, not just a particular image.  
To generate the 10 descriptions for a category 2 task, we 
selected at random 10 photographs from the collection. For 
each image, we then manually wrote a description.  For 
example, the resulting descriptions could be “a sandy 
beach,” or “a man sitting at a bench.”  Each subject did two 
tasks of Category 2, with different description sets, one 
time with CB, the other with SB. 

Subjects did a total of 9 tasks: three of category 0, each 
with a different browser, and 6 of category 1. For the latter 
6, each browser was used with two separate images. Again, 
the order in which subjects used the browsers was varied to 
eliminate biases. 

Figure 7 shows average completion times for the combined 
Tasks 0 and 1, for the cases where the subjects did 
complete the tasks.  While the Scrollable Browser (SB) and 
the Hierarchical Browser (HB) draw just about equal, 
around 1 minute and 20 seconds, the Calendar Browser 
(CB) enabled significantly faster completion times at an 
average of about 50 seconds; an average 33% 
improvement. In our test runs, this advantage of CB over 
the other browsers held for computer experts and novices 
alike. However, we have too few data points in each of 
these two groups separately to make a general statement on 
this novice/expert point. 

Our results for Category 2 indicate that, when confronted 
with textual descriptions of images, subjects performed at 
identical levels in the Scrollable Browser as in the Calendar 
Browser. Nearly everyone used linear search even with the 
Calendar Browser. 

Category 3: Find a given image, in the case when a similar 
image appears in one of the month summaries.  In addition 
to completion time, we noted whether subjects made use of 
the summarizations, or followed another strategy (usually 
linear search). Time limit: 5min.  

Each query image was selected as follows.  A random 
photo was selected from one of the 12 month summaries. 
Then a similar (but not identical) photo was selected from 
the same leaf cluster. The subject was given the similar 
photo as the query, not knowing how it was selected.  
Subjects performed this task with both CB and HB, with 
different query images. 

In some cases the subjects did not find the requested 
images before the time limit expired.  Figure 8 shows a 
comparison of tasks unable to be completed across 
browsers.  The Scrollable Browser did by far the worst, 
with 31% of the tasks unable to be completed. The 
Hierarchical Browser  was the most reliable for finding the 
images (6% incomplete).  Users of the Calendar Browser 
were unable to complete tasks around 11% of the time. The 
difference in completion success between the Hierarchical 
Browser and the Calendar Browser are not significant. 

Category 3 measured the impact of subjects ignoring vs. 
taking advantage of summarization when looking for a 
given image, as opposed to working from textual 
descriptions.  In Task 3, 42% of subjects made use of 
summarization (across both browsers). That is, these 
subjects browsed 'horizontally' through time; when they 
found an image similar to the sample they had been asked 
to find, they drilled down.  Figure 9 shows that these 42% 
who made use of summarization enjoyed a 48% boost in 
performance. 

The results of Figures 7 and 8 show that the time-cognizant 
browsers, which perform summarization, can indeed help 
when subjects are searching for images. Some of the 
improvements are due to the time-based navigation scheme, 
but other gains are due to the summarization capabilities 
that let the subjects get meaningful overviews. These 
results also indicate that although users were exposed to 
new browsing interfaces, they were able to understand 
them well enough with minimal training to perform at 
levels at least as good as with a traditional browser. 

All of the summary users finished tasks of Category 3 
within the allotted time, while 36% of subjects who did not 
take advantage of summarization were unable to complete 
the task 

Category 2: Given 10 textual descriptions of images, find 
as many images that fit any of these descriptions as 
possible. Time limit: 3min.  Completion time by summary usage
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Figure 9: The Use of Summarization 
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Category 4: Find a given image, when the image has a 
clear clue as to which time of year it was taken. For 
example: a Christmas tree, fire works, etc. When 
appropriate, we ensured during the debriefing sessions at 
the end of the experiment that no cultural differences had 
prevented a subject from making the time association. 
Analogous to Category 3, we noted whether subjects 
recognized and used the time clue. Time  limit: 5min.  

Category 4 allowed us to examine whether subjects made 
use of time clues in images, and how this use affects 
performance.   Again, subjects used CB and HB. 

Almost all subjects, 92%, made use of the time clues for 
these tasks. Everyone completed the task. The average 
completion time was 36 seconds. The 8% who did not use 
the time clue averaged 1min 18sec. However, 8% of our 
subject population is too small a data set to make this 
performance comparison statistically significant. 

Category 5: Find images to fit 10 textual descriptions of 
leaf clusters.  Time limit: 5min for each run. 

To generate the descriptions, we manually clustered the 
collection by event, and gave each cluster a short 
description (e.g., “visit to San Francisco”). For each task 
instance we selected 10 descriptions at random (no 
replacement).  We limited subjects to the 'year' and 'month' 
summary views in CB. 

Each subject performed two category 5 tasks, using the 
Calendar Browser each time. For one of the tasks, however, 
CB was altered so it would select images at random from 
the proper time span. For the other task, images for the 
summary were selected as described earlier. 

Tasks in category 5 forced users to operate in summary 
mode, allowing us to examine whether our summarization 
made any difference when compared to random excerpting 
from the collection. We found that even at a confidence 
level of 99% there was a significant difference between 
random and clustered summarization. We measured a 56% 
performance improvement. 

5.2.  Discussion 

We are very encouraged by our findings. These were 
intentionally tough experiments in that we included 
subjects who were not deeply familiar with computers and, 
most importantly, were unfamiliar with the collection. In 
our main target application of Personal Digital Libraries 
users will know the collection, so summaries and time 
organization will have even greater positive impact on 
these users. 

We are also delighted by the positive results, because the 
systems we report on here operate under the most 
demanding assumption that users invest absolutely no 
organizing effort. We can expect that even small user 
efforts, such as high-level captioning will improve upon 
these results even further. 

However, users did not always take advantage of the 
summarization capabilities.  Overall, only 42% of users 

took advantage of summarization in our Hierarchical and 
Calendar Browsers. This tendency to overlook the 
summarization feature was particularly evident as subjects 
needed to overcome the barrier of abstraction that we 
erected by the verbal nature of tasks of category 2 (finding 
as many images as possible from 10 textual descriptions). 
In that case, subjects were also strained by trying to keep 
multiple image descriptions in mind simultaneously. This 
strain may have contributed to that choice of the simplest, 
linear, search strategy. 

The fact that 92% of the subjects had a specific time 
association with certain photographs (Category 5) 
underscores the importance of making time visible in the 
interface. Most browsers do not do this; PhotoMesa and the 
two browsers we developed are notable exceptions [9]. 

The ingenuity of many subjects impressed us. Some 
novices used binary search algorithms. Some used clothing 
of figures in images for clues on season or occasion. For 
example, one subject explained how she proceeded in one 
instance, using the Hierarchical Browser: "I used the time 
for the sunset images because I knew I was looking for 
something late in the day." It is seductive to use some of 
these observations as the basis for adding search and 
browse features. However, it is very difficult to keep the 
interface simple enough that computer novice and expert 
users can operate the systems with virtually no instruction. 

During the debriefing sessions, subjects were clear in their 
evaluation of the Scrollable Browser: “It seemed like I did 
a lot of scrolling, when there should have been a more 
efficient way [to navigate the images].” “The linear one 
[SB] was more frustrating than the others. You literally felt 
like you were looking for a needle in a haystack.” 

Opinions about the Hierarchical vs. the Calendar Browser 
were divided. Praising HB: “I like having the orientation of 
some sort of text on screen;” and “Having the knowledge of 
how many [photos were in a cluster] was helpful;” or “I 
liked the one [browser] with the tree. It was the easiest to 
navigate. You could skip around all at once without having 
to go through the different levels.” On the other hand, other 
subjects preferred the Calendar Browser: “I'd rather click 
on a picture than a month [label];” and “The zoom-out 
zoom-in was more intuitive [than HB]. You didn't have to 
think about it as much.” Although for testing purposes we 
kept the HB and CB interfaces separate, we plan to 
integrate these interfaces in the future, based on the positive 
response we received from users in both cases. 

6.  CONCLUSION 

We designed, implemented, and tested two photo browsers 
that can accommodate thousands of images. These systems 
are intended primarily for personal digital libraries. Both 
browsers are built atop a common architecture. This 
architecture consists of metadata extraction, cluster engine, 
and summarization modules that are replaceable. 

Our browsers use cluster analysis of the times when 
photographs were taken as the foundation for summarizing 



large subsets of the images within a collection. The 
browsers differ in how users navigate the collections. 

We conducted user studies that compared various design 
aspects of the two browsers against a commercial image 
browser. We found that our Calendar Browser, which 
affords time navigation through direct-manipulation, 
enabled a 33% improvement in speed of finding given 
images in collections.  We found that our summarizations 
improve the search for photographs from textual 
descriptions by 56% over systems that fill the screen with 
randomly selected excerpts from the collection. 

While summarization clearly improved performance, only 
42% of subjects thought of making use of the advantages 
that summarization provided. We plan to address this issue 
in subsequent designs. 

In contrast, subjects readily recognized and used our time-
based organization. While subjects clearly preferred this 
organization to an alternative linear solution, they were 
divided over which other user interface is most convenient 
for navigating the photographs through the time space. 

Organizing principles other than time can, of course, be 
incorporated into our browser designs. Most notably, image 
analysis can generate additional complementary clustering,  
for example, by the presence or absence of faces in images 
[12], by indoor versus outdoor photography, or by image 
similarity [13]. 

Our experiments show that we will be able to make 
Personal Digital Libraries of digital images manageable 
and convenient to browse. Digital cameras are rapidly 
creating large professional and personal image collections. 
Without substantial support from Digital Library 
technologies, this exciting new opportunity will be wasted, 
and turn into the digital version of the unorganized shoebox 
of photographs in a closet. With the proper tools, on the 
other hand, the records of individual histories will be fun 
and instructive to maintain and explore. 
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