
Time as Essence for Photo Browsing Through Personal
Digital Libraries

Adrian Graham, Hector Garcia-Molina, Andreas Paepcke, Terry Winograd

Stanford University
{adrian.graham | hector | paepcke | winograd}@cs.stanford.edu

ABSTRACT

We developed two photo browsers for collections with
thousands of time-stamped digital images. Modern digital
cameras record photo shoot times, and semantically related
photos tend to occur in bursts. Our browsers exploit the
timing information to structure the collections and to
automatically generate meaningful summaries. The
browsers differ in how users navigate and view the
structured collections. We conducted user studies to
compare the two browsers and an un-summarized image
browser. Our results show that exploiting the time
dimension and appropriately summarizing collections can
lead to significant improvements. For example, for one
task category, one of our browsers enabled a 33%
improvement in speed of finding given images compared to
the commercial browser. Similarly, users were able to
complete 29% more tasks when using this same browser.

Categories and Subject Descriptors

H.3.7 [Digital Libraries]: User issues

General Terms

Human Factors

Keywords

Photo browser, image browser, Personal Digital library,
time-based clustering, ACDSee, summarization, time-based
navigation, burst identification

1. INTRODUCTION

Given the importance of multimedia digital libraries,
several project have developed techniques for searching
video, images, and geographic data (e.g. [1, 2, 3]). A
majority of other digital library efforts focused on text,
because text is most accessible to a variety of search and
processing algorithms. Certainly, Personal Digital Library
(PDL) facilities remained overwhelmingly textual. By
PDLs we mean bodies of information that are mostly of
importance to individuals or small groups.

Two changes over the recent years have made the
development of PDLs with image content urgent. (i)
Desktop machine storage has grown cheap and plentiful
and (ii) entry-level, point-and-shoot digital cameras have
reached large numbers of consumers who are not
necessarily deeply computer-savvy. As digital cameras do
not require expensive film that can only be used once, users
tend to take large numbers of pictures. This in turn results
in an image management quagmire similar to the shoebox
phenomenon of paper prints. Professional photographers
and news reporters face the same challenge.

There have been several approaches to improving the
experience of browsing and managing collections of
personal digital photographs. The most basic photo browser
available is a file manager with integrated support for
viewing images and thumbnails. Such functionality is
found in Windows XP, Mac OS X, and standalone
browsers such as ACDSee [4, 5, 6]. Although simple to
use, these tools tend to be limited, and do little to help users
organize their pictures more effectively than they can in the
physical world.

Using a database to manage photographs is another
approach to this problem, used in systems such as FotoFile
and PhotoFinder [7, 8]. Although these systems offer
powerful search functionality, they have failed to catch on,
largely because they require time-intensive manual
annotation.

PhotoMesa and iPhoto are both examples of photo
browsers which automatically group images for display.
PhotoMesa groups by folder, year, and month, and iPhoto
groups by “roll” (batch of photos downloaded to a
computer at once) [9, 10]. This approach helps give more
structure to the images than an enhanced file manager, but
requires none of the time-intensive annotation of the
database systems.

Our approach to this problem builds on the idea of
automatically grouping photographs. Instead of using
metadata that is directly available in the file system, we
analyze the photo creation process and construct a variety
of organizational structures. For instance, we can
automatically organize photographs by event, realizing that
sequences of photos of one event will be taken closer
together in time than sequences of other photos.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL’02, July 13-17, 2002, Portland, Oregon, USA.
Copyright 2002 ACM 1-58113-513-0/02/0007…$5.00. An additional design goal was to build a system that could

scale to visually browse a lifetime’s worth of photographs.

Photo browsers are notoriously poor at scaling, often
unable to provide useful visual information for more than a
few hundred images. Through our summarization
techniques, we are able to browse tens of thousands of
photographs.

These techniques are part of the two-phased approach the
Stanford Digital Library Project is taking to PDL image
management. During the first phase, we are exploring
algorithms that organize and summarize digitally created
photographic image collections without any curator
assistance, using current, mature technologies only. While
heuristic and therefore imperfect, we are trying to push this
area as far as possible. We are careful during this phase to
design our systems such that machine image analysis
technologies can be integrated later on.

During the second phase we will examine how gracefully
we can take advantage of incremental image captioning
efforts that a curator might be willing to invest. The goal is
for the collection's user interface to take advantage of
coarse, as well as fine-grained captioning as curators create
and refine such captions over time. In this paper we present
the current state of our phase I work, which is implemented
in prototypes.

We begin with a description of one of our two browsers,
the Calendar Browser. Next, we describe the heuristic
algorithms that underlie this browser. The subsequent
section introduces our second Hierarchical Browser, and a
commercial browser used for comparisons. Finally, we
present our experimental comparisons.

2. CALENDAR BROWSER

The Calendar Browser (CB) takes advantage of photo time
stamps. When taking a picture with a digital camera, the
equipment records the date and time when the photo was
taken, as well as technical details, such as aperture settings,
distance from the focal plane, and whether a flash was
used. This data is encoded into the image files, and is
available to applications that access these files. The
Calendar Browser (Figures 1a and 1b) is an intentionally

extremely simple interface that uses these date/time stamps
to enable drill-down browsing and summarization.

The application window is partitioned into two panes, the
control panel and the display panel. The display panel
contains space to hold a constant number of fixed-size
thumbnails (in our implementation we always show up to
25 images). At any given moment, the user is viewing
images from one single time granularity. For example,
Figure 1a shows a screenshot of the Calendar Browser at a
'one-year' granularity. At this granularity, all images in the
display panel will have been taken during the same year, in
this case 2001. Usually, the collection will contain many
more than the 25 images. The challenge, therefore, is to
select representative images from among the 2001 subset of
the collection. The images in the display panel are sorted
by time and are labeled with time designations of the next-
lower time granularity. In Figure 1a the labels are therefore
the months of the year 2001.

Notice that not every month is represented with the same
number of images. While the browser dedicates only one of
the 25 precious display slots to each of January and
February, four slots are invested in the month of August.
We will explain the allocation strategy in the next section,
but roughly speaking, the allocated space is proportional to
the number of photos taken during the respective time
interval.

The two buttons in the control panel allow users to move
through time at the current granularity. In Figure 1a this
means moving backward and forward by year.

The user 'drills down' into the collection by left clicking on
an image. (Right clicking moves us in the reverse
direction.) Figure 1b shows the screen after the user left
clicked on a June image. Notice that the control panel now
indicates that the time granularity has changed to the month
level. The control button labels have correspondingly been
changed to 'previous month' and 'next month'. Images in the
display panel are now labeled by days within the month of
June when the respective photos were taken. Again, not

Figure 1a: Calendar Browser, Year View

Figure 1b: Calendar Browser, Month View

every day is represented by the same number of images, but
all of the 25 slots are filled.

Inspecting the display panel of Figure 1b further, we find a
clue to how representative images are selected for a 'next-
coarser' time granularity level. Notice that the largest
sequences of image slots in Figure 1b are allocated for the
17th and the 30th of June, which contain five and four
images, respectively. The 24th and the 27th are tied with
three images. Referring back to Figure 1a, notice that one
image from each of the two largest June sequences, and one
image from the 27th were picked to represent June for the
year 2001.

Users may now left click on an image in one of the June
days to see a summary of the photos that were taken on that
day. If a user left-clicks on an image at the day granularity,
that image will be placed in the center of the display panel,
and the space around the image will be filled with the
photos taken immediately before and after the center
image. No summarization is applied at this level. Users
may navigate using the previous and next buttons, to move
through the un-summarized photographs 25 images at a
time.

Earlier versions of this browser had several more controls
that afforded the sliding of time windows to control image
display down to minute granularity, and other powerful
manipulations. Preliminary, informal user tests made it
very clear that we were best off with the exceedingly
simple design exemplified in the figures. Both novices and
experts preferred this simpler interface.

3. TIME BASED SUMMARIZATION

People tend to take personal photographs in bursts. For
instance, lots of pictures may be taken at a birthday party,
but few, if any, pictures may be taken until another
significant event takes place. We can derive information
about personal collections of photographs based on these
irregular, “bursty” patterns, which we analyze through
clustering techniques.

The goal of clustering is to expose the structure that is
present in a set of personal photographs as a result of the
way the user has taken the pictures. Without realizing it, the
user gives structure to his image collection by the pattern in
which he chooses to take the photographs. Based on these
patterns, we can organize the images without any further
user intervention. For instance, someone may take a series
of photographs at a birthday party. By identifying this
burst, we can group these images together, thus creating a
structural unit. We call this structural unit a cluster.

In many cases, we can derive even more specific
information about the set of photographs in a cluster. Much
as we were able to identify the "Birthday burst" by noticing
an increased rate of activity, we are able to identify "sub-
bursts" by comparing relative rates of activity within the
cluster. For example, the rate at which pictures are taken is
likely to be higher when someone is opening presents or
blowing out candles on a cake. By encoding these sub-
events within our cluster structure, we gain an even more
accurate portrayal of the collection.

More generally, we can say that the burst structure within
collections of personal photographs tends to be recursive,
where bursts make up bursts etc. We represent this
recursive burst structure using a tree of clusters, where
photographs are stored only at the leaf nodes.

Figure 2 shows an example excerpt from a cluster tree. The
labels of the nodes are added here for clarity. Our system
does not generate them automatically. Each cluster node's
internal 'label' is the time span that the images underneath
the node cover.

Our clustering machinery is the substrate that underlies
both phases of our project. First, we can query the cluster
structure for information about the patterns present in the
collection, such as: the number of images in a cluster, the
number of clusters in a time span, the time span of the
images within a cluster etc. Based on this information, we
can create summarization schemes for a whole class of
browsing interfaces. For instance, the Calendar Browser
introduced above queries the cluster structure when it
populates the screen at different time granularities.

Second, instead of operating on an image at a time, we are
able to create user interfaces that operate on entire clusters.
This will allow us, for example, to build an interface for
incrementally adding metadata to a collection (Phase II of
project).

Figure 3 shows the architecture that underlies the Calendar
Browser. The raw image files at the bottom are accessed by
the Metadata Extraction module. In our case, we extract the
time stamps from the digital camera files. As global
positioning systems (GPS) are integrated into digital
cameras, the location where a photograph was taken could

Brian’s birthday Trip to Europe 4th of July

Root cluster

Friends arriving Opening presents Sub-clusters with

photos at leaves

Sub-clusters with

photos at leaves

Photos Photos

Figure 2: Example of Photo Cluster Tree
Figure 3: Browser system Architecture

also be extracted from the image files and introduced as a
clustering criterion.

Alternatively, one might acquire an image analysis tool that
extracts useful metadata other than what is stored textually
within the image files. For example, if we integrated a tool
that detects faces in images, we could enable clustering of
images by whether they contain one or more people.

The Cluster Engine uses the extracted metadata to compute
clusters. Our time-based engine, for example, computes the
cluster tree introduced earlier. It is equally easy to cluster
the data based on location when GPS data is available. The
engine's output is a store of Cluster Structures, such as the
cluster tree.

Client applications access the Cluster Structures store
through a Cluster Query Processor. This processor solves
queries such as 'find all images taken during July 4, 2001.'
Browsers may submit queries to the Cluster Query
Processor directly.

Another of the Cluster Query Processor's clients is the
Summarizer module. In our case, the module uses time to
compute the set of images that are to populate the browser's
display panel. Other summarizer algorithms might base
screen allocation decisions on other criteria.

The top layer of the architecture contains the photo
browsers, of which the Calendar Browser is one example.
The currently unimplemented captioning machinery will be
another client (shown in white).

3.1. Time Cluster Engine

There are many ways to cluster images based on time
metadata. For instance, one might use a K-means algorithm
to cluster photos taken at about the same time. Another
approach is to use time data to help improve the accuracy
of clustering photographs using image analysis.
AutoAlbum is a clustering method that works this way
[11].

Our goal is to cluster photographs according to the burst
patterns discussed earlier. The goal is achieved by grouping
pictures that are taken at about the same rate. K-means
clustering is difficult to use in this case because the specific
number of bursts is not known. As well, the clusters
AutoAlbum creates are not representative of bursts, since
bursts are likely to contain pictures that are visually
diverse. However, the basic time clustering present in
AutoAlbum serves as a useful starting point for clustering
by burst.

In order to determine where a burst begins and ends, we
need to know the rate at which pictures were taken within
the burst. However, in order to find out this rate, we need to
know when the burst begins and ends. We overcome this
cyclical dependency by initially clustering the images by a
constant time difference. That is, we compare consecutive
photographs, and if they differ in time by more than a
specified amount (see below), we create a new cluster. This
gives a reasonable approximation of medium-sized clusters.
We then create new clusters by splitting and combining

these initial clusters. We next describe this three-step
process in more detail.

Step 1: Create initial clusters.

We sort the list of photographs in the collection with
respect to time, and create the root node of the cluster tree,
which is empty. We create the first child cluster and add it
to the tree. We then iterate through the sorted list of
photographs. Every time two consecutive photographs
differ by more than a specified constant time difference, we
create a new cluster and add it to the root cluster.
Regardless of whether we just created a new cluster, we
add the current image to the most recently created cluster.
By the time we reach the end of the list, we have a root
cluster with as many child nodes as there are initial
clusters. This simple, one-tiered cluster tree represents an
approximation of the medium-sized bursts in the set of
photographs. (This process is equivalent to the time-based
clustering used in AutoAlbum [11].)

In step 2 of the clustering process, these initial clusters are
split into finer clusters based on the time differences
between photographs within each initial cluster. In step 3,
the initial clusters are combined into more general clusters
based on the time differences between the initial clusters.
Thus, the final cluster tree is not heavily dependent on the
specific time difference used during initial clustering. We
found that choosing initial time differences between 1 and
24 hours resulted in similar final cluster trees. Our current
prototype uses an initial time difference of 1 hour.

Step 2: Split initial clusters.

In Step 2 we want to further refine these clusters, by
splitting them into appropriate sub-clusters (i.e. adding
child nodes to the initial clusters).

During clustering, Step 1 could not take into account the
rate at which photographs were taken within a cluster. Now
that we have approximate clusters, we are able to consider
these intra-cluster rates. This enables more accurate
clustering, as the rate at which photographs are taken is
likely to differ significantly between types of events. For
instance, while taking a hike through a forest, someone
may take a picture every couple of minutes. In contrast,
when photographing a newborn baby for the first time, the
time between pictures is likely to be in seconds.

We take these differing rates into account by comparing
each pair of consecutive photographs to the ‘basic’ (see
below for details) photographic rate of the cluster. When
we come across a pair with a time difference that appears to
be outside the normal range for the cluster (an outlier), we
create a new cluster. This new cluster contains the images
between the previous outlier (or the beginning of the cluster
if no previous outlier exists) and the new outlier. This new
cluster is then added to the original cluster as a child node.
Since photographs are only stored in leaf nodes, the
photographs contained by the new cluster are removed
from the original cluster.

Figure 4 shows a snapshot of this stage in the process.
Initial cluster 1 has been subdivided into new clusters 1.1

and 1.2. Cluster 1.2 still contained image bursts that were
separated by significant spans of time, so it has been
subdivided again. In contrast, cluster 1.1 now contains only
images taken during a single burst of picture-taking.

Since bursts in collections of personal photographs tend to
be recursive, we repeat this process over each newly
created cluster until no outliers remain.

To find outliers in a cluster, we compute all the time
differences between consecutive photographs. We then find
Q1, the value that divides the lower 1/4 of the values from
the upper 3/4, and Q3 that divides the lower 3/4 from the
upper 1/4. A difference is an outlier if is greater than Q3 +

2.5×(Q3-Q1). (The value 2.5 was selected empirically.) For
each outlier, we split the cluster at the time that the large
difference occurred.

Step 3: Create parent clusters.

This step is much like Step 2, except that instead of
splitting initial clusters into more specific clusters, we
combine initial clusters into more general clusters. One
way is to use a fixed year-month-day hierarchy for the
higher levels. That is, for each cluster C discovered in Step
1, we determine the date of its first photograph, and then
we make C a child of the appropriate day in the year-
month-day hierarchy. Any C children determined in Step 2
will continue to be children. Note that a given day may
have multiple clusters in it. This approach is used in our
prototype, and is useful for creating summaries that are
intended to be navigated using time-based interfaces, as is
the case with the Calendar Browser.

An alternative is to create the higher levels of the hierarchy
using statistical techniques analogous to the ones of Step 2.
For example, instead of analyzing the time between
photographs as we did in Step 2, we could analyze the time
between clusters. Clusters that are relatively closer together
to each other than other groups of clusters could then be
combined into parent nodes at a higher, possibly newly

created, tier in the cluster tree. This process would be
repeated, building the tree upwards from the initial clusters.

Initial cluster 1 Initial cluster n

Root cluster

New cluster 1.1 New cluster 1.2

Photos

New cluster 1.2.1 New cluster 1.2.2

Photos Photos

...

New cluster n.1

...

Figure 4: Partially Completed Cluster Tree

3.2. Creating Summaries

Collections of personal photographs typically contain many
more photographs than can be displayed on screen at once.
This problem applies not only to desktop photo browsers,
but even more so to low resolution devices such as
televisions, hand-held computers, and displays on digital
cameras. Most systems overcome this limitation by
allowing users to scroll through sets of images.
Unfortunately, scrolling also has limitations. Most notably,
scrolling gives no sense of overview, making it easy for
users to feel lost in a sea of images.

An alternative to scrolling is summarization, as in the
display panel of Figures 1a and 1b. Instead of displaying all
images, a set of representative images is shown. Once the
user finds an image from the event he is looking for, he is
able to "zoom in" and see the event in greater detail. When
he is finished examining the event, he may "zoom out" to
return to the summary view. Detail is hidden when
unnecessary, but available whenever needed. Overviews
are easily seen by zooming out.

The input to our summarization procedure is a set of
sequential clusters C at level k in the hierarchy, plus a
target T, the desired number of representative photographs.
With the Cluster Browser, summarization always starts
with a single day, month or year cluster, but in general we
can summarize a set of consecutive clusters. The following
two steps perform the recursive summarization process:

Step 1: Screen space assignment

If there are T or fewer photographs in C, creating a

summary is trivial  we assign screen space to each of the
images. Otherwise, we use the following rules to assign
screen space:

1. Assign one space to each cluster in C. This ensures that
there will be at least one photograph from each cluster in
the summary. If we are unable to give one space to every
cluster, we give priority to larger clusters.

2. Say we assigned M spaces in Step 1. We then assign the
remaining T – M spaces to clusters in proportion to their
sizes.

For example, say we are summarizing three clusters.
Cluster C1 (including its children) has 20 photos, C2 has 10
and C3 has 5. Our target is 10 summary photos. After we
assign one slot for each cluster, we are left with 7 spaces,
so we give 4 more to C1, 2 to C2 and one to C3. Thus, C1
gets a total of 5 spaces, C2 gets 3, and C3 gets 2.

These rules are based upon the notion that summaries
should show as much variety as possible within the given
time range. This is achieved by giving summary space to as
many clusters as possible, regardless of cluster size. For
instance, a given time range may contain two bursts: a
vacation when 100 photographs were taken, and an old
friend's visit when two photographs were taken. If we
simply assigned screen space based on cluster size, a

Figure 5: The Hierarchical Browser

summary of ten images would contain only images from
the vacation. Images from different clusters tend to be more
distinct than images within a single cluster. Thus, by
prioritizing summary images from different clusters, we
ensure more variety.

Step 2: Selection of summarization photographs

As a result of Step 1, each cluster Ci in C has been assigned
a target number of photos Ti. If Ci is not a leaf cluster, then
we recursively repeat Step 1 to allocate the Ti spaces to Ci’s
children. (Recall that if Ci has children, only its children
have actual photographs.) Eventually we obtain a number
of spaces assigned to each leaf cluster in C.

There are several options for choosing representative
images in leaf clusters:

• photographs separated by smallest difference in

time - Images with little time between one another
are likely to be of the same subject. Any event that
warrants multiple photographs is significant
enough to be considered representative. Thus, one
of the photographs of the sequence would be a
good candidate for the summary.

• photographs separated by smallest difference in

time - Images with little time between one another
are likely to be of the same subject. Any event that
warrants multiple photographs is significant
enough to be considered representative. Thus, one
of the photographs of the sequence would be a
good candidate for the summary.

• photographs separated by largest difference in

time - Images with lots of time between one
another may visually differ greatly from one
another. Thus, the photographs right before or
after the long time interval may be of interest.

• photographs separated by largest difference in

time - Images with lots of time between one
another may visually differ greatly from one
another. Thus, the photographs right before or
after the long time interval may be of interest.

• contrast and resolution information within

photographs - In some cases, choosing a
representative image is not as important as
choosing a highly visible image. Images with high
contrast and resolution tend to be easier to identify
within summaries.

• contrast and resolution information within

photographs - In some cases, choosing a
representative image is not as important as
choosing a highly visible image. Images with high
contrast and resolution tend to be easier to identify
within summaries.

• cluster-wide image analysis - Based on the image
properties of the cluster, it may be good to include
an image that best represents the visual
characteristics of the cluster.

• cluster-wide image analysis - Based on the image
properties of the cluster, it may be good to include
an image that best represents the visual
characteristics of the cluster.

In our prototype, we use the first two heuristics only. First,
we look for the smallest time difference between
consecutive photographs, and we select one of the two
involved. If we still need additional summary photographs
for the leaf cluster, we look at the largest time differences
and select the photographs involved. For example, say we
need 4 summary photos. If a and b are the closest photos, b
is our first choice. Then say that c, d is the pair with the
largest difference, and that e, f follows. Our remaining
choices would be c, d, and either e or f. In practice, we
have found that the actual details of how photographs are
selected are not critical, as long as a reasonable strategy is
used.

In our prototype, we use the first two heuristics only. First,
we look for the smallest time difference between
consecutive photographs, and we select one of the two
involved. If we still need additional summary photographs
for the leaf cluster, we look at the largest time differences
and select the photographs involved. For example, say we
need 4 summary photos. If a and b are the closest photos, b
is our first choice. Then say that c, d is the pair with the
largest difference, and that e, f follows. Our remaining
choices would be c, d, and either e or f. In practice, we
have found that the actual details of how photographs are
selected are not critical, as long as a reasonable strategy is
used.

4. OTHER BROWSERS 4. OTHER BROWSERS

As we informally tested our Calendar Browser on various
users, we found that they liked the time-based approach and
the summarizations, but they were in disagreement on the
user interface. Some liked the browser's simplicity, others
suggested that we borrow the explicitly hierarchical

browsing controls of the Windows File Explorer and
Macintosh Finder utilities. Figure 5 shows the resulting
alternative browser, which we also implemented.

As we informally tested our Calendar Browser on various
users, we found that they liked the time-based approach and
the summarizations, but they were in disagreement on the
user interface. Some liked the browser's simplicity, others
suggested that we borrow the explicitly hierarchical

browsing controls of the Windows File Explorer and
Macintosh Finder utilities. Figure 5 shows the resulting
alternative browser, which we also implemented.

The left panel contains a tree widget whose nodes at its
different levels correspond to times at a given granularity.
Outermost nodes correspond to years. Once a year is
opened up by clicking on the square next to the year's label,
months are shown indented. Users may open and close
nodes at various levels, just as they do when browsing a
hierarchical file structure. The numbers in parentheses next
to each node label are the numbers of images nested below
that node. For example, Figure 5 shows that on June 30,
2001, 25 photos were taken between 3:20pm and 5:48pm.

The left panel contains a tree widget whose nodes at its
different levels correspond to times at a given granularity.
Outermost nodes correspond to years. Once a year is
opened up by clicking on the square next to the year's label,
months are shown indented. Users may open and close
nodes at various levels, just as they do when browsing a
hierarchical file structure. The numbers in parentheses next
to each node label are the numbers of images nested below
that node. For example, Figure 5 shows that on June 30,
2001, 25 photos were taken between 3:20pm and 5:48pm.

The number of entries on each level depend on the results
of the clustering process. For example, while all the
images taken on June 20 are combined in a single entry,
June 30 ended up containing five sub-clusters, each being a
burst of picture-taking.

The number of entries on each level depend on the results
of the clustering process. For example, while all the
images taken on June 20 are combined in a single entry,
June 30 ended up containing five sub-clusters, each being a
burst of picture-taking.

The right pane is the same as the display panel of the
Calendar Browser, except that clicking on an image has no
effect. The functionality of 'drilling down' is instead
covered in the tree control widget. Note that, unlike the
Calendar Browser, the Hierarchical Browser allows one to
drill down to sub-clusters smaller than a day.

The right pane is the same as the display panel of the
Calendar Browser, except that clicking on an image has no
effect. The functionality of 'drilling down' is instead
covered in the tree control widget. Note that, unlike the
Calendar Browser, the Hierarchical Browser allows one to
drill down to sub-clusters smaller than a day.

Although the Calendar and Hierarchical interfaces can, of
course, be combined, we chose to keep them separate for
the purpose of our user experiments. We wanted to test the
constituent interface aspect in isolation before considering
combination designs. In addition, we were curious how
well either design held up against an un-summarized
scrollable photo browser. In particular, we were interested
in the following questions:

Although the Calendar and Hierarchical interfaces can, of
course, be combined, we chose to keep them separate for
the purpose of our user experiments. We wanted to test the
constituent interface aspect in isolation before considering
combination designs. In addition, we were curious how
well either design held up against an un-summarized
scrollable photo browser. In particular, we were interested
in the following questions:

• How quickly can users find a given image,
especially when multiple similar images are also
part of the collection?

• How quickly can users find a given image,
especially when multiple similar images are also
part of the collection?

• How effectively will users find images when
given a description, such as "mountains with a
sunset", "a red telephone", "a woman in a blue T-
shirt?"

• Will the time-based summaries facilitate searches
for time-related images, e.g., a Halloween or a
Christmas picture?

• Do users spontaneously take advantage of the
summarizations and time-based organization?

• How good is the summarization when compared
to random selections of images?

• Are there browser-related differences among
computer novices and experts?

We therefore conducted a controlled study covering our
Calendar Browser, our Hierarchical Browser, and a
specially configured commercial ACDSee browser. Figure
6 shows a screenshot of ACDSee.

ACDSee is a file manager optimized for browsing
directories of images. When a specific directory is selected,
as many thumbnails as possible are displayed. When a
directory contains more thumbnails than can fit on a single
screen, users can scroll vertically using a standard scroll
bar. We copied all of the images from our set of test
images to a single directory and configured ACDSee to
display these images chronologically. Thus, for the
purposes of our tests, subjects did not have to navigate
through file system folder hierarchies, as typical users of
this browser would. Instead, this specially configured
browser gave subjects an un-summarized chronological
view of our test image sets, similar to the time-based
interface used in iPhoto [10]. We refer to this browser as
the Scrollable Browser. As well, subjects could find the
specific date and time of each image by briefly hovering
the mouse pointer over the image.

Both of our browsers are particularly effective for users
who originally took the photographs they are exploring. In

the case of photographic Personal Digital Libraries, it is
very common for the curator also to be the creator of the
collection. Nevertheless, as our user experiments show,
even strangers to a collection benefit greatly from these
browsers.

5. EXPERIMENTS

We tested 12 subjects, six computer 'novices', and six
'experts'. We defined a novice as someone who uses
computers at most to read email, create text documents, and
browse the Web. If subjects also used other applications or
programmed, they were classified as experts. Ages ranged
from 18 to 55+. Among the twelve subjects, six were male,
six female. Professions included students, school teachers,
and university professors of varying disciplines, other than
Computer Science.

Figure 6: ACDSee: Un-summarized scrollable view

We videotaped and recorded all test sessions. The sequence
of the subjects' exposure to the three browsers throughout
the experiment was balanced to neutralize learning effects
across browsers. We timed all interactions with the
browsers.

Mean completion times by browser

0:00

0:14

0:28

0:43

0:57

1:12

1:26

SB HB CB

Browser

M
e
a
n

 c
o

m
p

le
ti

o
n

 t
im

e
 o

f
ta

s
k

Figure 7: Average Completion Times for Tasks of

Categories 0 and 1

We used two image sets, A and B. Set A contained 1000
images, set B contained 3500. All photographs were in
color and taken in a variety of locations, seasons, and times
of day.

All values reported in this paper vary in their margins of
error between ±5% and ±23% at 85% confidence level.
Unless otherwise stated, all results reported below are
statistically significant at 85% confidence level.

We asked subjects to complete a variety of tasks in six
different categories, within a maximum time limit. Tasks in
category 0 involved dataset A, all other tasks operated on
dataset B. In what follows we describe the task categories,
and as we do so, we describe the results obtained.

Category 0: Find a given image in dataset A. Time limit:
5min.

Category 1: Find a given image in dataset B, given also the
month during which the image was taken. Time limit:
2.5min.

Category 2 was designed to measure performance when
classes of images were desired, not just a particular image.
To generate the 10 descriptions for a category 2 task, we
selected at random 10 photographs from the collection. For
each image, we then manually wrote a description. For
example, the resulting descriptions could be “a sandy
beach,” or “a man sitting at a bench.” Each subject did two
tasks of Category 2, with different description sets, one
time with CB, the other with SB.

Subjects did a total of 9 tasks: three of category 0, each
with a different browser, and 6 of category 1. For the latter
6, each browser was used with two separate images. Again,
the order in which subjects used the browsers was varied to
eliminate biases.

Figure 7 shows average completion times for the combined
Tasks 0 and 1, for the cases where the subjects did
complete the tasks. While the Scrollable Browser (SB) and
the Hierarchical Browser (HB) draw just about equal,
around 1 minute and 20 seconds, the Calendar Browser
(CB) enabled significantly faster completion times at an
average of about 50 seconds; an average 33%
improvement. In our test runs, this advantage of CB over
the other browsers held for computer experts and novices
alike. However, we have too few data points in each of
these two groups separately to make a general statement on
this novice/expert point.

Our results for Category 2 indicate that, when confronted
with textual descriptions of images, subjects performed at
identical levels in the Scrollable Browser as in the Calendar
Browser. Nearly everyone used linear search even with the
Calendar Browser.

Category 3: Find a given image, in the case when a similar
image appears in one of the month summaries. In addition
to completion time, we noted whether subjects made use of
the summarizations, or followed another strategy (usually
linear search). Time limit: 5min.

Each query image was selected as follows. A random
photo was selected from one of the 12 month summaries.
Then a similar (but not identical) photo was selected from
the same leaf cluster. The subject was given the similar
photo as the query, not knowing how it was selected.
Subjects performed this task with both CB and HB, with
different query images.

In some cases the subjects did not find the requested
images before the time limit expired. Figure 8 shows a
comparison of tasks unable to be completed across
browsers. The Scrollable Browser did by far the worst,
with 31% of the tasks unable to be completed. The
Hierarchical Browser was the most reliable for finding the
images (6% incomplete). Users of the Calendar Browser
were unable to complete tasks around 11% of the time. The
difference in completion success between the Hierarchical
Browser and the Calendar Browser are not significant.

Category 3 measured the impact of subjects ignoring vs.
taking advantage of summarization when looking for a
given image, as opposed to working from textual
descriptions. In Task 3, 42% of subjects made use of
summarization (across both browsers). That is, these
subjects browsed 'horizontally' through time; when they
found an image similar to the sample they had been asked
to find, they drilled down. Figure 9 shows that these 42%
who made use of summarization enjoyed a 48% boost in
performance.

The results of Figures 7 and 8 show that the time-cognizant
browsers, which perform summarization, can indeed help
when subjects are searching for images. Some of the
improvements are due to the time-based navigation scheme,
but other gains are due to the summarization capabilities
that let the subjects get meaningful overviews. These
results also indicate that although users were exposed to
new browsing interfaces, they were able to understand
them well enough with minimal training to perform at
levels at least as good as with a traditional browser.

All of the summary users finished tasks of Category 3
within the allotted time, while 36% of subjects who did not
take advantage of summarization were unable to complete
the task

Category 2: Given 10 textual descriptions of images, find
as many images that fit any of these descriptions as
possible. Time limit: 3min. Completion time by summary usage

0:00

0:28

0:57

1:26

1:55

2:24

2:52

summary not used summary used

M
e
a
n

 c
o

m
p

le
ti

o
n

 t
im

e

Figure 9: The Use of Summarization

% uncompleted tasks by browser

0%

5%

10%

15%

20%

25%

30%

35%

SB HB CB

Browser

%
 u

n
c
o

m
p

le
te

d
 t

a
s
k
s

Figure 8: Average Completion Success for Tasks

of Categories 0 and 1

Category 4: Find a given image, when the image has a
clear clue as to which time of year it was taken. For
example: a Christmas tree, fire works, etc. When
appropriate, we ensured during the debriefing sessions at
the end of the experiment that no cultural differences had
prevented a subject from making the time association.
Analogous to Category 3, we noted whether subjects
recognized and used the time clue. Time limit: 5min.

Category 4 allowed us to examine whether subjects made
use of time clues in images, and how this use affects
performance. Again, subjects used CB and HB.

Almost all subjects, 92%, made use of the time clues for
these tasks. Everyone completed the task. The average
completion time was 36 seconds. The 8% who did not use
the time clue averaged 1min 18sec. However, 8% of our
subject population is too small a data set to make this
performance comparison statistically significant.

Category 5: Find images to fit 10 textual descriptions of
leaf clusters. Time limit: 5min for each run.

To generate the descriptions, we manually clustered the
collection by event, and gave each cluster a short
description (e.g., “visit to San Francisco”). For each task
instance we selected 10 descriptions at random (no
replacement). We limited subjects to the 'year' and 'month'
summary views in CB.

Each subject performed two category 5 tasks, using the
Calendar Browser each time. For one of the tasks, however,
CB was altered so it would select images at random from
the proper time span. For the other task, images for the
summary were selected as described earlier.

Tasks in category 5 forced users to operate in summary
mode, allowing us to examine whether our summarization
made any difference when compared to random excerpting
from the collection. We found that even at a confidence
level of 99% there was a significant difference between
random and clustered summarization. We measured a 56%
performance improvement.

5.2. Discussion

We are very encouraged by our findings. These were
intentionally tough experiments in that we included
subjects who were not deeply familiar with computers and,
most importantly, were unfamiliar with the collection. In
our main target application of Personal Digital Libraries
users will know the collection, so summaries and time
organization will have even greater positive impact on
these users.

We are also delighted by the positive results, because the
systems we report on here operate under the most
demanding assumption that users invest absolutely no
organizing effort. We can expect that even small user
efforts, such as high-level captioning will improve upon
these results even further.

However, users did not always take advantage of the
summarization capabilities. Overall, only 42% of users

took advantage of summarization in our Hierarchical and
Calendar Browsers. This tendency to overlook the
summarization feature was particularly evident as subjects
needed to overcome the barrier of abstraction that we
erected by the verbal nature of tasks of category 2 (finding
as many images as possible from 10 textual descriptions).
In that case, subjects were also strained by trying to keep
multiple image descriptions in mind simultaneously. This
strain may have contributed to that choice of the simplest,
linear, search strategy.

The fact that 92% of the subjects had a specific time
association with certain photographs (Category 5)
underscores the importance of making time visible in the
interface. Most browsers do not do this; PhotoMesa and the
two browsers we developed are notable exceptions [9].

The ingenuity of many subjects impressed us. Some
novices used binary search algorithms. Some used clothing
of figures in images for clues on season or occasion. For
example, one subject explained how she proceeded in one
instance, using the Hierarchical Browser: "I used the time
for the sunset images because I knew I was looking for
something late in the day." It is seductive to use some of
these observations as the basis for adding search and
browse features. However, it is very difficult to keep the
interface simple enough that computer novice and expert
users can operate the systems with virtually no instruction.

During the debriefing sessions, subjects were clear in their
evaluation of the Scrollable Browser: “It seemed like I did
a lot of scrolling, when there should have been a more
efficient way [to navigate the images].” “The linear one
[SB] was more frustrating than the others. You literally felt
like you were looking for a needle in a haystack.”

Opinions about the Hierarchical vs. the Calendar Browser
were divided. Praising HB: “I like having the orientation of
some sort of text on screen;” and “Having the knowledge of
how many [photos were in a cluster] was helpful;” or “I
liked the one [browser] with the tree. It was the easiest to
navigate. You could skip around all at once without having
to go through the different levels.” On the other hand, other
subjects preferred the Calendar Browser: “I'd rather click
on a picture than a month [label];” and “The zoom-out
zoom-in was more intuitive [than HB]. You didn't have to
think about it as much.” Although for testing purposes we
kept the HB and CB interfaces separate, we plan to
integrate these interfaces in the future, based on the positive
response we received from users in both cases.

6. CONCLUSION

We designed, implemented, and tested two photo browsers
that can accommodate thousands of images. These systems
are intended primarily for personal digital libraries. Both
browsers are built atop a common architecture. This
architecture consists of metadata extraction, cluster engine,
and summarization modules that are replaceable.

Our browsers use cluster analysis of the times when
photographs were taken as the foundation for summarizing

large subsets of the images within a collection. The
browsers differ in how users navigate the collections.

We conducted user studies that compared various design
aspects of the two browsers against a commercial image
browser. We found that our Calendar Browser, which
affords time navigation through direct-manipulation,
enabled a 33% improvement in speed of finding given
images in collections. We found that our summarizations
improve the search for photographs from textual
descriptions by 56% over systems that fill the screen with
randomly selected excerpts from the collection.

While summarization clearly improved performance, only
42% of subjects thought of making use of the advantages
that summarization provided. We plan to address this issue
in subsequent designs.

In contrast, subjects readily recognized and used our time-
based organization. While subjects clearly preferred this
organization to an alternative linear solution, they were
divided over which other user interface is most convenient
for navigating the photographs through the time space.

Organizing principles other than time can, of course, be
incorporated into our browser designs. Most notably, image
analysis can generate additional complementary clustering,
for example, by the presence or absence of faces in images
[12], by indoor versus outdoor photography, or by image
similarity [13].

Our experiments show that we will be able to make
Personal Digital Libraries of digital images manageable
and convenient to browse. Digital cameras are rapidly
creating large professional and personal image collections.
Without substantial support from Digital Library
technologies, this exciting new opportunity will be wasted,
and turn into the digital version of the unorganized shoebox
of photographs in a closet. With the proper tools, on the
other hand, the records of individual histories will be fun
and instructive to maintain and explore.

Acknowledgments

We are grateful to the conference reviewers, who provided
detailed and thoughtful feedback on our submitted version.

We are deeply appreciative of our subjects, who mostly live
packed lives and have no need to sit through photo browser
experiments to fill their days. The many, many minutes and
seconds they spent with us turned into all the wonderful
data points that make this paper possible.

REFERENCES

[1] Wactlar, H.D., Christel, M.G., Gong, Y., and Hauptmann, A.G.
Lessons Learned from the Creation and Deployment of a Terabyte Digital
Video Library, IEEE Computer 32(2): 66-73 (1999).

[2] Kobus Barnard and David Forsyth. Exploiting Image Semantics for
Picture Libraries. In Proceedings of the First ACM/IEEE-CS Joint

Conference on Digital Libraries. ACM Press, 2001.

[3] J. Frew, M. Aurand, B. Buttenfield, L. Carver, P. Chang, R. Ellis, C.
Fischer, M. Gardner, M. Goodchild, G. Hajic, M. Larsgaard, K. Park, M.

Probert, T. Smith, and Q. Zheng. The Alexandria Rapid Prototype:
Building A Digital Library for Spatial Information. In Advances in Digital

Libraries ‘95, 1995.

[4] Microsoft Windows XP. 2001. Information at
http://www.microsoft.com/windowsxp/default.asp.

[5] Apple Macintosh OS X. Information at
http://www.apple.com/macosx/.

[6] ACD Systems ACDSee Browser. Available at
http://www.acdsystems.com/English/Products/ImagingProducts/ACDSee/
ACDSee/index.htm.

[7] H. Kang and B. Shneiderman. Visualization Methods for Personal
Photo Collections Browsing and Searching in the PhotoFinder. In
Proceedings of IEEE International Conference on Multimedia and Expo

(ICME2000), pp. 1539-1542. IEEE, New York, 2000. Available at
http://www.cs.umd.edu/hcil/photolib/paper/ICME2000-final.doc.

[8] Allan Kuchinsky, Celine Pering, Michael L. Creech Dennis Freeze,
Bill Serra, and Jacek Gwizdka. FotoFile: a consumer multimedia
organization and retrieval system. In Proceedings of the Conference on

Human Factors in Computing Systems CHI‘99, pp. 496-503, 1999.
Available at
http://www.acm.org/pubs/citations/proceedings/chi/302979/p496-
kuchinsky/.

[9] Benjamin B. Bederson. PhotoMesa: A Zoomable Image Browser
Using Quantum Treemaps and Bubblemaps. Proceedings of the 14th
Annual ACM Symposium on User Interface Software and Technology.
Orlando, Florida. Pages 71-80. November, 2001. ACM Press. Series-
Proceeding-SESSION-Artic.

[10] Apple iPhoto. 2002. Information at http://www.apple.com/iphoto/.

[11] John C. Platt. AutoAlbum: Clustering Digital Photographs Using
Probabilistic Model Merging. In Proceedings of the IEEE Workshop on

Content-Based Access of Image and Video Libraries 2000, pp. 96-100,
2000.

[12] Gross, R., Cohn, J., Shi, J. Quo Vadis Face Recognition. Third
Workshop on Empirical Evaluation Methods in Computer Vision, IEEE
Conference on Computer Vision and Pattern Recognition 2001
(CVPR'01), Hawaii, December 11-13, 2001. Also available at
http://www.informedia.cs.cmu.edu/documents/shi_FaceRecog_CVPR01.p
df.

[13] Kerry Rodden, Wojciech Basalaj, David Sinclair, and Kenneth Wood.
Does Organisation by Similarity Assist Image Browsing? In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
2001, pp. 190 - 197, 2001.

[14] J. C. Platt, M. Czerwinski, B. Field, "PhotoTOC: Automatic
Clustering for Browsing Personal Photographs", Microsoft Research
Technical Report MSR-TR-2002-17,
http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-
2002-17

This technical report was published after submission of this paper. We do
not have space to discuss its content, but include this reference for the
benefit of the reader.

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords

	1. INTRODUCTION
	2. CALENDAR BROWSER
	3. TIME BASED SUMMARIZATION
	3.1. Time Cluster Engine
	Step 1: Create initial clusters.
	Step 2: Split initial clusters.
	Step 3: Create parent clusters.

	3.2. Creating Summaries
	Step 1: Screen space assignment
	Step 2: Selection of summarization photographs

	4. OTHER BROWSERS
	5. EXPERIMENTS
	5.2. Discussion
	6. CONCLUSION
	Acknowledgments
	REFERENCES

