
Time at your service : schedulability analysis of real-time and
distributed services
Jaghoori, M.M.

Citation
Jaghoori, M. M. (2010, December 20). Time at your service : schedulability analysis of real-
time and distributed services. Retrieved from https://hdl.handle.net/1887/16260

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/16260

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/16260

Time at Your Service
Schedulability Analysis of Real-Time and Distributed Services

Mohammad Mahdi Jaghoori

Time at Your Service
Schedulability Analysis of Real-Time and Distributed Services

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. dr. Paul van der Heijden

volgens besluit van het College voor Promoties

te verdedigen op maandag 20 december 2010

klokke 13.45 uur

door

Mohammad Mahdi Jaghoori

geboren te Mashhad, Iran
in 1982

PhD committee

Promotor: Prof. Dr. F.S. de Boer Leiden University
Co-promotor: Dr. T. Chothia Birmingham University, UK

Other members:
Prof. Dr. F. Arbab Leiden University
Prof. Dr. J.N. Kok Leiden University
Prof. Dr. W. Yi Uppsala University, Sweden

The work reported in this thesis has been carried out at the Center for Mathemat-
ics and Computer Science (CWI) in Amsterdam and Leiden Institute of Advanced
Computer Science at Leiden University, under the auspices of the research school IPA
(Institute for Programming research and Algorithmics). This research was supported
by the European IST-33826 STREP project CREDO on Modeling and Analysis of
Evolutionary Structures for Distributed Services.

Copyright c� 2010 by Mohammad Mahdi Jaghoori. All rights reserved.

The cover illustration depicts a real-time solution to the dining philosophers problem.
This solution is referred to as “A Late Philosopher” in Section 5.3.
Cover design by Samira Sedghi.
ISBN: 978-90-6464-445-0

Acknowledgments

Thank you all. This, at the highest level of abstraction, shows my thanks and grati-
tude to all who made it possible for me to accomplish my PhD. I will try to refine it a
bit here, but am sure this refinement will miss some traces. My apologies in advance.
The English acknowledgment is complementary to the Farsi one on the other side of
the book.

I would like to thank my PhD supervisor Frank de Boer. Throughout these years,
he was a unique source of inspirations for me. Since my first visit to CWI for the PhD
interview, he was more of a friend to me than a supervisor. Next to Frank, I spent
hours and hours pushing the frontiers of science with Tom Chothia, my co-promoter.
As it is obvious from my publications record, I would not be writing this thesis if it
were not for them.

I spent most of my days at CWI with these people, in addition to Frank and Tom,
alphabetically listed: Lăcrămioara Aştefănoaei, Marcello Bonsangue, Dave Clarke,
David Costa, Susanne van Dam, Fernando Filho, Bo Gao, Stijn de Gouw, Immo
Grabe, Helle Hansen, Michiel Helvensteijn, Stephanie Kemper, Natallia Kokash, Chris-
tian Krause, Clemens Kupke, Rodrigo Laiola, Delphine Longuet, Huiye Ma, Ziyan
Maraikar, Jacopo Mauro, Young-Joo Moon, José Proença, Jan Rutten, Alexandra
Silva, Sun Meng, Yanjing Wang, Joost Winter. Some of them have left already, some
of them have joined only recently. We sometimes had scientific discussions, but I am
to thank them mainly because they made my life easy, so far away from my family
and my country, and basically made my stay in Amsterdam possible, by being good
friends before anything else.

What I liked most during these years was travelling. I was involved in a Eu-
ropean project called Credo. We travelled a lot, mainly for project meetings, all
around the world during which I learned scientific collaboration, presentation, dis-
cussion, and sightseeing. During all these meetings, I also got to know many other
nice people related to the Credo project and, in one way or another, they all played
a role on my way towards this thesis. As the smallest sign of appreciation, I will
name them, alphabetically: Bernhard Aichernig, Christel Baier, Tobias Blechmann,
Andreas Griesmayer, Einar Broch Johnsen, Joachim Klein, Sascha Klüppelholz, Mar-
cel Kyas, Wolfgang Leister, Willem-Paul de Roever, Rudolf Schlatte, Andries Stam,

iii

Martin Steffen, Simon Tschirner, Xuedong Liang, and Wang Yi.
The fourth year of my PhD was funded by Leiden University. I should thank

everyone in Leiden who helped me in different ways. Joost Kok supported me, espe-
cially in the last few weeks leading to my defense. I also thank him for nominating
my thesis for the prestigious C. J. Kok prize and his efforts to schedule my defense in
2010.

I wish all those who helped and supported me scientifically, and more importantly
non-scientifically, the best and success and prosperity in life and afterwards.

Mahdi Jaghouri
November 2010

iv

Contents

Acknowledgments iii

1 Introduction 1
1.1 The Credo Context . 3
1.2 Thesis Overview and Contributions . 3
1.3 Case Studies . 6

2 Distributed Concurrent Objects in Real-Time Creol 9
2.1 Background: Modeling in Creol . 9

2.1.1 Defining a Class in Creol . 10
2.1.2 Creol Semantics in Rewrite Logic 12

2.2 Real-Time in Creol . 14
2.2.1 Real-Time Creol’s Semantics 15

2.3 Case Studies . 18
2.3.1 Coordinator . 18
2.3.2 Thread-Pools . 20

3 Automata-Based Actor Framework 23
3.1 Background: Timed Automata . 24

3.1.1 Networks of Timed Automata 25
3.1.2 Timed Automata in Uppaal 27

3.2 Modeling Actors in Timed Automata 27
3.2.1 The Formal Timed Actor Model 30
3.2.2 Timed Actor Model Semantics 33

3.3 Using Uppaal for Modeling . 35
3.3.1 Modeling the Scheduler . 35

3.4 Thread Pools Extension . 40
3.4.1 Time-Sharing . 40
3.4.2 Parallel Threads . 42

3.5 A Peer-to-Peer Case Study . 43

v

3.5.1 Interface Inheritance . 43

4 Schedulability Analysis of Automata-Based Actor Models 47
4.1 Background: Task Automata and Schedulability 48
4.2 Analyzing Actor Models . 50

4.2.1 Analyzing One Actor in Isolation 52
4.2.2 Discussion on Preemptive Scheduling 55

4.3 Case Studies . 55
4.3.1 Schedulability Analysis of MutEx 56
4.3.2 Schedulability Analysis of Thread Pools 58

4.4 Guidelines for Efficiency . 61

5 Compatibility in the Context of Schedulability 63
5.1 Testing Refinement of Timed Automata 64

5.1.1 Test Cases . 66
5.1.2 Properties of the Test Cases . 68

5.2 Testing Compatibility . 73
5.2.1 Schedulability . 74
5.2.2 Executing a Test Case . 75

5.3 Case Studies . 76

6 Schedulability Analysis of Real-Time Creol 83
6.1 Timed Automata Semantics For Creol 83

6.1.1 Extended Schedulers . 87
6.1.2 A Formal Encoding . 89
6.1.3 End-to-end Deadlines . 96

6.2 Checking Compatibility in Full Creol 98
6.3 Checking Conformance between Real-Time Creol and Timed Automata 99

6.3.1 Testing Conformance . 100
6.3.2 Generating a Test Case . 100
6.3.3 Executing a Test Case in RT-Maude 102

Bibliography 109

Samenvatting 113

Abstract 115

Curriculum Vitae 117

vi

Chapter 1

Introduction

These days computers are not just meant for large business corporations or just for
controlling the launch of shuttles and rockets. Since a few years ago, they have been
sitting on the desks of almost every house, and they are all connected via the Internet.
Today software is also along the same trend changing from a desktop product to an
Internet service. Many people check the weather on the Internet instead of looking
out the window. You can plan your travels, from flight and hotel reservations to the
sights you want to see, right from your desk at home.

On the other hand, nowadays, computers are controlling many of the devices we
use every day. A normal daily schedule is like this. Your clock wakes you up in the
morning; then you have coffee from a coffee machine, take your breakfast from the
refrigerator, and after breakfast have the dishes washed by the dishwasher; you take
the bus to work, make a few phone calls during the day, have your lunch warmed
up in the microwave, and in the afternoon you struggle with the air-conditioning to
adjust your room temperature; at the end of the day you print some papers to read
in the evening after your favorite show on TV has finished. You are most probably
interacting with a computer when you use a device like the ones just mentioned.

Furthermore, computer processors have stopped getting faster due to physical re-
strictions. Higher speeds can only be achieved by increasing the number of processors
and the level of parallelism. This implies that future computer systems, including
real-time and embedded software, need to be distributed.

Working in real time, all these distributed software and services need to be timely
and respond to the requests in time. An important aspect of real time software is how
it schedules its tasks to be executed. In this thesis, we introduce a software paradigm
based on object orientation in which real-time objects are enabled to specify their own
scheduling strategy. The nature of this paradigm allows for distributed deployment
of these objects.

Concurrent Objects with Schedulers The term concurrency is used in computer
science to refer to a situation that multiple process are running at the same time. Dif-
ferent formalizations are proposed to model concurrent systems. Process calculi (like
CCS [37] and CSP [21]), Petri-nets [40], automata models (like IO automata [33, 32])

1

2 Chapter 1. Introduction

and Actors [20, 1] are examples of these concurrency models. Different concurrency
models are usually compared regarding their concurrency units, possible ways of com-
munication between them (e.g., shared memory or message passing, synchronous or
asynchronous), their syntax and their semantics, etc.

The concurrency model we work with assigns a processor to each object: objects
are thus concurrent and are the units of concurrency. Concurrent objects are an ex-
tension of the actor model [20, 1] with sophisticated means for synchronization. We
use an operational interpretation of the actor model in which objects have sequential
pieces of code specifying their behavior. A concurrent object may be used to model a
software service residing on an independent computer. As in the actor model, concur-
rent objects communicate only by sending asynchronous messages and have queues
for receiving them. This fits very well the common approach in deploying distributed
systems where different nodes are completely asynchronous and communicate only by
message passing.

In a real-time setting, a deadline is assigned to each message specifying the time
before which the intended job should be accomplished. An object has a method for
each message it can handle. Receiving a message schedules the corresponding method,
i.e., a new process is created to execute the method which is added to the queue. The
scheduling policy of the object determines in which order the processes in the queue
are executed. We allow each concurrent object to define its own scheduling policy
(rather than, for instance, assuming “First Come First Served (FCFS)” by default)
with the condition that inserting a new message in the queue cannot preempt the
currently running method.

Actors and concurrent objects are suitable for modular modeling, because of the
asynchronous nature of communication and the encapsulation of computation (i.e.,
having no shared variables). This means that objects can be developed independently,
and later put in the context of bigger systems. Nevertheless, for an object to produce
a specific service, messages should be sent to it in a correct sequence.

The high-level view of the object behavior is given in its behavioral interface. A
behavioral interface given in a timed automaton, specifies how the object expects input
messages and how it would reply accordingly. Schedulability analysis for a real time
system consists of checking whether all tasks can be finished within their deadlines.
We propose a modular method for schedulability analysis. For individual object
analysis, the behavioral interface is used a driver, because it models the acceptable
input behavior of the object. The real usage of the object would need to be compatible
with this expected usage.

One of the advantages of this technique is the possibility of analyzing real-time
systems with their application-specific scheduling strategies specified at a high-level.
This is in contrast to traditional approaches where scheduling is left to the underlying
operating system. Actors with scheduling policies can be used for modeling, analyzing
and synthesizing systems with context-specific scheduling strategies.

1.1. The Credo Context 3

1.1 The Credo Context

This thesis has been carried out in the context of the Credo project. Therefore,
this work can be applied in the context of the Credo methodology [17]. Current
software development methodologies follow a component-based approach in modeling
distributed systems. The Credo methodology aims at their shortcoming concerning an
integrated formalism to model highly reconfigurable distributed systems at different
phases of design, i.e., systems that can be reconfigured in terms of a change to the
network structure or an update to the components. Moreover, the high complexity
of such systems requires tool-supported analysis techniques.

The core of the Credo tool suite consists of two different executable modeling
languages: Reo [4] is an executable dataflow language for high-level description of the
dynamic reconfigurable network of connections between the components; Creol [27]
is an object-oriented modeling language, used to provide an abstract but executable
model of the implementation of the individual components. Figure 1.1 illustrates the
relation between these modeling languages and their relation to existing programming
languages. At shown here, schedulability analysis is performed at the level of object-
oriented modeling of components.

This thesis focuses on the part of the Credo tool suite that offers an automated
technique for schedulability analysis of individual objects [25, 24]. We use the timed
automata of Uppaal to model objects and their behavioral interfaces. Given a spec-
ification of a scheduling policy (e.g., shortest deadline first) for an object, we use
Uppaal to analyze the object with respect to its behavioral interface in order to
ensure that tasks are accomplished within their specified deadlines (see Figure 1.2).

1.2 Thesis Overview and Contributions

We bridge the gap between object orientation and automata theory for schedulability
analysis. Object orientation is a widely accepted paradigm for modeling and pro-
gramming. On the other hand, there is a rich theory based on timed automata for
model checking and schedulability analysis of systems.

Creol is a concurrent object modeling language for specifying abstract behaviors
of distributed systems and protocols. We extend Creol with the possibility of speci-
fying real-time information in Chapter 2. Our extension of Creol is in a descriptive
approach: real-time execution information is added as delays between standard Creol
statements and deadlines are added to (asynchronous) method calls as schedulability
requirements [12, 15]. Additionally, each concurrent object can specify its context-
specific scheduling policy.

For schedulability analysis, we take advantage of recent advances in automata
theory that allow analysis of non-uniformly recurring tasks. At the first step, we
show in Chapter 3 how to use timed automata to model actors [14, 23, 24] as the
pure asynchronous setting of concurrent objects. We develop a modular technique
for schedulability analysis of the actor models: Chapter 4 shows how the problem

4 Chapter 1. Introduction

�����������

	
������������
��������

��������
��������

������������

��	
�

�	

�����������������������
�������
��������������

������������������������
�� !�" !�� !�������������#

�
�
����	���	����

�
�
����	���	����

Figure 1.1: Overview of modeling levels and analysis in Credo

����������
	�
����
������
����

������

������
�������
������
����

������
	����������������	�	

����	
�������	��
�����
��������������

�����
�

������������
��������������	�	

���
����
�����������	�	
������������	�	

����������
�������
��
����
����

Figure 1.2: End user perspective of the Credo Tools

1.2. Thesis Overview and Contributions 5

of schedulability can be formulated as the reachability problem of timed automata;
in this chapter, we discuss how to analyze a system of actors together or each actor
in isolation [24]. When a system is too big to be analyzed, one can argue about its
schedulability based on the analysis of individual actors and their compatibility, as
explained in Chapter 5 [25]. We show how these techniques can be automated with
the help of an existing model checker, namely Uppaal.

Finally, we explain in Chapter 6 how we can apply our theory to the analysis of
real-time Creol models. To this end, we develop a timed-automata semantics for Creol
based on the actor-based automata framework [22] of Chapter 3. Alternatively, one
can develop abstract automata models and show that a concrete Creol code conforms
to the verified automata models [15].

A list of publications that are cited above and are related to the theories developed
in this thesis are collected below:

[12] Frank de Boer, Tom Chothia, and Mohammad Mahdi Jaghoori. Modular schedulability
analysis of concurrent objects in Creol. In Proc. Fundamentals of Software Engineering
(FSEN’09), volume 5961, pages 212–227, 2009.

[14] Frank S. de Boer, Immo Grabe, Mohammad Mahdi Jaghoori, Andries Stam, and Wang
Yi. Modeling and analysis of thread-pools in an industrial communication platform.
In Proc. 11th International Conference on Formal Engineering Methods (ICFEM’09),
volume 5885 of LNCS, pages 367–386. Springer, 2009

[15] Frank S. de Boer, Mohammad Mahdi Jaghoori, and Einar B. Johnsen. Dating con-
current objects: Real-time modeling and schedulability analysis. In Proc. 21st Inter-
national Conference on Concurrency Theory (CONCUR’10), volume 6269 of LNCS,
pages 1–18, 2010

[22] Mohammad Mahdi Jaghoori and Tom Chothia. Timed automata semantics for analyz-
ing Creol. In Proc. Foundations of Coordination Languages and Software Architectures
(FOCLASA’10), EPTCS 30, pages 108–122, 2010

[23] Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, and Marjan Sirjani. Task
scheduling in Rebeca. In Proc. Nordic Workshop on Programming Theory (NWPT’07),
2007. extended abstract

[24] Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, and Marjan Sirjani.
Schedulability of asynchronous real-time concurrent objects. J. Logic and Alg. Prog.,
78(5):402 – 416, 2009

[25] Mohammad Mahdi Jaghoori, Delphine Longuet, Frank S. de Boer, and Tom Chothia.
Schedulability and compatibility of real time asynchronous objects. In Proc. RTSS’08,
pages 70–79. IEEE CS, 2008

6 Chapter 1. Introduction

1.3 Case Studies

Modeling and analysis is described with the help of numerous running examples.
Each chapter will have as running example the model of a Mutual Exclusion handler,
called a MutEx. We will use other examples and case studies to further illustrate the
techniques. We will end each chapter with an industrial case study, thread-pools in
the ASK system explained below.

MutEx A MutEx object provides mutual exclusive access to a given resource that is
shared between two objects. A MutEx may communicate with the two objects on its
left and right which try to enter a critical section. In this example, each user object
sends its request to the MutEx and gets a permit from the MutEx when it is safe to
use the resource. In a real-time model, we want to put a time bound on the waiting
time for each user after it sends a request until it gets a permit.

Coordinator A coordinator provides multi-way barrier synchronization; we will
model and analyze a three-way coodinator. In contrast to MutEx, which provides mu-
tual exlusion, a coordinator requires all parties to be ready before they can continue.

Peer-to-Peer Peer-to-peer systems are now a commonly used way of sharing data.
Contrasted to a client-server architecture, these systems are called peer-to-peer be-
cause all nodes can act both as a server and a client; in other words, they are all
peers. In such systems, there are a number of nodes that share some data each. Each
data item has a key, for instance, for a song the key is the name of the song. Each
peer node can search for new data using their keys, e.g., by providing the name of the
song it looks for. If another node has a song with the given name, then it can provide
the data, namely, the song itself, to the requester node.

We model and analyze a file-sharing system with hybrid peer-to-peer architecture
(like in Napster), where a central server (called the broker) keeps track of the keys for
the data in every node. Each node, upon creation, registers its data with the broker.
Later it queries the broker for some new data, and the broker connects it to the node
which has the data.

ASK System: An Industrial Case Study [14]

We use an object-oriented paradigm to model different thread pools in the context
of the ASK system, an industrial communication platform. Thread pools are often
used as a pattern to increase the throughput and responsiveness of software systems.
Implementations of thread pools may differ considerably from each other, which urges
the need to analyze these differences in a formal manner. We will apply automata
theory to analyze their schedulability

ASK is an industrial software system for connecting people to each other. The
system uses intelligent matching functionality in order to find effective connections

1.3. Case Studies 7

between requesters and responders in a community. ASK has been developed by Al-
mende [2], a Dutch research company focusing on the application of self-organization
techniques in human organizations and agent-oriented software systems. ASK pro-
vides mechanisms for matching users requiring information or services with potential
suppliers. Based on information about earlier established contacts and feedback of
users, the system learns to bring people into contact with each other in the most
effective way. Typical applications for ASK are workforce planning, customer ser-
vice, knowledge sharing, social care and emergency response. Customers of ASK
include the European mail distribution company TNT Post, the cooperative financial
services provider Rabobank and the world’s largest pharmaceutical company Pfizer.
The amount of people using a single ASK configuration varies from several hundreds
to several thousands.

The software of ASK can be technically divided into three parts: the web front-
end, the database and the contact engine. The web front-end acts as a configuration
dashboard, via which typical domain data like users, groups, phone numbers, mail
addresses, interactive voice response menus, services and scheduled jobs can be cre-
ated, edited and deleted. This data is stored in a database, one for each configuration
of ASK. The feedback of users and the knowledge derived from earlier established
contacts are also stored in this database. Finally, the contact engine consists of a
number of components, which handle inbound and outbound communication with
the system and provide the intelligent matching and scheduling functionality.

At the heart of each component in the ASK system is a thread-pool. Depending
on the sysetm load, there will be many tasks to be processed in each component.
The overall performance of the system depends on the scheduling of the tasks by the
thread-pools.

Chapter 2

Concurrent Objects in Real-Time Creol

Concurrent objects are an evolution of the actor model with more sophisticated syn-
chronization patterns and type systems. As in actors, concurrent objects have ded-
icated processors and communicate only by asynchronous message passing. Due to
their intrinsic asynchrony, actor-based and concurrent object languages can be used
for modeling classical concurrent and distributed applications, as well as, modern web
services.

A concurrent object has an unbounded queue for storing its incoming messages.
At the initial state, a number of objects are created statically, and an initialization
message is implicitly put in their queues. The system runs as objects send messages to
each other and the methods corresponding to the received messages are executed. The
order of executing the messages in the queue is called the scheduling strategy. Actors
usually process their incoming messages in an FCFS manner, i.e., first come first
served; some concurrent object languages leave the scheduling strategy unspecified,
i.e., they consider a nondeterministic execution of the messages. In real-time settings,
the correct behavior of a system depends on the correct choice of the scheduling
strategy; this requires the ability to specify different scheduling strategies (besides
FCFS) for individual actors.

We first present Creol, a language for specifying concurrent object models, as
introduced by Johnsen et al. [27]. Creol is strongly typed and allows for type safe
dynamic behavior, e.g., dynamic class upgrades [28], dynamic service recovery [8], etc.
In this thesis, we work on a complementary feature of Creol. We extend Creol with
real-time information and explicit specification of scheduling policies. The semantics
of Real-Time Creol will be given using rewrite logic as an extension of the original
semantics of Creol in [27].

2.1 Background: Modeling in Creol

The basic concept of the Creol modeling language [27] is to provide a formal object-
oriented solution for modeling distributed systems. Like the standard actor model,
concurrent objects in Creol have dedicated processors. Since there is no shared data

9

10 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

and there is a single thread of execution in each object, objects act as monitors for
usage of their locally encapsulated data. Allocation of an object’s processor to the
processes in Creol is based on cooperative scheduling, i.e., once a process is executing
a method in an object, it is not preempted unless the method voluntarily releases the
processor.

Concurrent objects communicate by asynchronous method calls. However, the
caller can choose to wait for an answer, thus simulating synchronous method calls.
Creol objects are typed by interfaces, nevertheless, classes can implement as many
interfaces as necessary. The notion of co-interfaces can be used to restrict who can
call the methods provided in interfaces. As a result, the callee can communicate with
the caller in a type-safe manner.

Creol is backed by its formal operational semantics and its strong typing allows
for dynamic class upgrades [45]. This thesis is not concerned about the type system
and dynamic features of Creol. In this chapter, we focus on adding scheduling policies
to Creol and real-time information with the purpose of schedulability analysis.

In Creol, object references are typed only by interfaces, allowing for a strongly
typed language with support for features such as multiple inheritance and type-safe
dynamic class upgrades [45]. We augment an interface with a notion of high-level
behavioral specification given in a timed automaton; this is given by the modeler as
the first step in modeling an object. A class can implement multiple interfaces. In this
case, the timed automata for behavioral interfaces should be interleaved; intuitively,
allowing more behavior than each automaton separately. The justification is that
a class with multiple interfaces can participate in multiple protocols independently.
Creol supports multiple inheritance for both interfaces and classes. Interfaces form a
subtype hierarchy, which is distinct from inheritance at the level of classes used merely
for code reuse [28]. In a subtype hierarchy, the timed automata for the inherited
behavioral interfaces should synchronize on similar actions; intuitively, allowing less
behavior in the subtype. The justification is that a subtype should be a refinement
of its supertypes [39].

2.1.1 Defining a Class in Creol

A simplified syntax for Creol, used in the subsequent chapters, is given in Figure 2.1.
Classes and interfaces can have parameters. Class instances can communicate by
objects given as class parameters, called the known objects. We can thus define the
static topology of the system. The class behavior is defined in its methods, where
a method is a sequence of statements separated by semicolon. For expressions, we
assume the normal arithmetics and thus do not give the details.

The start-up message in Creol is called run, which defines the active behavior of
the objects. Each object in Creol, shows reactive behavior upon receiving messages.
It means that upon receipt of a message, a new process is created inside the object
for executing the method corresponding to that message. The execution of a method
cannot be interrupted arbitrarily. However, the currently executing process may, at its
own discretion, release the processor (at some predefined processor release point using

2.1. Background: Modeling in Creol 11

b : Boolean
e : Expression
g : Guard
m : Method
n : Identifier
s : Statement
t : Label
x : Object

in ::= interface n([n : n]∗,) [inherits [n[(e+,)]
?]+,]

?

begin [[with n]? op n]+ end

cl ::= class n([n : n]∗,) implements [n[(e+,)]
?]+,

begin [var Vdcl]∗ [mtd]+ end

Vdcl ::= n+
, : [int | bool]

mtd ::= [with n]? op n == S
S ::= s | s;S

s ::= n := e | !x.m() | t!x.m() | [n :=]?t.get | release | await g
| while b do S od | if b then S else S | skip

g ::= b | t? | g ∧ g | g ∨ g

Figure 2.1: BNF grammar for Creol (adapted from [27]) where ∗ and + show repetition
for at least 0 and 1 times, respectively; ? denotes an optional element; and, a subscript
, implies a comma-separated list.

the await or release keywords) allowing other enabled processes to start execution.
When a process is executing, it is not interrupted until it finishes or reaches a release
point. Release points can be conditional, written as await g. If g is satisfied, the
process keeps the control; otherwise, it releases the processor. The rest of the process
is disabled while the guard g is not satisfied. When the processor is free, an enabled
process is nondeterministically selected and started, i.e., Creol does not specify any
scheduling policy. The release statement unconditionally releases the processor and
the continuation of the process is immediately enabled, i.e., it can immediately start
to compete with other enabled processes for execution.

The guard in a conditional release point can also test whether an asynchronous call
has been accomplished. This is handled implicitly by the semantics with a completion
notification. Examples of a release point are ‘await !taken’ and ‘await l?’ in Figure 2.4.
Notice that waiting for the completion of a call without releasing the processor blocks
the caller object, disallowing other processes in the object to use the processor.

To make a system run, one should provide the initialization script. In the Creol
convention, one can have a class for the initialization. This is similar to the class
containing the main method in Java.

If a method invocation p is associated with a label t, written as t !p(), the sender
can wait for a reply using the blocking statement n := t.get or in a nonblocking way
by including t? in a conditional release point, e.g., as in await t?. A reply is sent
back automatically when the called method finishes. Before the reply is available,
executing await t? releases the processor whereas a blocking get statement does not.
While the processor is not released, the other processes in the object do not get a
chance for execution; if get is related to a self call and its reply is not yet available, it
forces synchronous execution of the called method. Standard usages of asynchronous
method calls include the statement sequence x := o!m(e, d); v := x.get which encodes
a blocking call, abbreviated v := o.m(e, d) (often referred to as a synchronous call),
and the statement sequence x := o!m(e, d); await x?; v := x.get which encodes a
non-blocking, preemptible call, abbreviated await v := o.m(e, d).

12 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

1 class MutEx (l e f t : Entity , r i g h t : Ent ity) begin

2 var taken : bool

3 op i n i t i a l ==

4 taken := f a l s e

5 op reqL ==

6 await ! taken ;

7 taken := true ;

8 l ! l e f t . grant () ;

9 await l ? ;

10 taken := f a l s e

11 op reqR ==

12 await ! taken ;

13 taken := true ;

14 r ! r i g h t . grant () ;

15 await r ? ;

16 taken := f a l s e

17 end

Figure 2.2: A Creol class for mutual exclusion.

In standard Creol, different invocations of a method call are associated with dif-
ferent values of the label. For instance executing the statement t !p() twice results in
two instances of the label t. This allows for distinguishing the return values of the
calls. Dynamic labels give rise to an infinite state space for non-terminating reactive
systems. This is fine as long as we use simulation or testing, but for verification pur-
poses we need to abstract from this. One way of such abstraction is explained later
in Chapter 6.

Figure 2.2 shows the Creol code for a mutual exclusion handler object. An instance
of MutEx should be provided with two instances of a class Entity representing the two
objects (on its left and right) trying to get hold of the MutEx object. To do so, they
may call reqL or reqR, respectively. The request is suspended if the object is already
taken; otherwise, it is granted. The MutEx waits until the requester entity finishes its
operation (in its grant method).

2.1.2 Creol Semantics in Rewrite Logic

Creol has a semantics defined in Rewriting logic [35] which can be used directly as a
language interpreter in Maude [9]. The semantics of standard Creol is explained in
detail in [27] and can be used for the analysis of Creol programs. In this section we
focus on the semantics of some core Creol statements and we extend it with Real-Time
specifications.

The state space of a Creol program is given by terms of the sort Configuration
which is a set of objects, messages, and futures. The empty configuration is denoted

2.1. Background: Modeling in Creol 13

rl [skip] : � o, a, {l | skip;s} ◦ q � −→ � o, a, {l | s} ◦ q � .

rl [assign] : � o, a, {l | x:=e;s} ◦ q �

−→ if x ∈ dom(l) then � o, a, {l[x �→ [[e]]none
a◦l

] | s} ◦ q �

else � o, a[x �→ [[e]]none
a◦l

], {l | s} ◦ q � fi .

rl [release] : � o, a, {l | release;s} ◦ q � −→ � o, a, firstEn(schedule({l | s},q)) � .

crl [await1] : {� o, a, {l | await e;s} ◦ q � c}

−→ {� o, a, {l | s} ◦ q � c} if [[e]]c
a◦l

.

crl [await2] : {� o, a,{l | await e;s} ◦ q � c}

−→ {� o, a, {l | release;await e;s} ◦ q � c} if ¬[[e]]c
a◦l

.

rl [context-switch] : � o, a, {l | �} ◦ q � −→ � o, a, firstEn(q) � .

Figure 2.3: The semantics of Creol in Maude.

none and white-space denotes the associative and commutative union operator on
configurations. Objects are defined as tuples

� o, a, q �

where o is the identifier of the object, a is a map which defines the values of the
attributes of the object, and q is the task queue. Tasks are of sort Task and consist
of a statement s and the task’s local variables l. We denote by {l|s} ◦ q the result
of appending the task {l|s} to the head of the queue q. For a given object, the first
task in the queue is the active task and the first statement of the active task to be
executed is called the active statement.

Let σ and σ� be maps, x a variable name, and v a value. Then σ(x) denotes the
lookup for the value of x in σ, σ[x �→ v] the update of σ such that x maps to v,
σ ◦ σ� the composition of σ and σ�, and dom(σ) the domain of σ. Given a mapping,
we denote by [[e]]cσ the evaluation of an expression e in the state given by σ and the
global configuration c (the latter is only used to evaluate the polling of futures; e.g.,
await x?).

Rewrite rules execute statements in the active task in the context of a configu-
ration, updating the values of attributes or local variables as needed. For an active
task {l| s}, these rules are defined inductively over the statement s. Some (represen-
tative) rules are presented in Figure 2.3. Rule skip shows the general set-up, where a
skip statement is consumed by the rewrite rule. Rule assign updates either the local
variable or the attribute x with the value of an expression e evaluated in the current
state. The suspension of tasks is handled by rule release, which places the active task
in the task queue. Rules await1 and await2 handle conditional release points.

The auxiliary function schedule in fact defines the (local) task scheduling policy

14 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

of the object which in standard Creol is nondeterministic. In the next subsection,
we will add explicit scheduling policies to objects. After release or when a method
finishes the processor is idle. At this point the first enabled task in the queue is picked
by the auxiliary function firstEn; this function moves the first enabled task to the
head of the queue. Since the valuation of the enabling condition of a task may change
in the course of time, it has to be checked when a new task must be started.

2.2 Real-Time in Creol1

We explain how to model real-time systems using concurrent objects in Creol. To
this end, we develop an extension of the Creol language with support for specifying
real-time information. As in the previous section, we aim at schedulability analysis
and therefore we choose for a descriptive approach; namely, we add best and worst
case execution information to methods and deadlines to method calls rather than
clocks and time-outs that can affect the system behavior. Furthermore, scheduling
strategies can be added to object definitions, which may depend on the remaining
deadlines of tasks.

In real-time Creol, normal statements are executed instantaneously. We add a
special statement duration to specify delays during execution. A duration statement
takes two parameters specifying the best and worst case execution delays. There is
a special case of the blocking get statement. This statement may take as much time
as needed until the corresponding method call finishes; however, as soon as the callee
finishes, the blocking get will succeed.

Every method call, including self calls, can be given a deadline; the deadline is
given as an extra parameter to the method call. This deadline specifies the relative
time before which the corresponding method should be scheduled and completed.
Since we do not have message transmission delays, the deadline expresses the time
until a reply is received. Thus, it corresponds to an end-to-end deadline. Self-calls may
inherit the remaining deadline of the caller method by using the keyword deadline.
As explained in Chapter 4, to be able to model check schedulability, all method calls
must have a finite deadline.

In this chapter, we first give a complete semantics of Real-Time Creol in Real-
Time Maude, which extends the original rewrite semantics of Creol. We cannot
perform complete analysis on this semantics, because first of all, it is infinite state,
and secondly, the analysis results given by Real-Time Maude is incomplete (due to
decidability constraints). We then provide a finite-state abstraction of Creol with
timed automata semantics in terms of an extension of the framework in the previous
chapter; this semantics can be readily used for schedulability analysis, as well as model
checking of other properties, in Uppaal.

Figure 2.4 repeats the Creol code for a mutual exclusion handler object annotated
with timing information. The duration statements specify the delays and the numbers
in parantheses show the deadlines required for the method calls.

1The rest of this chapter is an improvement and extension of the results published in [15].

2.2. Real-Time in Creol 15

1 class MutEx (l e f t : Entity , r i g h t : Ent ity) begin

2 var taken : bool

3 op i n i t i a l ==

4 duration (1 , 1) ; taken := f a l s e

5 op reqL ==

6 duration (1 , 2) ; await ! taken ;

7 duration (4 , 4) ; taken := true ;

8 l ! l e f t . grant (1 0) ;

9 await l ? ;

10 duration (2 , 3) ; taken := f a l s e

11 op reqR ==

12 duration (1 , 2) ; await ! taken ;

13 duration (4 , 4) ; taken := true ;

14 r ! r i g h t . grant (1 0) ;

15 await r ? ;

16 duration (2 , 3) ; taken := f a l s e

17 end

Figure 2.4: A Creol class for mutual exclusion with timing information.

2.2.1 Real-Time Creol’s Semantics

Objects in real-time Creol are given explicit scheduling policies. This is reflected in
the object tuple

� o, p, a, q �

such that p defines the scheduling policy. The function schedule now takes also a
scheduling policy as parameter. At the end of this section, we define two example
scheduling policies FCFS and EDF. Furthermore, tasks in Real-Time Creol have a
special local variable deadline that holds the remaining deadline of the task.

The rewrite rules of the Real-Time Creol semantics are given in Figure 2.5. The
first rule ensures that a duration statement may terminate only if its best case exe-
cution time has been reached. In order to facilitate the conformance testing discussed
in Chapter 6, we define a global clock clock(t) in the configurations (where t is of
sort Time) to time-stamp observable events. These observables are the invocation and
return of method calls. Rule async-call emits a message to the callee [[e]]none(a◦l) with
method m, actual parameters [[e]]none(a◦l) including the deadline, a fresh future identifier
n, which will be bound to the task’s so-called destiny variable [13], and, finally, a time
stamp t. In the (method) activation rule, the function task transforms such a message
into a task which is placed in the task queue of the callee by means of the scheduling
function schedule. The function task creates a map which assigns the values of the
actual parameters to the formal parameters (which includes the deadline variable) and
which assigns the future identity to the destiny variable. The statement of the created

16 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

crl [duration] : � o, {l | duration(b, w); s} ◦ q � −→ � o, {l | s} ◦ q � if b ≤ 0 .

crl [async-call] : � o, a, {l | x:=e!m(e);s} ◦ q � clock(t)

−→ � o, a, {l[x �→ n] | s} ◦ q � m(t, [[e]]none
a◦l

, [[e]]none
a◦l

, n) n if fresh(n) .

crl [activation] : � o, p, {l | s} ◦ q � m(t, o, v̄)

−→ � o, p, {l | s} ◦ schedule(task(m(o, v̄)),p,q) � .

crl [return] : � o, a, {l | return(e);s} ◦ q � n clock(t)

−→ � o, a, {l | s} ◦ q � clock(t) �n,[[e]]none
(a◦l)

,t � if n = l(destiny) .

crl [get] : � o, a, {l | x := e.get;s} ◦ q � �n,v,t �

−→ � o, a, {l | x := v;s} ◦ q � �n,v,t � if [[e]]none
a◦l

= n .

crl [tick] : {C} −→ {δ(C)} in time t if t < mte(C) ∧ canAdvance(C) .

op canAdvance : Configuration → Bool .

eq canAdvance(C1 C2) = canAdvance(C1) ∧ canAdvance(C2) .

eq canAdvance(� o, p, a, {l | duration(b, w); s} ◦ q �) = w > 0 .

eq canAdvance(� o, p, a,{l | x := e.get; s} ◦ q � n) = true if n = [[x]]none

(a◦l)
.

eq canAdvance(C) = false [owise] .

op mte : Configuration → Time .

eq mte(C1 C2) = min(mte(C1), mte(C2)) .

eq mte(� o, p, a,{l | duration(b, w); s} ◦ q �) = w .

eq mte(C) = ∞ [owise] .

op δ1 : Task Time → Task .

eq δ1({l | s}, t) = {l[deadline �→ l(deadline)− t]|s} .

op δ2 : TaskQueue Time → TaskQueue .

eq δ2({l|s} ◦ q, t) = δ1({l|s}, t) ◦ δ2(q, t) .

eq δ2(�, t) = �

op δ3 : Task Time → Task .

eq δ3({l|duration(b, w); s}, t) = {l[deadline �→ l(deadline)− t] | duration(b− t, w − t); s}.

eq δ3({l|s}, t) = {l[deadline �→ l(deadline)− t]|s} [owise] .

op δ : Configuration Time → Configuration .

eq δ(C1 C2, t) = δ(C1,t) δ(C2,t) .

eq δ(clock(t�),t) = clock(t� + t) .

eq δ(� o, p, a, {l|s} ◦ q �,t) = � o, a, δ3({l|s}) ◦ δ2(q) � .

eq δ(C, t) = C [owise] .

Figure 2.5: The semantics of Real-Time Creol in Real-Time Maude

2.2. Real-Time in Creol 17

op EDF : → Policy .

op FCFS : → Policy .

op schedule : Task Policy TaskQueue → TaskQueue .

eq schedule(t, EDF, q) = scheduleEDF(t,q) .

eq schedule(t, FCFS, q) = scheduleFCFS(t,q) .

op scheduleEDF : Task TaskQueue → TaskQueue .

eq scheduleEDF({l|s}, {l�|s�} ◦ q) =

if l(deadline) < l�(deadline) then {l|s} ◦ {l�|s�} ◦ q

else {l�|s�} ◦ scheduleEDF({l|s}, q) .

eq scheduleEDF({l|s}, �) = {l|s} .

eq scheduleFCFS : Task TaskQueue → TaskQueue .

eq scheduleFCFS({l|s}, q) = q ◦ {l|s} .

Figure 2.6: FCFS and EDF scheduling policies for real time Creol

task consist of the body of the method. Rule return adds the return value from a
method call to the future identified by the task’s destiny variable and time stamps the
future at this time. Rule get describes how the get operation obtains the returned
value.

The global advance of time is captured by the rule tick. This rule applies to global
configurations in which all active statements are duration statements which have not
reached their worst execution time or blocking get statements. These conditions are
captured by the predicate canAdvance in Figure 2.5. When the tick rule is applicable,
time may advance by any value t below the limit determined by the auxiliary maximum
time elapse [38] function mte, which finds the lowest remaining worst case execution
time for any active task in any object in the configuration. Note that the blocking
get operation allows time to pass arbitrarily while waiting for a return.

When time advances, the function δ, besides advancing the global clock, deter-
mines the effect of advancing time on the objects in the configuration, using the
auxiliary functions δi, for i = 1, 2, 3, defined in Figure 2.5, to update the tasks. The
function δ1 decreases the deadline of a task. The function δ2 applies δ1 to all queued
tasks; δ2 has no effect on an empty queue �. The function δ3 additionally decreases
the current best and worst case execution times of the active duration statements.

Specifying Scheduling Strategies

At the highest level of abstraction, no scheduling strategy is specified as in standard
Creol. This amounts to nondeterministic selection of methods from a bag of suspended
processes. If a property is proved to hold in this setting, it will hold for any scheduling
strategy. In real-time setting, however, this can easily lead to non-schedulability.

18 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

Real-time systems usually need special-purpose designed strategies in order to be
schedulable: usually the task with the shortest deadline or another one needed by
this task must be scheduled and executed first.

In real-time Creol, a scheduling strategy should be defined in the function schedule.
Figure 2.6 gives the definition of two scheduling policies as example: First Come First
Served (FCFS) and Earliest Deadline First (EDF). Since always the first task in the
queue will be executed, scheduling amounts to inserting new tasks in the right place in
the queue. An FCFS scheduler enqueues the tasks in their order of arrival regardless
of any priorities. An EDF scheduler uses the remaining deadline of each task as its
priority; the task that has a smaller remaining deadline has a higher priority. Recall
that every task (i.e., method invocation) has a local variable called deadline which is
updated dynamically to reflect the remaining deadline of the task at any time. This
is an example of dynamic priority scheduling.

Other strategies can be defined in a similar way. One can implement a fixed
priority scheduler following the same approach as in EDF, but using a fixed priority
table for task types. Fixed priorities may be assigned to task invocations rather than
task types. Resource-aware Creol models may need extra functions to handle issues
like priority inversion and inheritance. These problems are not addressed in this
thesis but flexible ways to specify rich scheduling policies at a high level could be an
interesting trend of future research.

2.3 Case Studies

2.3.1 Coordinator

The coordinator class, in Figure 2.7 is taken from [27] and is concretized for three-way
synchronization (while abstracting data away). The Coordinator class implements three
interfaces, each with one method, e.g., with Any op m1 that defines method m1 which
can be called from objects of any type. The method init in an object is immediately
executed upon object creation. The method run specifies active behavior of the object;
it will have to compete with other tasks in the queue after init has finished.

Execution of the method run begins with a delay of 2 to 3 time units; this delay
represents some computation that is abstracted away. The first await statement in
this method would initially block because the variables s1, s2 and s3 are initially
false. This line actually waits until the three parties of synchronization are ready.
These variables are set in methods m1, m2 and m3, respectively. We look at m1; the
other two methods are similar.

The first time m1 is called it passes the first await statement because of the initial
values of the variables sync and s1. After 1 time unit, it sets s1 to true to announce
the readiness of this party. It will then wait until synchronization takes place. It must
reset s1 to allow the next round of synchronization, because the run method waits
until all parties have finished their first round.

The main synchronized task is modeled in the method body which is called syn-
chronously from the run method; this is modeled using the blocking get statement

2.3. Case Studies 19

1 interface C1 begin with Any op m1 end

2 interface C2 begin with Any op m2 end

3 interface C3 begin with Any op m3 end

4 class Coordinator implements C1 , C2 , C3 begin

5 var s1 , s2 , s3 , sync : bool

6 op i n i t ==

7 s1 := f a l s e ;

8 s2 := f a l s e ;

9 s3 := f a l s e ;

10 sync := true ;

11 duration (2 , 4)

12 op body ==

13 duration (2 , 5)

14 op run ==

15 duration (1 , 2) ;

16 await (s1 /\ s2 /\ s3) ;

17 duration (1 , 1) ;

18 b ! body (1 0) ; // fo rce sync c a l l wi th dead l ine 10

19 b . get ;

20 sync := f a l s e ;

21 duration (1 , 2) ;

22 await (~ s1 /\ ~s2 /\ ~s3) ;

23 duration (1 , 1) ;

24 sync := true ;

25 ! run (50) // dead l ine = 50

26 with Any op m1 ==

27 await (sync /\ ~s1) ;

28 duration (1 , 1) ;

29 s1 := true ;

30 await ~sync ;

31 duration (1 , 1) ;

32 s1 := f a l s e

33 with Any op m2 == . . . l i k e m1 . . .

34 with Any op m3 == . . . l i k e m1 . . .

35 end

Figure 2.7: A real-time 3-way coordinator in Creol.

20 Chapter 2. Distributed Concurrent Objects in Real-Time Creol

on the local label b. This task is again modeled simply as a delay which represents
some computation that is abstracted away.

In this example, every communicated message is considered to be visible and
therefore a delay has been specified between every two method calls. Furthermore,
there is a delay between the processor release points. For schedulability analysis of this
model, we will shows in Chapter 6 how to generate timed automata automatically
from this Creol code. These automata models can then be used for schedulability
analysis using Uppaal as explained in the following chapters.

2.3.2 Thread-Pools

Figure 2.8 shows a Creol model of a thread pool. The model defines a Thread class and
the ResourcePool class. The task list is modeled implicitly in terms of the message
queue of an instance of the ResourcePool class. The variable size represents the
number of available threads, i.e., instances of the Thread class. The variable pool

is used to hold a reference to those threads that are currently not executing a task.
This class uses a predefined data type Set which is available in Creol. We make use
of the functions add, remove and choose on variables of type Set that provide the basic
operations on a set. The choose function nondeterministically chooses an element from
the set without removing it.

Tasks are modeled in terms of the method start inside the Thread class. For
our analysis the functional differences between tasks is irrelevant, so the method is
specified in terms of its duration only. A task ends by a call to the method finish

of the ResourcePool object which adds the executing thread to the pool of available
threads. Therefore, this thread can be selected again to execute another task.

Tasks are generated (by the environment) with (asynchronous) calls of the invoke
method of the ResourcePool object. In case there are no available threads, the
execution of the invoke method suspends by the execution of the await statement
which releases control (so that a call of the finish method can be executed). When
multiple tasks are pending and a thread becomes available, the scheduling strategy of
the ResourcePool object determines which task should be executed next when the
current task has been completed.

In this model, not all method calls are relevant for schedulability analysis. The
only part that takes some time is the execution of the task itself. For schedulability
analysis, we will consider the whole model as one entity to be analyzed. In Chapter 3,
we will provide automata models for this case study that can be used for schedulability
analysis. We will show in Chapter 6 a method to check the conformance of this Creol
code to these automata models.

2.3. Case Studies 21

1 class Thread (myPool : ResourcePool) implements IThread

2 begin

3 op run ==

4 ! myPool . f i n i s h ()

5 with ResourcePool op s t a r t ==

6 sk ip ;

7 duration (5 , 6) ;

8 ! myPool . f i n i s h ()

9 end

11 class ResourcePool (s i z e : Int) implements IResourcePool

12 begin

13 var pool : Set [Thread] ;

14 op i n i t ==

15 var thread : Thread ;

16 pool := {} ;

17 while (s i z e >0) do

18 thread := new Thread (this) ;

19 s i z e := s i z e −1

20 end

21 with Any op invoke ==

22 var thread Thread ;

23 await ¬ isempty (pool) ;

24 thread := choose (pool) ;

25 pool := remove (pool , thread) ;

26 ! thread . s t a r t (deadline)

27 with Thread op f i n i s h ==

28 pool := add (pool , cal ler)

29 end

Figure 2.8: The thread pool

Chapter 3

Automata-Based Actor Framework

Actor model was originally introduced by Hewitt [20] as an agent-based language, and
later developed by Agha [1] into a concurrent object-based model. Actors are units
of distribution and concurrency. Furthermore, actors have encapsulated states and
behavior; they have local variables, but no shared variables. They communicate via
asynchronous (non-blocking) message passing, and arrival of messages is guaranteed.

We use the actor model as the pure asynchronous setting of concurrent objects.
In this Chapter, we give an automata-based actor framework for modeling real-time
systems with an operational interpretation of the actor model, as in Rebeca [43]. A
system is composed of objects; templates of objects are defined in classes. When no
ambiguity arises we may use the term actor for a class or an object. A class defines
a method for each message it can handle. A method is a sequential code which may
send messages. There is at least a dedicated method in each class, which is responsible
for initialization and start-up; thus modeling its active behavior. A class can have
known actors that serve as place holders for the objects that can communicate with
instances of that class.

The goal of our framework is checking schedulability as will be explained later in
Chapter 4; as shown in Chapter 4, we can put a finite bound on the queue lengths
and obtain schedulability results that hold for any queue length. As schedulability
requirement, all method calls are given a deadline; if not, the called method inherits
the deadline of its caller method. Since we deal with models and not programs,
the methods (or individual statements) should carry specifications of their (best- and
worst-case) execution times. For this purpose, we make use of guards and invariants in
timed automata. Since existing timed automata analysis tools cannot create automata
instances dynamically, we do not support dynamic actor creation. Last but bot
least, actors can specify their own scheduling strategies using timed automata; a
good schedule brings asynchronous actors to concurrence.

In this chapter, we describe how to systematically use timed automata and Up-

paal for modeling systems of actors. First, we give an introduction to timed automata
in general. Then, we demonstrate our actor framework with the help of a running
example: a mutual exclusion handler called MutEx. Section 3.2.1 provides the formal

23

24 Chapter 3. Automata-Based Actor Framework

actor model. We will conclude this chapter by applying and extending the framework
to modeling of a thread-pool and a peer-to-peer system broker.

3.1 Background: Timed Automata

In this section, we define timed automata syntax and semantics and very briefly
explain how timed automata can be used in general for modeling real-time systems.
Since we will use Uppaal [31] for the analysis, these definitions are based on the
syntax and semantics used in Uppaal. Uppaal is a model-checker based on the
theory of timed automata [3, 7] and its modeling language offers additional features
such as bounded integer variables and urgency.

In short, timed automata are automata enriched with clocks. Timed automata
provide a dense-time model where a clock variable evaluates to a real number. If there
are multiple clocks in a model, they all progress at the same rate. Updating a clock
value is done by resetting it to zero. This action happens instantaneously without
stopping the clock. The current value of a clock can be checked using conjunctions
over conditions of the form c ∼ n or c− c� ∼ n, called clock constraints, where c and
c� are clocks, n is an integer and ∼∈ {<,≤,=,≥, >}.

Definition 3.1.1 (Timed Automata). Suppose B(C) is the set of all clock
constraints on the set of clocks C. A timed automaton over actions Σ and clocks C
is a tuple �L, l0,−→, I� representing

• a finite set of locations L, including an initial location l0;

• the set of edges −→⊆ L× B(C)× Σ× 2C × L; and,

• a function I : L �→ B(C) assigning an invariant to each location.

�

An edge may be written as l
a

−−−→
g , r

l�. It means that action ‘a’ may change the

location l to l� by resetting the clocks in r, if clock constraints in g (as well as the
invariant of l�) hold. In addition, a location can be marked urgent which is equivalent
to resetting a fresh clock x in all of its incoming edges and adding an invariant x ≤ 0
to the location; intuitively, it means that the automaton cannot spend any time in
that location [31].

A timed automaton is called deterministic if and only if for each a ∈ Σ, if there
are two edges from l labeled by the same action l

a
−−−→
g , r

l� and l
a

−−−−→
g� , r�

l�� then the

guards g and g� are exclusive (i.e. g ∧ g� is unsatisfiable).

Definition 3.1.2 (Timed Automata Semantics). A timed automaton de-
fines an infinite labeled transition system whose states are pairs (l, u) where l ∈ L and
u : C → R+ is a clock assignment. We denote by 0 the assignment mapping every
clock in C to 0. The initial state is (l0,0). There are two types of transitions:

3.1. Background: Timed Automata 25

• delay transitions (l, u)
d
→ (l, u�) where d ∈ R+, if u� is obtained by delaying

every clock for d time units, written as u� = u + d, and for each 0 ≤ d� ≤ d,
u+ d� satisfies the invariant of location l; and,

• action transitions (l, u)
a
→ (l�, u�) where a ∈ Σ, if there exists l

a
−−−→
g , r

l� such

that u satisfies the guard g, u� is obtained by resetting all clocks in r and leaving
the others unchanged and u� satisfies the invariant of l�.

�

In the following, we assume that the set of actions Σ is partitioned into two
disjoints sets: a set ΣI of input actions a? and a set ΣO of output actions a!. A non-
observable internal actions τ is also assumed. Let Στ = Σ∪ {τ}. A timed automaton
with inputs and outputs is a timed automaton over Στ .

Timed traces A timed sequence σ ∈ (Στ ∪ R+)
∗ is a sequence of timed actions in

the form of σ = t1a1t2a2 . . . antn+1 such that for all i, 1 ≤ i ≤ n, ti ≤ ti+1. Given a
timed sequence σ, πobs(σ) denotes the projection of σ on Σ, intuitively deleting tiτ
occurrences. The sequence πobs(σ) is called the observable timed sequence associated
to σ.

A run of a timed automaton A from initial state (l0,0) over a timed sequence
σ = t1a1t2a2 . . . antn+1 is a sequence of transitions:

(l0,0)
d1→ (l0, u

�
0)

a1→ (l1, u1)
d2→ · · ·

an→ (ln, un)
dn+1

→ (ln, u
�
n)

where d1 = t1 and for all i, 1 < i ≤ n+ 1, ti = ti−1 + di. The set Traces(A) of timed
traces of A is the set of timed sequences σ for which there exists a run of A over σ. The
set Tracesobs(A) of observable timed traces of A is the set {πobs(σ) | σ ∈ Traces(A)}.

3.1.1 Networks of Timed Automata

A system may be described as a collection of timed automata with inputs and outputs
Ai (1 ≤ i ≤ n) communicating with each other. The behavior of the system is then
defined as the parallel composition of those automata A1 � · · · � An. Semantically,
the system can delay if all automata can delay and can perform an action if one of
the automata can perform an internal action or if two automata can synchronize on
complementary actions (inputs and outputs are complementary).

Definition 3.1.3 (Semantics of a Network of Timed Automata).
Let the set of Ai = �Li, l

0
i ,−→i, Ii� form a network of n timed automata with the clocks

C and actions Στ . Let l̄0 = (l01, . . . , l
0
n) be the initial location vector. The semantics

is defined as a transition system whose states are (l1, . . . , ln, u) where li ∈ Li and
u : C → R+. The initial state is s0 = (l̄0,0). The transition relation is defined by
three types of transitions:

26 Chapter 3. Automata-Based Actor Framework

(a) Lamp (b) User

Figure 3.1: The simple lamp example [6]

• delay transitions (l̄, u)
d
→ (l̄, u�) where d ∈ R+, if u� is obtained by delaying

every clock for d time units and for each 0 ≤ d� ≤ d, u� satisfies the invariant
of every location in l̄;

• local transitions (l̄, u) → (l̄[l�i/li], u
�) if there exists li

τ
−−−→
g , r

l�i such that u satisfies

the guard g, u� is obtained by resetting all clocks in r and leaving the others
unchanged and u� satisfies the invariants of l̄[l�i/li]; and,

• synchronization transitions (l̄, u) → (l̄[l�j/lj , l
�
i/li], u

�) if there exists li
a?

−−−−→
gi , ri

l�i and lj
a!

−−−−→
gj , rj

l�j such that u satisfies the guard gi ∧ gj, u� is obtained by

resetting all clocks in ri ∪ rj and leaving the others unchanged and u� satisfies
the invariants of l̄[l�j/lj , l

�
i/li].

�

Marking a location urgent in an automaton indicates that the automaton cannot
spend any time in that location. In a network of timed automata, the enabled tran-
sitions from an urgent location may be interleaved with the enabled transitions from
other automata (while time is frozen). Like urgent locations, committed locations
freeze time; furthermore, if any process is in a committed location, the next step
must involve an edge from one of the committed locations.

Example 3.1.4. [6] Figure 3.1(a) shows a timed automaton modeling a simple
lamp. The lamp has three locations: off, low, and bright. If the user presses a
button, i.e., synchronizes with press?, then the lamp is turned on. If the user presses
the button again, the lamp is turned off. However, if the user is fast and rapidly
presses the button twice, the lamp is turned on and becomes bright. The user model
is shown in Figure 3.1(b). The user can press the button randomly at any time or
even not press the button at all. The clock y of the lamp is used to detect if the user
was fast (y < 5) or slow (y ≥ 5).

3.2. Modeling Actors in Timed Automata 27

3.1.2 Timed Automata in Uppaal

As accepted in Uppaal, we allow defining variables of type boolean and bounded
integers for each automaton. Variables can appear in guards and updates. Further-
more, clocks can be reset to any integer in Uppaal. The semantics of timed automata
changes such that each state will include the current values of the variables as well,
i.e. (l, u, v) with v a variable assignment. An action transition (l, u, v)

a
→ (l�, u�, v�)

additionally requires v and v� to be considered in the corresponding guard and up-
date. Theoretically [18], timed automata with variables are hybrid automata in which
variables are like clocks that never progress in time.

In a network of timed automata, variables can be defined locally for one automa-
ton, globally (shared between all automata), or as parameters to the automata. In
Uppaal, timed automata templates are automata defined with a set of parameters
which can be of any type, e.g., integer or channel. In a system composition, these
templates are instantiated with concrete values for their parameters to form a network
of timed automata.

Definition 3.1.5 (Uppaal Model). An Uppaal model consists of: (1) a set
of timed automata templates (TAT); (2) global declarations; and, (3) system declara-
tions. �

An automata template in an Uppaal model consists of a name, a set of arguments,
local declarations and a timed automaton definition (as above); formally, TAT =
(tName,Args , local ,Auto). Global and local declarations contain the definition of
clocks and variables. The network of timed automata to be analyzed is defined in the
system declarations by instantiating the timed automata templates.

3.2 Modeling Actors in Timed Automata1

The first step in modeling an actor is to specify in a timed automaton its behavioral
interface; when it is clear from the context we may call it simply an interface. The
modeler specifies the correct way of using an actor in its interface. On one hand,
an interface characterizes the expected pattern of incoming messages; thus, it can be
seen as the highest-level abstraction of all environments in which the actor instances
can be used. On the other hand, an interface includes the object outputs; thus, it
models the input/output behavior of the object while abstracting from the queue,
local variables and method implementations.

The actor definition itself consists of its methods and local variables. For every
actor, we model each method with a timed automata template; actor variables are
shared between these automata. All automata templates for methods and behavioral
interfaces are parameterized in the identity of the actor itself, and the identifiers of the
actors communicating with it (namely, its known actors). For instance, a MutEx may

1This section is an improvement and extension of the results published in [24].

28 Chapter 3. Automata-Based Actor Framework

communicate with the two objects on its left and right which try to enter a critical
section. In Section 3.3, we will show how to model these automata in Uppaal.

Figure 3.2 shows the specification of the behavioral interface automaton for MutEx.
It is parameterized in self, Left and Right; self is used to hold the actor identity,
while Left and Right represent its known actors. An action Left.reqL(req_d)?

means a message reqL is received from the actor representing the Left known actor,
and a deadline req_d is assigned to it. The interface of MutEx includes all possibilities
of receiving two requests, however, it disallows granting both requests at the same
time. Furthermore, if there is a pending request, it puts a time bound of MAX_REL

on the arrival of a release; otherwise, the deadline of the pending request cannot be
guaranteed.

Figure 3.3 depicts the automata for the methods of the MutEx, called method
automata. We abstract from computation, which is represented only by a time delay.
However, some variables (e.g., ‘taken’ in MutEx) are needed for correct behavior of the
actor. A MutEx is initially not taken (the ‘taken’ variable is set to false in initial

method). The object on the left (specified as Left) may ask for the MutEx by sending
reqL. In response, the MutEx sends a permitL back, if the MutEx is not already taken.
Similarly, the message reqR may be sent by Right. If the MutEx is taken, the request
is put back in queue by a self call. A release message can be sent by either object on
the left or right.

The interface should include the expected timing information for the arrival of
messages. Specifically, a time interval between messages is necessary to have a schedu-
lable actor. The given MutEx interface keeps track of the time since every request,
and expects that the corresponding release arrives no sooner than MIN_REL time
units. The interface assumes that the first request is always granted (because MutEx

is not taken initially). If the next request arrives before a release, it will be waiting
for the MutEx to be released. Whenever a request is pending, a release must arrive
before MAX_REL time units, otherwise the pending request will miss the deadline.
By iterating the schedulability analysis (explained in Chapter 4) this interval can be
refined so that to indicate the minimum requirement.

The timing constraints in method automata show the amount of computation
needed for each step. The invariants on the locations of method automata together
with the guards on edges, require that the send operations succeed; otherwise, time
cannot progress. This is necessary in order to model the asynchronous nature of the
message passing. In other words, outputs are urgent.

Send actions in methods and receive actions in interface automata should be as-
signed a deadline. Self calls inherit the remaining deadline of the parent task (called
delegation), unless an explicit deadline is assigned (called invocation). Delegation
may be used when a task is split over two or more methods.

Another common scenario for delegation happens when a task (say handling a
‘request’ in a MutEx) cannot be accomplished immediately (say because the MutEx is
already ‘taken’). Therefore, it needs to make a self call, which must terminate within
the original deadline. In other words, the original deadline of a request requires a
bound on the time until the request is granted (i.e., a permit is sent back). Variables

3.2. Modeling Actors in Timed Automata 29

x1 < MAX_REL

x1 < MAX_REL

Right.reqR (req_d) ?

Left.reqL (req_d) ?

Right.release (rel_d) ?

Right.permitR !
x1=0

Left.release (rel_d) ?

Left.permitL !
x1=0

Left.release (rel_d) ?

Left.permitL !
x1=0

Right.release (rel_d) ?

Right.permitR !
x1=0

Right.reqR (req_d) ?
Left.reqL (req_d) ?

Left.reqL (req_d) ?
Right.reqR (req_d) ?

Figure 3.2: A possible interface specification for MutEx

initial
x <= 1 x == 1

taken = false

release
x <= 1 x == 1

taken = false

reqL

x <= 3x <= 2

x <= 2

x <= 1

x == 3
Left.permitL (15) !

x ==2

self.reqL !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

reqR

x <= 3x <= 2

x <= 2

x <= 1

x == 3
Right.permitR (15) !

x ==2

self.reqR !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

Figure 3.3: Specification of a mutual exclusion handler (MutEx)

30 Chapter 3. Automata-Based Actor Framework

(‘taken’ in this example) are used to keep the current state of the actor and thus to
bound such delegation loops. In modeling, we cannot abstract from such variables,
because it would let the loops in delegation to continue infinitely. This results in
nonschedulability, because the (inherited) deadline becomes smaller every time.

3.2.1 The Formal Timed Actor Model

In this section, we present our formal model of actors. Each actor implements an
interface that has a set of method names, which represent the methods the actor
provides. Each of the methods in the actor is represented by a timed automaton. An
actor also needs a queue for storing incoming messages and a scheduling strategy for
determining the order of executing messages. Upon receiving a message, the corre-
sponding method, representing the task to be executed, is inserted into the process
queue. Once the currently executing automaton reaches a final state, the next task
in the queue is started. Furthermore, we show in Chapter 4 that we may put a finite
bound on the queue and still derive schedulability results that hold for any queue
length.

We assume a finite global set of method names M (corresponding to the messages
that can be sent and received).

Definition 3.2.1 (Behavioral Interface). A behavioral interface B with a
set of method names MB ⊆ M is a deterministic timed automaton over alphabet ΣB

such that:

• Σ
B is partitioned into two sets

– output actions: Σ
B
O = {m!|m ∈ M ∧m �∈ MB}

– input actions: Σ
B
I = {m(d)?|m ∈ MB ∧ d ∈ N}

• the edges labeled with output actions have true as their guard

�

The behavioral interface can be viewed as a high level specification of an object.
It specifies the (acceptable) observable behavior of the object. An input action m(d)?
represents a message m sent to the object by the environment with the deadline d. A
correct implementation of the object should be able to finish an incoming call m(d)?
before d time units. Output actions are the methods called by this object and should
be handled by (other objects in) the environment. The object may send out a message
only if allowed in the interface.

A behavioral interface B can be implemented by providing implementation for the
methods in MB . Every method is represented by a timed automaton and may in turn
send messages.

Definition 3.2.2 (Class). A class R implementing the behavioral interface B
is a set {(m1, A1), . . . , (mn, An)} where:

3.2. Modeling Actors in Timed Automata 31

• MR = {m1, . . . ,mn} ⊆ M is a set of method names such that MB ⊆ MR; and,

• for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing method mi with the
alphabet Σi = {m!|m ∈ MR} ∪ {m(d)! | m ∈ M ∧ d ∈ N}

�

Method automata only send messages while computations are abstracted into time
delays. Receiving messages (and buffering them) is handled by a scheduler defined
next. Sending a message m ∈ MR is called a self call. Self calls may or may not
be assigned an explicit deadline. The self calls that are not statically assigned a
deadline are called delegation. Delegation implies that the internal task (triggered by
the self call) is in fact the continuation of the parent task; therefore, the delegated
task inherits the (remaining) deadline of the task that triggers it. A scheduler needs
to handle the inheritance of the deadlines.

The condition MB ⊆ MR requires that a class should at least provide method
implementation for handling all messages it may receive according to the interface it
implements. It can add other methods which then can only be called as self calls.
Checking whether it will produce correct output behavior, and if it can finish all
methods in designated deadlines is explained in Chapter 4.

Scheduler An actor needs a queue for storing incoming messages before they are
scheduled to be executed. In this section, we give the formal definition of a queue
and scheduling strategies. Our scheduler model is inspired by and extends the ideas
of task automata [16]. Tasks, being specified using timed automata, may perform self
calls, which need to be handled by the scheduler, whereas in task automata tasks are
just modeled with their execution time. We also need to support inheriting deadlines
for delegation. We assume that the first task in the queue is the currently running
task.

For each task, a queue needs to store the method name and its deadline. Fur-
thermore, it needs a clock to keep track of the time since the task is triggered. This
enables us to check if a deadline is missed. In theory a queue can be unbounded.
We show in Chapter 4 that we may put a finite bound on the queue and still derive
schedulability results that hold for any queue length.

Definition 3.2.3 (Unbounded Queue). An unbounded queue q is a list of
tasks together with an infinite set of clocks Cq. Each task is written as m(d, c) where
m is a method name, d ∈ N is its deadline and c ∈ Cq keeps track of how long the
task has been in the queue. The remaining deadline of m is d− c. �

To have the complete behavior of an object defined, a scheduling strategy (e.g.,
Earliest Deadline First) should be defined in terms of a scheduler function. A scheduler
is used to insert tasks into the queue; it also assigns an unused queue clock to the new
task to keep track of the time remaining until its deadline. Typically to determine
where in the queue to insert the new task, a scheduler could dynamically examine the

32 Chapter 3. Automata-Based Actor Framework

remaining time of each task in the queue. However, since the scheduler is to be defined
statically, dynamic clock values are not available. Therefore, the scheduler function
returns the set of all possibilities for putting the new task in the queue depending on
different possibilities of clock values.

Definition 3.2.4 (Scheduler Function). Given a queue q with clocks Cq

and a method name m with deadline d, a scheduler function ‘sched(q,m(d))’ returns
a set of triples {(G, c, q�)}, where

• G is a guard on clocks in Cq (possibly based on d);

• c ∈ Cq is a clock not used (i.e., not assigned to any tasks) in q; and,

• q� is a queue with the clocks Cq and represents the queue q after inserting m(d, c)
in a particular position as implied by the guard G.

�

We define an overloading of the scheduler function as sched(q,m(d, c)) that inserts
a task into the queue using a given clock c. By reusing the deadline and the clock
already assigned to a task in the queue, we can model inheriting the deadline. In the
case of delegation, the clock assigned to the currently running task is reused.

A scheduler function is preemptive if it can place the new task in the first position.
Recall that the first task in the queue is the task that is currently running. In this
actor framework, we only consider non-preemptive schedulers. Section 4.2.2 briefly
discusses the decidability of preemptive scheduling.

Example 3.2.5. Consider a queue q = [m1(d1, c1), . . . ,mk(dk, ck)] with the set of
clocks Cq. A ‘first come first served’ scheduler would always put the new job at the
back of the queue. This scheduler would not impose any constraints:

sched_FCFS(q,m(d)) =
�

(true, c, [m1(d1, c1), . . . ,mk(dk, ck),m(d, c)])
�

where c ∈ Cq is not assigned to any task in q.
A non-preemptive ‘earliest deadline first’ scheduler would insert tasks into the

queue based on the remaining deadlines of the existing queue members:

sched_EDF (q,m(d)) =
�

(d < d2 − c2, c, [m1(d1, c1),m(d, c),m2(d2, c2), . . . ,mk(dk, ck)]),

(d2 − c2 ≤ d < d3 − c3, c, [m1(d1, c1),m2(d2, c2),m(d, c), . . . ,mk(dk, ck)]),

. . .

(dk−1−ck−1 ≤ d < dk−ck, c, [m1(d1, c1),m2(d2, c2), . . . ,m(d, c),mk(dk, ck)]),

(dk − ck ≤ d, c, [m1(d1, c1),m2(d2, c2), . . . ,mk(dk, ck),m(d, c)])
�

where c ∈ Cq is not assigned to any task in q. The scheduler function cannot reorder
the queue, so here we assume as an invariant that the tasks already in the queue are
in the right order.

In our Uppaal implementation, we will use a timed automaton to act as both the
queue and the scheduler function (cf. Section 3.3).

3.2. Modeling Actors in Timed Automata 33

3.2.2 Timed Actor Model Semantics

An object is an instance of a class together with a specific scheduler and a queue.
In a system, a number of objects run concurrently, each maintaining a queue of the
tasks it has to perform. Without loss of generality, we assume that the sets of method
names for different objects are disjoint.

Definition 3.2.6 (System). Consider a set of objects O1, ..., On as instances
of the classes R1, ..., Rn, respectively. Each object Oi has its own queue and sched-
uler function schedi. Assume that each class Ri implements the behavioral inter-
face Bi. This set of objects is a system if for every class Rj, we have ActOj ⊆
�

MRj
∪
�

1≤i≤n MBi

�

where ActOj is the set of calls made by methods of Rj. �

The semantics of a system is defined by a timed automaton, called the system
automaton. In this automaton, we do not assume any upper bound on the queue size
and therefore the system automaton may become infinite state. In order to make it
finite state, however, we will show in Chapter 4 that we can put a finite bound on the
queue length and obtain schedulability results that hold for any queue length.

Definition 3.2.7 (System Automaton). The system automaton for a given
system, as defined in Definition 3.2.6, with method names MS =

�

1≤i≤n MRi
is a

timed automaton S = (LS , lS ,−→S , IS) over the alphabet ΣS = MS and the clocks
CS:

• The set of clocks CS is the union of all sets of clocks for the method automata
plus the queue clocks of each object.

• The locations of the system are the product of each of the locations of objects
together with a queue, i.e., { (l1, q1), (l2, q2), . . . , (ln, qn) }.

• The initial location lS is:

{ (start(A1), [m1(d1, c1)]), . . . , (start(An), [mn(dn, cn)]) }

where mi is the ‘initial’ method of the class Ri, Ai its timed automaton, di is
the deadline for this initial method and ci is one of the object’s queue clocks.

• The edges −→S are defined with the rules in Figure 3.4. We write
m

−−−→
g ; r

−
S

for

an edge of S with action m, guard g and update r.

• The invariant of a location is defined as the conjunction of the location invari-
ants of all currently executing object locations.

• A location {(l, q), . . . } is marked urgent if l is final and q has more than one
element.

�

34 Chapter 3. Automata-Based Actor Framework

{(l, q), . . . }
m

−−−−−−−−−−→
g∧G ; X,ci =0

−
S

{(l�, q�), . . . } [invocation]

if (l
m(d)!
−−−−→
g ; X

l) & (G, ci, q
�) ∈ sched(q,m(d)) & m ∈ Ml

{(l, [m1(d, c), . . .]), . . . }
m

−−−−−−→
g∧G ; X

−
S

{(l�, q�), . . . } [delegation]

if (l
m!

−−−−→
g ; X

l�) & (G, c, q�) ∈ sched([m1(d, c), . . .],m(d, c)) & m ∈ Ml

{(l1, q1), (l2, q2) . . . }
m(d)

−−−−−−−−−−→
g∧G ; X,ci =0

−
S

{(l�1, q1), (l2, q
�

2), . . . } [remote invocation]

if (l1
m(d)!
−−−−→
g ; X

l�1) & (G, ci, q
�

2) ∈ sched(q2,m(d)) & m ∈ Ml2

{(l, [m1(d�, c�),m2(d, c) . . .]), . . . } −−−−→
Cl =0

−
S
{(l�, [m2(d, c) . . .]) . . . } [context switch]

if l is final & Cl = local_clocks(m2) & l� = start(m2)

{(l, q), . . . } −−−−→
g ; X

−
S

{(l�, q), . . . } if (l −−−−→
g ; X

l�) [internal]

Figure 3.4: Reductions for a System

In Figure 3.4, the following helper function and notations are used. Function
start(m) returns the initial location of the automaton for method m. Locations in
method automata with no outgoing transitions are called final. Furthermore, Ml is
the set of methods provided by the object that is in location l.

The first three rules in this figure take care of message passing including the
enqueuing of the message by the receiver. The first two rules handle self calls and
therefore the queue of the same object is used. In case of delegation, the clock of
the current task is reused and thus the deadline is inherited. A remote method
invocation results in an action with an observable deadline value. This deadline value
is comparable (i.e., should be greater than or equal) to its corresponding deadline
in the behavioral interface of the receiving object. Chapter 5 gives the details of
compatibility check with respect to behavioral interfaces.

Whenever the execution of the current task finishes, the context switch rule makes
sure the next method in the queue is executed, if there is any. When the last task
in the queue of an object finishes, no context-switch takes place until a new task is
added to the queue. If in a location {(l, q), . . . }, l is final and q has more than one
element, the location is marked urgent. This forces context switch to happen as soon
as it is possible.

Finally, if an object can do an invisible action, it also appears in the system
automaton as an invisible action.

3.3. Using Uppaal for Modeling 35

3.3 Using Uppaal for Modeling

In this section, we explain how to use Uppaal [31] to model and simulate systems
of actors. We model interfaces, methods implementations and schedulers (which in
turn include a queue) with timed automata. The actor behavior can be obtained by
making a network of these timed automata in Uppaal. The details are explained
with the help of the MutEx example. The automata for the interafce and methods of
MutEx are given in Figures 3.5 and 3.6, respectively. These automata are comparable
to the ones in Figures 3.2 and 3.3.

Communication We use two channels invoke and delegate for sending messages.
The channel invoke has three dimensions (parameters), the message name, the sender
and the receiver, e.g., invoke[release][self][Left]! replaces Left .release in the interface
of MutEx. Notice that in interfaces, incoming messages are modeled as outputs and
outgoing message are modeled as inputs; this is necessary for handling deadlines
explained next. In method automata, by setting both sender and receiver to self, one
can invoke a self call (when a deadline is to be given). The delegate channel is used
for delegation. The self call made using the delegate channel inherits the deadline of
the currently running task (it is taken care of by the scheduler automaton). Since a
delegation is used only for self calls, no sender is specified (it has only two parameters).
Figure 3.6 shows the interface and the method reqL of MutEx modeled in Uppaal (cf.
Figure 3.2).

Deadlines We take advantage of the fact that when two edges synchronize, Uppaal

performs the updates on the emitter (with ! sign) before the receiver (with ? sign).
Hence we can use a global variable deadline. The emitter sets the deadline value
into this variable which is read by the receiver. The receiver, however, cannot use
this deadline value in its guard, as guards are evaluated before updates. To improve
performance, we will define the deadline variable as meta. Meta veriables in Uppaal

are not stored in the state-space and are mainly used for passing a value when two
transitions are synchronizing on a channel.

3.3.1 Modeling the Scheduler

A scheduler function (Definition 3.2.4) can be implemented as a scheduler automaton.
This automaton also contains a queue as in Definition 4.2.3. Figure 3.7 shows the
general structure of a scheduler automaton. This general picture does not specify
any specific scheduling strategy. Unlike the Definition 3.2.4, the scheduler automata
applies the scheduling strategy at dispatch time instead of insertion time, but the
resulting behavior is the same. The reason is to enable using deadlines in the strategy.
As explained in the previous subsection, the deadline value cannot be used (in the
guard) on the same transition where a message is received.

36 Chapter 3. Automata-Based Actor Framework

x1 < MAX_REL

x1 < MAX_REL

invoke[reqR][self][Right]!
deadline=14

invoke[reqL][self][Left]!
deadline=14

invoke[release][self][Right]!
deadline=13

invoke[permitR][Right][self]?
x1=0

invoke[release][self][Left]!
deadline=13

invoke[permitL][Left][self]?
x1=0

invoke[release][self][Left]!
deadline=13

invoke[permitL][Left][self]?
x1=0

invoke[release][self][Right]!
deadline=13

invoke[permitR][Right][self]?
x1=0

invoke[reqR][self][Right]!
deadline=14

invoke[reqL][self][Left]!
deadline=14

invoke[reqL][self][Left]!
deadline=14invoke[reqR][self][Right]!

deadline=14

Figure 3.5: The behavioral interface for the MutEx object.

initial

x <= 1

finish[self] !

start[initial][self] ?
x = 0

x == 1
taken = false

release

x <= 1

finish [self] !

start[release][self] ?
x = 0

x == 1
taken = false

reqL

x <= 3x <= 2

x <= 2

x <= 1

start[reqL][self] ?
x = 0

finish[self] !

finish[self] !

x == 3
invoke[permitL][Left][self] !

deadline = XD

x == 2
delegate[reqL][self] !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

reqR

x <= 3x <= 2

x <= 2

x <= 1

start[reqR][self] ?
x = 0

finish[self] !

finish[self] !

x == 3
invoke[permitR][Right][self] !

deadline = XD

x ==2
delegate[reqR][self] !

x == 2
taken = true

x == 1 &&
taken == false

x == 1 &&
taken == true

Figure 3.6: Modeling method and interface automata in Uppaal

3.3. Using Uppaal for Modeling 37

Error

Runninginitialize()

tail == 1
finish[self]?

shift()
start[q[run]][self]!

i : int[0,MAX-1]
{guard on i as policy}
finish[self]?
run := i, shift()

msg : int[0,MSG]
delegate[msg][self]?
insertDelegate(msg)

i : int[0,MAX-1]
counter[i] > 0 &&
 x[i] > d[i]

msg : int[0,MSG],
sender : int [0,OBJ-1]

invoke[msg][self][sender]?
insertInvoke(msg, sender)

Figure 3.7: A general scheduler automaton

1 void i n i t i a l i z e (){

2 q [0] = op_init ;

3 d [0] = INIT_DEADLINE;

4 ca [0] = 0 ;

5 counter [0] = 0 ; // c l o c k x [0] i s ass i gned

6 t a i l = 1 ;

7 }

Figure 3.8: Initializing an object

Queue The triple m(d, x) for each task in the queue is modeled using the arrays
q, d and x, respectively. We assume a maximum length of MAX for the queue. We
will show in Chapter 4 that we can find such a maximum for queues of schedulable
objects. The array ca shows the clock assigned to each message (task), such that
‘d[ca[i]] − x[ca[i]] ’ represents the remaining deadline of q[i] at any time. counter[i]

holds the number of tasks using clock x[i]. A clock is free if its counter is zero. When
delegation is used, the counter becomes greater than one.

Initializaton The initialization of a queue takes place in the initialize funciton.
This transition is taken before any method in any actor is started, because its start
location is committed. The function shown in Figure 3.8 puts the initilization method
op_init in the queue and assign the first free clock to it.

Input-enabledness A scheduler for a class R should allow receiving any message
in MR at any time. In Figure 3.7, there is an edge (top-left in the picture) that
allows receiving a message on the invoke channel (from any sender). To allow any
message and sender, ‘select’ expressions are used. The expression msg : int [0,MSG]

nondeterministically selects a value between 0 and MSG for msg. This is equivalent to

38 Chapter 3. Automata-Based Actor Framework

1 void i n s e r tDe l e g a t e (i n t msg){

2 q [t a i l] = msg ;

3 ca [t a i l] = ca [run] ;

4 counter [ca [t a i l]] ++;

5 t a i l ++;

6 }

8 void i n s e r t I nvoke (i n t m, i n t snd){

9 i n t c , i ;

10 c = MAX;

11 f o r (i = 0 ; c == MAX; i++) {

12 i f (counter [i] [s] == 0) {

13 c = i ;

14 }

15 }

16 q [t a i l] = m;

17 ca [t a i l] = c ;

18 x [c] = 0 ;

19 d [c] = deadline ;

20 counter [c] = 1 ;

21 t a i l ++;

22 }

Figure 3.9: Inserting a message into the queue

adding a transition for each value of msg. Similarly, any sender (sender : int [0,OBJ−1])
can be selected. This message is put at the tail of the queue (q[tail] = msg), and a
free clock (counter[c] == 0) is assigned to it (ca[tail] = c), and the deadline value is
recorded (d[c] = deadline); this is handled in the function insertInvoke shown in
Figure 3.9. The synchronization between this transition and the method automata
corresponds to the invocation rules in Figure 3.4.

A similar transition accepts messages on the delegate channel (top-right in the
picture). In this case, the clock already assigned to the currently running task (parent
task) is assigned to the internal task (ca[tail] = ca[run]); this is handled in the function
insertDelegate shown in Figure 3.9. In a delegated task, no sender is specified (it
is always self). The variable run shows the index of the currently running task in the
queue (which is not necessarily the first task). This handles the rule delegation.

Scheduling Strategy When a message is added to an empty queue, it will be
immediately executed. When a method is finished (synchronizing on finish channel),
it is taken out of the queue (by shift () given in Figure 3.10). If it is not the last
in the queue, the next method to be executed should be chosen based on a specific

3.3. Using Uppaal for Modeling 39

1 void s h i f t (i n t a) {

2 counter [ca [a]] −−;

3 i f (counter [ca [a]] == 0) d [ca [a]] = MD;

4 t a i l −−;

5 while (a < t a i l && a < MAX−1) {

6 q [a] = q [a+1] ;

7 ca [a] = ca [a+1] ;

8 a++;

9 }

10 q [a] = 0 ;

11 ca [a] = 0 ;

12 }

Figure 3.10: Shifting the queue during context switch

scheduling strategy (by assigning the right value to run). For a concrete scheduler,
the guard and update of run should be well defined. If run is always assigned 0 during
context switch, the automaton serves as a First Come First Served (FCFS) scheduler.
An Earliest Deadline First (EDF) scheduler can be encoded using a guard like:

i < tail && i != run &&

forall (m : int[0,MAX-1])

(m == run) || (x[ca[i]] - x[ca[m]] >= d[ca[i]] - d[ca[m]])

and i will show the task with the smallest remaining deadline. Notice that x[a] −
x[m] ≥ d[a] − d[m] is equivalent to d[m] − x[m] ≥ d[a] − x[a]. The rest ensures that
an empty queue cell (i < tail) or the currently finished method (run) is not selected.

A fixed priority scheduler can be implemented in a much similar way to an EDF
scheduler explained above. As pointed out in Chapter 2, we do not deal with com-
plex issues like priority inversion and inheritance in this thesis, which can form an
interesting trend for future research.

If the currently running method is the last in the queue, nothing needs to be
selected (i.e., if tail == 1 we only need to shift). The second step in context-switch is
to start the method selected by run. Having defined start as an urgent channel, the
next method is immediately scheduled (if queue is not empty).

Error The scheduler automaton moves to the Error state if a deadline is missed
(x[i] > d[i]). The guard counter[i] > 0 checks whether the corresponding clock is cur-
rently in use, i.e., assigned to a message in the queue. Furthermore, to make sure no
queue overflow occurs, the property to check should include tail <= MAX.

40 Chapter 3. Automata-Based Actor Framework

3.4 Thread Pools Extension2

In this section, we model a thread-pool using timed automata in Uppaal as an
exntension of the actor framework presented in this chapter. We model a thread-pool
as a scheduler automaton taking tasks from a queue and dispatching them among
concurrent threads. This model can be seen as an extension of our actor framework
to a situation in which objects share the message/task queue.

We separate the task queue in two parts: an execution part and a buffer. The
execution part includes the tasks that are being executed. This part needs one slot
for each thread and is therefore as big as the number of threads; we assume a fixed
number of threads given a priori. Before beginning their execution, tasks are queued
based on a given scheduling strategies, e.g., EDF, FPS, etc., in the rest of the queue
(i.e., the buffer part).

In the rest of this section, we show two approaches in modeling concurrent threads
sharing a task queue. At a higher level of abstraction, we can assume that the threads
run in parallel as if each has its own processing unit. We can alternatively model
a time-sharing scheduling policy where the ‘executing’ threads share the processor;
therefore, each task runs a period of time before it is interrupted by the scheduler to
run the next one. In both cases, when a task reaches the execution part, it will not be
put back to the buffer part. We call this weak non-preemption, i.e., in the special case
of one thread, it behaves like a non-preemptive scheduler. The scheduler (responsible
for dispatching methods) and the queue (responsible for receiving messages) can be
modeled in the same automaton or separately.

3.4.1 Time-Sharing

In this model, execution threads share one CPU. Therefore, the tasks in the execution
part of the queue are interleaved. We call a thread active if a task is assigned to it. At
its turn, each active thread gets a fixed time slot (called a quantum) for execution. If
the assigned task does not finish within this quantum, the thread is preempted and the
control is given to the next active thread. Recall that we use weak non-preemption,
i.e., once a task is in the execution part it cannot be put back into the buffer part.

In this model, each task is modeled only as a computation time. This abstraction
is necessary to enable the modeling of preemption of tasks at any arbitrary time
(i.e., the selected quantum). Figure 3.11.(a) shows intuitively how three threads are
scheduled. The up-arrows show when a task is released. A down-arrow indicates the
completion of the task, after which the thread remains inactive in this scenario. The
tasks assigned to t1, t2 and t3 have the computation times of 6, 3 and 5, respectively,
and the preemption quantum is 2.

We associate to each thread a clock c and an integer variable r for response time,
i.e., the execution plus idle time, which is updated dynamically while an active thread
is idle. A task finishes when its clock reaches the expected response time value (c=r
shown in green in Figure 3.11.(a)). When a task is assigned to a thread, only at the

2This section has been published in [14].

3.4. Thread Pools Extension 41

r1:=6

c1:=0

r2:=3

c2:=0

r3:=5

c3:=0

t1

t2

t3

r1+=2

r2+=2

r1+=1

r3+=1 r1+=2

r1=c1 r3=c3

r3+=2

c2=r2

(a) Executing three tasks (quantum = 2)

Error

(qc<=quantum && c[turn]<=r[turn])
 || q[turn]==EMPTY

q[turn] != EMPTY && qc == quantum &&
comp[ca[turn]]>quantum

qc := 0, update_turn(quantum)

c[turn] == r[turn] &&
q[turn] != EMPTY

rem := comp[ca[turn]], qc := 0,
shift(turn,TRD), update_turn(rem)

msg : int[0,MSG],
sender : int [0,2]

invoke[msg][s][sender] ?

insertInvoke(msg, sender)

i : int[0,MAX-1]
x[i] > d[i] &&
counter[i] > 0

(b) Scheduler including a queue

Figure 3.11: Modeling a time-sharing scheduler for a thread-pool

next quantum the thread becomes active, i.e., the thread clock is reset to zero and r

is given the computation time of the task. In Figure 3.11.(a), the active period of the
threads is shown in gray, during which the hatched pattern denotes when the thread
has the CPU. At every context-switch (shown by dashed lines in Figure 3.11.(a)),
the response-time variables of all idle threads are increased to reflect their recent idle
time.

Figure 3.11.(b) shows the formal model of the time-sharing scheduler, which in-
cludes the message queue. The clock qc is used to keep track of time slots. The
invariant on the initial location of the automaton ensures progress when a context-
switch should occur and on the other hand it does not deadlock when the queue
is empty (q[turn]==EMPTY). The edges on the right-side of the automaton model
context-switch; in update_turn response-time variables are updated:

for (i = 0; i < TRD; i++) {

if (q[i] != EMPTY) {

if (i != turn) r[i] += quantum;

else comp[ca[i]] -= quantum; // remaining computation time

} }

The first check q[i] != EMPTY makes sure that the thread i is active, i.e., a task is
assigned to it. The variable turn shows the thread that was just running. For threads

42 Chapter 3. Automata-Based Actor Framework

Error

initialize()

msg : int[0,MSG],
sender : int [0,MAX_ID-1]

invoke[msg][s][sender] ?
insertInvoke(msg, sender)

msg : int[0,MSG],
t : int[0,TRD-1]

delegate[msg][s][t] ?
insertDelegate(msg,t)

i : int[0,MAX-1]
counter[i][s] > 0
&& x[i][s] > d[i][s]

tail <= TRD
finish[t][s]?

contextSwitch(s,t,TRD)

start[q[t]][t][s] !i:int[TRD,MAX-1]
(i < tail &&
forall (m : int[TRD,MAX-1])
(x[ca[i]]-x[ca[m]]>d[ca[i]]-d[ca[m]])

finish[t][s]?
contextSwitch(s, t, i)

(a) A queue shared between threads (b) An EDF scheduler

Figure 3.12: Scheduler and queue separated for handling parallel threads in Uppaal

i != turn the response time r[i] is increased to cover their idle time, whereas for
the thread that is just stopped we update comp, the remaining computation time. The
value of comp is used when a task finishes before a quantum is reached, e.g., tasks t2
and t3 in Figure 3.11.(a). In this case, the response time of idle threads is increased
by comp instead of quantum.

Finally the variable turn is updated at every context-switch, such that the next
active thread is selected. If it happens that there are no more active threads, i.e., the
last task just finished, turn will keep its old value, as modeled in the for loop below:

turn = (turn + 1) % TRD;

for (i=0; q[turn]==EMPTY && i<TRD-1; i++) {

turn = (turn + 1) % TRD;

}

The edges on the left model insertion of tasks into the queue using the insertInvoke
function, in which the scheduling policy can be modeled. In this model, the deadline
or priority values for tasks can be modeled statically. Each queue slot is assigned a
clock x which shows how long a task sits in that queue slot. The automaton also takes
care that when a task misses its deadline (x[i] > d[i]), it goes to the Error state.
The verification property should additionally check that the queue is not full.

3.4.2 Parallel Threads

In this model, every thread is assumed to have a dedicated processing unit, but they
share one task queue. This model is more accurate when we can rely on the fact
that the real system will run on a multi-core CPU and each thread will in fact run
in parallel to the others. In this model, the queue and the scheduling strategy are
modeled in separate automata. Figure 3.12.(a) shows a queue of size MAX which stores
the tasks in the order of their arrival. This automaton is parameterized in s which
holds the identity of the object. It accepts any message from any sender on the
invoke channel, using the Uppaal ‘select’ statement on msg and sender. To check
for deadlines, a clock x is assigned to each task in the queue, which is reset when the
task is added, i.e., in insertInvoke function.

3.5. A Peer-to-Peer Case Study 43

This model allows us to specify tasks as timed automata; therefore, tasks can
create subtasks with self-calls. As a result, we don’t need c and r. The delegate

channel is dedicated to self calls that create subtasks inheriting the parent’s deadline.
To identify the parent, it receives the thread identity as t. Inheriting the deadline is
modeled by reusing the clock x assigned to the parent task (which is in turn assigned
to thread t). The number of tasks (and subtasks) assigned to clock x[i] is stored
in counter[i]. This is handled in the insertDelegate function. The queue goes to
Error state if a task misses its deadline (x[i] > d[i]) or the queue is full.

Figure 3.12.(b) shows how a scheduling strategy can be implemented. This au-
tomaton should be replicated for every thread, thus parameterized in t as well as the
object identity s. The different instances of this automaton will be assigned each to
one slot in the queue, namely q[t]. This example models an EDF (earliest deadline
first) scheduling strategy. The remaining time to the deadline of a task at position
i in the queue is obtained by x[ca[i]]-d[ca[i]]. When the thread t finishes its
current task (finish[t][s]), it selects the next task from the buffer part of the queue
for execution by putting it in q[t]; next, it is started (start[q[t]][t][s]).

3.5 A Peer-to-Peer Case Study3

In this section, we explain how to model the real-time aspects of the peer-to-peer
system using timed automata and the Uppaal model checker [31]. We model the
broker object in the peer-to-peer model, which is the most heavily loaded entity in
this system. In the real-time model of an object, we add explicit schedulers to object
specifications. As explained before, the model of an object consists of its behavioral
interface and its methods automata.

3.5.1 Interface Inheritance

The first thing to model for an object is its behvaioral interface. The broker needs to
handle server-related and client-related messages. It makes sense to define two inter-
faces for handling these messages separately, and then the broker interface inherits
(and synchronizes) the behavior provided by these two interfaces. A server registers
its data with the broker to initialize its operation. We opt for a simple scenario, i.e.,
each server or client handles only one request at a time. We also assume at this level
of abstraction, that openCS is always successful, i.e., every data item searched for is
available.

Figure 3.13 shows the behavioral interface of the broker; the Broker interface given
in Figure 3.13(c) inherits the behavior specified for ClientSide and ServerSide interfaces.
The Broker interface introduces some additional behavior, i.e., the possibility of doing
an update to the data stored at the broker. The Broker automaton (see Figure 3.13(c))
synchronizes with the ServerSide automaton (see Figure 3.13(a)) to ensure that an up-
date only takes place after the data is registered. Moreover, the data at the broker is

3This case study has been reported partly in [17].

44 Chapter 3. Automata-Based Actor Framework

oc_os?
x = 0

reg_up[Peer]! invoke[confirmSS][Peer][self]?

x > 5
invoke[closeSS][self][Peer]!

deadline = MD, x = 0

x > 5
invoke[openSS][self][Peer]!

deadline = XD

invoke[register][self][Peer]!
deadline = MD

(a) Server-Side interface handling openSS and closeSS

oc_os!
x = 0

open_up[Peer]!

invoke[confirmCS][Peer][self]?

x > 5
invoke[closeCS][self][Peer]!
deadline = MD, x = 0

x > 5
invoke[openCS][self][Peer]!

deadline = XD

(b) Client-side interface handling openCS and closeCS

open_up[Peer]?

invoke[update][self][Peer]!
deadline = XD

reg_up[Peer]?

(c) Broker interface introducing extra behavior (update)

Figure 3.13: The behavior of broker is the synchronization of the above automata

updated after receiving new information (on the ClientSide). This is modeled by syn-
chronization on the channel open_up. In Figure 3.13, we use the open_up and reg_up

channels to synchronize the automata for Broker with ClientSide and ServerSide, respec-
tively. Additionally, the automata for ClientSide and ServerSide are synchronized on
the oc_os channel; this abstractly models the synchronization on port communication
between the components in which the broker is not directly involved. This model
allows the client side of any peer to connect to the server side of any peer (abstracting
from the details of matching the peers). The confirmCS and confirmSS messages model
the confirmation sent back from the broker to the open session requests by the peers.
These edges synchronize with the method implementations (explained next) in order
to reduce the nondeterminism in the model. At the end of the next chapter, there
are some general guidelines that help improve efficiency of model checking on Timed
Automata models.

In general, the behavior of the sub-type has to be a refinement of the behavior of its
super-type [41]. This is achieved by computing the product of the automata describing
the inherited behavior (ServerSide and ClientSide) and the automaton synchronizing
them (Broker).

Methods

The methods also use the invoke channel for sending messages. Figure 3.14 shows
the automata implementation of two methods for handling the openCS and register

events. In openCS, and similarly in every method, the keyword sender refers to the

3.5. A Peer-to-Peer Case Study 45

x <= 1
x == 1

invoke[confirmCS][sender][self]!

start[openCS][self]?
x = 0

finish[self]!

x <= 1

finish[self]!

x >= 1

start[closeCS][self]?
x = 0

x <= 1

finish[self]!

x >= 1

start[register][self]?
x = 0

x <= 1
x == 1

invoke[confirmSS][sender][self]!

finish[self]!

start[openSS][self]?
x = 0

x <= 1

finish[self]!

x >= 1

start[closeSS][self]?
x = 0

x <= 1

finish[self]!

x >= 1

start[update][self]?
x = 0

Figure 3.14: Method automata for broker

object/component that has sent the corresponding message. The scheduler should be
able to start each method and be notified when the method finishes, so that it can
start the next method. To this end, method automata start with a synchronization
on the start channel, and finish with a transition synchronizing on the finish channel
leading back to the initial location. The implementation of the methods for opening a
client or a server session involve sending a confirm message back to the sender, while
other methods are modeled merely as a time delay.

Chapter 4

Schedulability Analysis of Automata Models

A system with a single processor can execute one task at a time. When there are
multiple tasks, the tasks need to be executed in turns. A schedule is one ordering of
the tasks to be executed. In a hard real-time system, tasks have deadlines and must
finish before their deadlines. A system with a given set of tasks is schedulable if there
is an ordering for executing the tasks such that all tasks meet their deadlines.

In a nonterminating reactive system, tasks are dynamically generated. In an actor
model, tasks correspond to methods which are triggered by receiving messages. The
generation of tasks is not periodic; the best way to specify how tasks are generated is
by means of automata. In fact the behavioral interface of an actor is the abstraction
of the environments in which the actor can be used, because it specifies the allowed
patterns of incoming and outgoing messages. Since a behavioral interface includes all
allowed ways of calling the methods of the actor, we also call it a driver.

In this chapter, we define the problem of schedulability analysis for a system of
actors modeled in timed automata (as described in Chapter 3). This problem is
shown to be decidable by reducing it to reachability check of timed automata. For a
big system, it may be practically infeasible to analyze its schedulability. Instead we
show how to analyze an object in isolation with respect to its behavioral interface; its
schedulability will be guaranteed if its real usage in a system is in accordance to its
expected usage (see Figure 4.1). Our method makes it possible to put a finite bound
on the process queue and still obtain schedulability results that hold for any queue
length.

In the next chapter, we will explain in more details, how to check the compatibility
of the usage of actors with their behavioral interfaces. This chapter begins with an
overview of the existing automata theory for schedulability analysis, namely task
automata. Then we show how can use similar ideas for schedulability analysis of
actor models. The chapter is concluded with some case studies including the analysis
of the thread-pool example.

47

48 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

Actor Driver
Schedulability

(Model checking)

Individual
Actors

Use caseSystem
Conformance

(Testing)

Composed
Actors

Refinement
(Model checking)

Figure 4.1: Modular approach to schedulability analysis

4.1 Background: Task Automata and Schedulability

The task automata model [16] is an extended version of timed automata [3] with
asynchronous processes that are computation tasks generated (or triggered) by timed
events. It can be used for specifying and analyzing real time systems with non-
uniformly recurring tasks.

Definition 4.1.1 (Task Automata). Considering a set of task types P, a task
automaton is a timed automaton extended with

• a partial function M : L �→ P assigning task types to locations; and,

• a clock xdone which is reset whenever a task finishes.

�

Task automata are used to specify the arrival pattern of tasks on a single processor
computation unit. A task type, in this model, is an executable program represented
by a triple (b, w, d), where b and w are, respectively, the best-case and worst-case
execution times, and d is the deadline.

Compared with classical task models for real time systems, task automata may
be used to describe tasks (1) that are generated non-deterministically according to
timing constraints in timed automata, (2) that may have interval execution times rep-
resenting the best case and the worst case execution times, and (3) whose completion
times may influence the releases of task instances. In addition, tasks are triggered by
events but cannot generate events themselves.

Intuitively, in a task automaton, a transition leading to a location in the automa-
ton denotes an event triggering an instance of the annotated task and the guard
(clock constraints) on the transition specifies the possible arrival times of the event.
Semantically, an automaton may perform two types of transitions. Delay transitions
correspond to the execution of a running task and idling for other tasks. Discrete

4.1. Background: Task Automata and Schedulability 49

Figure 4.2: A task automaton [16]

transitions correspond to the arrival of new task instances. Whenever a task is trig-
gered, it will be put into the queue for execution, according to a given scheduling
strategy, e.g., FPS (fixed priority scheduling) or EDF (earliest deadline first).

Example 4.1.2. [16] Consider the automaton shown in Figure 4.2. It has three
locations l0, l1, l2, and two tasks P and Q (triggered by a and b) with interval
computation times [1, 2] and [2, 4] (the best case and the worst case execution times),
and relative deadlines 10 and 8, respectively. The automaton models a system starting
in l0 that may move to l1 by event a at any time. This triggers the task P . In l1, as
long as the constraints x ≥ 10 and y ≤ 40 hold, when an event a occurs an instance of
task P will be created and put into the scheduling queue. However, it cannot create
more than 5 instances of P in l1, because the constraint y ≤ 40 will be violated after
40 time units. In fact, every instance will be computed before the next instance arrives
and the scheduling queue may contain at most one task instance. Therefore, no task
instance of P will miss its deadline. The system is also able to accept b, switch from
l1 to l2, and trigger Q. Because there are no constraints labeled on the b-transition
in l2, it may accept any number of b’s and create any number of Q’s in zero time.
However, after more than two copies of Q, the queue will be non-schedulable, i.e.,
a deadline may be violated. This means that the system is non-schedulable. Thus,
zeno behaviors will correspond to non-schedulability, which is a natural property of
the model.

Definition 4.1.3 (Task Automata Semantics). The semantics of a task au-
tomaton A = �L, l0,−→, I,M, xdone�, with respect to a given scheduling strategy Sch,
is a labeled transition system [[ASch]] with an initial state (l0, u0, []) and transitions
defined by the following rules:

• (l, u, q)
a

−→ Sch(l
�, u[r], Sch(M(l�), q)) if l

a
−−−→
g , r

l�, u � g and u[r] � I(l�),

• (l, u, [])
t

−→ Sch(l, u+ t, []) if t ∈ R≥0 and (u+ t) � I(l),

50 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

• (l, u, P (b, w, d) :: q)
t

−→ Sch(l, u+ t,Run(P (b, w, d) :: q, t)) if t ∈ R≥0, t ≤ w and
(u+ t) satisfies I(l); and,

• (l, u, P (b, w, d) :: q)
fin
−→ Sch(l, u[xdone], q) if b ≤ 0 ≤ w and u[xdone] satisfies I(l),

where P (b, w, d) :: q denotes the queue with the task instance p(b, w, d) inserted into
q (at the first position), [] denotes the empty queue, and fin �∈ Σ is a distinct action
name. �

Note that the transition rules are parameterized by Sch (scheduling strategy).
Whenever it is understood from the context, we shall omit Sch from the transition
relation. We have the same notion of reachability as for timed automata.

Definition 4.1.4 (Schedulability). A task automaton is said to be schedulable
if there exists a scheduling strategy such that all possible sequences of events generated
by the automaton are schedulable in the sense that all associated tasks can be computed
within their deadlines. �

Theorem 4.1.5 ([16]). The problem of schedulability for task automata with a
non-preemptive scheduler is decidable.

Fersman et al. [16] have studied the decidability of the problem of checking schedu-
lability for task automata for different settings. The schedulability checking problem
will be undecidable if the following three conditions hold: (1) the execution times of
tasks are intervals, (2) the precise finishing time of a task instance may influence new
task releases, and (3) a task is allowed to preempt another running task. For exam-
ple, when using a non-preemptive scheduler, or when tasks have fixed computation
times, schedulability for a task automaton can be reduced to a check for reachability
in timed automata, and is therefore decidable.

4.2 Analyzing Actor Models1

In this section, we define the theory for analyzing actors modeled in the timed au-
tomata framework of Chapter 3. First, we define what schedulability means for a
system of actors.

Definition 4.2.1 (Schedulable System). A system of actors is schedulable if in
its system automaton the deadlines of the tasks in the queue (including the currently
executing task) never expire, i.e., there is no reachable state such that a clock of one
of the tasks of the queue is greater than the deadline. �

The definition of a system automaton given in Chapter 3 is infinite state. To be
able to perform model checking, we need to make it finite. However artificially fixing

1This section is an improvement and extension of the results published in [24].

4.2. Analyzing Actor Models 51

{(l, q), . . . } −→
S
Error if a queue length is longer than maximum [overflow]

{(l, [m1(d1, c1), . . . ,mk(dk, ck)]), . . . } −−−−−−−−−−−−−−−→
(c1>d1)∨···∨(ck>dk)

−
S
Error [missed deadline]

if l is not final

Figure 4.3: Reductions for Errors in a System

the queue may lead to false negatives. Luckily, for any given actor, we can determine
an upper bound on the queue length of schedulable systems before constructing the
system automaton. The lemma below gives a reasonable length for bounding the
queue.

Lemma 4.2.2. If a system automaton is schedulable then it does not put more than
�dimax/b

i
min� tasks into the queue of object Oi, where dimax is the longest deadline for

any methods of Oi called on any transition of the method automata of all objects and
bimin is the shortest termination time of any of the method automata of Oi.

Proof. Assume that the queue of an actor reaches the length m = �dmax/bmin�+1.
We show that in this case, the actor is not schedulable. All methods are called with
a deadline, and delegated deadlines are equal to, or less than, the original deadlines.
Therefore, all tasks in the queue, including the last task, must have a deadline less
than or equal to dmax.

The m tasks that at this moment exist in the queue need at least m × bmin to
execute and terminate. If other tasks are inserted in the meantime in the queue, it may
only increase this time until the original m tasks execute and terminate. Therefore,
the final task terminates in time greater than (�dmax/bmin� + 1) × bmin which is
strictly greater than dmax and so at least this task misses its deadline. �

We can calculate the best case runtime for timed automata as shown by Cour-
coubetis and Yannakakis [10]. The longest deadline can be found by a simple static
search of all the transitions. Next, we redefine Definition 3.2.3 and put a bound on
the length of the queue.

Definition 4.2.3 (Queue). A queue q with an upper bound MAX is a list of
at most MAX tasks together with a set Cq of MAX clocks. Each task is written as
m(d, c) where m is a method name, d ∈ N is its deadline and c ∈ Cq keeps track of
how long the task has been in the queue. The deadline of m expires when c > d. �

The definition of system automaton (Definition 3.2.7, Chapter 3) is potentially
infinite state and the information on each state may also be infinite as the queue
could grow unboundedly. To make schedulability analysis of a system possible, we
update this definition to use a bounded queue with sizes given by Lemma 4.2.2. We
add to this definition a location Error such that a queue overflow or a missed deadline
results in an error (see Figure 4.3). To deal with bounded queues, a scheduler function

52 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

(cf. Definition 3.2.4) could be redefined to return the input queue unchanged when it
is already full. Alternatively, we add conditions to each of the rules in Figure 3.4 to
ensure that they are used only if the queue length is less than the maximum and no
deadlines have been missed; thus the scheduler functions need not be redefined.

We show below that the system is schedulable if the error location is not reachable.

Theorem 4.2.4. A system automaton is schedulable if, and only if, it cannot reach
the error state when each object Oi has a queue with the length of �dimax/b

i
min�.

Proof. A system automaton can reach the error state via the rules in Figure 4.3:
1) Lemma 4.2.2 implies that the [queue overflow] rule would be used if and only

if the system automaton is not schedulable.
2) The guard of the [missed deadline] rule implies that a deadline has been missed

and therefore the system automaton is not schedulable. This rule, however, excludes
the cases that an actor is in its final location. In this situation, if there are other tasks
in the queue, then this location is urgent and will be left in zero time and therefore
no task will miss its deadline by waiting in this location. If there are no other tasks
in the queue of this actor, then this actor is idle and staying in this location does
not affect schedulability of this actor. In the other direction, if the system automata
cannot reach the error state then the guard of the [missed deadline] rule must never
hold, so no deadlines are missed. �

4.2.1 Analyzing One Actor in Isolation

Model checking a complete system for schedulability is usually not feasible due to
the huge size of the state-space; this is because each actor has its own queue and
actors run asynchronously in parallel. Analyzing one object per se is not possible
either, because there are infinitely many ways to call its methods. To restrict how
methods are called in an object, we use its behavioral interface as a driver; it includes
all allowed ways of calling the methods of the object. The behavioral interface of an
actor is the abstraction of the environments in which the actor can be used, because
it specifies the allowed patterns of incoming and outgoing messages.

We showed in the previous subsection that we can put a finite bound on the queue
length of actors in the context of a closed system. We reuse this lemma for the context
of an open system, namely an object in the context of its behavioral interface. First
we define the semantics of an object in the context of its behavioral interface.

Definition 4.2.5 (Behavior Automaton). Suppose Q is the domain of all
queues with upper bound MAX and using the clocks in Cq. Given a scheduler function
sched , the behavior automaton of an actor R = {m1 : A1, . . . ,mn : An} with the
interface D is a timed automaton H = (LH , lH ,→H , IH) over the alphabet ΣH and
clocks CH :

• ΣH = {m(d)!|m /∈ MR} ∪ {m(d)?|m ∈ MD} ∪ {m|m ∈ MR}, where d ∈ N

denotes a deadline.

4.2. Analyzing Actor Models 53

(l, ld, [T1, . . . , Tk])
m(d)?

−−−−−−−−−−→
g∧G ; X,ci:=0

H
(l, l�

d
, q�) [receive]

if (ld
m(d)?
−−−−→
g ; X

D
l�
d
) & k ≤ MAX &

(G, ci, q
�) ∈ sched([T1, . . . , Tk],m(d))

(l, ld, [T1, . . . , Tk])
m

−−−−−−−−−−→
g∧G ; X,ci:=0

H
(l�, ld, q

�) [self call : invocation]

if (l
m(d)!
−−−→
g ; X

T1
l�) & m ∈ MR & k ≤ MAX &

(G, ci, q
�) ∈ sched([T1, . . . , Tk],m(d))

(l, ld, [m1(d, c), T2, . . . , Tk])
m

−−−−−−→
g∧G ; X

H
(l�, ld, q

�) [self call : delegation]

if (l
m!

−−−→
g ; X

m1
l�) & m ∈ MR & k ≤ MAX &

(G, c, q�) ∈ sched([m1(d, c), T2, . . . , Tk],m(d, c))

(l, ld, [T1, . . . , Tk])
m(d)!
−−−−→
g ; X

H
(l�, ld, [T1, . . . , Tk]) [external call]

if (l
m(d)!
−−−→
g ; X

T1
l�) & m /∈ MR & k ≤ MAX

(l, ld, [T1, . . . , Tk]) −−−−→
g ; X

H
(l�, ld, [T1, . . . , Tk]) [internal step]

if (l −−−→
g ; X

T1
l�) & k ≤ MAX

(l, ld, [T1, T2, . . . , Tk]) −−−−→
Cl:=0

H
(l�, ld, [T2, . . . , Tk]) [context switch]

if l ∈ final(T1) & 2 ≤ k ≤ MAX &
Cl = local_clocks(T2) & l� = start(T2)

(l, ld, [T1, . . . , Tk]) −→H
Error [queue overflow]

if (k > MAX)

(l, ld, [T1, . . . ,mi(di, ci), . . .]) −−−−−→
(ci>di)

H
Error [missed deadline]

if l �∈ final(T1) & 1 ≤ i ≤ k

Figure 4.4: Calculating the edges of the behavior automaton

• CH = CD ∪
�
�

i∈[1..n] Ci

�

∪ Cq, where Ci and CD are the clocks for Ai and D,
respectively, and Cq is the set of queue clocks.

• LH = {error} ∪
�

(
�

i∈[1..n] Li) × LD × Q
�

, where LD and Li are the sets of
locations of D and Ai, respectively.

• The initial location lH is (lD, start(A1), [m1(d, c)]), where lD is the initial lo-
cation of D, A1 is the automaton for the ‘initial’ method (corresponding to
m1), d is the initial deadline and c ∈ Cq.

• The edges →H are defined with the rules in Figure 4.4.

54 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

• The location invariants are defined as I(l, ld, q) = I(l) ∧ I(ld) and I(error) =
true. Furthermore, the locations (l, ld, [T1, . . . , Tk]) such that l ∈ final(T1) and
k ≥ 2 are marked as urgent locations.

�

In Figure 4.4, functions start(A) and final(A) give the initial location of A and
the set of locations in A with no outgoing transitions, respectively. Each location of
the behavior automaton is written as (l, ld, q), where q is the queue, ld is the current
location of the interface and l is the current location of the method being executed,
i.e., the automata corresponding to the first element of the queue. An edge of an
automaton A with action a, guard g and update r is shown in this figure as

a
−−−→
g ; r

−
A
.

Finally, k shows the number of tasks in the queue.
When the interface allows receiving a message, or when a self call is made, the

message is scheduled into the queue. In the case of delegation the clock of the currently
running task is reused for the new task so that it inherits the remaining deadline. The
internal step rule captures other transitions in a method.

When a task terminates the next task in the queue is started, unless there is no
other task in the queue. In the latter case, context switch is not performed. Instead,
this terminated task is exempted from the missed deadline rule. As soon as a new
task is added to the queue, the context switch rule is enabled. Notice that the context
switch rule is immediately executed when enabled, due to the urgency of the source
location (cf. last bullet in Definition 4.2.5).

We build the behavior automata for an actor based on a given driver. We can then
check if the actor is schedulable for the environments that match the driver. This
compatibility check is explained in the next Chapter.

Definition 4.2.6 (Schedulable Object). An object is schedulable in the context
of its behavioral interface if in its behavior automaton the deadlines of the tasks in the
queue (including the currently executing task) never expire, i.e., there is no reachable
state such that a clock of one of the tasks of the queue is greater than the deadline. �

Theorem 4.2.7. A behavior automaton is schedulable if, and only if, it cannot reach
the error state with a queue length of �dmax/bmin�.

The proof of this theorem is similar to Theorem 4.2.4 concerning the schedulability
of a system automaton. As a result of this theorem, we can check the schedulability of
behavior automata by checking the reachability of the error state using the Uppaal

model checker.
As explained in Chapter 3, to use Uppaal, we can make use of the automata

specifying the scheduler. Such automata are finite given the queue length suggested
by Lemma 4.2.2. Furthermore, in the scheduler automata, the error state is reachable
only if a deadline is explicitly missed or if the queue is overfull; both cases imply non-
schedulability. Therefore checking schedulability amounts to checking the reachability
of the error state in the scheduler automata when it is put in a network of timed

4.3. Case Studies 55

automata together with the method and driver automata. Since this reachability
check is decidable, the problem of checking schedulability is also decidable.

4.2.2 Discussion on Preemptive Scheduling

We have focused our work on “non-preemptive” schedulers, i.e., schedulers that fin-
ish one task and then pick the next task to run using a given policy. Preemptive
schedulers, on the other hand, will interrupt and switch between running tasks. It is
exactly this switching that gives the effect of truly concurrent processes on a single
CPU machine.

In the most general case, testing the schedulability of a preemptive scheduler is
undecidable. Fersman et al. prove this for Task Automata [16] and their proof may
be applied to our framework. In short they show that it is possible to implemmaent a
2-counter machine by encoding the counters using clocks in the interval [0, 1]. Their
system repeatedly loops and the value of the counter is taken to be 21−c where c
is the value of the clock at the end of each loop. Preemption allows the value c
to be arbitrarily halved and doubled so that the counter may be incremented and
decremented.

The work by Kloukinas et al. [29] uses discrete-time automata to handle pre-
emption and proposes a methodology to cope with the state-space explosion due to
it. In the dense model of time, however, the most general preemptive scheduler is
undecidable because the amount of time between preemptions can be any value in
the real domain.

If we are willing to restrict this interval and only allow preemption every t seconds
then schedulability is decidable for every t > 0. This is enough to accurately model
real systems; t could, for instance, be set to equal the target machine’s clock speed.
Schedulability is decidable in this framework because we can break up any of the
method automata into a number of smaller automata each of which runs for t time
units and then adds the next part of the method to the queue, so giving the scheduler
the opportunity to preempt them. Unfortunately this would lead to the size of our
system increasing exponentially as t decreases. We hope that a full investigation of
preemption will make promising further work.

4.3 Case Studies

In this section, we explain how schedulability analysis can be used in practice. First,
we analyze the MutEx implementation and show how the choice of scheduling policy
can affect the schedulability results. It also shows the iterative method for applying
schedulability analysis.

Then, we apply our technique to the industrial case study of thread pools. We first
analyze the two models given in Chapter 3 with some predefined settings. Then we use
an iterative approach (automated by a shell script) to analyze the model for parallel

56 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

reqR

reqL

release reqRpermitR

reqL

initial reqL release

reqR

reqL

reqR

reqL

Figure 4.5: A possible trace for a fork based on FIFO scheduling policy

threads with different settings. Thus we can see the optimal number of threads given
different inter-arrival and deadline values.

4.3.1 Schedulability Analysis of MutEx

To use Uppaal for analysis, we model behavioral interfaces, methods implementations
and schedulers (which in turn include a queue) with timed automata as explained in
Chapter 3. The actor behavior model (corresponding to behavior automaton) can be
generated by making a network of these timed automata in Uppaal. Schedulability
analysis boils down to checking the reachability of the error state in the scheduler
automaton as long as the queue is not full.

With such an automated analysis process, it is easy to study the effect of differ-
ent scheduling strategies on schedulability. Figure 4.5 shows a possible scenario in
which ‘First Come First Served (FCFS)’ strategy for a MutEx may cause starvation,
i.e., makes MutEx non-schedulable. This scenario is obtained by running a MutEx as
controlled by its driver. The figure depicts the time line of a fork and its queue. The
queue contents are shown only at context switch, i.e., when a method is finished and a
new method is taken from queue head to start its execution (shown by a diamond on
the time line). The same scenario generated by Uppaal is shown in Figure 4.6. This
is part of the trace generated when checking for the reachability of the Error location.

At the end of this scenario, executing release and reqR would result in a ‘permitR’
to the right object for a second time, ignoring the request from the left one. This can
continue infinitely. New instances of ‘reqL’ inherit the deadline associated to their
parents, which shrinks continuously. After postponing ‘reqL’ for enough number of
times, its deadline is missed, resulting in nonschedulability of MutEx. Using an Earliest
Deadline First (EDF) strategy would favor old reqL to new reqR in this scenario. In
addition, the EDF scheduler must give a higher priority to ‘release’ as opposed to
‘request’.

The MutEx actor with the given driver needs a queue length of at least 5. Consider-
ing the driver, the reason is that 2 requests and 2 releases may be in the queue, while
a delegated request can be added. Having chosen the proper scheduling strategy and

4.3. Case Studies 57

Figure 4.6: Starvation scenario for FCFS given by Uppaal. The parameters self, Left
and Right are instantiated to 2, 0 and 1, respectively. The arrows labeled invoke and
delegate show enqueuing of messages. The arrows labeled start and finish determine
the execution period of methods.

58 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

x2 > 4

invoke[task1][self][Right]!
deadline=D1, x2 = 0

x1 > 8
invoke[task2][self][Right]!
deadline=D2, x1 = 0

c1 >= 3
invoke[task][self][Env]!

deadline=D2, c1 = 0

c1 >= 2

invoke[task][self][Env]!
deadline=D1, c1 = 0

Figure 4.7: Generating task instances sequentially (left) or in parallel (right)

queue length, we can repeat the scheduling analysis (checking for reachability of Error

location) to find the best values for MIN_REL and MAX_REL and the deadline
values for request and release.

4.3.2 Schedulability Analysis of Thread Pools2

In this section, we analyze the schedulability of the timed automata models of thread
pools given in the previous section. The model of a thread pool is not enough for
schedulability analysis, because we need to know how fast tasks are generated and
what their deadlines are. The timed automaton specifying the task generation pat-
terns serves as the behavioral interface of the thread pool. The behavioral interface
can be seen as a model of the environment and captures the work-load of the ASK
system. In this section, we assume two threads.

Figure 4.7 shows two models of behavioral interfaces for our model of thread
pools. In these diagrams, Right shows the identity of an object in the environment
that sends messages task1 and task2 to the thread pool under analysis; the identity
of the thread pool is given as self. In one model, tasks are generated independently
with an inter-arrival time of at least 9 time units between every two occurrences of
the instances of the same task type. In the other model, tasks are generated one after
the other in a sequential manner.

To perform schedulability analysis by model checking, we need to find a reasonable
queue length to make the model finite. The execution part of the queue is as big as
the number of threads, and the buffer part is at least of size one. As in single-
threaded situation of objects [24], a system is schedulable only if it does not put more
than �Dmax/Bmin� messages in its queue, where Dmax is the biggest deadline in the
system, and Bmin is the best-case execution time of the shortest task. As a result,
schedulability is equivalent to the Error state not being reachable with a queue of
length �Dmax/Bmin�. Therefore, schedulability analysis does not depend on whether
an upper bound on queue length is assumed or not.

To use the time-sharing model of a thread pool, a task is modeled as a computation
time. The two task types are given the computation times of 3 and 6 time units. This
model is analyzed with a queue length of three where two concurrent threads are

2This case study has been reported partly in [14].

4.3. Case Studies 59

x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2

x <= 6

finish[t][self]!

start[task2][t][self]?
x = 0

x >= 6

x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2
delegate[task2][self][t]!

(a) Modeling tasks as computation times (b) Generating a subtask

Figure 4.8: Modeling tasks for parallel threads

assumed. Given the behavioral interface with parallel task generation, the minimum
deadline for which the model is schedulable is 7 and 9 for task1 and task2, respectively.
For sequential task generation, the deadlines can be reduced to 5 and 6 for task1 and
task2, respectively.

When the thread pool for parallel threads is applied, one can model tasks as timed
automata; two simple task models are given in Figure 4.8.(a). In this model, task1
has a computation time of between 2 to 3 time units, and task2 takes 6 time units to
execute. Using either of the two behavioral interfaces above, the model is schedulable
with the deadlines 3 and 6 for task1 and task2, respectively. In parallel generation
of tasks, parallel threads can handle the tasks faster, and therefore, smaller deadlines
are needed for schedulability. It turns out that the parallelism of the threads does
not affect the schedulability of tasks that are created sequentially.

More complicated models can include sub-task generation. Figure 4.8.(b) shows a
model of task1 which creates an instance of task2. The schedulability analysis of this
model with a queue length of three fails due to queue overflow. This implies that a
fixed-sized thread pool with a too small buffer size can fail. By increasing the size of
the queue to four, the model will be schedulable given a deadline of 9 to the task1
(and task2 still needs a deadline of 6). This shows that a fixed-sized thread pool can
still be useful if a big enough buffer size is used.

Number of Threads

For the schedulability analysis of the ASK system, we modeled the determinate variant
of the ASK thread pools, called dabbey. This variant has a fixed number of threads
and a fixed-size task buffer. The details of the UPPAAL models corresponding to
the dabbey can be found in Section 3.4.2. The dabbey is modeled in a flexible way
such that by adjusting the following parameters, one can experiment with different
settings of the thread pool:

• The first thing one can change is the number of threads for the modeled thread
pool. By increasing the number of parallel threads, one can perform tasks faster.
This means that smaller deadlines and inter-arrival times can be used.

60 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

Figure 4.9: Required number of threads to deal with tasks with given deadlines and
inter-arrival times

• In order to perform experiments, the deadline and inter-arrival values can be
changed in order to get the right value for schedulability.

• Furthermore, one can change the number of different task types.

In order to compare the schedulability of tasks for different numbers of threads and
different inter-arrival times, we created a script to automatically invoke the schedu-
lability analysis for different parameter values using the UPPAAL command-line ver-
ifier, called verifyta. The output of the script can be plotted in a 3D plane. An
example is given in Figure 4.9. In this example, the number of different tasks is 9,
while their computation times are defined as {8, 9, 9, 10, 10, 10, 11, 11, 12}. On the
Z-axis of the plot, the minimum possible deadline for the tasks to be schedulable can
be read, for different numbers of available threads in the thread pool and different
inter-arrival times. Several conclusions can be drawn from this diagram, like:

• For the given set of task types, thread pools with sizes 6, 7, 8 and 9 perform
equally well.

• For the given set of task types, if we allow less strict deadlines for the tasks,

4.4. Guidelines for Efficiency 61

the minimum inter arrival times for thread pools with sizes 1, 2 or 5 can be
improved. But inter-arrival times of less than 2 are not possible to handle.

• For the given set of task types, a thread pool with 2 threads (minimum inter-
arrival time 5, corresponding minimum deadline 13) performs more than twice
as good as a thread pool with 1 thread (minimum inter-arrival time 10, corre-
sponding minimum deadline 14).

Such interesting results can be applied by Almende in the near future to improve the
performance of the thread pools in the ASK system.

4.4 Guidelines for Efficiency

The number of peers in the system is an important factor for the schedulability.
However, their number is limited by the capabilities of model checking technologies.
Size of the waiting queue of the scheduler and execution times and deadlines for all
methods are important for schedulability analysis, too. Since they have less effect on
the feasibility of verification, they are a good starting point for the analysis, e.g., one
might try to adjust the waiting queue size to check if a smaller size would make a
schedulable system non-schedulable.

A minor hint: Set the search order for the verification to Depth First (Options
→ Search Order → Depth First). For this model, it is more likely to find counter
examples in the depth of the state space, so this setting will lead to faster termination
for systems, which are not schedulable.

Model Checking of the described system with two peers, seven methods, and first-
come-first-served scheduling might already take several hours of CPU-time. With an
additional peer, it would be infeasible in most cases. Usually abstraction makes veri-
fication process much more efficient on one hand. On the other hand it makes models
harder to understand. Keep in mind that this document focuses on an illustrative
presentation of the usage of the Credo technology, therefore efforts on abstraction of
the peer-to-peer model have been kept on a basic level.

In general, there are some possibilities to gain efficiency on this level. Among
these are:

• Reduction of the number of clocks: Unrestricted use of clocks has an exponential
impact on the size of the state space. One should take care not to introduce
new clocks unless they are absolutely necessary.

• Reduction of the maximal constants used in guards: This will reduce the expo-
nential growth of the state space caused by the number of clocks.

• Reduction of non-determinism: This is for instance caused by guards, allow-
ing a transition in a given interval (e.g. x >= 5 and x <= 10). The interplay
between different non-deterministic guards can cause a hardly predictable par-
titioning of the state space. This phenomenon can be observed, e.g., if the

62 Chapter 4. Schedulability Analysis of Automata-Based Actor Models

method automata are changed to support both, worst- and best-case execution
times.

• Reduction of variables, their ranges, and their possible valuations: Less variables
mean a smaller size of a single state and less possible different valuations mean
fewer distinct states.

Chapter 5

Checking Compatibility

In previous chapters, we described how to use timed automata for actor-based mod-
eling of systems and applied model checking to schedulability analysis of a complete
closed system. Checking the whole system for schedulability is subject to state space
explosion, given the fact that each actor has its own processor and queue. When model
checking a complete system is not feasible, we explained how to use the behavioral
interface of an actor as a driver to simulate the actor’s environment.

Individually schedulable actors can be used as off-the-shelf components in making
bigger components and systems. One can develop in a modular manner actors that
are schedulable when their actual use is compatible with their drivers. In this section,
we briefly discuss one way to check for such a compatibility in the context of the
‘design by contract’ approach [36] based on automata [11].

In this approach, the behavioral interface of an actor is used as a driver specifica-
tion which describes the most general conditions under which instances of the model
are schedulable. A system developer (as opposed to the actor developer) instantiates
actor models in the context of a particular configuration of connections. Intuitively,
a running system of objects is compatible with their behavioral interfaces if its ob-
servable behavior is captured by the composition of the behavioral interfaces of the
participating objects.

A naive check of deadlock freedom in the composition of the behavioral interfaces
does not imply anything about compatibility. On one hand, behavioral interfaces are
abstractions of object behaviors, therefore, any mismatch (i.e., deadlock) could be
due to a spurious behavior not possible in the real system model. On the other hand,
a lack of deadlock does not imply compatibility. The reason is that compatibility
means that a ‘send’ by an object takes place at such a time that satisfies the guard
in the behavioral interface of the receiver object. However, a behavioral interface has
no timing constraint on its output (send) actions (cf. Definition 3.2.1) and therefore
does not reflect the precise timing of the send action by the real system model.

In this chapter, we first establish a testing framework for checking refinement of
timed automata. Next, we will apply this framework to testing compatibility which
will be defined in terms of refinement. We will finally show that if compatibility holds
for a system with individually schedulable objects, the whole system is schedulable.

63

64 Chapter 5. Compatibility in the Context of Schedulability

5.1 Testing Refinement of Timed Automata

We assume we are given two timed automata, modeling the specification and the
implementation of a real-time system. The former is a deterministic timed automaton
Spec over the set of actions ΣSpec. The implementation, also called the model under
test, is a timed automaton MUT over the set of actions ΣMUT = ΣSpec ∪ {τ}. In this
section, we propose a theoretical framework for testing whether MUT is a refinement
of Spec. We define refinement as the inclusion of the observable behaviors. We give
a test case generation algorithm and prove that the set of all test cases that could be
generated by the algorithm is sound and complete for our notion of refinement.

Trace inclusion is a usual notion of correctness (or conformance) between a system
and its specification in formal testing frameworks [19]. We use the standard notions
and methods from these frameworks. However, our testing framework gives rise to
some issues which are not common in standard frameworks. First, the implementation
under test is a model and not a real system. We do not take advantage of our
knowledge of the model, so it is still black-box testing, but the execution of test cases
will be simplified. We will explain later that it comes down to model-checking for the
reachability of a Fail location.

In a naive approach, one would take a trace from the MUT and check whether
it exists in the Spec. In our case, since MUT is very big (it includes the method
automata and object queues), we generate a test-case from Spec. The consequence
is that the test, built from the specfication only, will not be able to fully control the
system under test during its execution. This leads to a lot of non-determinism but
we alleviate this by using a model checker to execute a test case.

Finally, our main goal is to find a counter-example in the case of wrong refinement.
Then test cases must be as “complete” as possible to take any incorrect behavior into
account, which is a novel issue in testing.

Refinement of Timed Automata1

In the context of timed automata, an observable behavior is either an observable
action (any action except τ), the passage of time (a delay) or a lock (also called
quiescence, i.e., the absence of observable actions). Actions and delays are taken into
account in timed traces, which describe the possible distribution of observable actions
in time. To be able to take locks into account, we need to represent them explicitly
in the specification. The different kinds of locks that can occur in a timed system are
(see Figure 5.1):

Deadlock No action is possible but time can go on.

Timelock Time is stopped, no action and no delay is possible (in Figure 5.1 the
synchronization cannot happen due to the mismatching invariant and guard).

Zeno-timelock Infinitely many actions can occur in finite time.

1This chapter is an extension of the results published in [25].

5.1. Testing Refinement of Timed Automata 65

c
x = 0

x := 0

x ≥ 1
a

x ≥ 1
a

x < 5

δ

δ
x > 5

b!

x < 5

� b?

Deadlock

Timelock

Zeno-timelock

Figure 5.1: Construction of the suspense automaton

We allow deadlocks and timelocks but no Zeno-timelocks. For a correct refinement,
the MUT may deadlock (resp. timelock) only if the specification deadlocks (resp.
timelocks).2 Locations with a deadlock or timelock are called quiescent. To explicitly
specify quiescence in the specification, we add a loop on each blocking location labeled
by a new action δ, considered to be an observable output action [44]. The automaton
obtained by adding δ actions is called a suspense automaton.3

Definition 5.1.1 (Suspense automaton). Let A = (L, l0,−→, I) be a timed
automaton over clocks C and actions Σ. The suspense automaton of A is the timed
automaton ∆(A) = (L, l0,−→∆, I) over C and Act ∪ {δ} where

−→∆ = −→ ∪ {l
δ
−→ l | l is quiescent}

defines the transition relation. �

The traces of the suspense automaton, called suspension traces, represent all the
observable behaviors of this automaton. The set of all suspension traces of a timed
automaton A is the set Traces(∆(A)) denoted by STraces(A).

Definition 5.1.2 (Refinement). MUT is said to be a refinement of Spec, de-
noted by MUT � Spec, if and only if STracesobs(MUT) ⊆ STraces(Spec). �

Since Spec is deterministic, checking trace inclusion becomes decidable [3, 42], but
due to the size of MUT, it may be susceptible to state-space explosion. To avoid this,
we propose a method for testing trace inclusion. In particular, we want to be able to
exhibit a counter-example if some incompatibility is found.

2In the context of compatibility checking, the specification is obatined by synchronous product
of the behavioral interfaces of objects, which may in turn have a deadlock or timelock.

3We do not call it a suspension automaton as Tretmans does [44] in order to avoid confusion with
a decidable class of hybrid automata also called suspension automata [34].

66 Chapter 5. Compatibility in the Context of Schedulability

5.1.1 Test Cases

We build a test case given a sequence of transitions from the specification, representing
a set of traces. Such a sequence abstractly represents a desired system behavior. A
test case is a deterministic timed automaton without loops whose leaves are labeled
with verdicts.

Definition 5.1.3 (Test case). Let Spec be a timed automaton over ΣSpec. A
test case for Spec is a deterministic acyclic timed automaton TC = (L, l0, E, I) over
ΣSpec ∪ {τ}. Each leaf location (i.e., locations with no outgoing transition) must
be labeled with a verdict Pass, Fail or Inconc. Every non-leaf location l has the
following properties:

• for all actions a ∈ ΣSpec, there exists a transition with action a from l

• there exists at most one τ transition from l

• for all actions a ∈ ΣSpec, for all transitions l
gi,a,ri
−−−−→ l�i, 1 ≤ i ≤ k − 1 and

l
gk,τ,rk−−−−→ l�k the guards are complementary:

�

1≤i≤k gi is always true.

We refer to a set of test cases as a test set. �

To accommodate for deadlocks and timelocks, a test case should be generated from
the suspense automaton of the specification. A verdict labeling a location allows us to
evaluate an execution of the test case terminating on this location. Locations labeled
by Fail are those which are reachable with forbidden behaviors of the system (a non-
specified action or an action happening outside its time constraints in the specification,
for example). An execution of a test case ending on a Pass location means that the
system fulfilled the test case requirements. When an inconclusive location Inconc is
reached, it means that the system behaved correctly but not according to the behavior
aimed by the test case. To find a counter-example to refinement, we need to search
for locations marked Fail.

The properties of non-leaf locations ensure in particular that in each of these
locations, any action is possible at any time, and only one transition can be taken
given an action and a valuation of the clocks. These properties are necessary to be
able to provide relevant counter-examples.

Generating a test case

The algorithm in Figure 5.3 takes as input a linear timed automaton T obtained from
the specification automaton Spec and builds a test case TC as output. The input
automaton T contains a sequence of transitions written as li−1

gi,mi,ri
−−−−−→ li. These

transitions can be either exact transitions or ‘subtransitions’ of ∆(Spec). We call
li−1

gi,mi,ri
−−−−−→ li a subtransition, if there exists a transition li−1

g,mi,ri
−−−−−→ li in ∆(Spec)

such that g ⇒ gi. Since the guards gi may specify intervals, T represents a set of
suspension traces of the specification.

5.1. Testing Refinement of Timed Automata 67

T :

gn,mn, rng1,m1, r1

l0 l1 ln−1 ln

Figure 5.2: A linear timed automaton T as input to the algorithm below.

Input A timed automaton Spec (may be a suspense automaton); and,
A linear timed automaton T (as shown above).

Output A timed automaton TC (the test case).

Locations:
L(TC) = L(T) ∪ {c, f}

Verdicts:
Label ln with the verdict Pass
Label c with the verdict Inconc
Label f with the verdict Fail

Transitions:
for every 0 ≤ i < n repeat the following

let hi be the invariant of li in Spec

add li
¬h,τ,∅
−−−−→ f

add li
gi∧hi,mi,ri
−−−−−−−→ li+1

for each action m ∈ ΣSpec do
let gf = false

for each transition li
g,m,r
−−−→ l� in Spec do

let gf = gf ∨ g
if m �= mi then

add li
g∧hi,m,r
−−−−−−→ c

else

add li
g∧hi∧¬gi,m,r
−−−−−−−−−→ c

endif
endfor

add li
hi∧¬gf ,m,∅
−−−−−−−−→ f

endfor
endfor

Figure 5.3: Test case generation algorithm

68 Chapter 5. Compatibility in the Context of Schedulability

The sequence of transitions of T corresponds to the behavior we want to test so
the last location must be labeled Pass. If a location has an invariant h in Spec,
violating this invariant must make the test fail; thus, a transition labeled with τ and
with guard ¬h leading to Fail is added. Furthermore, no other transition may be
taken if the invariant is violated; this is ensured by conjunction of guards of all other
transitions with h.

We complete the initial linear timed automaton with allowed and forbidden be-
haviors. Every behavior which is not allowed in Spec is forbidden, so for every action,
a transition labeled by this action and whose guard is the complement of all the ex-
isting guards for this action leads to a Fail location; this guard is computed in gf .
Any trace leading to Fail is an example of behavior not allowed in the specification.

Finally, every divergence from the sequence of transitions which is allowed in Spec
leads to the Inconc location. Such a divergence can be either an action other than
the one labeling the main transition, or the same action at a different time. In the
latter case, the test is inconclusive only if the action is not taken at the right time,
implied by the guard g ∧ ¬gi.

Remark. The starting point for test case generation is a sequence of transitions
in the specification. Given a desired reachability property ϕ, we can generate such a
sequence of transitions automatically. We start by model-checking ϕ on the suspense
automaton of the specification Spec. The diagnostic trace produced by the model-
checking tool gives the sequence of moves that have to be made by this automaton
and the required clock constraints needed to reach the targeted location. This method
is similar to [19]. Instead of checking for a reachability property, one can also use the
simulation feature of a model-checker to generate specific hand-made traces.

5.1.2 Properties of the Test Cases

Intuitively, a test case must drive the execution of the system such that actions
happen in the specified order. Therefore, the execution of a test case on the system is
defined as the parallel composition of the automata of the test case and the system,
synchronizing on the same actions. We denote the product automaton by TC�MUT.
The model under test passes the test, denoted by MUT passes TC, if and only if the
Fail location is not reachable in the product TC�MUT. A test set T being a set of
test cases, the model under test passes T , denoted by MUT passes T , if and only if
for all test cases TC in T , MUT passes TC.

Soundness The soundness requirement for a test set states that it must not reject
a correct refinement. In other words, any correct refinement must pass the test set.

Definition 5.1.4 (Sound). A test case is sound (or unbiased) for the refinement
relation � if and only if

MUT � Spec =⇒ MUT passes TC

A test set T is sound if and only if all test cases in T are sound. �

5.1. Testing Refinement of Timed Automata 69

δ

δ

1 ≤ x < 3

a
∧ 3 < x ≤ 5

x := 0

x > 5
b

x > 2

c

x ≤ 2b

c

∧ x ≤ 10

∧ x ≤ 10

∧ x ≤ 10
a

Fail

Inconc

x > 2a
x ≤ 10

x = 3

x := 0
a

b
x ≤ 2

x > 10
τ

c
δ

1 ≤ x ≤ 5

x := 0
a

x ≤ 10

x ≤ 2
b

x > 2
c

x = 3

x := 0
a

x ≤ 2

b
∧ x ≤ 10

Pass
δ

Σ

x ≤ 10

δ

∆(Spec)

T

TC

δ

Figure 5.4: The suspense automaton of a specification Spec, a selected sequence of
transitions T from ∆(Spec) and the test case TC generated from T by the algorithm.
The invariant is kept in bold face in the test case only to show its effect on guards.
The transition labeled by Σ stands for three transitions labeled by a, b and c with
guard true.

70 Chapter 5. Compatibility in the Context of Schedulability

Theorem 5.1.5 (Soundness). Let Spec be a deterministic timed automaton and
T be a linear timed automaton built from a sequence of transitions in Spec. The test
case TC generated from T and Spec by the algorithm in Figure 5.3 is sound for �.

Proof. We assume that MUT does not pass TC, i.e., there is a trace in TC �MUT
that leads to the fail location lf = (l, f). This trace can be decomposed into its MUT
and TC components. Every location in TC, except for c and f , can be mapped to
a location in Spec; since Spec is deterministic, this mapping is unique. The diagram
below, shows the decomposition of this trace and the mapping to Spec.

Spec (l
S

0 ,0
S

)
d0,a0
−−−→ · · · → (l

S

i , u
S

i) �
di,ai
−−−→

⇑ ⇑ �⇑

TC (l
T

0 ,0
T

)
d0,a0
−−−→ · · · → (l

T

i , u
T

i)
di,ai
−−−→ (f, u

T

f)

⇑ ⇑ ⇑

TC �MUT (l
T

0 , l
M

0 ,0)
d0,a0
−−−→ · · · → (l

T

i , l
M

i , ui)
di,ai
−−−→ (l

M

f , f, uf)

⇓ ⇓ ⇓

MUT (l
M

0 ,0
M

)
d0,a0
−−−→ · · · → (l

M

i , u
M

i)
di,ai
−−−→ (l

M

f , u
M

f)

We show that the last step in the trace does not exist in Spec. This step is due
to a transition to the fail location f of TC which may be due to one of the following
cases, based on the test case generation algorithm in Figure 5.3.

• It might be a τ transition which implies that the delay di is not permitted by
the invariant of l

S

i in Spec; or,

• It might be that the action ai that happens at u
T

i + di leads TC to f , i.e., u
T

i

satisfies the guard ¬gf where gf is the disjunction of all guards that allow ai.
As a result, action ai is not allowed at this time in Spec.

The trace shown above does not exist in the suspension traces of Spec, while it
obviously does exist in the observable suspension traces of MUT. Therefore, MUT is
not a refinement of Spec. �

Completeness Soundness is not sufficient to ensure the relevance of test cases. A
test case with no Fail location is sound but cannot reject any system. We also need
to be sure that if the system is a wrong refinement, there exists a test case able to
reject it. In other words, any system that passes the test set is a correct refinement
of the specification. A complete test set rejects any wrong refinement in the system.

Definition 5.1.6 (Complete). A test set is complete for the refinement rela-
tion � if and only if

MUT passes T =⇒ MUT � Spec

�

5.1. Testing Refinement of Timed Automata 71

Theorem 5.1.7 (Completeness). The set of all test cases for Spec that can be
generated by the algorithm in Figure 5.3 is complete for �.

Proof. We must prove that if the system is not a refinement, there exists a test case
that makes the system fail. In other words, assuming that there exists an observable
suspension timed trace of MUT not belonging to suspension timed traces of Spec, we
must show that there exists a test case TC such that the Fail location is reachable in
the product TC�MUT.

Without loss of generality, we consider σ = t1a1 . . . tkak ∈ STracesobs(MUT). The
corresponding observable run in MUT is the following:

(l�0,0)
d1−→ (l�0, u

�
0)

a1−→ (l�1, u1) → . . .
dk−→ (l�k−1, u

�
k−1)

ak−→ (l�k, uk)

If σ is not a trace of Spec, then two cases are possible depending on the first behavior
diverging from the trace of Spec:

1. There exists i, 0 ≤ i ≤ k − 1 such that t1a1 . . . tiai ∈ STraces(Spec) and
t1a1 . . . tiaiti+1 /∈ STraces(Spec), i.e., a delay of di+1 = ti+1 − ti is not pos-
sible in Spec at state (li, ui). It means that location li has an invariant h that
is violated by ui + di+1. Let T be a sequence of i+1 transitions from Spec such
that t1a1 . . . tiai ∈ STraces(T). Let TC be the test case generated from T by
the algorithm. Since location li has an invariant h, there is a transition in TC
from li to location f whose guard is ¬h and labeled with τ . As ui + di+1 does
not satisfy h, location f is reachable in the product TC �MUT with the trace
t1a1 . . . tiaiti+1τ corresponding to the run

((l0, l
�
0),0)

d1−→ ((l0, l
�
0), u

�
0)

a1−→ . . .
di+1

−−−→ ((li, l
�
i), u

�
i)

τ
−→ ((f, l�i+1), ui+1)

2. There exists i, 0 ≤ i ≤ k − 1 such that t1a1 . . . tiaiti+1 ∈ STraces(Spec) and
t1a1 . . . tiaiti+1ai+1 /∈ STraces(Spec), i.e., the action ai+1 is not allowed in Spec
at time ti+1. It means that there is no transition in Spec from location li labeled
with ai+1 whose guard is satisfied by ui + di+1. Let T be a sequence of i + 1
transitions from Spec such that t1a1 . . . tiaiti+1 ∈ STraces(T). Let TC be the
test case generated from T by the algorithm. By construction of TC, there
is a transition from location li to location f labeled with ai+1 whose guard is
the complement of all other guards of transitions from li labeled with ai+1, let
us call it g. Since ui + di+1 does not satisfy any of these guards, it satisfies
g. Then location f is reachable in the product TC � MUT with the trace
t1a1 . . . tiaiti+1ai+1 corresponding to the run

((l0, l
�
0),0)

d1−→ ((l0, l
�
0), u

�
0)

a1−→ . . .
di+1

−−−→ ((li, l
�
i), u

�
i)

ai+1

−−−→ ((f, l�i+1), ui+1)

Therefore, the set of all test cases generated by the algorithm is complete for �. �

72 Chapter 5. Compatibility in the Context of Schedulability

A sound and complete test set is called exhaustive. Exhaustivity is in general
impossible to reach, since it needs an infinite test set. Thus we know that we cannot
in practice find all counter examples to refinement. However, we still want to ensure
a certain quality to test cases. For instance, we want to avoid useless sound test cases
where all paths lead to Pass.

Rigidness We are interested in test cases that reject models which behave in a
wrong way along the test case: the test case should not say Pass if it is possible to
detect something wrong during the test case execution. We show that any test case
generated by our algorithm can detect every wrong behaviors occurring along it. We
can actually show that we can provide a counter-example for any incorrect refinement
occurring along the sequence of transitions the test case is built from. A test case TC
is rigid if and only if it rejects any incorrect refinement along the traces of the test
case; this is formally defined below.

Definition 5.1.8 (Rigid). Given a trace σ ∈ STraces(Spec), suppose the action
or delay e ∈ Σ ∪ {δ} ∪ R+ is allowed after σ in MUT but not in Spec, i.e., σ.e ∈
STracesobs(MUT)�STraces(Spec). A test case TC is rigid for the refinement relation
� if and only if

σ ∈ Traces(TC) ∧ l0
σ
−→ li, 1 ≤ i < n ⇒ σ.e ∈ Traces(TC) ∧ l0

σ.e
−−→ Fail

�

Intuitively, if σ ends in a non-leaf location in TC, the test case TC will observe
any one-step divergence after σ. This notion is close to the notions of non-laxness in
the untimed setting [26] and of strictness in the timed setting [30] but it is stronger.
These notions state that if the system behaves in a non-conforming way during the
execution of the test case, it must be rejected. Also in our framework, every detected
divergence leads to the rejection of the system, but we can add that every divergence
is actually detected. This result directly follows from the construction of the test case.

Theorem 5.1.9 (Rigidness). Let Spec be a deterministic timed automaton and
T be a linear timed automaton built from a sequence of transitions in Spec. The test
case for Spec generated from T by the algorithm in Figure 5.3 is rigid for �.

Proof. We show that for every trace σ of the test case TC ending in a non-leaf
location, σ.e is a trace of TC leading to Fail if σ.e is a trace of MUT and not of Spec.

If e ∈ Σ ∪ {δ}, let σ = t1a1 . . . tk ∈ Traces(TC) corresponding to the run

(l0,0)
d1→ (l0, u

�
0)

a1→ (l1, u1) → · · ·
dk→ (lk−1, u

�
k−1)

where k − 1 �= n. Since σ.e is not a trace of Spec, it means that e is not allowed in
Spec at location lk−1 after a delay of dk. Then, by construction of the test case TC,

5.2. Testing Compatibility 73

there is a transition from lk−1 to the Fail location labeled with action e and whose
guard satisfies u�

k−1. Then σ.e is a trace of TC and l0
σ.e
−−→ Fail.

If e ∈ R+, let σ = t1a1 . . . ak ∈ Traces(TC) corresponding to the run

(l0,0)
d1→ (l0, u

�
0)

a1→ (l1, u1) → · · ·
ak→ (lk, uk)

where k �= n. Since σ.e is not a trace of Spec, it means that a delay of e is not
allowed in Spec at location lk, due to an invariant h at this location in Spec. Then,
by construction of the test case TC, there is a transition from lk to the Fail location
labeled with τ and whose guard ¬h satsifies uk. Then σ.e is a trace of TC and
l0

σ.e
−−→ Fail. �

5.2 Testing Compatibility

Once it has been proved that each object of a system is schedulable given a particular
behavioral interface, the schedulability of the whole system is ensured if the actual use
of the objects in this system is compatible with their behavioral interfaces. For each
object, the behavioral interface abstractly models its observable behavior in terms of
the messages it may receive and the messages it sends. In the following, B represents
the parallel composition of the behavioral interfaces, and S represents the system of
communicating objects (cf. Chapter 3).

First we don’t consider deadlines, i.e., the action a(d) in system automata (resp.
a(d)? in behavioral interfaces) is not distinguishable from a (resp. a?). Furthermore,
to make the notion of compatibility coincide with that of refinement we defined in
section 5.1, we assume that the synchronization between the actions a! and a? will
appear as the simple action a. Thus B and S represent two timed automata on the
same set of actions, while S also contains τ actions. Following the testing framework
we defined in Section 5.1, we can test compatibility of the system with respect to the
behavioral interfaces.

Definition 5.2.1 (Compatibility). The system S is compatible with the behav-
ioral interfaces B if and only if S � B. �

We defined the behavioral interfaces to be deterministic in Definition 3.2.1. This
does not reduce the expressiveness, because what is important for schedulability anal-
ysis is the timed traces in the driver. This implies the decidability of the compatibility
check (see for example [42] for a way of checking trace inclusion in Uppaal).

Recall from Section 5.1 that refinement only considers the observable behavior of
the system. Therefore, the system behavior is restricted to the communications be-
tween different objects. Thus compatibility ensures that each object is used correctly,
i.e., receives messages as specified in its behavioral interface.

74 Chapter 5. Compatibility in the Context of Schedulability

Deadlines When constructing the product of behavioral interfaces, for every syn-
chronizing pair of actions, there is one deadline (from the input action). Therefore,
every timed action in the traces of the product (denoted B) can be augmented with
an integer d showing this deadline.

Similarly, in the system (more precisely in method automata) every observable
output action (i.e., excluding self calls) has a deadline. The input actions (which
appear in the schedulers) have no specific deadlines. Therefore, in the observable
traces of the system, every timed action can also be augmented with an integer d� for
the deadline.

To include deadlines in the formal definition of compatibility, we need to add the
condition d ≤ d� for every matching action where d is the deadline in B and d� is the
deadline in the system. When submitting a test case, the usual parallel composition
is extended to allow synchronization only on actions with compatible deadlines: an
action a(d�) in the system will be able to synchronize with an action a(d) in the
behavioral interfaces if and only if d ≤ d�.

5.2.1 Schedulability

The objective of compatibility checking is to infer the schedulability of the whole
system. The objects used in a system are proved individually schedulable with respect
to their behavioral interfaces. In this subsection, we formally prove that compatibility
implies schedulability of the whole system provided that individual behavioral object
models are schedulable. Intuitively, this means that every message in the system will
be finished within the designated deadline.

Theorem 5.2.2 (System Schedulability). A system composed of a set of
objects O1, . . . , On is schedulable, if the behavioral object model for every Oi is individ-
ually schedulable (cf. Definition 4.2.5) and the system is compatible with the parallel
composition of the behavioral interfaces of the objects.

Proof. To prove this we can assume that the system is compatible but not schedu-
lable. This means that there is a trace δ = t1, a1, t2, . . . , ak, tk+1 of the system au-
tomaton (cf. Definition 3.2.7) in which one of the objects, say Oj , drives the system
to the Error state, i.e., either the queue of Oj is overflown or a task in its queue misses
its deadline. We show that this requires the existence of a trace in Bj that drives Oj

to the Error state, which contradicts the schedulability assumption.
Due to compatibility, δobs exists in the product of behavioral interfaces. This

trace can be projected onto the behavioral interface of Oj alone by removing the
delay-actions ti, ai for every ai that is not in the action set of the behavioral interface
of Oj . Call the resulting trace δobs|j . We can compute a set of traces in BOM of
object Oj as T = {ϕi : ϕiobs = δobs|j}. Since the object individually is schedulable,
these traces do not lead to Error state, i.e., given this sequence of inputs and outputs,
none of the tasks in the queue of Oj misses its deadline, nor a queue overflow occurs.

5.2. Testing Compatibility 75

On the other hand, the trace δ corresponds to a run of the system:

({l10, . . . , l
n
0 },0)

a1−→ · · ·
ak−1

−−−→ ({l1k−1, . . . , l
n
k−1}, uk−1)

ak−→ (Error, uk)

where lji is the location of object j after i steps. Formally, lji = (s,Q) where s is the
location of its currently running task and Q is the current task queue. For brevity
the delay transitions are not shown. We project the trace δ = t1, a1, t2, . . . , ak, tk+1

onto the actions of Oj , by removing the delay-actions ti, ai such that lji−1 = lji . We
represent the resulting trace as δ|j = u1, b1, u2, . . . , bh, uh+1.

By considering the definition of system automaton and BOM we can show that
δ|j ∈ T . This requires that δ|j drives Oj to the Error state, which is in contradiction
with the schedulability assumption. �

5.2.2 Executing a Test Case

We explain here why testing a model instead of a real implementation simplifies the
submission of test cases to the model and why such a method is an alternative to
exhaustive verification avoiding state space explosion.

Our model of a system consists of a set of communicating objects. Each object,
in turn, consists of methods and a scheduler automata (the scheduler contains a
queue). Therefore, a system is a network of timed automata (representing methods
and schedulers of all objects) which can run in Uppaal.

All actions except communication between objects are considered internal. Sub-
mitting a test case is then the synchronized product of the system automata and the
test case automaton, in which every observable action in the system must synchronize
with the test case.

A test case is a deterministic automaton and intuitively represents a specific or-
der of exchanging messages between the objects. Therefore, requiring the system to
synchronize with the test case resolves part of the non-determinism in the system.
However, the internal actions of different objects are non-deterministically interleaved
(more precisely, those internal actions that can happen at the same time). We would
then need to execute the test case several times to get a verdict. In fact, since the
system under test passes the test if the Fail location is not reachable in the compo-
sition of the test case and the system, using a model-checker to execute the test case
comes to check for the reachability of the Fail location. So only one check is needed.
The Uppaal model checker can provide a diagnostic trace in case of failure, showing
exactly how and when the system is not compatible.

Since the system behavior is controlled by the test case, it is possible to model-
check the system with respect to the test case even when model-checking the whole
system may not be feasible. We then avoid state space explosion by restricting veri-
fication to the behavior of the system matching the test case.

76 Chapter 5. Compatibility in the Context of Schedulability

5.3 Case Studies

Individually schedulable objects can be used in making different actual systems. How-
ever, it is necessary to make sure that each object is used correctly, i.e., according to
its behavioral interface. This can be tested by the compatibility check. Once com-
patibility is ensured, we can immediately deduce the schedulability of all objects in
the system.

We analyzed the MutEx object in Chapter 4 and showed that it is schedulable
given a customized EDF policy. In this section, we use the schedulable MutEx in
the context of dining philosophers and bridge controller systems. The schedulability
of these systems (which is deduced from compatibility) implies starvation freedom
(because a schedulable MutEx guarantees granting requests in time).

Submitting a test case When submitting a test case, we require that any com-
munication between two objects should synchronize with the test case, as well. Prac-
tically, this means that the sender object (in one of its methods), the receiver object
(in its scheduler) and the test case should synchronize. Uppaal does not support
three-way synchronization.

Since we do not want to change the specification of the model under test, we solve
the problem of three-way synchronization by splitting every action in the test case
into two steps. At the first step, the sender object synchronizes with the test case,
and immediately afterwards, the test case synchronizes with the receiver object. The
urgency between these two steps is modeled by using a ‘committed’ location in the
test case between these two steps.

Naive Philosophers

In this case, every philosopher tries to take the right fork and then the left fork. We use
MutEx as fork. The model of a philosopher is given in appendix. We test compatibility
for a system composed of four philosophers and four forks. It is well known that this
naive binding results in deadlock and starvation. In fact, that is because the MutEx

behavioral interface expects a release before MAX_REL, which never arrives.
We choose the deadlock property as the starting point for compatibility check.

We check the product of behavioral interfaces for deadlock. Such a deadlock may
occur when all philosophers have requested and been granted their left fork. We can
get a diagnostic trace from Uppaal by model checking for deadlock and use it to
build a test case. As expected this test case fails (i.e., results in a counter example
to compatibility). We can see that this naive binding is in fact incompatible with
respect to the behavioral interface of MutEx.

A Right-handed Philosopher

One solution to the deadlock problem is to let one philosopher take the right fork
first (while others pick up the left fork first). This right-handed philosopher has a

5.3. Case Studies 77

invoke[release][forkR][self]?

invoke[release][forkL][self]?

invoke[permitL][self][forkR] !
deadline=10

invoke[reqL][forkR][self]?

invoke[permitR][self][forkL] !
deadline=2

invoke[reqR][forkL][self]?

Figure 5.5: The behavioral interface for the Philosopher object.

initial

x <= 4

start[initial][self] ?
x = 0

finish[self] !

x == 4
invoke[arrive][self][self] !

deadline = 10

arrive

x <= 1

finish[self] !

start[arrive][self] ?
x = 0

x == 1
invoke[reqR][forkL][self]!

deadline = 20

permitL

x <= 1

finish[self] !

start[permitL][self] ?
x = 0

x == 1
delegate[eat][self] !

permitR

x <= 1

finish[self] !

start[permitR][self] ?
x = 0

x == 1
invoke[reqL][forkR][self]!

deadline = 20

eat

x <= 1

finish[self] !

start[eat][self] ?
x = 0

x == 1
delegate[leave][self] !

leave

x <= 3x <= 2x <= 1

finish[self] !start[leave][self] ?
x = 0

x == 3
invoke[arrive][self][self] !

deadline = 10

x == 2
invoke[release][forkR][self]!

deadline = 10

x == 1
invoke[release][forkL][self]!

deadline = 10

Figure 5.6: Modeling methods and interface of Philosopher

78 Chapter 5. Compatibility in the Context of Schedulability

FAIL

PASS

invoke[reqL][15][2]!
invoke[reqL][7][10]?

invoke[permitR][10][6]!

invoke[permitR][2][14]?

invoke[permitL][8][5]!

invoke[reqR][5][9]?

x3 >= MAX_REL

invoke[reqR][13][1]!

invoke[release][14][1]!

x3 < MAX_REL
invoke[release][6][9]?

invoke[release][13][1]!

invoke[reqR][14][2]!

invoke[reqR][6][10]?

invoke[release][15][2]!

invoke[release][14][2]!

x1 >= MAX_REL

x2 >= MAX_REL

x3 >= MAX_REL

invoke[release][7][10]?

invoke[release][12][0]!

x1 < MAX_REL
invoke[release][4][8]?

invoke[permitL][0][13]?
x2 = 0 x2 < MAX_REL

invoke[release][5][9]? invoke[permitL][9][6]!

invoke[permitL][1][14]?
x3 = 0

x3 < MAX_REL
invoke[release][6][10]?invoke[permitL][10][7]!invoke[permitL][2][15]?

x4 = 0

invoke[reqL][15][2]!

invoke[reqL][7][10]? invoke[reqL][14][1]! invoke[reqL][6][9]? invoke[reqL][13][0]!

invoke[reqL][5][8]?

invoke[permitR][10][6]!invoke[permitR][2][14]?
x3 = 0

invoke[permitR][9][5]!invoke[permitR][1][13]?
x2 = 0

invoke[permitR][8][4]!

invoke[permitR][0][12]?
x1 = 0

invoke[reqL][12][3]! invoke[reqL][4][11]? invoke[reqR][14][2]!

invoke[reqR][6][10]?

invoke[reqR][13][1]!invoke[reqR][5][9]?invoke[reqR][12][0]!invoke[reqR][4][8]?

Figure 5.7: A test case for dining philosophers without testing deadlines. Every
philosopher is given a chance in this test case to obtain the chopsticks and then
release them. Every action is split in two steps: capturing the message sent by an
object and feeding it to the queue of the receiver. Both steps happen at the same
time.

5.3. Case Studies 79

arrive

x <= 1

finish[self] !

start[arrive][self] ?
x = 0

x == 1
invoke[reqL][forkL][self]!

deadline = 20

permitR

x <= 1

finish[self] !

start[permitR][self] ?
x = 0

x == 1
invoke[reqR][forkR][self]!

deadline = 20

Figure 5.8: Modeling methods of a right-handed Philosopher

different behavioral interface as it sends reqL (to forkR) before reqR (to forkL). In this
case, the product of the behavioral interfaces is deadlock free.

We select a trace in which every philosopher can perform a cycle of getting both
forks until it releases them (see Figure 5.7). Interestingly, this test also fails because
it takes too long for the right-handed philosopher (i.e., greater than MAX_REL) to
release one of the forks (which is somehow due to the asymmetry in the model).
By increasing MAX_REL in the behavioral interface of MutEx (and accordingly the
deadlines such that it remains schedulable), this model of philosophers can become
compatible. However, increasing the deadlines implies waiting longer before a request
is granted.

A Late Philosopher

Another solution to deadlock in dining philosophers is to make one or more philoso-
phers start later than the others. This model passes the compatibility test that the
previous model failed (without increasing the deadlines). This implies the schedu-
lability of all objects in the context of this system, which in turn implies starvation
freedom.

Another result is that one can deduce an upper bound on the time between when
a philosopher starts a round (requests the two forks) until he releases them. This can
be done because we know that the requests are granted within the specified deadline,
and the time needed for the local computation in a philosopher can also be computed.

Bridge Controller

There is a bridge which can allow at most one train to pass at a time. Therefore, the
trains on the other side must wait until the bridge is free. The trains arriving on the
left side of the bridge send reqL and the trains on the right send reqR. The model of a
train (arriving on the left side of the bridge) is given in appendix. A train is different
from philosophers as every train needs only one MutEx. We use a test case in which
a train can take and release the MutEx representing the bridge.

Figure 5.11 shows the Uppaal implementation of this test case. The committed
locations have a C inside. Notice that in this figure, the inconclusive location is not

80 Chapter 5. Compatibility in the Context of Schedulability

invoke[release][bridge][self]?

invoke[permitR][self][bridge] !
deadline=10

invoke[reqR][bridge][self]?

Figure 5.9: The behavioral interface for the Train object.

initial

x <= 4

start[initial][self] ?
x = 0

finish[self] !

x == 4
invoke[arrive][self][self] !

deadline = 10

arrive

x <= 1

finish[self] !

start[arrive][self] ?
x = 0

x == 1
invoke[reqR][bridge][self]!

deadline = 20

permitR

x <= 2

finish[self] !

start[permitR][self] ?
x = 0

x == 2
delegate[pass][self] !

pass

x <= 2

finish[self] !

start[pass][self] ?
x = 0

x == 2
delegate[leave][self] !

leave

x <= 2x <= 1
x == 1

invoke[release][bridge][self]!

finish[self] !start[leave][self] ?
x = 0

x == 2
invoke[arrive][self][self] !
deadline = 10

Figure 5.10: Modeling methods of a Train arriving on the right side of the bridge.

FAIL

PASS
deadline < 7

deadline < 10

deadline < 16
deadline < 16

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == release &&
 r == 5 && s == 0)
&& s != r
invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]

! (m == permitR && r == 3 && s == 2) &&
! (m == permitL && r == 4 && s == 2) &&
s != r invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqL && r == 5 && s == 1) &&
! (m == permitR && r == 5 && s == 0) &&
s != r
invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqR && r == 5 && s == 0) &&
! (m == reqL && r == 5 && s == 1) &&
s != r
invoke[m][r][s]?

deadline >= 10
invoke[permitR][0][5]!

x1 >= MAX_REL

deadline >= 7
invoke[release][2][3]!

x1 < MAX_REL
invoke[release][5][0]?

invoke[permitR][3][2]?
x1 = 0

deadline >= 16
invoke[reqL][2][4]!

invoke[reqL][5][1]?deadline >= 16
invoke[reqR][2][3]!

invoke[reqR][5][0]?

Figure 5.11: Test case for bridge controller in Uppaal taking deadlines into account.

5.3. Case Studies 81

explicitly modeled, because we are basically interested in checking the reachability of
FAIL or PASS state. If neither is reachable, then the test is inconclusive. To capture
the disallowed actions at each location, we use the select feature of Uppaal to be able
to choose any action; in the guard, we exempt the allowed communication actions
(by specifying the message, sender and receiver) and self calls (s != r). The correct
deadline values are checked on the transitions going out of the committed locations.

The system passes this test case if the trains are not too slow (as in the Appendix).
Increasing the time for passing the bridge would render the system incompatible. In
that case, this test case fails by taking the transition that checks x1 >= MAX_REL

and leads to FAIL (from the location at the middle bottom).

Chapter 6

Schedulability Analysis of Real-Time Creol

This chapter deals with schedulability analysis of object-oriented models specified in
Real-Time Creol as introduced in Chapter 2. Although Real-Time Maude is used to
specify executable semantics of Real-Time Creol, it is not suitable for model checking
Creol. The rewrite semantics of Creol in maude is infinite state, and moreover, the
analysis results given by Real-Time Maude is incomplete for dense time models (due
to decidability constraints). We define in this section timed automata semantics for
an abstraction of Real-Time Creol suitable for model checking. This semantics maps
each method to one automaton. For practicality, we define this semantics in terms
of a translation algorithm that generates an Uppaal model containing the automata
for methods together with other necessary global declarations.

We will provide a timed automata semantics for Creol with the purpose of schedu-
lability analysis. This semantics can also be used for analyzing other real-time prop-
erties for Creol. For practicality, this semantics is given in terms of a translation
algorithm from Creol code to Uppaal input syntax, making it possible to apply Up-

paal directly on the generated automata model.
This semantics is based on the automata-theoretic framework in Chapter 3 for

modeling actors. However, Creol includes more sophisticated synchronization mecha-
nisms like processor release points and asynchronous replies. To this end, the original
framework needs to be extended.

This chapter finally shows an alternative approach to arguing about schedulability
of Creol models. Instead of automatically generating timed automata from Creol code,
one can manually create the automata models for schedulability analysis in Uppaal.
To extend the analysis results to the Creol models, then we can establish conformance
between the Creol and automata models.

6.1 Timed Automata Semantics For Creol1

In Creol a class may implement multiple interfaces. For schedulability purposes,
each static interface must be associated with a behavioral interface as in Definition

1This section is an improvement and extension of the results published in [12, 22].

83

84 Chapter 6. Schedulability Analysis of Real-Time Creol

3.2.1. For outgoing messages, the behavioral interface should capture when a reply is
expected (cf. Definition 3.2.1). The implementation of the class must be schedulable
with respect to each of its behavioral interfaces. If a class instance can take part in
protocols associated to more than one interface simultaneously, then those interfaces
should be used together (i.e., interleaved) when analyzing the class for schedulability.

The semantics of a Creol class consists of the automata for its methods. When
instantiating a class, it should also be associated with a scheduler automaton. Below
we formally define a class in the automata semantics for Creol. In this definition,
each method is considered a task and corresponds to one automaton. Furthermore,
releasing the processor creates a subtask for executing the rest of the method. Sub-
tasks do not need independent automata; they reuse the automaton for their parent
method. If a subtask is created at a conditional release point, it will be disabled as
long as the condition of the release point is not true. To model this, all tasks have
enabling conditions.

Definition 6.1.1 (Class). A class R implementing a set of behavioral interfaces
B∗ is defined as follows. Recall that each B ∈ B∗ has a set of method names MB. R
is a set {(m1, E1, A1), . . . , (mn, En, An)} of tasks, where

• MR = {m1, . . . ,mn} ⊆ M is a set of task names such that MB ⊆ MR for every
B ∈ B∗. MR includes the sub-tasks created at release points, as well as the
methods; however, there is exactly one automaton for each method.

• for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing the method containing
the task mi.

• for all i, 1 ≤ i ≤ n, Ei is the enabling condition for mi.

�

We assume that the given Creol models are correctly typed and annotated with
timing information. We use the same syntax for expressions and assignments in Creol,
as is used by Uppaal. This allows for a more direct translation.

We repeat the code for the coordinator example from Chapter 2 and will use it as
a running example. Figure 6.2 shows the automata generated for the methods run and
m1. The automata for m2 and m3 are similar. As can be seen in these automata, the
method and variable names are prefixed in order to avoid name clashes with Uppaal

keywords. Location labels in these automata refer to line numbers in the original
Creol code in Figure 6.1 (cf. function Loc in Table 6.1, Section 6.1.2).

Execution of the method run starts with the transition to location 12. The au-
tomaton delays in this location as required by the duration statement at line 12. The
‘await’ statement in line 13 may release the processor if its guard is not true. In
the case of a release point, the rest of the method is modeled as a sub-task, e.g.,
the transition from location 13 to the final location marked f in Figure 6.2 generates
a sub-task op_run1 if the guard associated to await does not hold; the processor is
released by the subsequent transition with the action finish going back to the initial

6.1. Timed Automata Semantics For Creol 85

1 interface C1 begin with Any op m1 end

2 interface C2 begin with Any op m2 end

3 interface C3 begin with Any op m3 end

4 class Coordinator implements C1 , C2 , C3 begin

5 var s1 , s2 , s3 , sync : bool

6 op i n i t ==

7 s1 := f a l s e ; s2 := f a l s e ;

8 s3 := f a l s e ; sync := true ;

9 duration (2 , 4)

10 op body == duration (2 , 5)

11 op run ==

12 duration (1 , 2) ;

13 await (s1 /\ s2 /\ s3) ;

14 duration (1 , 1) ;

15 b ! body (1 0) ; // fo rce sync c a l l wi th dead l ine 10

16 b . get ;

17 sync := f a l s e ;

18 duration (1 , 2) ;

19 await (~ s1 /\ ~s2 /\ ~s3) ;

20 duration (1 , 1) ;

21 sync := true ;

22 ! run (50) // dead l ine = 50

23 with Any op m1 ==

24 await (sync /\ ~s1) ;

25 duration (1 , 1) ;

26 s1 := true ;

27 await ~sync ;

28 duration (1 , 1) ;

29 s1 := f a l s e

30 with Any op m2 == . . . l i k e m1 . . .

31 with Any op m3 == . . . l i k e m1 . . .

32 end

y <= SPEED

y >= SPEED
invoke[0][op_m1][self][0]!

y := 0,
deadline := MD

y <= SPEED

y >= SPEED
invoke[0][op_m2][self][0]!

y := 0,
deadline := MD

y <= SPEED

y >= SPEED
invoke[0][op_m3][self][0]!

y := 0,
deadline := MD

interface C1 interface C2 interface C3

Figure 6.1: A real-time coordinator in Creol with periodic task generation in the
behavioral interfaces.

86 Chapter 6. Schedulability Analysis of Real-Time Creol

21

19

15

13

16

12

c<=2

22

f

20
c<=1

18

c<=217

14

c<=1

c>=1
c:=0

c>=1
c:=0

c>=1
c:=0

c>=1
c := 0

invoke[l_b][op_body][self][self]!
deadline:=10

resume[l_b][self]?
c:=0,labels[l_b][self]:=false

wait[l_b][self]!

!(v_s1[self]
&& v_s2[self]
&& v_s3[self])

delegate[op_run1][self]!
complete[self]:=false

v_s1[self]
&& v_s2[self]
&& v_s3[self]

start[op_run][self]?
c := 0

start[op_run2][self]?
c := 0

finish[self]!

invoke[0][op_run][self][self]!
deadline := 50

v_sync[self] := true

!v_s1[self]
&& !v_s2[self]
&& !v_s3[self]

!(!v_s1[self]
&& !v_s2[self]
&& !v_s3[self])

delegate[op_run2][self]!
complete[self]:=false

v_sync[self]:=false
start[op_run1][self]?

c := 0

(a) The automaton for method run

29

2624

f

28

c<=1

27

25

c<=1

c>=1
c:=0

c>=1
c:=0

start[op_m11][self]?
c := 0

v_sync[self]
&&!v_s1[self]

!(v_sync[self] && !v_s1[self])
delegate[op_m11][self]!
complete[self]:=false

start[op_m12][self]?
c := 0

v_s1[self]:=false

finish[self]!

!(!v_sync[self])

delegate[op_m12][self]!
complete[self]:=false

!v_sync[self]
v_s1[self]:=truestart[op_m1][self]?

c := 0

(b) The automaton for method m1

Task Enabling Condition

run true

run1 s1 ∧ s2 ∧ s3

run2 ∼s1 ∧ ∼s2 ∧ ∼s3

Task Enabling Condition

m1 true

m11 sync ∧ ∼s1

m12 ∼sync

Figure 6.2: Method automata and the enabling conditions for their subtasks.

location. This sub-task inherits the remaining deadline of the original task; this is
done by the scheduler when handling the delegate channel (see next subsection). The
enabling condition of the sub-tasks are equivalent to the guard used in the correspond-
ing release point (see tables in Figure 6.2). The sub-task op_run1 can be triggered
with the start transition entering location 14.

The method sends a local message at line 15 and blocks afterwards on its reply;
thus simulating a synchronous call. Blocking statements use the wait channel to trans-
fer the control to the scheduler, which then can check whether the label is associated
to a local call; thus it can decide whether to block the object or do a synchronous
call. To allow recursive synchronous calls, the wait transition goes back to the initial
state making the method reentrant, e.g., the transition from location 16 modeling the
statement b.get. The rest of the method is executed as it resumes to location 17.

The details of the translation are explained formally in Section 6.1.2.

6.1. Timed Automata Semantics For Creol 87

Abstractions

For the sake of simplicity, we abstract from parameter passing, however, it can be
modeled in Uppaal by extending the queue to hold the parameters. This is further
elaborated on in Section 6.1.1.

In standard Creol, different invocations of a method call t !p() are associated with
different instances of the label t; this makes it possible to distinguish the replies to
the different method invocations. For instance executing the statement t !p() twice
results in two instances of the label t. Dynamic labels give rise to an infinite state
space for non-terminating reactive systems. To be able to perform model checking,
we treat every label as a static tag. Therefore, different invocations of a method call
with the same label are not distinguished in our framework. Alternatively, one could
associate replies to message names, but this is too restrictive. By associating replies
to labels, we can still distinguish the same message sent from different methods with
different labels.

Another complication in translation is how to map a possibly infinite state Creol
model to finite state automata. We do this by abstracting away some information.
One automatic way of abstracting is as follows: variables from a finite domain can be
mapped to themselves but conditions on potentially infinite variables are mapped to
true. We do abstraction semi-automatically which is represented with the function
Abs in Section 6.1.2, i.e., the user states which variables are abstracted away. In
other words, we over-approximate the behavior of the Creol model. A more advanced
abstraction would map potentially infinite variables to finite domains in order to
narrow the over-approximation.

6.1.1 Extended Schedulers

A scheduler manages the buffering and execution of the tasks. A typical way to model
scheduler automata is shown in Figure 6.3. A transition numbered α in this figure is
referred to as tα in the text. This model is generic except for the strategy, explained
below. The keyword self holds the current object identifier. Declarations related
to the scheduler automata including function definitions are given at the end of the
chapter.

Queue The queue has the size MAX. A scheduler automaton uses multiple arrays
of size MAX to implement the queue and its clocks. The message in q[i] is received
from object s [i]; and, ca[i] points to a clock in array x that records how long the
message has been in the queue: this message should be processed before the clock
x[ca[i]] reaches its deadline value d[ca[i]] . A clock x[i] may be assigned to more than
one task, the count of which is stored in counter[i]. We have shown in Chapter 4
that schedulable objects need bounded queues, i.e., with a proper MAX value, queue
overflow implies nonschedulability. An Error location is reachable when a task in the
queue explicitly misses its deadline (t14). Support for parameters can be added with
an array p such that p[i][j] holds the jth parameter of q[i].

88 Chapter 6. Schedulability Analysis of Real-Time Creol

Running

1

 6

2

3
 7

 8

 4
 9
 5

 10

complete[self] == false
shift(prev)

complete[self] == true

reply[l[prev]][s[prev]]!
labels[l[prev]][s[prev]] := true,
shift(prev)

tail <= MAX
resume[res][self]!
complete[self]=true,
run = active, res=0

i:int[0,LBL]
tail <= MAX

wait[i][self]?
syncORblock(i)

start[op_init][self]!

tail <= MAX && tail > 1 &&
forall (m:int[0,MAX-1])
 (m == run) || (m >= tail)
 || !isEnabled(q[m], self)
finish[self]?
prev := (contextSwitch(MAX))

initialize()

tail == 1
finish [self] ?
prev := 0

tail <= MAX
start[q[run]][self] !
complete[self]=true,
active = run

i : int[0,MAX-1]
tail<=MAX && i < tail &&
i != run && isEnabled(q[i],self) &&
(forall (m : int[0,MAX-1])
 (m==run || m>=i || !isEnabled(q[m],self) ||
 (x[ca[i]] - x[ca[m]] > d[ca[i]] - d[ca[m]])
) && forall (m : int[0,MAX-1])
 (m==run || m<=i || !isEnabled(q[m],self) ||
 m >= tail ||
 (x[ca[i]] - x[ca[m]] >= d[ca[i]] - d[ca[m]])
)) finish [self] ?
prev := (contextSwitch((i < run) ? i : i-1))

Error

Running

11

12

13

 14

i:int[0,LBL]
reply[i][self]?
invokeReply(i)

msg : int[0,MSG]
delegate[msg][self]?
insertDelegate(msg)

i : int[0,MAX-1]
counter[i] > 0
&& x[i] > d[i]

lbl : int[0,LBL],
msg : int[0,MSG],
sender : int [0,OBJ-1]
invoke[lbl][msg][self][sender]?
insertInvoke(msg, sender, lbl)

Figure 6.3: An Earliest-Deadline-First scheduler modeled in Uppaal (details ex-
plained in the text).

Channels The start channel is for starting execution of a task (t1 and t4), which
later gives up the processor with a signal on finish channel (t6, t7 and t8). After
a task has finished a reply signal is sent back to the caller (t9); in case of release
points (where complete is false) no signal is sent (t10). To handle replies for self-calls,
sending (t9) and receiving (t13) must be modeled in separate automata. The invoke

channel is for sending/receiving messages (async call); t11 generates a new task with
the deadline given in the variable deadline by putting the message name, sender and
the associated label in the queue. The delegate channel generates a sub-task (t12),
which inherits the deadline of the parent task. The blocking statement t .get passes
control to the scheduler using wait channel (t3); this allows the scheduler to perform a
synchronous call when needed. A blocked task is resumed using resume channel (t2).
To avoid context-switch delays, start and resume defined urgent.

Start-up An object is initialized by putting ‘init’ and ‘run’ methods in its queue
(t5), immediately followed by executing the ‘init’ method (t4). During ‘init’, the object
may receive other messages which are allowed to compete with the ‘run’ method for
execution.

Context-switch Tasks can have enabling conditions, which may include the avail-
ability of a reply, but does not depend on clock values. Therefore, we can define
in Uppaal a boolean function isEnabled to evaluate the enabling condition for each

6.1. Timed Automata Semantics For Creol 89

method when needed. Whenever a task finishes, the scheduler selects another enabled
task, based on its strategy (t6), sets run to point to this task, and executes it (t1).
There are two special cases: (1) the last task in the queue has just finished (t8); since
run is zero and q[0] gets EMPTY after shift , the processor becomes idle until a new
task arrives (t11). (2) all remaining tasks in the queue are disabled (t7); run is set
to MAX to block the processor. In this case, the object may be enabled either by
receiving a new task (t11) or receiving a reply signal (t13). The functions insertInvoke

and invokeReply take care of these cases.

Labels We handle labels with a global boolean array labels , and assuming that
label names are unique in each class, we can define constants for each label such
that labels [t][self] uniquely identifies label t. When the condition in a release point
includes t?, i.e., waiting until the reply to the call with label t is available, we replace
t with labels [t][self] which is set to true by the scheduler when called method finishes
(t9). To distinguish completion of a method from processor release points, we use the
variable complete. The variable complete is true by default and will be reset to false at
release points (cf. rel and crel rules in Figure 6.5).

Synchronous call Executing the blocking t .get statement (wait channel) on a re-
mote call blocks the object until a reply is received. However, if t is associated to a
local call, the scheduler will start the called method (modeling synchronous function
call); upon termination of the called method, the scheduler will resume the blocked
process (resume channel). In order to allow nested synchronous invocations, each mes-
sage in the queue stores a pointer to the caller method. As explained in the next
section, the blocked method goes back to its initial location allowing recursive syn-
chronous function calls. Note that this recursion is bounded with the queue length.

Scheduling strategy The selection strategy is specified as a guard on t6. Parts of
this guard ensure that we consider only non-empty queue elements (i < tail) contain-
ing an enabled task (by calling isEnabled) different from the currently running one (run).
Figure 6.3 compares the remaining deadline of task i, obtained by d[ca[i]] − x[ca[i]] ,
with other tasks in the queue; task i is selected when its deadline is strictly less than
that of task m for m>=i and less than or equal for m<=i. By replacing deadlines
with a priori defined task priorities, we can model fixed-priority-scheduling. By fixing
run to zero, we obtain first-come-first-served strategy. Nevertheless, the model is not
restricted to these strategies.

6.1.2 A Formal Encoding

We define timed automata semantics for Creol in terms of a translation algorithm. The
input to this algorithm is a Creol model consisting of class and interface specifications.
The output is one Uppaal model for each class; this Uppaal model consists of only
a set of timed automata templates (TAT), one for each method, and the global
declarations (Dec). The system declarations is not generated automatically, because

90 Chapter 6. Schedulability Analysis of Real-Time Creol

Function Input Output
��

.
��

: M → A A method A timed automaton
��

.
��

: S × L × L →

2T × 2L×G × 2N×G

A Creol statement, two
automata locations

Part of a timed automaton includ-
ing transitions and location invari-
ants, plus a set of enabling conditions

Loc : L → S A location in a method
automaton

A Creol statement in the method
body

pre : N → N a variable or label name prefixed name

LabelReset : G → 2U A guard Uppaal update statements

Abs : E → E Creol expression or label Uppaal expression

labels : ∗ → L overloaded label names

methods : ∗ → N overloaded method names

Table 6.1: Summary of functions used in translation

it depends, among others, on the choice of scheduling strategy. We formally define
the translation for a class:

[[class C (a∗) implements i∗ begin v∗ m∗ end]] = (Dec,TAT)

where timed automata templates are TAT = {(Beh(I), C_I, Args, Local(I)) | I ∈ i∗} ∪

{(
��

op N == S
��

, C_N , Args, {}) | “op N == S” ∈ m∗}. Functions Beh(I) and Local(I)
return the user defined automata and their local declarations for the interface with the
name I. All automata templates have as arguments: Args = {const int arg; | arg :

Type ∈ a∗} ∪{const int self;}. First we define automata templates for methods and
later global declarations Dec in this section.

Automata Templates Given a method declaration ‘op N == S’, the cor-
responding timed automaton is computed as shown in Figure 6.5 by computing
��

op N == S
��

, which uses the overloaded function
��

.
��

to compute the automaton
transitions. A cointerface given using with keyword is ignored. The intuition be-
hind the translation function is given in Figure 6.4 using a notation similar to graph
transformation rules. In the generated method, the locations l0 and f refer to the
unique locations representing the initial and final location of the method automaton,
respectively. The final location f is urgent and is connected to l0 to allow multiple
incarnations of the method execution.

The function
��

S
��

a,e
translates the statements S to a set of transitions that start

from the location a and finish at e, possibly via some newly created locations. This
function returns a triple (L, T, I, E) where L is a set of locations, T is a set of transi-
tions, I is a function that assigns invariants to locations (changed by the delay rule),
and E is a function that gives the enabling conditions for subtasks (generated by
release points, namely, rel and crel rules), e.g., see tables in Figure 6.2. In Figure
6.5, we do not write I and E for rules that return empty sets for these elements;
otherwise, they are written as function assignments.

6.1. Timed Automata Semantics For Creol 91

Except for delay transitions, all other transitions take zero time; this is modeled
by making their source location urgent. Notice that by using urgent locations, rather
than committed locations, we allow for interleaving of the local transitions of parallel
objects.

The partial function Loc : L → S assigns to the locations of a method automaton,
their corresponding statements in the method body. This function is not defined for
the initial and the urgent final locations in the generated method automata. With
each automaton corresponding to exactly one method, one can use this function to
trace from automata back to methods. The intuition is shown in Figure 6.4 as a label
on new locations on the right hand side of seq , if and while rules.

The translation uses some helper functions. With function pre, all variable and
label names are prefixed to prevent possible clash with the keywords of Uppaal. As
explained in the scheduler, there is a global boolean array labels. For every label t
that is checked in guard g, LabelReset(g) resets the corresponding element in labels to
false. Abs(ex) is the abstract of the expression or assignment ex with proper prefixing
of the variables; the abstract must map the expressions to a finite domain, mapping
everything to true is correct but not optimal. If the domains of the variable are finite
we can leave them unchanged, however if they are possibly infinite then we must
approximate them. The user of our translation can decide the exact approximation,
as it will need to balance between state-space size and accuracy. A possible definition
of these functions is given in Figure 6.6.

Next, we explain the automata expansion rules in Figure 6.5 with the help of the
example in Figure 6.2.

seq The sequential composition of two statements is translated to two sequential tran-
sitions. The results of applying

��

.
��

on these statements recursively is then put

together using the special union operator: (L1, T1, I1, E1)
�

(L2, T2, I2, E2) =
(L1 ∪ L2, T1 ∪ T2, I1 ∪ I2, E1 ∪ E2). This rule is applied until

��

.
��

is applied on
basic statements, explained below.

delay & skip These rules do not change any variables and thus do not affect the
functional behavior of the model. A duration statement models delay in our
specifications. The best-case and worst-case of the delay are translated, respec-
tively, to a guard and an invariant using the clock c; see locations 12, 14 and 18
in Figure 6.2. Notice that the clock c is reset on this transition as well as start
and resume transitions. By using urgent locations, this clock remains zero in
other locations.

assign This transition uses the Abs function to properly update the values of the
variables that are not abstracted away. In the coordinator example we do not
abstract from any variables. Locations 17 and 21 are examples of assignment.

call & call2 A call is translated to an invoke channel. For example, location 15 shows
sending the message op_body with the label l_b. If no label is used, i.e., call
rule, the default value zero is used.

92 Chapter 6. Schedulability Analysis of Real-Time Creol

S

finish[self]!

Sstart[N][self]?
c:=0

ea
S1 ; S2 seq

=⇒ eS2a S2S1

ea
duration(b,w) delay

=⇒ ea

c<=w

c>=b c:=0

ea
skip skip

=⇒
ea

ea
v := ex assign

=⇒
ea

Abs(v := ex)

ea
! rec.m(d) call

=⇒ ea
invoke[0][m][rec][self]!

deadline := d

ea
t ! rec.m(d) call2

=⇒ ea
invoke[t][m][rec][self]!

deadline := d

ea
t.get get

=⇒ e

a

resume[t][self]?
LabelReset(t?),
c:=0

wait[t][self]!

ea
release rel

=⇒

e

fa

start[N1][self]?
c := 0

delegate[N1][self]!
complete[self]:=false

ea
await g crel

=⇒
f

e

a

start[N1][self]?
c := 0

Abs(!g)
delegate[N1][self]!

complete[self]:=false

Abs(g) LabelReset(g)

ea
if (g) then S else T if

=⇒
T;e

e

S;e

a

T

Abs(!g)

S

Abs(g)

ea
while (g) do S od while

=⇒
e

S;e

a
Abs(!g)

S
Abs(g)

Figure 6.4: Automata expansion rules: the intuition in graph rewriting

6.1. Timed Automata Semantics For Creol 93

��

with N � op N == S
��

=
��

op N == S
��

= (L ∪ {l0, a, f}, l0, T ∪ T1, I) where
��

S
��

a,f
= (L, T, I, E); and, T1 = {l0

start[N][self]?
−−−−−−−−−→

c:=0
a, f

finish[self]!
−−−−−−−→ l0}; and,

Location f and every location l ∈ L such that I(l) is not defined is urgent.

New locations: l0 (initial), f and a such that Loc(a) = S

seq

��

S1;S2

��

a,e
=

��

S1

��

a,l

�
��

S2

��

l,e

New location: l such that Loc(l) = S2

delay
��

duration(b, w)
��

a,e
= {a −−−−−−−→

c≥b ; c:=0
e} ∧ I(a) = (c ≤ w)

skip
��

skip
��

a,e
= {a → e}

assign
��

v := ex
��

a,e
= {a −−−−−−−→

Abs(v:=ex)
e}

call
��

!rec.m(d)
��

a,e
= {a

invoke[0][pre(m)][pre(rec)][self]!
−−−−−−−−−−−−−−−−−−−−−→

deadline:=d
e}

call2
��

t!rec.m(d)
��

a,e
= {a

invoke[pre(t)][pre(m)][pre(rec)][self]!
−−−−−−−−−−−−−−−−−−−−−−−−→

deadline:=d
e}

get
��

t.get
��

a,e
= {a

wait[pre(t)][self]!
−−−−−−−−−−−→ l0, l0

resume[pre(t)][self]?
−−−−−−−−−−−−−→
LabelReset(t?),c:=0

e}

rel

��

release
��

a,e
= {a

delegate[N1][self]!
−−−−−−−−−−−−−→
complete[self]:=false

f, l0
start[N1][self]?
−−−−−−−−−−→

c:=0
e} ∧ E(N1) = true

where f is the unique final location and N1 is a new name.

crel

��

await g
��

a,e
= {a

delegate[N1][self]!
−−−−−−−−−−−−−−−−−−−−→
Abs(!g) ; complete[self]:=false

f, a −−−−−−−−−−−−−−−→
Abs(g) ; LabelReset(g)

e,

l0
start[N1][self]?
−−−−−−−−−−→

c:=0
e} ∧ E(N1) = Abs(g)

where N1 is a new name, l0 is the initial location and f is the unique final location.

if

��

if (g) then S else T
��

a,e
=

��

S
��

l1,e

�
��

T
��

l2,e

�

({l1, l2}, {a −−−−→
Abs(g)

l1, a −−−−−→
Abs(!g)

l2}, {}, {})

New locations: l1 and l2 such that Loc(l1) = S;Loc(e) and Loc(l2) = T ;Loc(e)

while

��

while (g) do S od
��

a,e
=

��

S
��

l,a

�

({l}, {a −−−−→
Abs(g)

l, a −−−−−→
Abs(!g)

e}, {}, {})

New location: l such that Loc(l) = S;Loc(e)

Figure 6.5: Automata expansion rules: Formal specification. The union of tuples is
defined as (L1, T1, I1, E1)

�

(L2, T2, I2, E2) = (L1 ∪ L2, T1 ∪ T2, I1 ∪ I2, E1 ∪ E2).

94 Chapter 6. Schedulability Analysis of Real-Time Creol

Abs(ex) = ex{labels[pre(t)][self]/t?}{pre(x)[self]/x} for variables x and labels t

pre(t) = l_t for labels t
pre(x) = v_x for variables x
pre(m) = op_m for method names m
pre(r) = o_r for object name r

LabelReset(g ∧ g�) = LabelReset(g) ∪ LabelReset(g�)
LabelReset(g ∨ g�) = LabelReset(g) ∪ LabelReset(g�)
LabelReset(t?) = Abs(t?) = false;

LabelReset(b) = {}

Figure 6.6: Helper functions in encoding automata templates.

get The statement t .get stops the current method and triggers the scheduler (on wait

channel). If t is associated to a local call, the scheduler immediately starts the
called method (i.e., sync call). This can be a recursive call because the get rule
moves the method to the initial location l0 (transition from 16 to l0 in Figure
6.2). If t refers to a remote call, the object is blocked (no method is executed
while the object is blocked). Notice that l0 is not urgent and thus execution of
a blocking get can take any amount of time; and resume is an urgent channel,
therefore, the caller is resumed as soon as the callee has finished and a reply
signal is available (transition from l0 to 17 in Figure 6.2).

rel This rule releases the processor by moving the control to the final locationf ;
therefore, the current task will finish. Instead, it generates a subtask N1 with the
enabling condition true, i.e., the subtask is immediately enabled. The transition
start [N1][self]? defines the subtask N1 such that it will execute the rest of the
original task

crel With the await g statement, if g holds, the processor is not released and the
method continues (e.g., transition 25 to 26 in Figure 6.2). If g does not hold,
it releases the processor as in the rel rule. For example in Figure 6.2, control
moves from location 13 to the final location f , and the generated subtask is
modeled with the transition from l0 to 14.

if & while These rules create a branch based on the valuation of the abstract of
guard g. This abstraction could turn this branch into a nondeterministic choice.
The if rule makes sure that both branches are joined afterwards, whereas the
while rules closes it as a loop.

Global Declarations In Figure 6.7, we define some helper functions we need for
computing the global declarations Dec for a given Creol class with the signature
‘class C (a∗) implements i∗ begin v∗ m∗ end’. We use E(m) as a short hand to
return the element E returned by

��

m
��

for m ∈ m∗.

6.1. Timed Automata Semantics For Creol 95

starts = {E(m) | m ∈ m∗}
tasks = {N | op N == S ∈ m∗} ∪ {n | (n, en) ∈ E(m),m ∈ m∗}

labels =
�

labels(S) for op N == S ∈ m∗

labels(s;S) = labels(s) ∪ labels(S)
labels(if b then S1 else S2) = labels(S1) ∪ labels(S2)
labels(while b do S od) = labels(S)
labels(t!x.m(d)) = {t}
labels(_) = ∅

methods =
�

methods(S) for op N == S ∈ m∗

methods(s;S) = methods(s) ∪methods(S)
methods(if b then S1 else S2) = methods(S1) ∪methods(S2)
methods(while b do S od) = methods(S)
methods(t!x.m(d)) = {m}
methods(_) = ∅

Figure 6.7: Helper functions in encoding global declarations. An underscore represents
other possibilities as parameter.

Given a minimum dn, a maximum dx and an initial value di for deadline values, the
global declarations Dec are defined as follows. The global declarations Dec consists
of the following elements. For easier reading, we put them in a list. Treating each
item as a set, Dec is formally defined as their union. The functions IntT , IntL and
IntM below produce unique integer values, starting from zero (IntL starts from 1)
and incrementing by one every time they are called.

• global constants. The # function returns the number of elements in a set.
const int MSG = Max (#(methods \ tasks),#(tasks));

const int nObj = #(a∗) + 1;

const int LBL = #(labels);

• the global clock used by all method automata and the deadline variable.
clock c; meta int[dn, dx] deadline;

• a unique number for each task and subtask.
{const int t = IntT (); | t ∈ tasks}

• a unique number for each label, and a boolean array.
{const int l = IntL(); | l ∈ labels}

bool labels[LBL+1][nObj];

• an array for each variable, either a bool or an int.
{type name [nObj]; | name : type ∈ v∗ }

• a bool to indicate method completion, helping scheduler decide whether to issue
a reply signal.
bool complete[nObj];

96 Chapter 6. Schedulability Analysis of Real-Time Creol

• a unique number for each method called on the objects provided as arguments.
{const int m = IntM (); | m ∈ methods \ tasks }

• the channels used by the scheduler.

chan delegate [MSG+1][nObj];

chan invoke [LBL+1][MSG+1][nObj][nObj];

urgent chan start [MSG+1][nObj];

chan finish[nObj];

chan wait[LBL+1][nObj];

urgent chan resume[LBL+1][nObj];

chan reply[LBL+1][nObj];

• code to help the scheduler start the tasks correctly.
bool isEnabled (int msg, int self) {

{if (msg == n) return en; | for all (n, en) ∈ starts }

return true;

}

6.1.3 End-to-end Deadlines

When calling a method with a deadline and waiting for the response later in the
method, we are, in fact, enforcing an end-to-end deadline on the method call. This
deadline must be enforced on the behavioral interface for the arrival of the reply signals
(with the assumption that only individually schedulable objects will be used together).
This is crucial to the schedulability of the caller object. If no such restriction on the
arrival of the reply signal is enforced, the caller may be provided with the reply
too late, therefore it will miss the deadline required by the method that is waiting
for the reply. This restriction is reflected in the extended compatibility check (cf.
Section 6.2).

In this thesis, we did not consider any network delays which may contribute to
the end-to-end deadlines of method calls. Network delays can be added by means of
another automaton modeling the network or by means of a coordination languages
like Reo [4] extended with Quality-of-Service analysis [5].

MutEx Example. As another example for the translation algorithm, we use the
MutEx example. We repeat the Creol code to make reading and comparison easier.
Figure 6.9 shows the automaton generated for the method reqL from Figure 6.8. The
automaton for reqR would be similar. Since reqL has two release points, it results
in three tasks; one for the method itself, and one for each possible subtask generated
by releasing the processor. Figure 6.10 shows the function modeling the enabling
conditions for MutEx. Since the enabling condition for the main tasks is true, it is
handled as the default case in this function.

6.1. Timed Automata Semantics For Creol 97

1 class MutEx (l e f t : Entity , r i g h t : Ent ity) begin

2 var taken : bool

3 op i n i t i a l ==

4 duration (1 , 1) ; taken := f a l s e

5 op reqL ==

6 duration (1 , 2) ; await ! taken ;

7 duration (4 , 4) ; taken := true ; l ! l e f t . grant (1 0) ; await l ? ;

8 duration (2 , 3) ; taken := f a l s e

9 op reqR ==

10 duration (1 , 2) ; await ! taken ;

11 duration (4 , 4) ; taken := true ; r ! r i g h t . grant (1 0) ; await r ? ;

12 duration (2 , 3) ; taken := f a l s e

13 end

Figure 6.8: The Creol code for MutEx.

6

c<=2

f 8
c<=3

7

c<=4

start[op_reqL2][self]?
c:=0

start[op_reqL1][self]?
c:=0

c>=2

c:=0

c>=4
c:=0

c>=1
c:=0

v_taken[self]
delegate[op_reqL1][self]!

start[op_reqL][self]?
c := 0 !v_taken[self]

finish[self]! v_taken[self] := false

!labels[l_l][self]
delegate[op_reqL2][self]!

labels[l_l][self]

labels[l_l][self]:=false

invoke[l_l][op_grant][o_Left][self]!

v_taken[self] := true

Figure 6.9: The automaton generated for the method reqL above; reqR is similar
to reqL. The enabling conditions for reqL, reqL1 and reqL2 are true, !taken and l?,
respectively.

1 bool i sEnabled (i n t msg , i n t s e l f) {

2 i f (msg == reqL1) return ! v_taken [s e l f] ;

3 else i f (msg == reqL2) return l a b e l s [l_l] [s e l f] ;

4 else i f (msg == reqR1) return ! v_taken [s e l f] ;

5 else i f (msg == reqR2) return l a b e l s [l_r] [s e l f] ;

6 return t rue ; // other t a s k s

7 }

Figure 6.10: The function capturing enabling conditions for MutEx tasks.

98 Chapter 6. Schedulability Analysis of Real-Time Creol

6.2 Checking Compatibility in Full Creol

Once schedulability of individual objects is established, these objects can be put
together to form a system. Then we should check if the usage of the objects in the
system is compatible with their behavioral interfaces.

A complication in forming a system is making methods send reply signals. If when
calling a method, a label t is assigned to the method call, the called method should
set the variable corresponding to this label, namely labels [l_t], to true and send a
reply signal by synchronizing on the reply channel when the method finishes. This is
done by the scheduler as explained in previous sections. In individual object analysis,
reply signals for outgoing messages should be captured in the behavioral interface;
this will include an upper bound for receiving the replies in time.

When testing for compatibility, we should also check if the correct replies to meth-
ods are received. To do so, the objects need to synchronize with the test case on reply

channel (as well as invoke and delegate channels). In the case of sending messages,
the test-case checks the compatibility of the deadline values. For replies, we check if
the correct variable (corresponding to the correct label) is set to true. Compatibil-
ity thus ensures that replies arrive in time with respect to the end-to-end deadline
requirements (cf. Section 6.1.3).

FAIL

PASS

r:int[0,OBJ-1]
r != 5

reply[r]?

r:int[0,OBJ-1]
reply[r]?

r:int[0,OBJ-1]
reply[r]?

r:int[0,OBJ-1]
reply[r]?

!reqR_r[2]
deadline < 10

deadline < XD
deadline < XD

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]

s != r
invoke[m][r][s]?

m:int[0,MSG], s:int[0,OBJ-1], r:int[0,OBJ-1]
! (m == grant && r == 3 && s == 2) &&
! (m == grant && r == 4 && s == 2) &&
s != r invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqL && r == 5 && s == 1) &&
! (m == grant && r == 5 && s == 0) &&
s != r
invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
!(m == reqR && r == 5 && s == 0) &&
!(m == reqL && r == 5 && s == 1) &&
 s != r

invoke[m][r][s]?

deadline >= 10
invoke[grant][0][5]!

x1 >= d_r

reqR_r[2]
reply[2]!

x1 < d_r
reply[5]?

invoke[grant][3][2]?
x1 = 0

deadline >= XD
invoke[reqL][2][4]!

invoke[reqL][5][1]?
deadline >= XD
invoke[reqR][2][3]!

invoke[reqR][5][0]?

Figure 6.11: Test case for compatibility including reply to messages

Figure 6.11 shows a test case for checking the compatibility of a system using
the MutEx object. In this system, the deadline for grant method is assumed to be
10 in the behavioral interface of the Entity class. The test case does not show the
Inconc location (cf. Chapter 5). Any message or reply not foreseen in the behavioral
interfaces will lead to Fail.

6.3. Checking Conformance between Real-Time Creol and Timed Automata 99

6.3 Checking Conformance between Real-Time Creol

and Timed Automata2

In this section, we explain an alternative approach to schedulability analysis of Creol
models. First we explain the overall methodology for the schedulability analysis of a
Real-Time Creol model. We consider open systems and model the real-time pattern
of incoming messages in terms of a timed automaton (the behavioral interface of the
Creol model). Next we develop on the basis of sequence diagrams, which describe
the observable behavior of the Creol model, automata abstractions of its overall real-
time behavior. We analyze the schedulability of the product of this abstraction and
the given behavioral interface (in for example Uppaal). To ensure that the analysis
results carry over to the Creol model, we define conformance between the Real-Time
Creol model and its timed automaton abstraction with respect to the given behav-
ioral interface in terms of inclusion of the timed traces of observable actions. This
alternative approach is useful when the timed automata semantics presented before is
not abstract enough, or if a Creol class contains dynamic behavior like object creation
(which is not supported by the automatic automata generation algorithm).

More specifically, let C denote a Creol model, i.e., a set of Creol classes, B a timed
automaton specifying its behavioral interface and A a timed automata abstraction
of the overall behavior of C. We denote by O(A � B) the set of timed traces of
observable actions of the product of the timed automata A and B. The set of timed
traces of the timed automaton B we denote by T (B). Further, given any timed trace
θ ∈ T (B), the Creol class Tester(θ) denotes a Creol class which implements θ (see,
for example, the class Tester in Figure 6.13). This class simply injects the messages
at the times specified by θ. We denote by O(C,Tester(θ)) the set of timed traces of
observable actions generated by the Real-Time Maude semantics of the Creol model
C driven by θ. We now can define the conformance relation C ≤B A by

O(C,Tester(θ)) ⊆ O(A � B),

for every timed trace of observable actions θ ∈ T (B).

In this section we illustrate a method for testing conformance by searching for
counter-examples to the conformance in terms of our running example. Note that a
counter-example to the above conformance consists of a timed trace θ ∈ T (B) such
that O(C,Tester(θ)) \ O(A � B) �= ∅. We explain this section with the help of the
thread-pool example. The Creol code for thread-pools is defined in Section 2.3.2 and
the automata models are defined in Section 3.4; we use the parallel threads model.
An intricacy in this section is the different formal semantics of the two levels, namely,
Creol’s semantics in rewrite logic and time automata.

2This section is an improvement and extension of the results published in [15].

100 Chapter 6. Schedulability Analysis of Real-Time Creol

6.3.1 Testing Conformance

For testing conformance, we take a trace from the abstract automata model and
augment it with ready set information, thus showing allowed behavior at each step
along the given trace; then we check whether the concrete Creol model stays within the
allowed behavior when restricted to the particular trace. A complication in computing
ready sets is the nondeterminism present at both levels.

To generate a test case, we first obtain a timed trace θ = (t1, a1), . . . , (tn, an)
by simulating the abstract timed automaton model A together with the behavioral
interface B. To this end, we add a dummy automaton with a fresh clock global and
an integer time which is incremented every time unit. This way we can find the
absolute time interval in which every action in the trace has happened. In order to
be able to search for a counter-example to conformance, we augment the trace with
ready sets of observable actions w.r.t. the behavioral abstraction of the Creol model.

Definition 6.3.1 (Ready Sets). Given a trace θ = (t1, a1), . . . , (tn, an), the
ready set Ri for each step i is defined as follows:

Ri = {b | ∃tb ≤ ti . (t1, a1), . . . , (ti−1, ai−1)(tb, b) ∈ O(A � B)}

We further define ready traces of θ with respect to A � B as:

OR(θ) = {(t1, a1), . . . , (ti−1, ai−1)(tb, b) | b ∈ Ri ∧ ti−1 ≤ tb ≤ ti}

�

The ready set Ri is the set of all possible actions b for which there exists tb ≤ ti
such that the trace θb = (t1, a1), . . . , (ti−1, ai−1)(tb, b) is an observable trace in A � B.
In presence of nondeterminism, this definition takes every trace that partly matches
θ into account. This is different from the normal definition of ready sets that record
the deviating actions only along the main trace.

6.3.2 Generating a Test Case

Suppose a_f is a flag denoting whether the observable action a has occurred in the
interval between ti−1 and ti. The observable action a is in Ri if the following timed
reachability property holds:

“E<> ti−1 <= global && global < ti && a_f”,

Instead of checking this property directly for every action, we encode it into one
automaton as explained below (see Figure 6.12 for an example). This way, we avoid
the need to add flags like a_f for every observable action and to go deep in the model
to set it true when the corresponding action happens.

The algorithm to construct the automaton in Figure 6.12 for generating ready
sets is as follows. Given a trace θ = (t1, a1), . . . , (tn, an), we first create a linear
timed automaton Tθ with the locations L = {li | 1 ≤ i ≤ n + 1}. By going from

6.3. Checking Conformance between Real-Time Creol and Timed Automata 101

R1 R2 R3

R6
R5 R4

FINAL

r:int[0,TRD-1]
global <= 2

finish[r][0]?
r:int[0,TRD-1]
global <= 5

finish[r][0]?
r:int[0,TRD-1]
global <= 7

finish[r][0]?

r:int[0,TRD-1]

global < 12
finish[r][0]?

r:int[0,TRD-1]

global < 10
finish[r][0]?

r:int[0,TRD-1]

global < 8
finish[r][0]?

finish[2][0]! global == 12
finish[2][0]?

finish[1][0]! global == 10
finish[1][0]?

finish[0][0]! global == 8
finish[0][0]?

global == 7
invoke[task][0][0]!
deadline = D1

global == 5
invoke[task][0][0]!
deadline = D2

global == 2
invoke[task][0][0]!
deadline = D1

Figure 6.12: Generating ready sets.

li to li+1, this automaton should ensure that action ai happens at time x == ti.
This is done differently for inputs and outputs. Since the abstract Uppaal model
A (i.e., excluding the behavioral interface) is input-enabled, the input actions only
need to inject the task at the required time; namely with a transition from li to li+1

with an invoke action. This transition should provide the required deadline. The
output action finish is, however, produced by a task and consumed by the scheduler.
To intercept this action, this automaton first mimics the scheduler by accepting the
action, i.e., finish?, and then it mimics the task by issuing finish!.

We add to Tθ a location Rij for each time interval between ti−1 and ti and for
each observable output action oj ∈ O(A � B), with one transition from li to Rij

with a guard global ≤ ti accepting the output action oj ; if ai is the same as oj , this
transition is guarded by global < ti. In our example, there is only one observable
output action namely finish, but since a task can be taken by different threads,
the finish action can be issued by different threads; therefore, the transitions for
receiving this action should allow any thread identity r between 0 and TRD-1.

Finally, the reachability of the location Rij implies that oj must be included in
the ready set Ri. We observe that in our example, only R3 and R4 are reachable; this
is due to the possibility of finishing the first task instance in the interval [7, 8]. The
consequent task instances can finish in the intervals [10, 11] and [12, 13], therefore,
their completion does not contribute to an action in the ready sets. The test case
including the ready sets and deadlines is:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish0}) (8,finish0, {finish1})

(10,finish1, {}) (12,finish2, {})

With a test case generated as explained above, we can find counter-examples to
conformance. To do so, we use the test case as a driver for the Creol class and check
whether the observable output behavior of the Creol class, given the input behavior
of the test case, is included in the ready set at each step. The theorem below shows
the soundness of this testing method.

Theorem 6.3.2 (Soundness). Any action in O(C,Tester(θ)) that is not in OR(θ)
is a counter-example to refinement.

102 Chapter 6. Schedulability Analysis of Real-Time Creol

class Tester (mut : ResourcePool) begin

op run ==

duration (2 , 2) ;

! mut . invoke (6) ;

duration (3 , 3) ; // 5−2 = 3

! mut . invoke (6) ;

duration (2 , 2) ; // 7−5 = 2

! mut . invoke (6)

end

Figure 6.13: Tester Class

The proof follows from the definition of ready sets such that every action possible
in A � B given a prefix of θ is included in the corresponding ready set. Therefore,
any other action at that given point is a counter-example to conformance.

6.3.3 Executing a Test Case in RT-Maude

Executing a test case amounts to injecting the inputs at the right times and looking
for the right outputs at the right times. The system is input-enabled, so it accepts
all the inputs. If the system under test cannot produce the expected output at the
right time, the test fails. If along the test execution, the system under test can
do an observable action that is neither the expected output nor in the ready-set,
it is a counter-example to conformance. If the system can produce all expected
outputs and no counter-example is found, the test passes in the sense that we are
more confident that refinement holds and that the Creol model is schedulable. Notice
that a counterexample to refinement does not necessarily imply non-schedulability in
itself, but it shows an execution path that is likely to miss a deadline. We demonstrate
this with the test-case from the previous subsection, repeated below:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish0}) (8,finish0, {finish1})

(10,finish1, {}) (12,finish2, {})

We encode the input behavior given in the test-case as a complementary class
that calls the methods of the model under test at the required times. For our running
example, the code for the trace from previous subsection is given in Figure 6.13
(assuming D1 = D2 = 6).

By generating one instance of the ResourcePool class (with size 3 which gives
us a schedulable Uppaal model, cf. Section 4.3.2) and one instance of the Tester
class, we can check the output behavior of the Creol model against the test-case with
consecutive search commands in Real-Time Maude as shown in Figure 6.14. The
command tsearch searches for a requested configuration from an initial one within a
time bound; for example, the first tsearch command starts the search from the initial
configuration of the model init and looks for a configuration in which a finish method
is sent and this search is bounded to 2 time units.

6.3. Checking Conformance between Real-Time Creol and Timed Automata 103

tsearch [1] { init} −→∗ {Conf1 finish(T)} in time ≤2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] { init} −→∗ {Conf1 invoke(2)} in time ≤2

If this search is not successful, then the test fails; otherwise, if Maude answers
C1 → Conf1 then we continue with the following search:

tsearch [1] {C1 invoke(2)} −→∗ {Conf2 finish(T)} in time ≤3

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C1 invoke(2)} −→∗ {Conf2 invoke(5)} in time ≤3

If this search is not successful, then the test fails; otherwise, if Maude answers
C2 → Conf2 then we continue with the following search:

tsearch [1] {C2 invoke(5)} −→∗ {Conf3 invoke(7)} in time ≤2

If this search is not successful, then the test fails; otherwise, if Maude answers
C3 → Conf3 then we continue with the following search:

tsearch [1] {C3 invoke(7)} −→∗ {Conf4 finish(8)} in time ≤1

If this search is not successful, then the test fails; otherwise, if Maude answers
C4 → Conf4 then we continue with the following search:

tsearch [1] {C4 finish(8)} −→∗ {Conf5 finish(T)} in time <2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C4 finish(8)} −→∗ {Conf5 finish(10)} in time ≤2

If this search is not successful, then the test fails; otherwise, if Maude answers
C5 → Conf5 then we continue with the following search:

tsearch [1] {C5 finish(10)} −→∗ {Conf6 finish(T)} in time <2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C5 finish(10)} −→∗ {Conf6 finish(12) in time ≤2

Figure 6.14: Executing the test-case for the thread-pools

In our case, the only observable output action is finish. To find a counter-example
along this trace, we need to check whether a finish action can happen when it is
not expected in the ready set, i.e., before time 2, between 2 and 5, between 8 and 10,
or between 10 and 12. For each search command, we need to specify as time bound
the duration since its start configuration, e.g., to search from C2 which is at time 5,
we only need to search for another 2 time units to reach time 7. In the semantics of
real-time Creol given in Chapter 2, each action is given a time-stamp which is written
in parentheses in this figure. It is possible to write a meta-level Maude script to

104 Chapter 6. Schedulability Analysis of Real-Time Creol

automate the consecutive execution of these search commands, such that each search
starts from the resulting configuration of the previous one.

6.3. Checking Conformance between Real-Time Creol and Timed Automata 105

Local delarations of a scheduler automaton

The declarations below are generic and are used for any scheduler. The only model
dependent part is the length of the queue in the first line.

1 const int MAX = 7 ; // queue l eng t h ; the only non−gener i c d e f i n i t i o n

2 int [0 ,MSG] q [MAX+1] ; // one ex t ra ; see s h i f t ()

3 int [0 ,OBJ−1] s [MAX] ; // sender

4 int [0 ,MAX−1] ca [MAX] ; // c l o c k ass i gned

5 int [0 ,LBL] l [MAX] ; // l a b e l s in sending messages ; 0 = no l a b e l

6 int [0 ,MAX] r e t [MAX] ; // return po in t f o r sync c a l l s : syncORblock ()

8 clock x [MAX] ; // queue c l o c k s

9 int [MD,XD] d [MAX] ; // ta sk dead l i ne s queue

10 int [0 ,MAX] counter [MAX] ; // number o f t a s k s ass i gned to a c l o c k

12 int [0 ,MAX] run=0; // cu r r en t l y running ta sk

13 int [0 ,MAX] a c t i v e =0; // cu r r en t l y a c t i v e ta sk (may be b locked)

14 int [0 ,LBL] r e s =0; // resume a b locked l o c a l sync c a l l

15 int [0 ,MAX+1] t a i l ; // t a i l == MAX+1 means queue over f l ow

16 int [0 ,LBL] r l ; // resume l a b e l

18 void i n i t i a l i z e (){

19 q [0] = op_init ;

20 d [0] = INIT_DEADLINE; // de f ined g l o b a l l y

21 s [0] = s e l f ;

22 r e t [0] = MAX; // not a sync c a l l

23 q [1] = op_run ;

24 d [1] = RUN_DEADLINE; // de f ined g l o b a l l y

25 s [1] = s e l f ;

26 r e t [1] = MAX; // not a sync c a l l

27 ca [0] = 0 ; // c l o c k x [0] i s ass i gned

28 ca [1] = 1 ; // c l o c k x [1] i s ass i gned

29 counter [0] = 1 ;

30 counter [1] = 1 ;

31 l [0] = 0 ;

32 l [1] = 0 ;

33 t a i l = 2 ;

34 }

36 void i n s e r t I nvoke (int m, int snd , int l b l){

37 int c , i ;

38 i f (t a i l < MAX) {

39 c = MAX;

40 for (i = 0 ; c == MAX; i++) {

106 Chapter 6. Schedulability Analysis of Real-Time Creol

41 i f (counter [i] == 0) {

42 c = i ;

43 } }

44 q [t a i l] = m;

45 s [t a i l] = snd ;

46 l [t a i l] = l b l ;

47 r e t [t a i l] = MAX;

48 ca [t a i l] = c ;

49 x [c] = 0 ;

50 d [c] = dead l ine ;

51 counter [c] = 1 ;

52 // i f a l l messages in queue are d i sab l ed , choose t h i s one now

53 i f (run == MAX) run = t a i l ;

54 }

55 t a i l ++;

56 }

58 void i n s e r tDe l e g a t e (int msg){

59 i f (t a i l < MAX) {

60 q [t a i l] = msg ;

61 s [t a i l] = s e l f ; // de l e g a t i on i s a s e l f c a l l

62 l [t a i l] = 0 ; // no l a b e l s f o r d e l e g a t i on

63 r e t [t a i l] = MAX;

64 ca [t a i l] = ca [run] ;

65 counter [ca [t a i l]] ++;

66 }

67 t a i l ++;

68 }

70 void invokeReply (int l b l){

71 // I f no method i s running . . .

72 i f (run == MAX){

73 i f (a c t i v e != MAX){ // a b locked c a l l has h i gher p r i o r i t y

74 i f (r l == l b l){ r e s = l b l ; r l := 0 ; }

75 }

76 else // s e l e c t the f i r s t enab led method

77 for (run=0;run<MAX && ! isEnabled (q [run] , s e l f) ; run++);

78 } }

80 void syncORblock (int l b l){

81 int i ;

82 run = MAX; // b l o c k current method

83 r l = l b l ;

84 i f (l a b e l s [l b l] [s e l f]) { // cont inue i f r ep l y has a l ready ar r i v ed

6.3. Checking Conformance between Real-Time Creol and Timed Automata 107

85 r e s = l b l ;

86 r l := 0 ;

87 r e turn ;

88 }

89 for (i =0; i<t a i l && run == MAX; i++){

90 i f (l [i] == l b l && s [a c t i v e] == s e l f){ // l o c a l sync c a l l

91 r e t [i] = a c t i v e ;

92 run = i ;

93 r l = 0 ;

94 } }

95 r e s = 0 ;

96 }

98 int contextSwitch (int next){

99 int prev = run ;

100 i f (r e t [run] == MAX) { // not a sync c a l l

101 run = next ; // s t a r t the next method

102 } else { // in case o f sync c a l l

103 r e s = l [run] ; // resume . . .

104 a c t i v e = r e t [run] ;

105 run = MAX; // . . . do not s t a r t a new method

106 }

107 r e turn prev ;

108 }

110 void s h i f t (int a) {

111 counter [ca [a]] −−;

112 i f (counter [ca [a]] == 0)

113 d [ca [a]] = MD; // not ass i gned

114 t a i l−−;

115 whi le (a < t a i l && a < MAX−1) {

116 q [a] = q [a+1] ;

117 ca [a] = ca [a+1] ;

118 s [a] = s [a+1] ;

119 l [a] = l [a+1] ;

120 r e t [a] = r e t [a+1] ;

121 a++;

122 }

123 q [a] = 0 ; // not ass i gned

124 ca [a] = 0 ; // not ass i gned

125 s [a] = 0 ; // not ass i gned

126 l [a] = 0 ; // not ass i gned

127 r e t [a] = 0 ; // not ass i gned

128 }

Bibliography

[1] Gul Agha. The structure and semantics of actor languages. In Proc. the REX
Workshop, pages 1–59, 1990.

[2] The Almende research company. http://www.almende.com/.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[4] Farhad Arbab. Reo: A channel-based coordination model for component com-
position. Mathematical Structures in Computer Science, 14:329–366, 2004.

[5] Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon. Component
connectors with QoS guarantees. In Amy Murphy and Jan Vitek, editors, Coor-
dination Models and Languages, volume 4467 of LNCS, pages 286–304, 2007.

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal.
In Marco Bernardo and Flavio Corradini, editors, Proc. Formal Methods for the
Design of Computer, Communication, and Software Systems, volume 3185 of
LNCS, pages 200–236, 2004.

[7] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages
87–124. Springer, 2003.

[8] Dave Clarke, Einar Broch Johnsen, and Olaf Owe. Concurrent Objects à la
Carte. In Dennis Dams, Ulrich Hannemann, and Martin Steffen, editors, Cor-
rectness, Concurrency, Compositionality: Essays in honor of Willem-Paul de
Roever, volume 5930 of LNCS, pages 185 – 206, 2010.

[9] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Jose F. Quesada. Maude: specification and program-
ming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

109

110 Bibliography

[10] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum delay
problems in real-time systems. Formal Methods in System Design, 1(4):385–415,
1992.

[11] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. ESEC
/ SIGSOFT FSE, pages 109–120, 2001.

[12] Frank de Boer, Tom Chothia, and Mohammad Mahdi Jaghoori. Modular schedu-
lability analysis of concurrent objects in Creol. In Proc. Fundamentals of Software
Engineering (FSEN’09), volume 5961, pages 212–227, 2009.

[13] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide
to the future. In Rocco de Nicola, editor, Proc. 16th European Symposium on
Programming (ESOP’07), volume 4421 of LNCS, pages 316–330. Springer-Verlag,
March 2007.

[14] Frank S. de Boer, Immo Grabe, Mohammad Mahdi Jaghoori, Andries Stam, and
Wang Yi. Modeling and analysis of thread-pools in an industrial communication
platform. In Proc. 11th International Conference on Formal Engineering Methods
(ICFEM’09), volume 5885 of LNCS, pages 367–386. Springer, 2009.

[15] Frank S. de Boer, Mohammad Mahdi Jaghoori, and Einar B. Johnsen. Dating
concurrent objects: Real-time modeling and schedulability analysis. In Proc.
21st International Conference on Concurrency Theory (CONCUR’10), volume
6269 of LNCS, pages 1–18, 2010.

[16] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata:
Schedulability, decidability and undecidability. Information and Computation,
205(8):1149–1172, 2007.

[17] Immo Grabe, Mohammad Mahdi Jaghoori, Bernhard Aichernig, Christel Baier,
Tobias Blechmann, Frank de Boer, Andreas Griesmayer, Einar Broch Johnsen,
Joachim Klein, Sascha Klüppelholz, Marcel Kyas, Wolfgang Leister, Rudolf
Schlatte, Andries Stam, Martin Steffen, Simon Tschirner, Xuedong Liang, and
Wang Yi. Credo methodology. Modeling and analyzing a peer-to-peer system in
Credo. In Einar Broch Johnsen and Volker Stolz, editors, Proceedings of the 3nd
International Workshop on Harnessing Theories for Tool Support in Software
(TTSS’09), ICTAC 2009 satellite workshop, 2010. to appear.

[18] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? In STOC ’95: Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 373–382, New
York, NY, USA, 1995. ACM.

[19] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul
Pettersson, and Arne Skou. Testing real-time systems using uppaal. In Formal
Methods and Testing, volume 4949 of LNCS, pages 77–117, 2008.

Bibliography 111

[20] Carl Hewitt. Procedural embedding of knowledge in planner. In Proc. the 2nd
International Joint Conference on Artificial Intelligence, pages 167–184, 1971.

[21] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[22] Mohammad Mahdi Jaghoori and Tom Chothia. Timed automata semantics for
analyzing Creol. In Proc. Foundations of Coordination Languages and Software
Architectures (FOCLASA’10), EPTCS 30, pages 108–122, 2010.

[23] Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, and Marjan Sir-
jani. Task scheduling in Rebeca. In Proc. Nordic Workshop on Programming
Theory (NWPT’07), 2007. extended abstract.

[24] Mohammad Mahdi Jaghoori, Frank S. de Boer, Tom Chothia, and Marjan Sir-
jani. Schedulability of asynchronous real-time concurrent objects. J. Logic and
Alg. Prog., 78(5):402 – 416, 2009.

[25] Mohammad Mahdi Jaghoori, Delphine Longuet, Frank S. de Boer, and Tom
Chothia. Schedulability and compatibility of real time asynchronous objects. In
Proc. RTSS’08, pages 70–79. IEEE CS, 2008.

[26] Claude Jard, Thierry Jéron, and Pierre Morel. Verification of test suites. In
Proc. Testing Communicating Systems (TestCom 2000), pages 3–18, 2000.

[27] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model
for distributed concurrent objects. Software and Systems Modeling, 6(1):35–58,
2007.

[28] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-
oriented model for distributed concurrent systems. Theoretical Computer Science,
365(1-2):23–66, 2006.

[29] Christos Kloukinas and Sergio Yovine. Synthesis of safe, QoS extendible, applica-
tion specific schedulers for heterogeneous real-time systems. In Proc. ECRTS’03,
pages 287–294. IEEE CS, 2003.

[30] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-
time systems. In Model Checking Software, 11th International SPIN Workshop,
volume 2989 of LNCS, pages 109–126, 2004.

[31] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
STTT, 1(1-2):134–152, 1997.

[32] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[33] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2:219–246, 1989.

112 Bibliography

[34] Jennifer McManis and Pravin Varaiya. Suspension automata: A decidable class of
hybrid automata. In David Dill, editor, Computer Aided Verification (CAV’94),
volume 818 of LNCS, pages 105–117. Springer, 1994.

[35] José Meseguer. Conditioned rewriting logic as a united model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[36] Bertrand Meyer. Eiffel: The language. Prentice-Hall, 1992.

[37] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980.

[38] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1–2):161–196, June 2007.

[39] Barbara Paech and Bernhard Rumpe. A new concept of refinement used for
behaviour modelling with automata. In Proc. FME ’94, pages 154–174. Springer-
Verlag, 1994.

[40] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[41] Bernhard Rumpe and Cornel Klein. Automata describing object behavior. In
Object-Oriented Behavioral Specifications, pages 265–286. Springer, 1996.

[42] David P. L. Simons and Mariëlle Stoelinga. Mechanical verification of the IEEE
1394a root contention protocol using Uppaal2k. STTT, 3(4):469–485, 2001.

[43] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. Modeling
and verification of reactive systems using Rebeca. Fundamamenta Informaticae,
63(4):385–410, 2004.

[44] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools, 17(3):103–120, 1996.

[45] Ingrid Chieh Yu, Einar Broch Johnsen, and Olaf Owe. Type-safe runtime class
upgrades in Creol. In Proc. FMOODS’06, volume 4037 of LNCS, pages 202–217.
Springer-Verlag, June 2006.

Samenvatting

In dit proefschrift hebben wij nieuwe technieken ontwikkeld voor het ontwerp van
gedistribueerde software, d.w.z. software waarvan de verschillende onderdelen op
verschillende machines worden uitgevoerd. Dergelijke software is van vitaal belang
voor een diversiteit aan maatschappelijke toepassingen die in het algemeen uit een
groot aantal complexe processen bestaan en een hoge mate van Quality of Service
vereisen. Echter, de State of the Art in parallel en gedistribueerd programmeren wordt
(nog steeds) bepaald door programmeertalen als Java die ondanks hun populariteit
niet geschikt zijn voor een optimaal gebruik van de onderliggende hardware.

Uitgangspunt van dit proefschrift is de fundamentele observatie dat de Quality of
Service van (gedistribueerde) software in hoge mate afhangt van de manier waarop
processen worden geselecteerd voor uitvoering op de verschillende machines. Deze se-
lectie wordt in de implementatie van de huidige programmeertalen overgelaten aan de
onderliggende besturingssystemen (operating systems) en valt daarmee geheel buiten
de controle van een specifieke toepassing.

Wij hebben onderzocht hoe dit aspect van de implementatie op een hoog abstrac-
tieniveau formeel beschreven kan worden en daarmee gecontroleerd. Het belangrijkste
resultaat van dit proefschrift is een (prototype van een) nieuwe programmeertaal die
de programmeur in staat stelt zelf te bepalen en te analyseren hoe de gedistribueerde
processen voor uitvoering geselecteerd worden op basis van deadlines die de Quality
of Service garanderen.

Dit opent ook de weg naar andere nieuwe en veelbelovende toepassingen, zoals
software voor de ondersteuning van de continue planning van logistieke processen
in een dynamische omgeving en de ontwikkeling van software voor multicore archi-
tecturen. Nederlandse bedrijven (DEAL Services) en researchcentra (het Uppsala
Programming for Multicore Architectures Resrearch Center UPMARC) hebben hier
al belangstelling voor getoond.

113

Abstract

The software today is distributed over several processing units. At a large scale
this may span over the globe via the internet, or at the micro scale, a software may
be distributed on several small processing units embedded in one device. Real-time
distributed software and services need to be timely and respond to the requests in
time. The Quality of Service of real time software depends on how it schedules its
tasks to be executed. The state of the art in programming distributed software, like
in Java, the scheduling is left to the underlying infrastructure and in particular the
operating system, which is not anymore in the control of the applications.

In this thesis, we introduce a software paradigm based on object orientation in
which real-time concurrent objects are enabled to specify their own scheduling strat-
egy. We developed high-level formal models for specifying distributed software based
on this paradigm in which the quality of service requirements are specified as dead-
lines on performing and finishing tasks. At this level we developed techniques to verify
that these requirements are satisfied.

This research has opened the way to a new approach to modeling and analysis of a
range of applications such as continuous planning in the context of logistics software
in a dynamic environment as well as developing software for multi-core systems. In-
dustrial companies (DEAL services) and research centers (the Uppsala Programming
for Multicore Architectures Resrearch Center UPMARC) have already shown interest
in the results of this thesis.

115

Curriculum Vitae

Mohammad Mahdi Jaghoori was born in Mashhad, Iran, on March 22, 1982 (Far-
vardin 2, 1361, Iranian calendar). He finished school in Mashhad and moved to
Tehran in 1999 for university, where he started software engineering at the University
of Tehran, Faculty of Engineering. After 4 years, he graduated and was accepted at
Sharif University of Technology for Master’s study. He finished his Master’s in 2005.
He continued his research for another six month in Tehran at the school of computer
science, IPM. At the beginning of 2006, he moved to Mashhad for a short period and
gave lectures at the University of Sadjad for one semester. Since November 2006, he
started his PhD at the national Dutch center of mathematics and computer science,
CWI, in Amsterdam. For three years, he worked as part of the European project
Credo. He moved at his fourth year to the Leiden Institute for Advanced Computer
Science (LIACS), Leiden University. This PhD thesis is the result of four years of
research in The Netherlands.

117

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -Theory
and Tool Support- . Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty of
Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Math-
ematics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simulation
Relations. Faculty of Science, Mathe-
matics and Computer Science, RU. 2005-
14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and

Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty of
Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathemat-
ics and Computing Sciences, RUG. 2007-
03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of

Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic Vot-
ing Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Faculty
of Mechanical Engineering, TU/e. 2008-
05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing, and
Assimilation of Language Conglomer-
ates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Protocols.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-
09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a Toolkit.
Faculty of Mathematics and Computer
Science, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT.
2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Math-
ematics and Computer Science, TU/e.
2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Methods
and Constraint Solving. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Exper-
imental Aspects of Pattern Evaluation.

Faculty of Mathematics and Natural Sci-
ences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Math-
ematics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof assis-
tant for Clean. Faculty of Science, Math-
ematics and Computer Science, RU.
2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of Math-
ematics and Computer Science, TU/e.
2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready for
Prime Time. Faculty of Science, UU.
2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transforma-
tion. Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS using

JML. Faculty of Science, Mathematics
and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2009-
14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra on
top of Proof Assistants and making Proof
Assistants available over the Web. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computa-
tional Complexity of Probabilistic Net-
works. Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisa-
tion for Crime Analysis and Genomics.
Faculty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

 .

 .

 .

1389

 .

.

)(

.

.

 .

 :

 :

 . :

 .

.

291389

