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In this paper it is illustrated how to compute the time—average of a generic dynamical
variable in the limit of large systems. It is also shown how to use this result to deduce
an analogue of the second principle of thermodynamics, even in presence of metastable
phenomena, for which it is not granted that the standard Gibbs measure can be used.

1. Introduction

The aim of this paper is to discuss the possibility of having a thermodynamic be-
havior also in presence of metastable phenomena which prevent thermal equilibrium
to be reached within a given time scale. We place ourselves in the most general
setup, considering an abstract dynamical system with phase space M and dynam-
ics ® : M — M, where ® is a suitable map. Now, given a dynamical variable
f: M — IR, in statistical mechanics one is interested in its time average

Fao) =~ 3 f@) s w0 .

In equilibrium statistical mechanics one considers the limit N — 400, but in pres-
ence of metastable phenomena one has to consider time averages on some large
but still finite time—scale. In the latter case it is meaningful to think of IV as a
parameter having a fixed “large” value. In this case there is nothing analogous to
the ergodic theorem, i.e. the function f(x¢) is not almost constant but does depend
on the initial datum xg. Now, if we give an a priori probability distribution u(xg)
on the initial data (for example the Lebesgue one), f(xo) turns out to be a random
variable, in the sense that it will assume different values with different probabilities.
It is then natural to consider the expectation value < f > of the time average f(z¢)
with respect of the initial data distribution, i.e. the quantity

< f>¥ /M Flxo) dps .

In this paper we illustrate the results of paper [1], in which it was shown how
the expectation can be computed using a large deviation principle, in the limit of
a large system, and it was also shown how an analogue of the second principle of
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thermodynamics can be derived. This will be done in Section 3. In the next section
we show how to numerically compute the probability distribution function (p.d.f.
for short) of the occupation number of a cell, a quantity which plays a fundamental
role for computing the thermodynamic quantities of interest (such as entropy). We
give also an application to the standard map, in two cases of weak and strong chaos
respectively.

2. The p.d.f of the occupation number of a cell.

The time average of the function f can be computed also in the following way (which
is more suited for our purposes): consider a partition {Z;} of the phase space M
into disjoint cells, so that M = Uj Z;, and let nj(zo) be the number of points of
the orbit {z, } which belong to the cell Z; (i.e. the cardinality of the intersection
of the orbit with the cell). This number will be called the occupation number in
the rest of the paper. Then one has

Flo) = 5 S0 fan) = 5 S niCeol;

f; being the value of f in a given point of the cell Z;. This formula shows that
the time average of every dynamical variable can be expressed in terms of the
random variables n;(x(), so that the probability distribution function Fj(n) of the
occupation number n; turns out to have a fundamental role. Let us recall that
F;(n) is the probability that n; < n, i.e. the measure of the set of initial data
which give rise to orbits having a number of points n; in the cell Z; less than n. In
particular, from the knowledge of F};(n), one can compute not only the expectation
value

<7’lj >:/’I’LCU“7’J7

but also all the higher order moments, as the standard deviation and so on.

Note that this probabilistic description is different from the usual one (see for
example Ref. [2]), in which one considers the “probability that a given cell Z; is
occupied”. In the latter case one considers “how many initial data” give rise to
orbits that are actually in the given cell at a given fixed time, and this fraction is
just the probability assigned to the cell. There is nothing as a p.d.f. associated to
the cell. This is because one takes no care of the fact that the system can visit the
same cell a different number of times during the motion. This fact is crucial for
what concerns the time-average of the dynamical variables, but obviously has no
importance if one limits oneself to consider their phase-space average at any fixed

time.
The function F}, corresponding to a given cell Z;, can be numerically computed
in the following way: extract a number m of initial data z, , I = 1,... ,m, at random

with respect to the given a priori distribution, then compute the corresponding
orbits {2} and let né be the number of points of the [-th orbit which belong to
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Figure 1. The histogram for ¢ = 1.0 and the curve e’ppk/k! versus k, for p = 500.

the cell Z;. Having determined the sequence {né}, one builds up the corresponding
histogram, i.e. for every k =0,..., N one reports the number of times (divided by
N) the value k appears in the sequence {nz} From the histogram, the empirical
distribution® is then computed. As one increases the number m of initial data the
empirical distribution tends to the distribution function Fj;(n). As an illustration,
Figure 1 and Figure 2 report (in semilogarithmic scale) the histograms built up for
the case of the standard map

¥=x+y mod 1
Yy =y + esin2ma’ mod 1,

for two different values of . We take, as a priori distribution, the uniform distri-
bution on the torus, and we consider the cell Z; = {(z,y) € T? : x € [4,.5),y €
[.5,.6)}. We choose m = 10* different initial points and the length of any orbit is
fixed at N = 5-10% The two figures refer to different values of the parameter :
Figure 1 corresponds to the case € = 1, in which the dynamics is very chaotic, while
Figure 2 corresponds to the case € = 0.5, a much less chaotic one. For comparison,
in the figures it is also reported (dashed line) the plot of the function e Pp*/k!
versus k, which is the histogram for a Poisson process (namely when the different

aWe recall that the histogram is nothing that the plot of F;(k + 1) — F;(k) versus k.
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Figure 2. The histogram for € = 0.5 and the curve e’ppk/k! versus k, for p = 575.

visits of the same cell are independent events). The parameter p is chosen by a
best fit. One sees that for € = 1 the histogram is well approximated by the dashed
line, while in the case ¢ = 0.5 the curve and the histogram exhibit rather relevant
differences for small n. This implies that the Laplace transform exp(x;(z)) of F}(n)
(whose importance will be illustrated in the next section) will be different, for large
z, from the Laplace transform of a Poisson process.

3. The Thermodynamics.

To arrive to the thermodynamics one needs one more concept: in fact in thermody-
namics the expectation value U of the internal energy plays the role of a parameter
the value of which can be fixed at will. In particular, as the energy is not bounded
from above, then the a priori mean energy < £ > is infinite , and thus, since U is
instead finite, one has in general U #< & >. In other terms, denoting by €; the
value of the internal energy in the cell Z;, one has the condition

1
Nanej:U with U?é<é:>
J

This indeed is a condition on the initial data or equivalently on the variables n;. So,
one is confronted with a large deviation problem, inasmuch as one should compute
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not the expected value < f >, but rather the conditional expectation < f >y
of f, given the mean energy U. To this end it is sufficient to compute the mean
occupation number (which we denote by ;) when the mean energy is U, because
one obviously has

Note that v; satisfies the conditions
_ 1 _
N:ZVJ‘, U:NZEJ‘VJ‘. (1)
J J

This problem can be solved, under suitable hypotheses (see Ref. [1]), in the
limit of large systems. In other terms, one can provide an asymptotic expansion
for the mean occupation number 7;, the remainder of which tends to zero in the
thermodynamic limit. If one assumes that the quantities n;, for different values of 7,
are independent random variables, one can give a simple expression for the principal
term of the expansion. In fact in such a case one has, neglecting the remainder,

i 0
7 = =Xy +a) 2

where the prime denotes derivative, and the function x;(z) is the logarithm of the
moment function, i.e. is defined by

def [T .
exp(x;(2)) = e " dE; .
0

The parameters 6 and « are determined by imposing the conditions (1), i.e. by
requiring

0 1 0
N:fzxg(ﬁejwta), U:*NZEJ'X;(N?:J"FO().
J J

We can now state the main result of the theory. If one defines the exchanged
heat as the difference 6Q = dU — W, where §WV is the mean work performed by
the system when an external parameter is changed, then one finds

1 _
(SQ = NZEjde .
J

One then finds that this expression admits 8/N as an integrating factor (where
is the same quantity entering formula (2)). In fact, introducing v; of —Xj(2) as an

independent variable and the Legendre transform h;(v) of the function x;(z), one

indeed has
N 1

As a consequence the quantity S = >, h;(7;)/N can be identified with the
entropy, and § = /N with the inverse temperature. It is easy to verify that
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if the p.d.f. of the occupation number corresponds to a Poisson process (i.e. if

Fij(n) =3 k<n e Pp”* /!, to which there corresponds x;(z) = pe™* — p) one gets
Ne=Pei
U =——— with Z(B) =) e P

h = —Z (z/jlogyj — Vﬂogp) ,

i.e. the Gibbs distribution for the energy and (obviously) the Boltzmann formula
for the entropy. Different p.d.f.’s will give rise to different expressions for both the
entropy and the energy distribution. In particular, Figure 2 suggests that x;(z)
could decrease more slowly than an exponential for increasing z, for example as an
inverse power. As an illustration, one can consider the function

X(2) = peg(—2z) —p,

L

where e,(z) 1+ (1 —¢q)2)"/(=9 is the Tsallis ¢-deformation of the exponential,

and one obtains

vj = C(Be)(1 + Bela — 1)53')171"
h— 1 : a1
(T )
where C(3,) is a suitable normalizing constant, and 3, e B8/(1+ (¢ —1)cw). This
distribution coincides with the Tsallis g—distribution (see Refs. [3]) for the energy,
while the expression for the entropy h also coincides with the Tsallis g—entropy S, if

we express h not in terms of 7;, but in terms of the quantities p; def pl/qql/q_luj/q.
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