
User Model User-Adap Inter (2014) 24:67–119

DOI 10.1007/s11257-012-9136-x

ORIGINAL PAPER

Time-aware recommender systems: a comprehensive

survey and analysis of existing evaluation protocols

Pedro G. Campos · Fernando Díez ·

Iván Cantador

Received: 22 March 2012 / Accepted in revised form: 4 December 2012 /

Published online: 15 February 2013

© Springer Science+Business Media Dordrecht 2013

Abstract Exploiting temporal context has been proved to be an effective approach to

improve recommendation performance, as shown, e.g. in the Netflix Prize competition.

Time-aware recommender systems (TARS) are indeed receiving increasing attention.

A wide range of approaches dealing with the time dimension in user modeling and

recommendation strategies have been proposed. In the literature, however, reported

results and conclusions about how to incorporate and exploit time information within

the recommendation processes seem to be contradictory in some cases. Aiming to

clarify and address existing discrepancies, in this paper we present a comprehensive

survey and analysis of the state of the art on TARS. The analysis show that meaningful

divergences appear in the evaluation protocols used—metrics and methodologies.

We identify a number of key conditions on offline evaluation of TARS, and based on

these conditions, we provide a comprehensive classification of evaluation protocols for

TARS. Moreover, we propose a methodological description framework aimed to make

the evaluation process fair and reproducible. We also present an empirical study on the

impact of different evaluation protocols on measuring relative performances of well-

known TARS. The results obtained show that different uses of the above evaluation

P. G. Campos (B)

Department of Information Systems, Universidad del Bío-Bío,

Concepción, Chile

e-mail: pgcampos@ubiobio.cl

P. G. Campos, F. Díez, I. Cantador

Department of Computer Science, Universidad Autónoma de Madrid,

Madrid, Spain

F. Díez

e-mail: fernando.diez@uam.es

I. Cantador

e-mail: ivan.cantador@uam.es

123

68 P. G. Campos et al.

conditions yield to remarkably distinct performance and relative ranking values of the

recommendation approaches. They reveal the need of clearly stating the evaluation

conditions used to ensure comparability and reproducibility of reported results. From

our analysis and experiments, we finally conclude with methodological issues a robust

evaluation of TARS should take into consideration. Furthermore we provide a number

of general guidelines to select proper conditions for evaluating particular TARS.

Keywords Time-aware recommender systems · Context-aware recommender

systems · Evaluation methodologies · Survey

1 Introduction

Recommender systems (RS) aim to help users with information access and retrieval

applications when large collections of items are involved. In general, they work by

means of suggesting those items that should be the most appealing ones to the users

based on their past personal preferences. In such process, exploiting the context (e.g.

location, time, weather, device and mood) in which users express their preferences

has been proven very valuable for increasing the performance of recommendations

(Adomavicius and Tuzhilin 2011; Baltrunas and Ricci 2013).

Among existing contextual dimensions, time information can be considered as one

of the most useful ones. It facilitates tracking the evolution of user preferences (Xiang

et al. 2010), enabling e.g. to identify periodicity in user habits and interests (Campos

et al. 2011a), which is a key input for many context-aware RS (CARS) (Baltrunas and

Amatriain 2009; Panniello et al. 2009b). It may also lead to significant improvements

on recommendation accuracy, as found by the winning team of the Netflix Prize

competition (Koren 2009b). Moreover, temporal context information is in general

easy to collect without additional user efforts and strict device requirements. Due to

these benefits, recent years have been prolific in the investigation and development of

time-aware RS (TARS), that is, CARS that exploit the time dimension for both user

modeling and recommendation strategies.

However, despite the benefits of TARS, some studies have shown divergences on

the ground assumption in which recommendation models are built, casting doubt on

the generalization of time-aware recommendation capabilities. Ding and Li (2005)

obtained recommendation improvements by means of applying an exponential decay

rate on old ratings in order to give more importance to recent ratings, arguing the latter

should better reflect the users’ current tastes. Koren (2009b), on the other hand, showed

that better prediction results on the Netflix Prize dataset can be obtained when no time

decay is considered. Baltrunas and Amatriain (2009) built contextual micro-profiles

representing a user’s song-listening behavior in different contexts, and utilized such

profiles as input for computing contextualized music recommendations. Although rec-

ommendation improvements were obtained by using time-dependent data partitioning

such as {morning, evening} and {weekend, workday}, the highest improvement was

obtained when considering the scarce {even hours, odd hours} partitioning which, in

the words of the authors, corresponds to a “meaningless split”, and calls for further

research. Finally, Lathia et al. (2009) showed that improvements obtained by some

123

Time-aware recommender systems 69

non-contextualized algorithms on the Netflix Prize probe set1 do not hold when com-

puting predictions on an iterative basis by strictly using past ratings to predict future

ratings—the actual setting for a real-world recommender system.

Despite the fact that a number of reasons could be enumerated for explaining

such contradictory findings (e.g. different application domains, item characteristics

and contextualization schemas for time information), we believe evaluation plays a

prominent role. The existence of multiple evaluation methodologies and metrics, each

of them with distinct assumptions and purposes, makes it easy to find an evaluation

protocol suitable for a particular algorithmic approach, but ineligible or retributive for

others. Problems that arise from this situation thus represent an increasing impediment

to fairly compare results and conclusions reported in different studies (Bellogín et al.

2011), and make the selection of the best recommendation solution for a given task

more difficult (Gunawardana and Shani 2009).

Aiming to shed light and better understand the contrasts and impact of the different

protocols used for evaluating TARS, in this paper we revise most of the work existing in

the literature on the topic, and characterize the evaluation protocols used, by identifying

and describing a set of key methodological conditions that the performed evaluations

are driven by. These conditions address a number of general methodological issues

to be faced in the experimental design of an offline evaluation of TARS, and are

mostly related to the training-test data splitting process, namely rating ordering for

training and test sets, size of those sets, base data used for building the splits, and

cross-validation methods. Based on these conditions, we propose a methodological

description framework aimed to make the evaluation process fair and reproducible

under different circumstances.

We also report an empirical study on the impact that some key conditions have on the

performance of well-known TARS in the movie and music recommendation domains.

The results obtained show that different uses of the above evaluation conditions lead to

distinct rankings of the recommendation approaches for certain metrics. This reveals

the need of clearly stating the used evaluation conditions to ensure comparability and

reproducibility of results from different TARS.

Finally, we provide a number of general guidelines to select proper conditions for

evaluating particular TARS. We believe the results and guidelines presented herein

could help researchers and practitioners to conduct robust evaluations of TARS.

In summary, the main contributions of this paper are:

– A comprehensive survey of TARS-related literature. From this survey we identify

key conditions used in offline evaluation of TARS, and based on such conditions

we classify the revised TARS.

– An analysis of important methodological issues which a robust evaluation of TARS

should take into account. A proper understanding and treatment of these issues

could help in conducting fair evaluations of new TARS, and may facilitate com-

parisons between published performance results. From this analysis we provide a

number of guidelines regarding the selection of appropriate conditions to evaluate

TARS.

1 A public test dataset used for evaluating performance of participants in the Netflix Prize competition.

123

70 P. G. Campos et al.

– A methodological description framework aimed to facilitate the description and

adoption of evaluation protocols, and make the evaluation process fair and repro-

ducible.

– An empirical comparison of results obtained from different TARS evaluation pro-

tocols aimed to assess the influence of evaluation conditions on measured perfor-

mance results, by means of accuracy and ranking metrics, and more recent metrics

of novelty and diversity.

The remainder of the paper is organized as follows: in Sect. 2 we formulate the problem

of evaluating time-aware recommendation; in Sect. 3 we describe and classify an

extensive number of TARS proposed in the literature; in Sect. 4 we identify sources of

divergence between TARS evaluation protocols, and establish related methodological

issues; in Sect. 5 we introduce key conditions addressing the above methodological

issues and propose a comprehensive framework for describing such conditions; in

Sect. 6 we report empirical results comparing the effect of some of such conditions,

and in Sect. 7 we provide a summary and classification of the revised TARS according

to the evaluation conditions identified. From such classification and the experimental

results obtained, we provide general guidelines to select proper evaluation conditions

for TARS, and state open questions on the topic. Finally, in Sect. 8 we present a number

of conclusions drawn from our study.

2 Problem statement

2.1 The recommendation problem

The recommendation problem consists of suggesting items that should be the most

appealing ones to a user according to her preferences. In the literature several types of

RS have been proposed, varying, e.g. in the types of data used, and in the methods with

which recommendations are generated. Burke (2007) distinguishes four main recom-

mendation techniques: content-based techniques (CB), which suggest to the target user

similar items to those preferred by her in the past, collaborative filtering techniques

(CF), which suggest items preferred by users with similar tastes to the target user’s,

demographic techniques, which exploit the users’ demographics for generating item

recommendations, and knowledge-based techniques, which exploit specific domain

knowledge about the items to recommend. Additionally, it is possible to distinguish

hybrid recommenders, which combine two or more of the above techniques in order

to overcome some of their limitations.

In a widely used formulation (Adomavicius and Tuzhilin 2005), the recommenda-

tion problem relies on the notion of ratings as a mechanism to capture user preferences

for different items. Let U be a set of users, and let I be a set of items. A recommender

system models a function F that computes a predicted rating r̂u,i for an unknown

rating ru,i which user u ∈ U would assign to item i ∈ I :

F : U × I → R

where R denotes a totally ordered set (e.g. non-negative integer or real numbers in a

particular range) of allowed rating values.

123

Time-aware recommender systems 71

The rating values express a scale of the users’ preferences for the items, or are

related to the users’ consumption of items. In the former case the ratings are usually

considered as explicit ratings, since they are explicitly provided by the users. In the

latter case, on the other hand, the ratings are commonly considered as implicit ratings

because they are collected without explicit user feedback. In this paper we refer to

both forms simply as ratings, except when the distinction between them is needed.

Alternatively, the recommendation problem can be modeled as the task of finding

relevant (appealing) items for the target user (Sarwar et al. 2000). This task is consistent

with the use of RS in many applications where a system does not predict ratings, but

delivers lists of items that may be relevant for the user (Shani and Gunawardana 2011).

In this case, ratings can be interpreted as a measure of relevance (score), and thus,

those items scored over a certain threshold value can be considered as relevant.

For either of these two formulations, the recommendation problem can be reduced

to solve a rating prediction problem, which consists of predicting unknown ratings

for pairs (u, i) by providing an approximation of the function F (Adomavicius and

Tuzhilin 2005). In this context, when a RS is required to provide an item recommen-

dation, it could return rating predictions for a particular set of items unknown to the

target user—the rating prediction task—or a list of top ranked items the user may

prefer—the top-N recommendation task (Shani and Gunawardana 2011). In the latter

case rating predictions2 are generally used to rank the items, and select (recommend)

the top ranked ones.

In both tasks CB and CF recommendation techniques exploit the target user’s ratings

to compute F . CB systems take advantage of available item descriptions for looking

for items whose content is similar to that of items positively rated by the target user.

CF systems make use of other users’ ratings to detect items rated similarly to those

positively rated by the target user. There are many variants of both approaches in

the literature, and also hybrid combinations aimed to solve weaknesses from each

one—(Adomavicius and Tuzhilin 2005) and (Burke 2002) provide extensive surveys

on these topics.

In this paper we focus on CF techniques, since they have been widely used to

take advantage of contextual (and, particularly, temporal) information associated

to user ratings. We thus assume that user preferences are represented in the form of

user profiles that contain ratings with contextual information. We denote the set of

user profiles available to the RS, i.e. the collected (known) ratings, as the rating matrix

M =
{

ru,i |u ∈ U, i ∈ I, ru,i �= ∅
}

.

2.2 Incorporating context into the recommendation problem

Context is a multifaceted concept that has been studied across different research disci-

plines, and thus has been defined in multiple ways (Adomavicius and Tuzhilin 2011;

Hussein et al. 2014). According to Dey (2001), “context is any information that can be

used to characterize the situation of an entity”, where in the case of a RS an entity can

2 In this case it may be more precise to talk about score prediction, but for the sake of simplicity we will

refer to this also as rating prediction.

123

72 P. G. Campos et al.

be a user, an item, or an experience the user is evaluating (Baltrunas 2011). Hence, any

information regarding the situation in which a user experiences an item—e.g. location,

time, weather, device, and mood—can be considered as context.

The importance of including context in the recommendation process can be

observed from a practical viewpoint through a classic, simple example in the tourism

domain: although a user may love skiing, recommending her a ski resort during summer

is questionable. It could be detrimental for the user’s trust in the system if interpreted

as an ‘out of context’ recommendation. In fact, in a user study comparing RS that use

and do not use contextual information, Gorgoglione et al. (2011) found that the former

provide more user trust in their item recommendations. Moreover, they detected that

trust affect purchasing behavior, and observed that RS exploiting context information

increase user’s trust and levels of sales.

The recommender systems that exploit any of the above types of information are

called context-aware RS (CARS) (Adomavicius and Tuzhilin 2011). Extending the

definition of recommendation problem given in the previous section, Adomavicius et

al. (2005) pose a generic model for CARS by incorporating additional dimensions of

contextual information C into F :

F : U × I × C → R

This model assumes that the context can be known and represented as a set of contex-

tual dimensions C1, C2, . . . , Cn ∈ C (Dourish 2004), where each dimension Ci may

have its own type and range of values. Moreover, a dimension Ci may have different

representations reflecting the complex nature of its contextual information (Adomavi-

cius and Tuzhilin 2011). For instance, the contextual dimension location can be defined

as a plain list of values {home, abroad}, or can be defined by means of a hierarchical

structure such as room → building → neighborhood → city → country. In general,

according to Palmisano et al. (2008) and Adomavicius et al. (2005), each contextual

dimension Ci ∈ C can be defined as a set of attributes Ci =
{

C1
i , C2

i , . . . , C
q

i

}

that

may be independent or related through some kind of structure.

According to Adomavicius and Tuzhilin (2011), CARS can be classified as con-

textual pre-filtering, contextual post-filtering, and contextual modeling systems. In

contextual pre-filtering the target recommendation context—i.e. the context in which

the target user expects to consume the recommended items—is used to filter user

profile data relevant to such context before the rating prediction computation. In con-

textual post-filtering rating predictions are adjusted according to the target context after

being computed (on entire user profiles). In both cases traditional non-contextualized

recommendation algorithms can be employed, as the contextualization involves an

independent pre- or post-processing computation. On the other hand, contextual mod-

eling incorporates context information directly into the model used to estimate rating

predictions.

2.3 Specifying time context in recommender systems

Among existing contextual dimensions, the time dimension—i.e., the contextual

attributes related to time, such as time of the day, day of the week, and season of the

123

Time-aware recommender systems 73

year—has the advantage of being easy to collect, since almost any system can record

item rating/consumption timestamps. Moreover, as noted in a previous example, the

time dimension can serve as a valuable input for improving recommendation quality

(Baltrunas and Amatriain 2009; Panniello et al. 2009b). Since our aim is to analyze

evaluation practices related to this dimension, from now on we focus on time context.

Time-aware recommender systems can be considered a specialized type of CARS.

Their main characteristic is the usage of time context information at some stage of

the rating prediction process, being able to provide differentiated recommendations

depending on the target recommendation time (i.e. the desired time for item usage

or consumption, which may be different from the recommendation delivery time),

according, e.g. to the preferences expressed by the users at similar time contexts in

the past. Thus, the general formulation of context-dependent rating prediction can be

particularized for the time dimension of context, T , as follows:

F : U × I × T → R

where T can be represented in several ways. According to Merriam-Webster3, time is

defined as “a non-spatial continuum that is measured in terms of events that succeed

one another from past through present to future”. From this definition, it follows that it

is possible to establish an order between time events (or time values), e.g. night is after

evening, and Monday is before Tuesday. A second sense of time is “the measured or

measurable period during which an action, process, or condition exists or continues”.

Given the huge differences in duration of various processes (consider, e.g. the duration

of a movie, and the human lifetime), several time units have been defined, e.g. hours,

days, months and years (Whitrow 1988), forming a hierarchy of time units (e.g. a day

“is formed” by 24 h, and a week “is formed” by 7 days). This hierarchical structure

and the fact that time is a continuum, lead to a cyclic conception of time where its

values repeat periodically (e.g. 12 a.m., 1 a.m., 2 a.m., … 11 p.m., 12 a.m., …, and

Monday, Tuesday, …, Sunday, Monday, …).

Due to this flexibility in the time conception and measurement, different rep-

resentations of time context information can be used. For example, time may be

modeled as a continuous variable whose values are the specific times at which

items are rated/consumed (e.g. a timestamp like “January 1st ,2000 at 00:00:00”).

Another option is to specify categorical values, regarding time periods of interest

in the recommendation domain at hand. For instance, in the tourism domain, a sea-

sonal variable like seasonOfTheYear={hot_season, cold_season} may be convenient,

whereas in the music or movies domain, the variable timeOfTheWeek={workday,

weekend} may have more sense. A hierarchical modeling may also be used,

enabling to control the degree of granularity of the time context information (e.g.

dayOfTheWeek={Monday, T uesday, . . . , Sunday} → timeOfTheWeek). In this

sense, it has to be noted that storing the timestamp of ratings is the most flexible

option, since it enables exploiting diverse representations of time context, including

both continuous and (may be overlapping) categorical values.

3 http://www.merriam-webster.com/dictionary/time

123

http://www.merriam-webster.com/dictionary/time

74 P. G. Campos et al.

In general, time-aware recommendation models exploit collected time information

related to explicit past user preferences, e.g. the timestamps associated to ratings.

However, other sources of time information could be collected and exploited. Exam-

ples of interesting events are the time of the items’ consumptions / purchases, the

time of the items’ incorporation into the system’s catalog, and the time of the users’

registration into the system’s community. We denote by t (e) the function returning

the time associated to an event e.

2.4 Evaluating recommender systems

The evaluation of recommender systems can be performed either online or offline

(Shani and Gunawardana 2011). In online evaluation real users interactively test one

or more deployed recommendation functionalities or models, and in general, empirical

comparisons of user satisfaction for different item recommendations are conducted

by means of A/B tests (Kohavi et al. 2009). Online evaluation thus provides valu-

able information about user preferences and satisfaction regarding recommendations

provided. However, it is not always a feasible option due to the need of having an

operative system deployed, and a high cost, requiring a large number of people using

the system. In offline evaluation, on the other hand, past user behavior recorded in a

database is used to assess the system’s performance, by testing whether recommenda-

tions match the users’ declared interests. Thanks to historical data availability, offline

evaluation brings a low cost and easy to reproduce experimental environment for test-

ing new algorithms and distinct settings of a particular algorithm. Because of these

advantages, the majority of past work on TARS, including that presented herein, has

been focused on offline evaluation protocols.

In any evaluation protocol there are two fundamental components: the evaluation

metrics, which define what to assess, and the evaluation methodologies, which define

how to assess. In the recommender systems field, despite the fact that certain metrics

have been accepted and are commonly used (Herlocker et al. 2004; Gunawardana and

Shani 2009), there is no consensus on the methodologies used (Bellogín et al. 2011).

In general, a recommendation model is built (trained) with available user data,

and afterwards its ability to deliver good4 recommendations is assessed somehow

with additional (test) user data. From this, in an offline evaluation scenario, we have

to simulate the users’ actions after receiving recommendations. This is achieved by

splitting the set of available ratings into a training set (T r)—which serves as histor-

ical data to learn the users’ preferences—and a test set (T e)—which is considered

as knowledge about the users’ decisions when faced with recommendations, and is

commonly referred to as ground truth data. Since test data should not be accessible

during the model building/learning process, in general, the only restriction that must

hold is to avoid pairwise user-item rating overlaps between training and test sets, i.e.

T r ∩ T e = ∅.

4 There is no general definition of what good recommendations are. Nonetheless, a commonly used

approach is to establish the quality (goodness) of recommendations by computing different metrics that

assess various desired characteristics of a RS output.

123

Time-aware recommender systems 75

If one or more ratings from a user u are selected for T r , u becomes part of the set of

training users UT r . Similarly, if one or more ratings from a user u are selected for T e,

u becomes part of the set of test users UT e. In this sense, a single user may have some

ratings in T r and some ratings in T e, and thus belongs to both UT r and UT e. Finally,

we denote by T ru and T eu the set of training and test ratings of user u, respectively,

and by Mu the set of all the ratings collected from u (M denotes the matrix with the

ratings of all the users and items).

2.5 Evaluating time-aware recommender systems

The availability of rating timestamps can be considered as the source of major dif-

ferences in the evaluation of TARS compared to other types of RS. In particular,

the ability to order ratings according to timestamps before training-test data splitting

lets define such data splitting in various ways. The possibilities range from main-

taining a random split of data—as mostly done in time-unaware RS evaluation—to a

strict time-aware split. In the latter, a test rating rT e ∈ T e has a timestamp posterior

to any training rating rT r ∈ T r , i.e. a time-dependent order of rating data is used:

∀rT e, rT r , t (rT e) > t (rT r). We note that this case is the most similar to a real-world

setting, where a RS may only use past recorded data in order to estimate future user

preferences.

The methodologies used for TARS evaluation make use of several intermediate

approaches that highly differ from one work to another, and existing differences may

have a significant effect on the assessment of TARS performance. As a matter of fact, in

many methodologies time-dependent order of data is not performed to build T e, which

may represent an unfair setting for TARS with respect to time-unaware methods unable

to exploit time information. We thus aim to get a deeper understanding of the impact

of existing differences in TARS evaluation, by means of identifying and analyzing

the key conditions that drive evaluation methodologies. Prior to digging into these

conditions, in the next section we survey the usage of the time dimension in the CARS

literature.

3 Time as a contextual dimension in recommender systems

As explained in Sect. 2, time-aware recommender systems can be considered as spe-

cialized CARS focusing on exploiting contextual information in the form of time.

A wide range of approaches on modeling and exploiting such information have been

proposed. In order to get a comprehensive landscape on existing approaches, in this

section we review and classify the literature on TARS.

First approaches considering time information in RS date back to 2001. Zimdars et

al. (2001) treated the CF recommendation problem as a time series prediction prob-

lem, encoding the time-dependent order of the data. In a more generic perspective,

Adomavicius and Tuzhilin (2001) proposed the use of a multi-dimensional representa-

tion of RS in order to deal with contextual information, including the time dimension

among others.

Despite this early work, the topic recalled the attention of researchers recently;

Adomavicius et al. (2005) and Koren (2009b) have had a strong influence in the field,

123

76 P. G. Campos et al.

which is producing an increasing number of RS approaches exploiting some form

of time information. For the sake of simplicity, we roughly group related work by

two characteristics, the type of CF approach used, and the treatment given to time

information.

Following the common classification of CF systems, we distinguish between

heuristic-based (or memory-based) approaches and model-based approaches (Ado-

mavicius and Tuzhilin 2005). Heuristic-based algorithms essentially compute F from

the entire collection of user profiles by means of certain heuristics. That is, they com-

pute rating predictions directly from all known ratings by means of a particular mathe-

matical expression. For instance, in the user-based CF approach (Herlocker et al. 1999)

the collection of ratings is used to determine similarity between the users’ preferences,

and then, the ratings of the most similar users (the neighborhood) to the target user are

used to estimate unknown ratings of the target user. Model-based approaches, on the

other hand, learn a predictive model from the collection of known ratings, which rep-

resents an approximation of F . This requires a prior learning process where the model

is built, but thereafter the model directly generates rating predictions, which leads to

a faster response at recommendation time. A widely used example of model-based

CF is the Matrix Factorization (MF) algorithm (Koren 2009b). MF models user-item

interactions in a latent factor space, where latent factors are used to efficiently predict

unknown ratings.

Regarding the usage of time information, we identify approaches that adapt rating

predictions depending on the target recommendation time, and which represent time as

a continuous contextual variable —continuous time-aware approaches—or as categor-

ical contextual variables—categorical time-aware approaches. Additionally, there are

approaches that exploit time information in a more subtle way, without differentiating

rating prediction according to the target time, but rather adjusting some parameters or

data dynamically—time adaptive approaches. In the following paragraphs we explain

the fundamentals of these approaches.

3.1 Heuristic-based approaches

These approaches include continuous time-aware heuristics, categorical time-aware

heuristics, and time-adaptive heuristics. All of them, differently to model-based

approaches, directly use the rating collection for computing predictions.

3.1.1 Continuous time-aware heuristics

In this type of TARS, heuristics for computing rating predictions incorporate contin-

uous time information into their analytic formulas. In the general formulation of the

CF heuristics, the rating prediction of item i for user u consists of an aggregation of

ratings of other (usually the most similar) users:

F (u, i) = aggr
v∈N (u)

rv,i (1)

123

Time-aware recommender systems 77

where N (u) represents the set of users most similar to (neighbors of) u, and similarity

between users is computed by means of comparing user profiles with some metric,

e.g., the Pearson’s correlation (Adomavicius and Tuzhilin 2005). This approach is

generally referred to as user-based k-nearest neighbors (kNN), where k defines the

number of neighbors to consider in formula (1). Alternatively, the rating prediction

can be computed as an aggregation of ratings of items similar to the target item, which

is referred to as item-based kNN.

In continuous time-aware heuristics, time information T is represented as a con-

tinuous variable. The rating prediction becomes an explicit function of the target

recommendation time, r̂ = F(u, i, t). Note that this formulation lets use a target time

distinct from the current time; the recommendation may be required for a time different

from the requesting time, e.g. “what movie could I see tomorrow?”

A common approach in this type of TARS is to differently weight ratings accord-

ing to their “age” (time distance) with respect to the target time, generally in the

form of an increasing penalization on older data, under the assumption that more

recent ratings better reflect current user tastes and interests. In user-based kNN this

leads to:

F(u, i, t) = aggr
v∈N (u)

rv,i · wt (t (rv,i), t) (2)

where t ∈ T denotes the target (recommendation) time5, and wt (·) returns a

time-dependent weight. For instance, Ding and Li (2005) proposed an exponen-

tial time decay weight wt

(

t
(

rv,i

)

, t
)

= e−λ·(t−t(rv,i)), being λ a constant value.

The time weight wt can also be used to estimate the similarity between users or

items. For example, Hermann (2010) used the weight wt

(

t
(

ru,i

)

, t
(

ru, j

)

, t
)

=

1/
(∣

∣t
(

ru,i

)

− t
(

ru, j

)∣

∣ +
∣

∣min
(

t
(

ru,i

)

, t
(

ru, j

))

− t
∣

∣

)

as a measure of time similarity

between items consumed by user u.

The most extreme case of this approach is that in which wt (·) is 0 (i.e. the data is

discarded) if the time distance between t (r) and t is over some specified threshold

(Gordea and Zanker 2007; Campos et al. 2010). This is sometimes referred to as

instance selection, time window, or time truncation.

3.1.2 Categorical time-aware heuristics

In this type of TARS, the time dimension T is modeled as one or more discrete variables

T 1, T 2, · · · T n ∈ T that let treat ratings differently depending on their contextual

values. Under this formulation the possible target time is one of the values of the

contextual variables, and no references to time ordering can be made (e.g. it is possible

to ask “what movies may I see on weekends?”, but not “what movies may I see next

weekend?”). Generic context-based algorithms exploiting time by contextual pre-

filtering and contextual post-filtering strategies belong to this category.

A particular time context is represented as t =
⋃

j

t j | t j ∈ T j . For instance, given

T 1 = {morning, evening} and T 2 = {workday, weekend}, two allowed values of

5 We abuse of the notation by denoting as t (e) the function returning the time of event e, and denoting as

t a particular value of T .

123

78 P. G. Campos et al.

t are t1 = {morning, weekend}, and t2 = {evening, workday}. Thus, in this case

there is no “older” data, but rather data relevant (or not) for a particular context t . This

change in modeling time information leads to a different interpretation of wt (·)—and

the way it is used in the computation of F(u, i, t)—from that used in continuous

heuristic-based TARS. In this case wt (·) can be viewed as a penalty applied to non-

relevant data (for the target context), and depending on the contextualization strategy,

it plays a different role in the computation of F(u, i, t).

In contextual pre-filtering wt (·) is used as a filter to select relevant ratings for

neighborhood and prediction computation. That is, a set M t of ratings relevant to

context t , M t ={ru,i |ru,i ∈ M, wt

(

ru,i

)

= 1}, is selected, and neighborhood and

prediction computation are performed using M t and a model like (1). In contextual

post-filtering wt (·) is used to adapt rating prediction values previously computed with

the original rating matrix M and a model as (1):

F(u, i, t) = F(u, i) · wt (u, i, t)

For instance, Baltrunas and Amatriain (2009) created contextual micro-profiles, each

of them containing ratings in a particular context, as a pre-filtering strategy aimed

to better detect the user’s preferences for specific time contexts. They tested several

contextual schemes, such as timeOfTheDay = {morning, evening}, timeOfTheWeek

= {workday, weekend} and timeOfTheYear = {hot_season, cold_season}, obtaining

improvements on accuracy metrics. It is important to note that if rating timestamps

are available, multiple time context attributes can be exploited. For instance, Lee et al.

(2010) derived the time variables season = {fall, winter, spring, summer}, dayOfWeek

= {sun, mon, tue, wed, thu, fri, sat}, and timeOfDay = {midnight, dawn, morning, AM,

noon, PM, evening, night}, and used all these attributes together for recommendation

computation.

Given the flexibility of the categorical context representation, it is easy to incorpo-

rate other contextual dimensions beyond time, and use more complex representations

of time context. For instance, Panniello et al. (2009b) presented an experimental com-

parison of contextual pre-filtering and post-filtering approaches using the contextual

variable timeOfTheYear in a hierarchical structure with two levels: a specific level that

considers the values {summer_holiday, summer_no_holiday, winter_holiday, win-

ter_no_holiday}, and a generic level in which the time variable takes the values

{summer, winter}. More examples combining different discrete contextual dimen-

sions (including time) can be found in Adomavicius et al. (2005); Gorgoglione and

Panniello (2009); Panniello et al. (2013).

3.1.3 Time adaptive heuristics

In this type of TARS, parameters and/or data are dynamically adjusted according to

changes of some data characteristics through time. This is an important difference with

respect to continuous and categorical time-aware heuristics, as the rating prediction

is not targeted for a particular time context. Adaptive heuristics generally penalize

older preferences that are presumed to be not/less valid at recommendation time, and

usually utilize a continuous time representation. Thus, they could be considered as

123

Time-aware recommender systems 79

a particular case of time decay heuristics, but, as noted before, they do not target a

specific recommendation time. An example of time adaptive heuristics can be found

in Lee et al. (2008, 2009), where implicit purchase information is transformed into

explicit ratings by assigning increasing weights to newer ratings. This is modeled as

a function ft (r) that assigns a weight to each rating r according to its timestamp:

F (u, i) = aggr
v∈N (u)

rv,i · ft

(

rv,i

)

Note that, differently to the time-dependent weight wt (·) discussed in the previous

sections, the function ft (r) only depends on the ratings, not on the target recommen-

dation time.

These heuristics can also use, for instance, the time an item is incorporated into

the system’s catalog for the weight computation. We remark again that, under this

formulation, the rating prediction is a function of the users and items, but not of the

target (recommendation) time.

A particular formulation of ft (r) is given in Ding et al. (2006), where item ratings

are weighted according to their deviation from the target user’s most recent ratings on

similar items. The underlying assumption is that the user’s most recent ratings on a

neighborhood of similar items show her current trend on such items. Following the idea

of detecting user interest drift, Min and Han (2005) and Cao et al. (2009) developed

approaches that derive time series of user ratings, aiming to establish current user

interests. An additional form of time adaptive heuristics is described in Lathia et al.

(2009), where the number k of neighbors to be used in a kNN approach is dynamically

adjusted, looking for values of k that diminish the error on previous predictions. Other

approaches performing time adaptive heuristics are Zimdars et al. (2001), where Web

logs are coded as time series, and Tang et al. (2003), where the production year of

movies is used to reduce dimensionality in a CF system by means of an “old” movie

pruning strategy.

3.2 Model-based approaches

These approaches include continuous time-aware models, categorical time-aware

models and time adaptive models. They use the rating collection to build models

with which rating predictions are computed.

3.2.1 Continuous time-aware models

Approaches in this category build models from rating data, taking the dynamics of such

data into account. As in continuous time-aware heuristics, in continuous time-aware

models time is represented as a continuous variable, and the target time is explicitly

considered for rating prediction.

One of the best known examples of these approaches is the temporal dynamics

model proposed by Koren (2009b), which corresponds to a MF model. In general, a MF

model is an extension of singular value decomposition (SVD) in which M is iteratively

123

80 P. G. Campos et al.

approximated by user and item latent factor matrices P and Q of lower dimension6

(d in our notation). Using such latent factors the predicted rating computation is

formulated as:

F(u, i) =

d
∑

j=0

Pj,u Q j,i = pT
u qi (3)

where pu and qi are the u-th column of P and i-th column of Q, and represent the

latent factor vectors of user u and item i , respectively. Values of P and Q are computed

by minimizing an estimation of a rating prediction error, such as the Frobenius norm,

min ||M − P Q||2F .

In order to take time effects in the MF model into consideration, Koren incorporated

into (3) static and dynamic bias terms as follows:

F(u, i, t) = µ + bu(t) + bi (t) + pT
u (t)qi

where µ denotes the overall mean rating, bu(t) and bi (t) are user- and item-specific

time-dependent biases, and user factors are assumed to change through time, thus

becoming time-aware, pu(t).

Note that this model assigns latent factor vector(s) to a user at each time step t = s.

In the formulation of Koren (2009b) t is measured at the day level, being able to detect

changes in the users’ preferences with a daily granularity. An additional factorization-

based model including time-variant factors is described in Rendle (2011).

Another example of a continuous time-based model is given in Xiong et al. (2010),

where a Bayesian probabilistic tensor factorization (TF) model is proposed. In that

work Xiong and colleagues incorporated time as an additional feature vector associated

to each time step, instead of to each user and time step as in Koren (2009b). In this

way the |U | × |I | rating matrix M is extended into a three dimensional tensorM ∈

R
|U |×|I |×|W |—note that a tensor extends the two dimensions of the MF model to

three or more dimensions. Under this scheme, users, items and time are modeled via

probabilistic latent factor vectors that are computed by means of the TF approach.

Hence, rating prediction is computed by the scalar product:

F(u, i, t) =

d
∑

j=0

Pj,u Q j,i W j,t

where P·,u , Q·,i and W·,t denote the feature vectors of user u, item i , and time step

t , respectively. This formulation avoids an expensive increase of time-related factors

associated with entities, as in the case of MF models.

A different modeling scheme is presented in Koenigstein et al. (2011), where

Koenigstein and colleagues use session factors to model specific user behavior in

music listening sessions. Such sessions are inferred from time information associated

to ratings, in such a way that a session is defined as a set of consecutive ratings with

6 For the sake of simplicity we consider latent factors vectors of the same size, but they can be of different

size.

123

Time-aware recommender systems 81

no more than 5 h of difference. The authors found that users tend to rate songs in a

session very similarly.

We note that the main disadvantage of this type of models, from the time perspective,

is their inability to extrapolate future temporal dynamics. Authors, however, argue that

these models isolate persistent signals from transient noise, thus helping in predicting

future user behavior.

3.2.2 Categorical time-aware models

The main difference between continuous time-aware models and categorical time-

aware models is given by the domain of the time information they use. In categorical

time-aware models, time information is represented as discrete contextual values.

These models correspond to algorithms implementing the generic contextual model

framework proposed in Adomavicius and Tuzhilin (2011) by exploiting time context

information.

One of the first approaches on categorical time-aware models is Oku et al. (2006),

where several contextual dimensions including time, company and weather were incor-

porated into a support vector machine model for recommendation.

Karatzoglou et al. (2010) used TF to model n-dimensional contextual information.

They called this approach multiverse recommendation because of its ability to bridge

data pertaining to different contexts (universes of information) into a unified model.

In this approach the rating information is represented as an n-dimensional tensor M ∈

R
|U |×|I |×|C1|×|C2|×···×|Cn |, where C1, C2, . . . , Cn represent contextual dimensions of

information. By applying the High Order SVD decomposition approach (Lathauwer

et al. 2000), M is factorized into factor matrices P ∈ R
dP×|U |, Q ∈ R

dQ×|I |, Ck ∈

R
dCk

×|Ck |, and a central tensor S ∈ R
dP×dQ×dC1

×···×dCn , in which dk denotes the

number of latent factors describing each dimension k. In this way the rating prediction

formula becomes a function of the target user, item, and context:

F (u, i, k1, k2, . . . , kn)=S ×P P·,u ×Q Q·,i ×C1 C1·, k1 ×C2 C2·,k2 × · · · ×Cn Cn·, kn

where ×D denotes a tensor-matrix multiplication operator, and the subscript shows

the direction on the tensor on which to multiply.

Another example of categorical time-aware model is given in Rendle et al. (2011),

where factorization machines (FMs) (Rendle 2011) were used to combine continuous

and categorical time information.

3.2.3 Time adaptive models

Differently to time-aware models, in time adaptive models the rating prediction does

not depend on the target recommendation time. Hence, rating estimations are improved

by means of exploiting temporal ordering of ratings rather than temporal closeness

and relevance with respect to the target recommendation time.

An example of time adaptive model is described in Karatzoglou (2011), where

a temporal order of ratings is incorporated into a MF model, by means of learning

123

82 P. G. Campos et al.

differentiated item factors according to the ratings’ timestamps, thus extending (3) to:

F(u, i) =

d
∑

j=1

Pj,u Qs
j,i Qs−1

j,a Qs−2
j,b · · · Qs−N

j,N

where Qs
·, i is the item factor vector learned for item i with user preference infor-

mation recorded until time step s, and a, b, . . . , N denote the items consumed at

time step s − 1, s − 2 and so on. This model is referred to as a multiplicative

model. The authors also proposed a summative model in which factor products

pT
u qs

i , pT
u qs−1

a , pT
u qs−2

b , . . . , pT
u qs−N

N are summed up to compute the rating predic-

tion F(u, i).

Another example of time adaptive model can be found in Jahrer et al. (2010), where

several time-unaware models are learned. In order to blend such models, training data

are split into several bins according to rating times (among others), and different

weights are assigned to each time bin. In this way the blending process becomes

time-dependent.

4 On the use of evaluation protocols

A deep revision of state of the art on TARS showed us a considerable diversity in

the evaluation protocols used to assess time-aware recommendation performance.

We shall start our discussion by comparing online and offline evaluation approaches.

Then, we shall focus our analysis on protocols used in offline evaluation, due to its

primacy in the TARS literature. Aiming to identify and analyze important differences

in these protocols, and further define a general methodological framework for TARS

evaluation, we shall describe the main steps followed to conduct an offline evaluation of

RS in general and TARS in particular. Next we shall introduce various issues regarding

evaluation metrics and methodologies that are potential sources of differences between

evaluation protocols. Based on such issues, we shall state a number of questions

and conditions that have to be considered in any TARS evaluation protocol. These

conditions will be addressed by the methodological description framework proposed

in Sect. 5.

4.1 Online and offline evaluation of TARS

Two broad types of evaluations can be performed to assess the performance of rec-

ommender systems: online evaluation (also called user-based evaluation), and offline

evaluation (also called system evaluation) (Herlocker et al. 2004; Gunawardana and

Shani 2009; Shani and Gunawardana 2011).

In all evaluation cases, a RS is built with information about the users—such as

preferences and demographics—and the items—such as content descriptions and

attributes. Then, user responses to received recommendations are tracked and used

to compute some metrics related to one or more desired properties of the system, e.g.

accuracy, diversity and novelty of rating predictions and user satisfaction.

123

Time-aware recommender systems 83

In online evaluation, users use several settings of the system under evaluation, and

may fill questionnaires regarding their experience with the system and the received

recommendations. Evaluation results are then obtained by recording and comparing the

users’ behavior (ratings, activity logs, etc.) over the different system settings (Kohavi

et al. 2009), by comparing subjective user perceptions gathered in the questionnaires

(Knijnenburg et al. 2012), or by a combination of both. In offline evaluation, datasets

containing past user behavior are used to simulate how users would have behaved

if they had used the evaluated system. Evaluation results are obtained by comparing

actual and predicted ratings for users and items of the dataset (Herlocker et al. 2004;

Shani and Gunawardana 2011).

Online evaluation can be considered preferable to offline evaluation, mainly due to

its ability to take into account the user’s experience (Knijnenburg et al. 2012; Konstan

and Riedl 2012). That is, the user’s perceptions about the interaction with the system.

Moreover, some studies have shown differences between offline metric results and

user perceived quality (Cremonesi et al. 2011). Although there is no clear explanation,

variations in user interfaces (Cosley et al. 2003), data selection (Cremonesi et al. 2011),

and situational and personal characteristics of users (Knijnenburg et al. 2012) may be

related with such differences.

Despite its advantages, online evaluation is more difficult and expensive to perform,

as it requires counting with (fully) functional implementations of the alternative system

settings to evaluate, including its user interface. Additionally, users have to be recruited

and possibly paid for testing the system. Offline evaluation, on the other hand, only

requires implementing the system’s algorithmic settings to be tested. If a dataset is

already available, no user recruiting is needed. Thus, a common practice is to test

new recommendation algorithms by offline evaluations, especially as a preceding step

to online evaluation, in which only the best (offline) performing algorithms would

be tested. In this way overall experimentation costs are reduced (Kohavi et al. 2009;

Shani and Gunawardana 2011).

In the case of TARS there is little work on online evaluation, probably because the

main goal of TARS developments has been to increase the accuracy of recommenda-

tions, which can be easily measured in offline evaluations. In fact, some researchers

have recruited users for creating datasets with contextual information, but have per-

formed offline evaluation with the created datasets, as e.g. described in Adomavicius

et al. (2005) and Park et al. (2007). Examples of TARS evaluated online are the

approaches of Weng et al. (2009) and Oku et al. (2006).

Regarding the usage of data, we note that in online evaluation all the data available

up to the moment of the recommendation request is used. In the case of offline eval-

uation, diverse strategies to select the data that will be used to answer to an arbitrary

established recommendation request can be used. We deepen into these strategies in

the following sections.

4.2 Generic stages of offline evaluation

Figure 1 shows a schematic view of the generic stages of an offline evaluation protocol

of RS. In the figure the ratings of matrix M are partitioned into a training set T r and

a test set T e, using a training-test splitting process. T r is used to build a recommen-

123

84 P. G. Campos et al.

Fig. 1 Schematic view of the stages followed in an offline evaluation protocol for RS

dation model (or equivalently to serve as input for a recommendation heuristics). T e,

also referred to as ground truth, is used to simulate the users’ behavior in response to

received recommendations of the model. Once the model (or heuristics) is built, the

recommendation process is performed to generate a set of item suggestions for each

user. Next, these item suggestions are compared against the ground truth T e using a

number of metrics. Additional processing of data may be required depending on the

recommendation task at hand, namely rating prediction and top-N recommendation

(Herlocker et al. 2004; Gunawardana and Shani 2009). In the former task recom-

mendations correspond to rating predictions, and the above metrics are computed by

comparing predicted and actual values of test ratings. In the latter task recommen-

dations consist of a ranked list of items predicted as the most appealing for the user.

Here, metrics take into account the ranking positions of relevant and non-relevant test

items in the generated list (Cremonesi et al. 2010; Bellogín et al. 2011). In this case the

notion of item relevance can take multiple definitions, e.g. by considering as relevant

items those whose actual ratings are over certain threshold.

Given a rating matrix M , a recommendation algorithm (model or heuristics) and a

recommendation task, we then identify two main components of an offline evaluation

protocol: the metrics, with which we measure desired properties of generated recom-

mendations, and a methodology, with which we create a particular instantiation of the

described evaluation stages. We explain these two components next.

123

Time-aware recommender systems 85

4.3 Evaluation metrics

A wide array of metrics has been proposed and used to evaluate and compare recom-

mendation algorithms, attempting to assess different properties of generated recom-

mendations (Gunawardana and Shani 2009). In the literature most of the published

evaluations of RS have focused on rating prediction accuracy metrics, such as the

mean absolute error (MAE) and the root mean squared error (RMSE), which measure

how well a RS can predict the ratings of particular items.

Recently it has been argued, however, that ranking precision metrics7 are better

suited for recommendation purposes, as RS are typically required to present a limited

number of the most appealing items for a user—instead of rating predictions for

individual items (Konstan and Riedl 2012). For such purpose, in general, an item

ranking is constructed by comparing (and sorting) rating predictions, and the top-

N items in the ranking are regarded as recommendations. Then, ranking precision

metrics measure to what degree the list of recommendations contains relevant items

for the users (Herlocker et al. 2004). These metrics usually correspond to adaptations of

metrics used in the information retrieval field, such as precision, recall, and normalized

discounted cumulative gain (Baeza-Yates and Ribeiro-Neto 1999), and metrics used in

the machine learning field, such as the receiver operating characteristic (ROC) curve,

and the area under the ROC curve (Ling et al. 2003).

Note that, in general, rating prediction accuracy metrics are used to assess a rating

prediction task, while ranking precision metrics are used to assess a top-N recommen-

dation task.

Apart from prediction accuracy and ranking precision, more recently, other rec-

ommendation properties are starting to be investigated, such as novelty and diversity

(Vargas and Castells 2011), by means of metrics like Self Information (Zhou et al.

2010), and Intra List Similarity (Ziegler et al. 2005). Novelty metrics aim to capture

the degree in which unknown items (for a user in particular or the community in gen-

eral) are recommended, whereas diversity metrics assess how similar the items in a

recommendation list are.

4.4 Evaluation methodologies

Some stages of a RS evaluation can be implemented in different ways, thus leading

to methodological differences across studies. An important source of methodolog-

ical differences is the training-test rating splitting process, especially when rating

timestamps are available (Gunawardana and Shani 2009), as is the case in TARS.

Hence, for instance, in the literature one can find diverse implementations of the hold-

out method (Duda et al. 2000), which has been widely used for rating data splitting

(Gunawardana and Shani 2009).

A first decision to make when designing an evaluation setting is whether the rating

splits should be based on some rating order criterion. For instance, we may use a time-

7 These metrics are also referred to as usage prediction accuracy metrics (Gunawardana and Shani 2009)

and classification accuracy metrics (Herlocker et al. 2004).

123

86 P. G. Campos et al.

dependent ordering in which all ratings are first ordered according to their timestamps.

Next, those ratings prior to a particular date are selected for training, whereas the

remaining ratings are selected for test, as done in Panniello et al. (2009a). We may, on

the other hand, use a random selection of training and test ratings, without considering

the ratings’ timestamps or any ordering criterion, as done in Stormer (2007). Between

these two extreme cases, there are intermediate options. For example, ordering the

ratings by timestamp separately for each user, and assigning the most recent ratings of

each user to the test set, as done in the Netflix Prize competition (Bennet and Lanning

2007).

Furthermore, a careful analysis of differences among the reviewed evaluation proto-

cols shows that the ordering—and the overall splitting process—can also have different

base sets. That is, the splits can be created on the base of the whole rating matrix, as

done in Karatzoglou (2011), or can be created independently over each user’s ratings,

as done in Koenigstein et al. (2011).

The number of ratings selected for the test set is also chosen differently among

TARS-related papers. An example is the typical proportion-based schema (e.g. 80 %

of the ratings for the training set, and the remaining 20 % for the test set) used, e.g. in

Lee et al. (2010). Other strategies, for instance, select a fixed number of ratings per

user, as done in Ding et al. (2006), or set a threshold date and select ratings before

(after) that date for the training (test) set, as done in Lathia et al. (2009), to name a

few.

Additionally, there are different cross-validation strategies aimed to increase the

generalization of the evaluation results on independent data. A popular strategy is to

use some variant of resampling method, such as X-fold cross validation. This tech-

nique enables to average results over several test sets extracted from M , by means of

repeatedly splitting the data (Adomavicius et al. 2005).

Another important source of methodological differences is related to specific

requirements for assessing particular recommendation tasks. For instance, in order

to evaluate the top-N recommendation task, we have to establish a set of target items

a recommender has to rank. As described in Bellogín et al. (2011), several approaches

have been used to generate the set of target items. For example, only ranking those

items for which the user’s relevance can be determined (Adomavicius et al. 2005); or

mixing items considered relevant for the user (e.g. highly rated items) with other items

considered as non-relevant (e.g. unrated items), as done in Cremonesi et al. (2010).

Also for the top-N recommendation task, the concept of item relevance has been

interpreted differently. One interpretation is that all items in the target user’s test set are

relevant. It has been argued, however, that some items in the user’s test set should be

treated as non-relevant; consider for example a one-time-played song, or a movie rated

with 1 in a 1–5 rating scale. Furthermore, as noted by Parra and Amatriain (2011),

such information may be treated as a lack of information about the items’ relevance.

4.5 Methodological questions and evaluation conditions

Although the diversity in evaluation protocols is not a problem per se, it makes the

comparison of RS—and consequently the selection of the appropriate recommenda-

123

Time-aware recommender systems 87

tion approach for a particular application or domain—difficult. In order to deal with

this situation, we believe that a formal description of decisions on existing alternatives

in the evaluation of RS is needed. Hence, from the potential sources of differences

between evaluation protocols introduced in Sect. 4.4, we state the following method-

ological questions regarding the design of a RS evaluation protocol:

– MQ1: What base set is used to perform the training-test splitting?

– MQ2: What rating order is used to assign ratings to the training and test sets?

– MQ3: How many ratings comprise the training and test sets?

– MQ4: What cross-validation method is used for increasing the generalization of

the evaluation results?

– MQ5: Which items are considered as target items (in a top-N recommendation

task)?

– MQ6: Which items are considered relevant for each user (in a top-N recommen-

dation task)?

In the next section we shall describe the possible ways to address each of these method-

ological questions by means of a number of evaluation conditions which we have

extracted from our survey of evaluation protocols used in the TARS literature. These

evaluation conditions are: base set conditions, addressing MQ1; rating order condi-

tions, addressing MQ2; size conditions, addressing MQ3; cross-validation conditions,

addressing MQ4; target item conditions, addressing MQ5; and relevant item condi-

tions, addressing MQ6. We shall describe and formalize these conditions in the context

of a generic methodological description framework, aiming to facilitate a precise com-

munication of the evaluation conditions that drive an evaluation process.

5 A methodological description framework to formalize TARS evaluation

conditions

In this section we describe and formalize a number of evaluation conditions, which are

aimed to address the methodological questions stated in Sect. 4, and are established

from a deep analysis of the evaluation protocols used in the TARS literature. We

propose a methodological description framework to facilitate the comprehension of

such decisions, and to make the evaluation process fair and reproducible under different

circumstances. We first give some general definitions that will be used thereafter in

the description of the identified conditions and the proposed framework.

5.1 General definitions

Definition 1 A split � of the rating matrix M is a partition of M into a training set

T r and a test set T e, that is, � = 〈T r, T e〉| T r ∩ T e = ∅.

Definition 2 A splitting procedure is an algorithm that takes as input the 4-tuple

〈M × b × o × s〉, where b ∈ B is a condition in the set B of conditions to define a

base set, o ∈ O is a condition in the set O of conditions to define an ordered set, and

s ∈ S is a condition in the set S of conditions to define the size of the training and

test sets of a split. The output of a splitting procedure is a split �.

123

88 P. G. Campos et al.

Definition 3 A base set conditionb ∈ B specifies the set of base datasets Mb =

{M1, M2, . . . , Mm} generated from M , being M =
⋃

k Mk, Mk ⊆ M .

Definition 4 An ordering condition o ∈ O establishes an ordered sequence for a set

of ratings. The sequence Seqk defined by the order condition o over the ratings in Mk

is:

Seqk =
{

r(1), r(2), . . . , r(|Mk |)

}

| r(j) ∈ Mk

where r(j) denotes the j-th rating in the sequence.

Definition 5 A size condition s ∈ S sets a criterion for computing the number of

ratings from Seqk that will be assigned to the training and test sets T r and T e, denoted

by s
T r (Seqk) and s

T e (Seqk).

Algorithm 1 describes the steps of a splitting procedure. First, the base datasets

are built (step 1). Then, according to the order condition o , a sequence of ratings is

generated from each base dataset (step 2). After that, according to the size condition s

(and a set of parameter values depending on the value of s), the number of training and

test ratings is established (step 3). Taking these sizes into account, the first ratings in

each sequence are assigned to the training set, and the remaining ratings are assigned

to the test set (step 4).

In the following paragraphs we provide specific formulations for conditions on

B,O and S found in the revised TARS literature. We also describe additional eval-

uation conditions—cross-validation method, target items, and relevant items—that

extend the methodological description framework proposed.

5.2 Base set conditions

The base set conditions state whether the rating order and size conditions in steps 2

and 3 of the splitting procedure are applied on the whole set of ratings in M , or on

each of the sub-datasets of M independently. Specifically, we consider two conditions,

namely the community-centered (bcc) and the user-centered (buc) base set conditions.

123

Time-aware recommender systems 89

Community-centered base set condition. A single base dataset with all the ratings

in M is used:

Mbcc = M

When this base set condition is applied, some users may have all or none of their

ratings in the test set. This makes it impossible to assess the RS performance for such

users, as in general, CF strategies cannot generate recommendations for users without

profiles (i.e. training ratings), and metrics cannot be computed without ground truth

data (test ratings). This problem is due to large differences on rating patterns between

users, having some users with many more ratings than others, and also different rating

distributions across time. A solution for this is to split each user’s ratings separately.

User-centered base set condition. A base dataset Mu is built with the ratings of

each user u:

Mbuc = {Mu | u ∈ U } , Mu =
{

ru,· | ru,· ∈ M
}

By performing the splitting independently on each user’s ratings, we can ensure that

all users will have ratings in both the training and test sets8.

5.3 Rating order conditions

The rating order conditions establish the type of ordering to apply in the generation of

the rating sequence(s) used to make the training-test set splitting. We have identified

two rating orders in the TARS literature: a time-independent (i.e. random) ordering

(oti), and a time-dependent ordering (otd).

Time-independent rating order condition. The timestamps associated to ratings

are not considered for ordering them. Some other ordering criteria may be used, but

in general, the sequence9 is generated by randomly selecting ratings from the base

datasets Mk :

Mk

oti
→ Seq ti

k

The main advantage of this rating order condition is its applicability, since it does not

require timestamp information. Its main drawback, from a contextual point of view, is

that time dependencies between training and test ratings do not hold. This means that

the timestamp of some training ratings could be more recent than the timestamp of test

ratings. That is, some ratings included in the training set may have been produced after

some ratings in the test set. This situation can be interpreted as an evaluation of TARS

8 In a strict sense, a user-centered split ensures that most users will have training and test data, but there

may be some users without enough ratings for both training and test sets. This will depend not only on

the number of ratings of each user, but also on the definition of other evaluation conditions like the size

condition.

9 Note that each user’s rating sequence Seq ti
u is generated independently in case of using a user-centered

base set condition.

123

90 P. G. Campos et al.

that have knowledge about “future” preferences of the users, which is far away from

a real-world setting, and may give TARS unfair advantages in an offline evaluation

(Campos et al. 2011b). Using a time-dependent order can help avoiding this problem.

Time-dependent rating order. The rating sequence is ordered according to the rating

timestamps by means of a time-dependent rating ordering otd :

Mk

otd
→ Seq td

k

being Seq td
k ordered by increasing rating timestamp, i.e., t

(

r(j)

)

≤ t
(

r(j+1)

)

; ∀ r(j) ∈

Seq td
k

10.

This rating order condition aims to maintain time dependencies between ratings, and

is only applicable when ratings have associated timestamp information. Thus, when

the desired evaluation setting is to mimic real-world conditions, a time-dependent

ordering may be preferred.

It is important to note that a strict time-dependent ordering between training and

test ratings can be generated only under a community-centered base set condition. In

such a case all the test ratings have a timestamp more recent than the timestamp of

any training rating, that is, ∀ rT r ∈ T r, rT e ∈ T e, t (rT r) < t (rT e). This combination

generates an evaluation setting similar to a real-world setting, where a deployed RS can

only be trained with data available up to a particular moment, and its effectiveness is

usually evaluated with user feedback provided afterwards. Examples of this approach

are presented in Ardissono et al. (2004) and Panniello et al. (2009a). A drawback of this

combination—bcc and otd—is that, due to different user rating distributions through

time, there may be many users without ratings either in the training or in the test

set.

When a time-dependent rating order condition is used with a user-centered base

set—buc and otd , each user’s ratings are time-sorted independently from other users’

ratings. This means that time-dependent order of ratings is maintained for each user

independently, and thus cross-user time dependencies are not maintained; some users

may have training ratings subsequent to test ratings of other users. On the other hand,

by using this combination TARS do not have access to future knowledge of the target

user (in contrast to using oti), and the problem of leaving many users with only training

or test ratings is avoided (in contrast to using bcc).

The user-centered and time-dependent ordering conditions combination has been

one of the most used in TARS evaluation, probably because it was used for building

the training and test sets of the Netflix Prize competition (Bennet and Lanning 2007).

However, it has been argued that TARS which make recommendations to a target user

by exploiting knowledge about other users’ “future” preferences (with respect to the

target recommendation time) may have unfair advantages in an evaluation (Campos

et al. 2011b).

10 In case of ties, they could be broken by sorting the tied ratings by user_id. If still there are tied ratings,

then they could be sorted by item_id (note that in real datasets it is possible to find users with several ratings

with the same timestamp due to, e.g. inconsistencies in the log subsystem).

123

Time-aware recommender systems 91

5.4 Size conditions

The size evaluation conditions establish how many ratings from each rating sequence

Seqk are included in the training and test sets, T r and T e. In the literature it is

common to establish and report the size of the test set. There are several ways to

establish that size; some of them can be used in combination with any other evaluation

conditions, while others can only be used with a particular combination of conditions,

as we shall explain below. The covered conditions include proportion-based size, fixed

size, and date-based size. Note that, as described in Algorithm 1, the rating ordering

is considered when assigning ratings to training and test sets. In general, the first

s
T r (Seqk) ratings of Seqk are assigned to T r , and the remaining s

T e (Seqk) ratings

are assigned to T e.

Proportion-based size. Denoted by sprop, this condition establishes that a pro-

portion qprop of the ratings in each Seqk is used as test data, and the remain-

ing ratings are used as training data, that is, s
T e
prop (Seqk) = qprop · |Seqk | and

s
T r
prop (Seqk) =

(

1 − qprop

)

· |Seqk |, with qprop ∈ [0, 1]11.

When a user-centered base set condition (buc) is used—i.e. a rating sequence is

built for each user—a proportion-based size ensures that different users have a similar

proportion of their ratings in the training and test sets. This combination is used in

Zheng and Li (2011).

Fixed size. Denoted by s f i x , this condition establishes that a fixed number q f i x

of the ratings in each Seqk are used as test data, that is, s
T e
f i x (Seqk) = q f i x and

s
T r
f i x (Seqk) = |Seqk | − q f i x .

When using buc a fixed size condition ensures that the same number of ratings

is assigned to the users’ test sets, regardless the number of training ratings of each

user. Given that some users may have less than q f i x ratings, the size condition can be

changed for such users. For instance, in the Netflix Prize competition dataset, a fixed

number of q f i x = 9 ratings of each user was selected for building the test sets, but in

cases where |Sequ | < 18 only half of a user’s ratings were selected as test data. That

is, there was a mechanism switching from the fixed size into a proportion-based size

condition with qprop = 0.5 (Bennet and Lanning 2007).

If the fixed size condition refers to the number of training ratings, all the users have

the same number of training ratings qT r
f i x , leaving the remaining ratings for the test

set (whose size would vary from user to user). This latter case has been referred to as

given N (Ding and Li 2005), where N = qT r
f i x .

Time-based size. Denoted by stime, this size condition can only be used with a time-

dependent rating order condition. It establishes a threshold time qtime that is used to

assign the ratings of each Seqk into training and test sets. In this case the ratings

with a timestamp after qtime are assigned to T e, and the ratings with a timestamp

before qtime are assigned to T r . Hence, given the last index pk in Seqk that satisfies

t
(

r(pk)

)

≤ qtime, the sizes s
T r
time (Seqk) =

∣

∣{r(1), r(2), . . . , r(pk)}
∣

∣ and s
T e
time (Seqk) =

|Seqk | − s
T r
time (Seqk) are established, as done in Lu et al. (2009).

11 In case of a non-integer size value, it could be rounded to the nearest integer value.

123

92 P. G. Campos et al.

Using the time-based size condition in combination with either a community-

centered or a user-centered base set condition yields equivalent training and test sets

if the threshold qtime is the same for all users. This particular case is similar to the

combination of a community-centered base set, a time-dependent rating order, and a

proportion-based size conditions (with an appropriate qprop value).

The time-based size condition can be enhanced by incorporating an ending time

limit qend_time. In this case only the ratings whose timestamps are between qtime

and qend_time are assigned to the test set. Hence, given the last index lk in Seqk

that satisfies t
(

r(lk)

)

≤ qend_time, the sizes s
T r
time (Seqk) = pk and s

T e
time (Seqk) =

lk − pk are assigned, and the ratings with timestamp subsequent to qend_time are

discarded, as done in (Liu et al. 2010b; Pradel et al. 2011). In this case the assumption

is that the user’s preferences (manifested as ratings) that were produced long after

a target recommendation time should not be considered for assessing the quality of

recommendations.

An alternative way to specify a time-based size consists in establishing a period

of time (or window size) qtime_window to the timespan of the test ratings (e.g.

qtime_window = 10 days). Hence, the ratings assigned to T e are those starting from

the last known rating time in each Seqk minus qtime_window. In this case, given the

last index pk in Seqk that satisfies t
(

r(pk)

)

≤ t
(

r(|Seqk |)

)

− qtime_window, the sizes

s
T r
time_window (Seqk) = pk and s

T e
time_window (Seqk) = |Seqk | − pk are assigned, as

done in Zhan et al. (2006).

We note that when used in combination with a buc condition, t
(

r(|Seqk |)

)

is different

for each user. In such a case, there will be a different starting date for the ratings in the

test set of each user. Because of this, combining the stime_window and buc conditions

has a disadvantage similar to that of the s f i x condition when it is used with user-

centered base set and time-dependent rating order conditions, since some users may

have all of their ratings within the test timespan.

5.5 Cross-validation conditions

Cross-validation conditions define whether one or more data splits are built with the

ratings in M . Research in Statistics (Arlot and Celisse 2010) and Machine Learning

(Dietterich 1998) has shown that the variability of evaluation results is diminished by

repeating the evaluation process several times using a different data split each time.

This procedure is commonly referred to as cross-validation. In this section we describe

cross-validation methods that have been used in the revised TARS papers. We group

them by the way they handle the time dimension. First of all, we introduce the hold-out

procedure, as this is the basic building block for the above methods, and moreover,

it can deal with the time dimension in different ways according to other evaluation

conditions explained in previous sections.

Hold-out splitting. Only one training set and one test set are built, according to the

evaluation conditions base set, rating order, and size, and avoiding pairwise (user,

item) rating overlap, i.e. T r ∩ T e = ∅. TARS performance is measured by training

the recommendation algorithm with ratings in T r , and comparing generated recom-

mendations with the ground truth T e, as done, e.g., in Panniello et al. (2009a). The

123

Time-aware recommender systems 93

rationale for having separated, non-overlapping training and test sets is that measur-

ing performance of rating predictions on training data may produce an underestimated

prediction error (Arlot and Celisse 2010).

5.5.1 Time-independent cross-validation methods

These cross-validation methods use a time-independent rating order condition, and

build X different splits �x = (T rx , T ex), x ∈ {1, . . . , X} with the ratings in M ,

avoiding pairwise (user, item) rating overlap on each split, i.e. T rx ∩ T ex = ∅.

Repeated sampling. This method repeats the hold-out splitting procedure X times,

according to some base set and size conditions. By using a random, time-independent

rating order condition (i.e. a different sequence is generated in each repetition, due to

the use of a random ordering) it is ensured that each split will be different from the

rest. Gordea and Zanker (2007) applied this method.

User resampling. This method randomly samples a subset of users Ux ⊂ U in

each repetition. Then apply the hold-out splitting procedure on each dataset Mx =

{ru,·|u ∈ Ux }, according to some base set and size condition. Zheng and Li (2011)

used this method.

X-fold cross validation. This is a commonly used method that takes a time-

independent ordered sequence of ratings, and splits it into X disjoint sets (called

folds). Then, X different training and test sets are built, by assigning the ratings in

one fold to the test set, and the ratings in the remaining X − 1 folds to the training

set, as e.g. done in Adomavicius et al. (2005). In general, the folds are equally sized,

and thus, the value of X is used to determine the size of training and test sets. Note

that this is similar to use a proportion-based size condition, with qprop = 1/X . Fur-

thermore, this method can be applied with a community-centered or a user-centered

base set conditions. We note that details about the used base sets are rarely reported

in the literature; in general, only the usage of an X-fold cross validation method and

the value of X are reported.

Leave-one-out. This is a particular X -fold cross validation method in which X =

|M |. One rating in M is considered as the test set, and the remaining ratings are used for

training in each repetition. Although this method has showed the lowest variability in

results in generic prediction problems (Arlot and Celisse 2010), its high computational

cost (the algorithms must be trained and evaluated |M | times) makes it unfeasible in

many situations. Cremonesi and Turrin (2009) applied this method.

Category-based cross validation. This is a particular cross-validation method that

has been used to evaluate categorical TARS. In this case, different splits are built

according to the value of one or more categorical context variables. The rationale for

this is twofold. On the one hand, make independent evaluations of TARS performance

in different categorical contexts. And on the other hand, facilitate the computation

of a single value of performance across contexts, for a given metric. This cross vali-

dation condition can be applied with a time-independent or a time-dependent rating

order condition, but requires the availability of categorical context information asso-

ciated to the ratings. Note that, when the categorical variable correspond to a time

context variable, this method let evaluate TARS performance separately on different

time contexts (e.g. weekday vs. weekend). But this method does not ensure that time

123

94 P. G. Campos et al.

dependencies between ratings in a given training-test set pair hold (unless a time-

dependent rating condition is used). The number of different splits that can be gener-

ated with this method is limited by the number of different categorical values of the

contextual variables. Baltrunas and Amatriain (2009) used this type of cross-validation.

In general, time-independent cross-validation methods present two characteristics

that must be handled with care when evaluating TARS. On the one hand, they may

produce overlapping training and test sets from the time ordering point of view. On

the other hand, they may produce pairwise (user, item) rating overlaps between dif-

ferent training or test sets, which may make the application of statistical tests difficult

(Dietterich 1998).

5.5.2 Time-dependent cross-validation methods

These cross-validation methods aim to ensure that time dependencies between ratings

in each training-test set pair hold, i.e. ∀rT r ∈ T rx , ∀rT e ∈ T ex , t (rT r) < t (rT e).

This is accomplished by using the combination of a community-centered base set and

a time-dependent rating order conditions, and some time-based size condition. The

time-based size condition can be iteratively updated to form time-evolving training

and test sets.

Time-dependent resampling. This is a simple method that selects X different ratings

r x ∈ M | x ∈ {1, 2, . . . , X}, and builds splits �x by using a stime condition with the

time threshold qx
time = t (r x). Hermann (2010) used this method.

Time-dependent users resampling. This method is similar to the time-independent

user resampling, but uses a time-dependent rating order condition. In this case X

different splits are built because the users (and thus the ratings) vary from sample to

sample. Cremonesi and Turrin 2010 used this method.

Increasing-time window. This method builds different splits by means of increas-

ing the timespan of training sets. It requires the definition of a training window size

qtime_window_T r and a test window size qtime_window_T e, measured in some time

unit, e.g. days or weeks. For building the initial training and test sets, this method

uses a stime condition, with qtime = t (r(1)) + qtime_window_T r and qend_time =

qtime + qtime_window_T e. The method builds subsequent training and test sets by iter-

atively updating qtime and qend_time as follows: q ′
time = qtime + qtime_window_T e and

q ′
end_time = qend_time+qtime_window_T e. Setting qtime_window_T r and qtime_window_T e

such that qtime_window_T r +X ·qtime_window_T e = t (r(|M|)), the method builds X train-

ing and test sets, being the timespans in the test sets equally sized. Lathia et al. (2009)

used this method.

Fixed-time window. This cross-validation method is a variation of the increasing-

time window method. The timespan size of each training set is maintained by means

of discarding “old” ratings. In this case the first training and test sets are built as in

the increasing-time window method, and the subsequent training sets are pruned by

discarding those ratings out of the training time window qtime_window_T r : r | t (r) <

qtime − qtime_window_T r .

Note that this method leads to faster training and evaluation processes compared

with those of the increasing-time window method, since the training set sizes do not

123

Time-aware recommender systems 95

increase. However, it has the disadvantage of losing part of the training data, which

may be valuable for some TARS. Pradel et al. (2011) applied this method.

5.6 Target item conditions

These conditions, which are specific for the top-N recommendation task evaluation,

select the target items T argetu to be ranked by the evaluated TARS. We recall that the

need to take these conditions into consideration arises from the different nature of rating

prediction and top-N recommendation tasks. In rating prediction, a RS is requested to

predict the rating a target user would give to a target item. In top-N recommendation,

there is no target item, but only a target user; the RS is then requested to estimate the

set of top items the target user would prefer.

We note that a broad—and close to a real world setting—target item condition would

be ranking all the items except the target user u’s training items, which are already

known by u, i.e. setting T argetu = I\ IT ru . In the revised literature, nonetheless,

smaller item sets have been used as T argetu , letting a faster evaluation, as fewer

items have to be ranked by the assessed TARS.

The impact of target item conditions on evaluating recommendation performance

has been studied by Bellogín et al. (2011). In the following we describe conditions

identified in the revised TARS papers.

User-based target items. The items in the target user’s test set T eu are ranked, i.e.

T argetu = IT eu .

The rationale for this condition is to avoid ranking items for which there is no

explicit evidence of user preferences. This method was used by Adomavicius et al.

(2005) and Ma et al. (2007).

Community-based target items. All the items in the test set T e (i.e. the ratings of

the whole community of test users) are ranked, i.e. T argetu = (
⋃

v∈U IT ev)\IT ru .

A variation that includes more target items consists of ranking all the items in the

community training set T r , i.e. T argetu = (
⋃

v∈U IT rv)\IT ru .

The rationale of this condition is to include in T argetu items interpreted as non-

relevant for user u, in order to assess a recommendation algorithm’s ability to better

rank relevant items. The underlying assumption is that items rated by u are relevant,

and unrated items are presumably non-relevant. Pradel et al. (2011) and Zimdars et al.

2001 used this condition.

One-plus random target items. In order to describe this condition, we first define

the set of highly relevant items for user u as Ihrelu = {i ∈ I | ru,i ∈ T eu, ru,i ≥ τhrel},

where τhrel is a high-relevance threshold, i.e. items in the ground truth of u with high

ratings; and the set of non-relevant items for user u as Irelu
= {i ∈ I | ru,i = ∅}, i.e.

items that have not been rated by u.

In this case, several sets T argetk
u for the target user u are built, each of them

consisting of one highly relevant item ik ∈ Ihrelu , plus a set of non-relevant items

Jrelu
⊆ Irelu

: T argetk
u = ik ∪ Jrelu

.

The rationale for this condition is to find out whether a recommendation algorithm

is able to consistently rank the selected relevant items above all other non-relevant

items (Cremonesi et al. 2010). This condition was used by Stormer (2007).

123

96 P. G. Campos et al.

Other target item conditions. A particular target item condition we identified in our

review is based on a given list of target items, where a fixed set of items is ranked.

This approach has been used in domains where there is a fixed set of possible items to

recommend at a particular moment, as in TV show recommendation, in which there

is a set of shows being broadcast at a particular time. In such a case T argetu contains

the TV listings at recommendation time, as shown by Vildjiounaite et al. (2008).

Another condition we identified is the one-item target item, in which T argetu is

composed of just one item at a time. In this case a TARS has to decide whether or

not to recommend a given item. This condition can be used to measure the ability of

an algorithm to recommend only relevant items by repeating the evaluation process

with all known items. This particular condition was used with the leave-one-out cross-

validation method by Panniello et al. (2009a).

5.7 Relevant item conditions

Relevant item conditions select the items to be interpreted as relevant for the target user.

The notion of relevance is central for information retrieval metrics applied to evaluate

top-N recommendations. A RS has a set of ratings for some items, and depending

on such ratings, the items have to be interpreted as relevant or non-relevant. In this

context we identify two main conditions, namely the test-based and the threshold-

based relevant item conditions.

Test-based relevant items. The set of relevant items for user u, Irelu , is formed by

the items in u’s test set: Irelu = IT eu . By using this condition, rating/consuming an

item is interpreted as indicative of interest for such item. Liu et al. (2010b) used this

condition.

Threshold-based relevant items. The items in the user’s test set rated/consumed

above a threshold value τrel are considered as relevant, i.e. Irelu =
{

i ∈ I |ru,i ∈ T eu,

ru,i ≥ τrel

}

. Thus, the test set is pruned from low rated items. This condition was used

by Adomavicius et al. (2005) and Vildjiounaite et al. (2008).

Note that the definition of Irelu is similar to the definition of Ihrelu used in the

description of the one-plus random target item condition. The difference between

both sets is their threshold value, being τhrel > τrel in general.

6 Empirical comparison of TARS evaluation conditions

In order to assess the impact of the identified conditions on time-aware recommen-

dation evaluation, we conducted an empirical study comparing the recommendation

performance of a number of algorithms when different combinations of the above con-

ditions are used. In this comparison we include two categorical TARS—as they are

instances of the most widely used approach for context-aware recommendation—and a

well-known heuristic-based continuous TARS. We consider both the rating prediction

and the top-N recommendation tasks, and analyze several rating prediction accuracy

and ranking precision metrics, as well as novelty and diversity metrics. Moreover,

we use three publicly available datasets that belong to different domains—movies

123

Time-aware recommender systems 97

and music12, and have distinct types of ratings—explicit and implicit ratings. In the

next sections we present the recommendation algorithms evaluated, the datasets used,

and the evaluation metrics and methodologies which were compared. We present and

discuss the results obtained, taking advantage of our framework to fairly state the

conditions in which the experiments were conducted.

6.1 Recommendation algorithms

For our study, we evaluated two categorical heuristic-based TARS, namely contex-

tual pre-filtering and contextual post-filtering algorithms. These algorithms have been

widely used in the CARS-related research literature, and enable an easy incorporation

of time context information. We also evaluated a Time Decay algorithm, as an example

of continuous heuristic-based TARS.

As baseline algorithm we considered a context-unaware weighted user-based kNN

algorithm (Herlocker et al. 1999):

F (u, i) = ru +

∑

vN (u)

(

rv,i − rv

)

· sim (u, v)
∑

v∈N (u) sim(u, v)

where sim (u, v) denotes a user similarity function based on the type of ratings used,

including weights to penalize user similarities based on little information (understood

as a low number of data points). For explicit ratings, the similarity function is the

weighted Pearson correlation, defined as:

sim (u, v) =
n

w
·

∑

i∈Iv∩Iu

(

rv,i − rv

)

·
(

ru,i − ru

)

∑

i∈Iv∩Iu

(

rv,i − rv

)2
·
∑

i∈Iv∩Iu

(

ru,i − ru

)2

where n is the number of items rated by both users u and v, and w is a constant. For

implicit ratings, the similarity function is the weighted cosine similarity, defined as:

sim (u, v) =
n

w
·

∑

i∈Iv∩Iu
rv,i · ru,i

√

∑

i∈Iv∩Iu

(

rv,i

)2
·

√

∑

i∈Iv∩Iu

(

ru,i

)2

where ru,i denotes the number of times the user u consumed item i . We set w = 50

and k = 200 in all our experiments, as they provided good results and tendencies

similar to other tested values. In cases where kNN was unable to compute a recom-

mendation (e.g. because the target user/item did not appear in a training set), we used

the user’s/item’s/global mean rating as the default prediction value. In case of implicit

ratings, the default prediction value was set to 0, as there is not a meaningful mean

rating value, but rather a long-tailed item consumption rate.

12 In this work we use a pure collaborative filtering approach for the music recommendation domain.

Content-based approaches—exploiting special characteristics of music, such as chord, melody, lyrics, and

composer—could be used instead, but they fall out of the scope of this study.

123

98 P. G. Campos et al.

The first evaluated recommendation algorithm is an implementation of the con-

textual pre-filtering (PRF) approach presented in Adomavicius and Tuzhilin (2011).

This algorithm selects ratings relevant to the target context, and using the selected

ratings, it computes rating predictions with a context-unaware recommendation strat-

egy. Specifically, we used the time Of The Week = {workday,weekend} categorical

variable as time context, and the kNN approach described above as the underlying

rating prediction strategy.

The second evaluated recommendation algorithm is an implementation of the con-

textual post-filtering (POF) approach presented in Adomavicius and Tuzhilin (2011).

This algorithm first computes rating predictions, which can be generated by a context-

unaware strategy, and then rating predictions are contextualized according to the target

context. We used the same categorical time variable and kNN rating prediction strategy

as the one used in the PRF approach. The contextualization of rating predictions was

performed by a filtering strategy presented in Panniello et al. (2009b), which penalizes

the recommendation of items that are not relevant in the target context as follows. The

relevance of an item i for the target user u in a particular context c is approximated

by the probability Pc (u, i, c) =
|Uu,i,c|

k
, where Uu,i,c =

{

v ∈ N (u) |rv,i,c �= ∅
}

, that

is, the user’s neighbors v who have rated/consumed item i in context c. The item

relevance is determined by a threshold value τPc (set to 0.1 in our experiments) that is

used to contextualize the ratings as follows:

F (u, i, c) =

{

F (u, i) i f Pc (u, i, c) ≥ τPc

min (R) i f Pc (u, i, c) < τPc

where min(R) returns the minimum rating value for the domain at hand.

We note that this particular implementation of POF is better suited for a top-N

recommendation task, as rating predictions may be heavily penalized in some cases

(due to replacement of the predicted rating value by min(R) when Pc(u, i, c) < τPc),

thus affecting rating prediction accuracy metrics.

The third evaluated recommendation algorithm is an implementation of the Time

Decay (TD) approach, proposed in Ding and Li (2005):

F (u, i, t) = r̄u +

∑

vN (u)

(

rv,i − r̄v

)

· sim (u, v) · e−λ·(t−t(rv,i))
∑

v∈N (u) sim(u, v)

with λ = 1/200 and t being a continuous time variable. Note that in this implemen-

tation we use time values with day granularity as done by Ding and Li (2005).

6.2 Datasets

In our study we used four datasets with timestamp information obtained from Movie-

Lens13 (Herlocker et al. 1999), Netflix14 (Bennet and Lanning 2007), and Last.fm15

13 MovieLens movie recommendations, http://movielens.umn.edu

14 Neflix on-demand video streaming, http://www.netflix.com

15 Last.fm Internet radio, http://www.lastfm.es

123

http://movielens.umn.edu
http://www.netflix.com
http://www.lastfm.es

Time-aware recommender systems 99

Table 1 Statistics of the used datasets

MovieLens MovieLensR Netflix Last.fm

Number of users 6,040 60 480,189 992

Number of items 3,706 2,056 17,770 174,091

Number of events 1,000,209 8,979 100,480,507 19,150,868

(898,073 user-

item pairs)

Timespan ∼3 years ∼2 years ∼6 years ∼4.5 years

(2000/04/26–

2003/02/28)

(2000/12/27–

2003/01/07)

(1999/11/11–

2005/12/31)

(2005/02/14–

2009/06/19)

Sparsity 0.0447 0.0834 0.0118 0.0052

(Celma 2010). The MovieLens and Netflix datasets have explicit ratings for movies,

and the Last.fm dataset contains implicit ratings (listening to records) for music artists.

Some basic statistics about the datasets are shown in Table 1. The MovieLensR dataset

was built similarly as done by Ding and Li (2005), that is, by selecting the ratings of

the first 60 users in the dataset (according to their identifier). We used this dataset to

replicate the results reported in that work, where the Time Decay algorithm obtained

significant improvements over the kNN algorithm.

To make the Netflix dataset more manageable, we divided it into 5 different sub-

datasets on which we performed the evaluation. Specifically, we binned the original

set of users into 50 equally sized bins, maintaining an increasing size of the user

profiles in subsequent bins. Similarly to Lathia et al. (2009), we built each sub-dataset

with the ratings of 1,000 randomly sampled users from each bin, plus those ratings

generated during the first 500 days in the original dataset (from all users). Each of the

new datasets had around 60,000 users, 17,765 items, and 11.7 million ratings, ranging

the same timespan as the original dataset.

6.3 Evaluation metrics

Aiming to adequately cover the spectrum of mostly used recommendation quality

metrics in offline evaluations, and to obtain an overview of distinct properties of

recommendations generated by the tested algorithms under the selected evaluation

methodologies, in our experiments, we considered both the rating prediction and the

top-N recommendation tasks. We assessed accuracy for the two recommendation tasks,

and novelty and diversity for the top-N recommendation task.

Specifically, we used Root Mean Squared Error (RMSE) (Shani and Gunawardana

2011) to assess accuracy in rating prediction, and Precision (P), Recall (R), and nor-

malized Discounted Cumulative Gain (nDCG) (Baeza-Yates and Ribeiro-Neto 1999;

Shani and Gunawardana 2011) to assess accuracy (ranking precision) of top-N rec-

ommendations. We computed novelty and diversity by means of Self-Information (I)

(Zhou et al. 2010) and Intra-list Similarity (ILS) (Zhang and Hurley 2009), respec-

tively. We computed the P, R, I and ILS metrics at cut-off 10, and nDCG on the whole

lists of recommended items.

123

100 P. G. Campos et al.

6.4 Evaluation methodologies

Aiming to find and analyze differences on recommendation quality results obtained

with distinct combinations of evaluation conditions, we selected four different evalu-

ation methodologies—three of them used a time-dependent order condition, and the

other one used a time-independent order condition.

The first methodology (denoted uc_ti_prop) consists of a combination of a user-

centered base set (buc), a time-independent rating order (oti), and a proportion-

based size (sprop with qprop = 0.2) condition, which is used to generate a split-

ting �uc_ti_prop. According to the framework introduced in Sect. 5, this splitting is

represented as:

�uc_ti_prop = 〈M,buc,oti ,sprop

(

qprop = 0.2
)

〉

The second methodology (denoted uc_td_prop) consists of the uc_ti_prop evaluation

conditions, but using a time-dependent rating order. Its generated splitting �uc_td_prop

is:

�uc_td_prop = 〈M,buc,otd ,sprop

(

qprop = 0.2
)

〉

The third methodology (denoted cc_td_prop) is equivalent to the uc_td_prop

methodology with a community-centered base set condition. Its generated splitting

�cc_td_prop is:

�cc_td_prop = 〈M,bcc,otd ,sprop

(

qprop = 0.2
)

〉

Finally, the fourth methodology (denoted uc_td_fix) consists of a combination of a

user-centered base set, a time-dependent rating order, and a fixed size (q f i x = 9)

condition. Its generated splitting �uc_td_ f i x is:

�uc_td_ f i x = 〈M,buc,otd ,s f i x

(

q f i x = 9
)

〉

In case a user has less than 10 ratings, the size condition is switched to the proportion

based size condition with qprop = 0.5 in order to maintain such user in the training

and test sets.

All the combinations use a hold-out procedure, a community-based target item

condition T argetu =
(⋃

v∈U IT ev

)

\IT ru , and a test-based relevant item condition

Irelu = IT eu .

6.5 Results and discussion

Tables 2, 3, 4 and 5 respectively show the average recommendation performance results

obtained on the MovieLens, MovieLensR, Netflix and Last.fm datasets. In these tables

results are grouped by evaluation methodology, thus facilitating the identification of

absolute and relative differences of algorithms within and between evaluation condi-

tions.

123

Time-aware recommender systems 101

Table 2 Performance results on the MovieLens dataset, grouped by evaluation methodology

For each methodology, darker grey cells indicate worse values of the corresponding metric, whereas the white

cells indicate the best values. Statistical significant differences (Wilcoxon p < 0.05) of TARS algorithms

are indicated with respect to kNN (*)

On the Last.fm dataset, we only tested the top-N recommendation task, since this

dataset does not have explicit ratings with which rating prediction comparisons could

be done. Thus, RMSE cannot be computed for such dataset. Also, in that dataset,

the TD algorithm was not assessed because of multiple events (listening to records)

and timestamps related to the same (user, item) pair, which do not let set a unique

timestamp to apply the time decay weight.

In the tables we observe that the performance results provided by each of the

assessed metrics for a particular algorithm are very dissimilar when different eval-

uation methodologies are used. Figures 2 and 3 show the differences of RMSE and

nDCG metrics across methodologies for the four evaluated algorithms, on the Movie-

Lens and MovieLensR datasets respectively. We observe that using the cc_td_prop and

uc_td_fix methodologies, kNN, TD and PRF values of RMSE are larger than when

using uc_ti_prop and uc_td_prop, on both datasets. Conversely, the uc_td_fix method-

ology leads to the lowest RMSE values of POF. Moreover, the uc_td_fix methodology

leads to the lowest values of nDCG for all the tested algorithms (statistical significant

differences with respect to the values obtained with the other methodologies).

The results obtained show that recommendation assessment under different evalua-

tion protocols (metrics and methodologies) is an issue that has to be carefully taken into

consideration in order to derive well-founded conclusions about relative performance

of recommendation algorithms.

The conducted experiments also reveal that dissimilar relative rankings of the tested

algorithms are obtained, depending on the analyzed dataset, metric, and methodol-

ogy. For instance, regarding the rating prediction accuracy measured with the RMSE

123

102 P. G. Campos et al.

Table 3 Performance results on MovieLensR dataset, grouped by evaluation methodology

For each methodology, darker grey cells indicate worse values of the corresponding metric, whereas the white

cells indicate the best values. Statistical significant differences (Wilcoxon p < 0.05) of TARS algorithms

are indicated with respect to kNN (*)

Table 4 Average performance results on the 5 sub-datasets generated from the Netflix dataset, grouped by

evaluation methodology

For each methodology, darker grey cells indicate worse values of the corresponding metric, whereas the

white cells indicate the best values. Statistical significant differences (Wilcoxon p < 0.05) of TARS algo-

rithms are indicated with respect to kNN (*)

123

Time-aware recommender systems 103

Table 5 Performance results on the Last.fm dataset, grouped by evaluation methodology

For each methodology, darker grey cells indicate worse values of the corresponding metric, whereas the white

cells indicate the best values. Statistical significant differences (Wilcoxon p < 0.05) of TARS algorithms

are indicated with respect to kNN (*)

Fig. 2 RMSE and nDCG values of different algorithms across evaluation methodologies, on the MovieLens

dataset

metric on the MovieLens dataset, when the cc_td_prop methodology was used TD

outperformed PRF, differently to what was obtained when using the other methodolo-

gies16. A more notorious example can be observed in the MovieLensR dataset, where

according to RMSE, and using the uc_ti_prop methodology, the best performance is

achieved by kNN. For the same metric using any of the other methodologies, the best

performance is achieved by TD, although differences were not statistically significant.

In the case of the Netflix dataset, TD was not able to outperform kNN in any of the

used methodologies. On the other hand, PRF and POF showed worse performance

than kNN in terms of RMSE, regardless of the methodology used.

The relative performance rankings of the algorithms according to the ranking pre-

cision metrics also show differences across datasets, metrics, and methodologies. One

example is observed when comparing algorithms’ ranking using P@10 as performance

metric. Using a user-centered base set (uc_td_prop), the algorithms are ranked as POF,

PRF, TD and kNN on MovieLens, observing little difference between PRF, TD and

16 These differences are statistically significant (Wilcoxon p < 0.05).

123

104 P. G. Campos et al.

Fig. 3 RMSE and nDCG values of different algorithms across evaluation methodologies, on the Movie-

LensR dataset

kNN results. Changing into a community-centered base set (cc_td_prop), and using

the same dataset, the ranking is POF, kNN, TD and PRF, and the difference between

kNN and TD becomes statistically significant. Similar algorithm ranking switches

are observed when changing the rating order condition (e.g. by comparing R@10

results on Netflix, using the ud_td_prop methodology instead of uc_ti_prop) and the

size condition (e.g. comparing P@10 results on Netflix, using the uc_td_fix method-

ology instead of uc_td_prop). Moreover, it is notable the contrast in performance

between rating prediction accuracy and ranking precision metrics. POF consistently

showed a superior performance in terms of P@10, R@10 and nDCG across datasets

and methodologies, and an inferior performance according to RMSE. We also remark

that the magnitude of metric values may vary considerably from one methodology to

another on the same dataset.

Regarding novelty and diversity, we observe even more variations on the rela-

tive rankings depending on the datasets, methodology and metric, compared with

the ones observed in rating prediction accuracy and ranking precision metrics. It is

interesting to note, anyhow, that the relative rankings on Last.fm dataset are stable

across methodologies. Additionally, we also observe that in general there is a trade-off

between precision-ranking accuracy, and diversity and novelty of TARS. This trade-

off was also observed by Panniello et al. (2013) when exploiting other contextual

dimensions.

Supported by the fact that they were obtained on several datasets, in different

recommendation domains and tasks, and with various types of ratings (explicit and

implicit), the above results show the importance of clearly stating the conditions

under which TARS are evaluated. Differences of absolute metric values obtained by

the same algorithm across methodologies confirm the difficulty of comparing results

reported by other authors when evaluation conditions are not described precisely. And

more importantly, differences on relative rankings of the algorithms across datasets,

metrics, and methodologies show the need of selecting a proper evaluation protocol

for identifying the improvement capabilities of new TARS correctly.

The evaluation conducted let us detect differences on recommendation results due

to the usage of different evaluation protocols, even when the experiments were not

exhaustive. We did not test all the described methodologies, and, moreover, alternative

cross-validation methods, target items, and relevant item conditions may be used.

Additional research is required in order to precisely determine the degree of impact

on recommendation results by each evaluation condition.

123

Time-aware recommender systems 105

Another issue that was not addressed in this work is whether the characteristics of

individual user profiles or full datasets are related to changes on a metric’s values for

different evaluation methodologies. Regarding this issue, according to our results, it

seems that a larger volume of data in a dataset leads to more stability of the results

across methodologies. On the other hand, differences observed between results on the

Last.fm and on the other datasets seem to indicate that the type of ratings may play an

important role in evaluation. All in all, further experimentation is required in order to

reliably establish which evaluation protocols are better suited for users (or datasets)

with particular characteristics. The comparison of algorithms performance (and the

manner of exploiting temporal context) deserves a deep study on its own, and thus is

not considered here.

Finally, regarding the importance of maintaining time dependencies of ratings

between training and test sets, we do not observe a consistent pattern. For the cat-

egorical time-aware algorithms (PRF and POF), applying a time-dependent ordering

on ratings does not seem to have an important impact for evaluation. We believe

this may happen when time is treated as a discrete variable, which may not enable

tracking user preference evolution through time, but rather may let detect periodic-

ity in the users’ preferences. In contrast, for the continuous time-aware algorithm

(TD), time-dependent ordering seems to have a more important role (especially on the

MovieLensR dataset). From these results, we observe that methodologies using a time-

dependent rating order seem more sensitive to performance differences due to distinct

time models used by TARS. As part of future research, we plan to contrast the results

reported herein with others obtained from additional categorical and continuous TARS.

7 Learnt lessons and open questions on TARS evaluation

In this section we summarize the key findings of our study, in order to provide a set

of general methodological guidelines for TARS evaluation, and to identify additional

research required for a deeper understanding of the evaluation conditions presented

in this work. We begin by providing an exhaustive classification of state-of-the-art

TARS, based on the evaluation conditions described in our methodological descrip-

tion framework. From this classification we identify the most common evaluation

conditions used in the TARS literature.

By analyzing these conditions and the results obtained in our experiments, we for-

mulate a set of methodological guidelines that may help researchers and practitioners

interested in TARS evaluation to select proper combinations of evaluation conditions.

We must note that these guidelines are based on the insights derived from the works

analyzed in our survey, and the experiments we conducted. They thus do not cover

all possible combinations of dataset characteristics, or evaluation conditions, metrics,

and methodologies.

7.1 Evaluation conditions used in state-of-the-art TARS

Table 6 provides a summary of the revised papers on time-aware recommendation

approaches that make use of offline evaluations, by showing the conditions (as defined

123

106 P. G. Campos et al.

in Sect. 5) used for evaluating each approach. In the table each row represents a par-

ticular combination of conditions, and each column is associated to an evaluation

condition; some papers include more than one evaluation and/or condition combina-

tion.

In the table we first observe that despite the fact that the papers revised deal with

time-aware recommendation approaches, in 24.6 % (14 out of 57) of them, a time-

independent ordering of ratings is used in the evaluation protocols. On the other hand, a

combination of a community-centered base set and a time-dependent ordering—which

provides the evaluation scenario most similar to a real-world setting, maintaining

temporal dependencies between training and test ratings, ∀rT e, rT r , t (rT e) > t (rT r)–

is used in 38.6 % of the papers (22).

Regarding cross-validation methods, the basic hold-out procedure (i.e. no cross-

validation) is used in 70.2 % of the papers (40). Only in 10 of the 19 papers in which

cross-validation was used (17.5 % of the whole list of papers) a time-based cross-

validation method was used.

With respect to specific evaluation conditions of the top-N recommendation task,

we first note that in 25 papers these conditions are not applicable, since the above task

was not evaluated. We observe that in the majority of TARS-related papers address-

ing the top-N recommendation task (21 out of 32), a test-based relevant item con-

dition was used, but we find an even distribution on the use of different target item

conditions.

7.2 Analysis of key findings: General guidelines for TARS evaluation

From the summary given in Table 6 we observe that a considerable number of authors

have used a time-independent rating ordering condition (oti). In the empirical com-

parison, however, we found that an evaluation methodology with that condition was

unable to detect the performance improvements obtained by continuous TARS on

some of the used datasets. Thus, our first guideline is:

Guideline 1: Use a time-dependent rating order condition (otd) for TARS evaluation.

The use of this condition avoids ignoring variations on performance induced by the

exploitation of time information by an evaluation methodology.

A second observation from Table 6 is that there is a similar amount of papers using

community-centered (bcc) and user-centered (buc) base set conditions. As discussed

before, the combination bcc, otd provides a real world-like evaluation scenario. How-

ever, a problem of this combination is that many users may not be evaluated due to

a lack of ratings in their training or test sets. Thus, considering the application of

Guideline 1, we state a second guideline:

Guideline 2: If the dataset has an even distribution of data among users, use the

community-centered base condition. Otherwise, use a user-centered base condition in

order to avoid biases towards profiles with long-term ratings.

Note that in this guideline we refer to an imprecise notion of “even distribution of

data among users”. We do not have a specific characterization (e.g. in terms of profile

sizes, timespans and sparsity levels) as to precisely define it. Additional research on

this issue is required in order to provide a more precise guideline.

123

Time-aware recommender systems 107

T
a

b
le

6
L

is
t

o
f

re
v

is
ed

p
ap

er
s

ab
o

u
t

T
A

R
S

,
an

d
th

ei
r

u
se

d
o

ffl
in

e
ev

al
u

at
io

n
co

n
d

it
io

n
s

P
ap

er
G

en
er

al
ev

al
u
at

io
n

co
n
d
it

io
n
s

T
o
p
-N

re
co

m
m

en
d
at

io
n

ta
sk

ev
al

u
at

io
n

co
n
d
it

io
n
s

B
as

e
se

t
R

at
in

g
o
rd

er
S

iz
e

C
ro

ss
-v

al
id

at
io

n
T

ar
g
et

it
em

s
R

el
ev

an
t

it
em

s

C
o
m

m
u
n
it

y
-

ce
n
te

re
d

U
se

r-

ce
n
te

re
d

T
im

e-

in
d
ep

en
-

d
en

t

T
im

e-

d
ep

en
-

d
en

t

P
ro

p
o
rt

io
n
-

b
as

ed

F
ix

ed
T

im
e-

b
as

ed

N
o
n
e

(H
o
ld

-

o
u
t)

T
im

e-

in
d
e-

p
en

d
en

t

C
V

T
im

e-

d
ep

en
-

d
en

t

C
V

U
se

r-

b
as

ed

C
o
m

m
u
n
it

y
-

b
as

ed

O
n
e-

p
lu

s

ra
n
d
o
m

O
th

er
T

es
t-

b
as

ed

T
h
re

sh
o
ld

-

b
as

ed

A
d
o
m

av
ic

iu
s

et
al

.
(2

0
0
5
)

X
X

X
X

X
X

A
rd

is
so

n
o

et
al

.
(2

0
0
4
)

X
X

X
X

?
?

?
?

X

B
al

tr
u
n
as

an
d

A
m

at
ri

ai
n

(2
0
0
9
)

X
X

X
X

–
–

–
–

–
–

B
el

l
an

d
K

o
re

n
(2

0
0
7
)

X
X

X
X

–
–

–
–

–
–

B
el

l
et

al
.
(2

0
0
8
)

X
X

X
X

–
–

–
–

–
–

B
re

n
n
er

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

C
am

p
o
s

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

C
am

p
o
s

et
al

.
(2

0
1
1
b
)

X
X

X
X

X
X

C
ao

et
al

.
(2

0
0
9
)

X
X

X
X

X
X

C
h
en

et
al

.
(2

0
1
1
a)

X
X

X
X

–
–

–
–

–
–

C
h
en

et
al

.
(2

0
1
1
b
)

X
X

X
X

–
–

–
–

–
–

C
re

m
o
n
es

i
an

d
T

u
rr

in

(2
0
0
9
)

X
X

X
X

X
X

C
re

m
o
n
es

i
an

d
T

u
rr

in

(2
0
1
0
)

X
X

X
X

X
X

D
in

g
an

d
L

i
(2

0
0
5
)

X
X

X
X

–
–

–
–

–
–

X
?

?
X

X
–

–
–

–
–

–

D
in

g
et

al
.
(2

0
0
6
)

X
X

X
X

–
–

–
–

–
–

G
an

tn
er

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

G
o
rd

ea
an

d
Z

an
k
er

(2
0
0
7
)

X
X

X
X

X
X

X
X

X
X

X
X

123

108 P. G. Campos et al.

T
a

b
le

6
co

n
ti

n
u

ed

P
ap

er
G

en
er

al
ev

al
u
at

io
n

co
n
d
it

io
n
s

T
o
p
-N

re
co

m
m

en
d
at

io
n

ta
sk

ev
al

u
at

io
n

co
n
d
it

io
n
s

B
as

e
se

t
R

at
in

g
o
rd

er
S

iz
e

C
ro

ss
-v

al
id

at
io

n
T

ar
g
et

it
em

s
R

el
ev

an
t

it
em

s

C
o
m

m
u
n
it

y
-

ce
n
te

re
d

U
se

r-

ce
n
te

re
d

T
im

e-

in
d
ep

en
-

d
en

t

T
im

e-

d
ep

en
-

d
en

t

P
ro

p
o
rt

io
n
-

b
as

ed

F
ix

ed
T

im
e-

b
as

ed

N
o
n
e

(H
o
ld

-

o
u
t)

T
im

e-

in
d
e-

p
en

d
en

t

C
V

T
im

e-

d
ep

en
-

d
en

t

C
V

U
se

r-

b
as

ed

C
o
m

m
u
n
it

y
-

b
as

ed

O
n
e-

p
lu

s

ra
n
d
o
m

O
th

er
T

es
t-

b
as

ed

T
h
re

sh
o
ld

-

b
as

ed

G
o
rg

o
g
li

o
n
e

an
d

P
an

n
ie

ll
o

(2
0
0
9
)

X
X

X
X

X
X

H
er

m
an

n
(2

0
1
0
)

X
X

X
X

?
?

?
?

X

Io
fc

iu
an

d
D

em
ar

ti
n
i

(2
0
0
9
)

X
X

X
X

X
X

Ja
h
re

r
an

d
T

ö
sc

h
er

(2
0
1
1
)

X
X

X
X

–
–

–
–

–
–

Ja
h
re

r
et

al
.

(2
0
1
0
)

X
X

X
X

–
–

–
–

–
–

K
ar

at
zo

g
lo

u
(2

0
1
1
)

X
X

X
X

–
–

–
–

–
–

K
ar

at
zo

g
lo

u
et

al
.

(2
0
1
0
)

X
X

X
X

–
–

–
–

–
–

K
o
en

ig
st

ei
n

et
al

.
(2

0
1
1
)

X
X

X
X

–
–

–
–

–
–

K
o
re

n
(2

0
0
9
a)

X
X

X
X

–
–

–
–

–
–

K
o
re

n
(2

0
0
9
b
)

X
X

X
X

–
–

–
–

–
–

L
at

h
ia

et
al

.
(2

0
0
9
)

X
X

X
X

–
–

–
–

–
–

L
at

h
ia

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

L
ee

et
al

.
(2

0
1
0
)

X
X

X
X

X
X

L
ee

et
al

.
(2

0
0
8
)

?
?

?
?

X
X

?
?

?
?

X

L
ee

et
al

.
(2

0
0
9
)

?
?

?
?

X
X

?
?

?
?

X

L
i

et
al

.
(2

0
1
1
)

X
X

X
X

–
–

–
–

–
–

L
ip

cz
ak

et
al

.
(2

0
0
9
)

X
X

X
X

X
X

L
iu

et
al

.
(2

0
1
0
a)

X
X

X
X

X
X

L
iu

et
al

.
(2

0
1
0
b
)

X
X

X
X

?
?

?
?

X

123

Time-aware recommender systems 109

T
a

b
le

6
co

n
ti

n
u

ed

P
ap

er
G

en
er

al
ev

al
u

at
io

n
co

n
d

it
io

n
s

T
o

p
-N

re
co

m
m

en
d

at
io

n
ta

sk
ev

al
u

at
io

n
co

n
d

it
io

n
s

B
as

e
se

t
R

at
in

g
o

rd
er

S
iz

e
C

ro
ss

-v
al

id
at

io
n

T
ar

g
et

it
em

s
R

el
ev

an
t

it
em

s

C
o

m
m

u
n

it
y

-

ce
n
te

re
d

U
se

r-

ce
n
te

re
d

T
im

e-

in
d

ep
en

-

d
en

t

T
im

e-

d
ep

en
-

d
en

t

P
ro

p
o

rt
io

n
-

b
as

ed

F
ix

ed
T

im
e-

b
as

ed

N
o

n
e

(H
o

ld
-

o
u

t)

T
im

e-

in
d

ep
en

-

d
en

t

C
V

T
im

e-

d
ep

en
-

d
en

t

C
V

U
se

r-

b
as

ed

C
o

m
m

u
n

it
y

-

b
as

ed

O
n
e-

p
lu

s

ra
n

d
o

m

O
th

er
T

es
t-

b
as

ed

T
h

re
sh

o
ld

-

b
as

ed

L
u

et
al

.
(2

0
0

9
)

X
X

X
X

–
–

–
–

–
–

M
a

et
al

.
(2

0
0

7
)

X
X

X
X

X
?

?

M
in

an
d

H
an

(2
0

0
5

)
?

?
?

?
?

?
?

X
–

–
–

–
–

–

M
o
n
ta

ñ
és

et
al

.

(2
0

0
9

)

X
X

X
X

X
X

P
an

n
ie

ll
o

et
al

.

(2
0

0
9

a)

X
X

X
X

X
X

X
X

X
X

X
X

P
an

n
ie

ll
o

et
al

.

(2
0

0
9

b
)

X
X

X
X

X
X

P
ra

d
el

et
al

.
(2

0
1

1
)

X
X

X
X

X
X

X
X

X
X

X
X

R
en

d
le

(2
0

1
1

)
X

X
X

X
–

–
–

–
–

–

R
en

d
le

et
al

.
(2

0
1

1
)

X
X

X
X

–
–

–
–

–
–

S
to

rm
er

(2
0

0
7

)
X

X
X

X
X

X

T
an

g
et

al
.

(2
0

0
3

)
X

X
X

X
X

X

X
X

X
X

X
X

T
ö

sc
h
er

an
d

Ja
h
re

r

(2
0

0
8

)

X
X

X
X

–
–

–
–

–
–

T
ö

sc
h
er

et
al

.
(2

0
0

8
)

X
X

X
X

–
–

–
–

–
–

V
il

d
ji

o
u
n
ai

te
et

al
.

(2
0

0
8

)

X
X

X
X

X
X

123

110 P. G. Campos et al.

T
a

b
le

6
co

n
ti

n
u

ed

P
ap

er
G

en
er

al
ev

al
u

at
io

n
co

n
d

it
io

n
s

T
o

p
-N

re
co

m
m

en
d

at
io

n
ta

sk
ev

al
u

at
io

n
co

n
d

it
io

n
s

B
as

e
se

t
R

at
in

g
o

rd
er

S
iz

e
C

ro
ss

-v
al

id
at

io
n

T
ar

g
et

it
em

s
R

el
ev

an
t

it
em

s

C
o

m
m

u
n

it
y

-

ce
n
te

re
d

U
se

r-

ce
n
te

re
d

T
im

e-

in
d

ep
en

-

d
en

t

T
im

e-

d
ep

en
-

d
en

t

P
ro

p
o

rt
io

n
-

b
as

ed

F
ix

ed
T

im
e-

b
as

ed

N
o

n
e

(H
o

ld
-

o
u

t)

T
im

e-

in
d

e-

p
en

-

d
en

t

C
V

T
im

e-

d
ep

en
-

d
en

t

C
V

U
se

r-

b
as

ed

C
o

m
m

u
n

it
y

-

b
as

ed

O
n
e-

p
lu

s

ra
n

d
o

m

O
th

er
T

es
t-

b
as

ed

T
h

re
sh

o
ld

-

b
as

ed

W
u

et
al

.
(2

0
1

1
)

X
X

X
X

–
–

–
–

–
–

X
ia

n
g

an
d

Y
an

g

(2
0

0
9

)

X
X

X
X

–
–

–
–

–
–

?
?

?
?

X
X

–
–

–
–

–
–

X
ia

n
g

et
al

.
(2

0
1

0
)

X
X

X
X

X
X

X
io

n
g

et
al

.
(2

0
1

0
)

X
X

X
X

–
–

–
–

–
–

X
X

X
X

–
–

–
–

–
–

X
X

X
X

-
–

–
–

–
–

Z
h
an

et
al

.
(2

0
0

6
)

X
X

X
X

?
?

?
?

X

Z
h

en
g

an
d

L
i

(2
0

1
1

)
X

X
X

X
X

X

Z
im

d
ar

s
et

al
.

(2
0

0
1

)
X

X
X

X
X

X

X
X

X
X

X
X

N
u

m
b

er
o

f
p

ap
er

s

u
si

n
g

th
e

co
n

d
it

io
n

(t
o

ta
l

n
u

m
b

er
o

f

p
ap

er
s:

5
7

)

2
9

2
6

1
4

4
5

1
5

2
2

2
4

4
0

1
0

1
0

3
1

0
6

8
2

1
1

0

“X
”

d
en

o
te

s
an

ev
al

u
at

io
n

co
n

d
it

io
n

(a
t

th
e

co
rr

es
p

o
n

d
in

g
co

lu
m

n
)

th
at

is
u

se
d

in
a

p
ap

er
(a

t
th

e
co

rr
es

p
o

n
d

in
g

ro
w

).
S

o
m

e
p

ap
er

s
in

cl
u

d
e

m
o

re
th

an
o

n
e

ev
al

u
at

io
n

an
d

/o
r

co
n

d
it

io
n

co
m

b
in

at
io

n
(o

n
e

at
ea

ch
ro

w
).

“–
”

d
en

o
te

s
an

ev
al

u
at

io
n

co
n

d
it

io
n

th
at

is
n

o
t

ap
p

li
ca

b
le

fo
r

a
p

ap
er

.
“?

”
in

d
ic

at
es

th
at

w
e

co
u

ld
n

o
t

id
en

ti
fy

w
h
et

h
er

an
ev

al
u
at

io
n

co
n

d
it

io
n

w
as

u
se

d
o

r
n

o
t

in
a

p
ap

er
.

C
V

cr
o
ss

-v
al

id
at

io
n

123

Time-aware recommender systems 111

With respect to the size condition, we noted that when using a bcc, otd combination,

there is an equivalence between proportion-based and time-based size conditions, since

it is possible to find a proportion value that defines a splitting point equal to that from

a time threshold. On the other hand, when using a buc, otd combination, a time-based

size definition may suffer from the same general problems of a bcc, otd combination

(leaving some users without training or test data). Likewise, the use of a fixed size with

a buc condition implies that users with small profiles will have a greater proportion

of their profiles held out as test data, which may lead to a cold start situation for such

users. In this way, our third guideline is:

Guideline 3: Use a proportion-based size condition.

This guideline ensures the appropriate control of the proportion of user profiles held

for test purposes in case of using a buc condition, and provides an adequate control of

training/test proportions when using either a bcc or a buc condition. Our experiments

did not cover the effect of using an ending time to limit the size of the test data; this

effect may have particular importance on domains with seasonal changes, and further

research on this topic is required to assess its impact on measured performance values

of TARS.

These first 3 guidelines have been derived from the analysis of our literature review

and empirical results, and encompass the methodological questions MQ1, MQ2 and

MQ3 stated in section 4.5. Regarding MQ4, MQ5, and MQ6, although we did not

perform experiments for assessing their impact in metric results, insights from the

analysis of the surveyed work let us formulate two additional guidelines.

Guideline 4: Apply a cross-validation method consistent with the conditions derived

from guidelines 1, 2 and 3.

Despite we did not test empirically the effect of different cross-validation methods

on evaluation metrics, it is known that the use of more than one data split can diminish

the variability of results (Dietterich 1998; Arlot and Celisse 2010). In this way, it

is highly advisable to use a cross-validation method. Moreover, the selection of the

method has to be consistent with the application of guidelines 1-3, i.e. the cross-

validation method to use must apply the same rating order, base set, and size condition

advised from the guidelines.

In the case of the target item and relevant item conditions, it is important to note

that they are required only when assessing a top-N recommendation task. These con-

ditions define which set of items have to be ranked to select the top-ranked items for

recommendation, and which items in the test set have to be considered as relevant for

the user, respectively.

Guideline 5: For a top-N recommendation evaluation, use a community-based target

item and a threshold-based relevant item condition.

In the case of target item conditions, the closest condition to a real world setting

would be to rank all available items unknown by the user. A small variation, which

may let perform faster offline evaluations, consists of considering all items selected

for the test set, that is, a community-based target item condition applied over the test

set. Bellogín et al. (2011) found that it makes no differences in algorithm relative

ranking to apply this condition on the training or the test sets, although they did not

test time-aware algorithms. Despite there are several works that apply a user-based

target item condition, algorithms’ relative ranking may be different from that obtained

123

112 P. G. Campos et al.

with a community-based condition (Bellogín et al. 2011). Thus, following the idea of

mimicking a real world setting, it is advisable to use a community-based target item

condition.

With respect to relevant item conditions, as Parra and Amatriain (2011) noted, low

ratings and consumption rates could be treated as a lack of information about the items’

relevance. Hence, interpreting low rated/consumed items as relevant results may be

counterintuitive. In this context, using a threshold-based condition leads to a more fair

evaluation of performance.

By following these guidelines we believe that TARS performance can be assessed

more objectively and realistically. Moreover, the guidelines enable an easier and fairer

comparison of evaluation results between approaches from different authors, which

would ease the development of better TARS.

In a more general perspective, we note that the results of our experimental compar-

ison shown important divergences on the performance of algorithms across measured

recommendation properties. Divergences are particularly remarkable between rating

prediction accuracy and ranking precision metrics. In fact, the best performing algo-

rithms on RMSE showed poor results on ranking precision metrics, and vice versa.

This shows that relying only on rating prediction accuracy metrics for assessing the

performance of recommender systems is not advisable, especially when the most

valuable recommendation task is distinct from rating prediction. This is an important

consideration, given that most work on TARS has been commonly evaluated in terms

of rating prediction accuracy, without taking into account other metrics, and differ-

ent recommendation properties and tasks. More importantly, we stress the value of

providing clear and detailed specifications of the evaluation protocols used. Having

such specifications at their disposal will enable other researchers and practitioners in

the field to compare results fairly, and test whether a new algorithm is able to outper-

form existing TARS. The proposed methodological description framework, which lets

provide rigorous descriptions of evaluation conditions used, may help in this task.

7.3 Open questions

Despite the important findings from this work—finally reflected on the proposed evalu-

ation guidelines, a number of issues require further research in order to fully understand

and take advantage of the different evaluation conditions identified so far.

First, more experimentation is required to properly analyze the impact of combina-

tions of conditions not covered in our study. In particular, we did not consider cross-

validation conditions, given the combinatorial explosion of conditions that should

be tested. We leave the empirical study of those conditions and specific conditions

regarding the top-N recommendation task as an interesting and important line of

future research. For this purpose, we believe that the proposed evaluation framework

provides an important conceptual structure to guide that research.

Another important pending issue is related to the analysis of the relation between

characteristics of datasets (and individual user profiles), and evaluation conditions.

For instance, the notion of “even distribution of data”, stated in guideline 2, is impre-

cise, and requires further experiments in order to obtain a more precise definition.

123

Time-aware recommender systems 113

Beyond that, the appropriateness of certain evaluation conditions for specific rating

distributions through time/users/items, types of events (item ratings, purchases, and

consumption), domains, etc. has to be investigated.

The relation between accuracy and novelty/diversity metrics also remains as an

open evaluation issue. Given the increasing importance of the latter metrics in the RS

field, additional analysis and explanations are required in order to provide time-aware

recommendations with adequate levels of those properties.

A final question is whether improvements of TARS performance measured by

offline evaluation results are effectively perceivable for real users. As noted, e.g. by

Knijnenburg et al. (2012), accuracy improvements are not necessarily observable by

users. The lack of online evaluation studies on TARS is a major limitation to address

the above question.

8 Conclusions

In this paper we presented a comprehensive survey of state-of-the-art TARS. We found

that results and conclusions reported in the literature about how to incorporate and

exploit time information within a recommendation process seem to be contradictory

in some cases. We hypothesized that the above discrepancies could be caused by

meaningful divergences in the evaluation protocols used—metrics and methodologies.

Thus, aiming to clarify these discrepancies, we identified a number of key conditions

regarding offline evaluation of TARS, which let us state important methodological

questions regarding evaluation setting:

– What base set is used to perform the training-test splitting?

– What rating order is used to assign ratings to the training and test sets?

– How many ratings comprise the training and test sets?

– What cross-validation method is used for increasing the generalization of the eval-

uation results?

In addition to these questions, we also covered specific evaluation conditions for the

top-N recommendation task, addressing the following two methodological questions:

– Which items are considered as target items (in a top-N recommendation task)?

– Which items are considered relevant for each user (in a top-N recommendation

task)?

Based on the identified conditions we provided a comprehensive classification of the

evaluation protocols used in the state of the art on TARS. Furthermore, we developed a

methodological description framework aimed to facilitate the comprehension of such

conditions, and make the evaluation process fair and reproducible under different

circumstances.

Additionally, we conducted an empirical comparison of the impact of several eval-

uation protocols on measuring relative performances of three widely used TARS

approaches and one well-known non-contextual recommendation approach.

From our analysis and experiments, we reported important methodological issues

that a robust evaluation of TARS should take into consideration in order to perform

123

114 P. G. Campos et al.

a fair evaluation of approaches, and facilitate comparisons among published experi-

ments. In particular, the results obtained showed that the use of different evaluation

conditions not only yields remarkable differences between metrics measuring distinct

recommendation properties—namely accuracy, precision, novelty, and diversity. They

also may affect the relative ranking of approaches for a particular metric. From our

survey and analysis of the evaluation protocols used in the TARS literature, and from

the results obtained in our experiments, we concluded a set of general guidelines aimed

to facilitate the selection of conditions for a proper TARS evaluation. These guidelines

recommend making training-test splitting based on a time-dependent rating order over

the whole set of ratings in a dataset, applying a proportion-based size definition for

training and test sets, using a compatible cross-validation method. In the case of top-N

recommendation evaluation, using a real-world like set of items to rank, and a more

confident interpretation of item relevance is advised.

We believe that our work raises interesting research questions regarding TARS eval-

uation. We consider of key importance to study the specific impact of each identified

evaluation condition on the assessment of recommendation performance. Moreover,

we propose as future research to deepen the analysis of existing relations between

dataset characteristics and evaluation conditions, and general effects on less studied

novelty and diversity metrics. By having a robust understanding of these effects, it

would be possible to select the most appropriate and fair protocol for a given recom-

mendation evaluation task.

Finally, we highlight the need of clearly stating the conditions in which offline

experiments are conducted to evaluate RS in general, and TARS in particular. By

having fair and consensual evaluation conditions, we will enable the reproducibility

of experiments, and ease the comparison of recommendation approaches. In the hope

that we can contribute to such purpose, we developed the methodological description

framework presented in this paper.

Acknowledgements This work was supported by the Spanish Government (TIN2011-28538-C02), and

by Comunidad Autónoma de Madrid and Universidad Autónoma de Madrid (CCG10-UAM/TIC-5877).

The authors thank Centro de Computación Científica at UAM for its technical support. The authors also

thank the anonymous reviewers for their valuable comments and suggestions.

References

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in

recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: a data warehousing approach.

Second International Workshop on Electronic Commerce, pp. 180–192, Heidelberg (2001).

Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-

of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira,

B., Kantor, P.B. (eds.), Recommender Systems Handbook. ISBN 978-0-387-85820-3 (2011)

Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Difino, A., Negro, B.: User modeling and recommen-

dation techniques for personalized electronic program guides. Personalized Digital Television. Springer.

ISBN 978-1-4020-2164-0 (2004).

Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79

(2010)

123

Time-aware recommender systems 115

Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York. ISBN

020139829X (1999).

Baltrunas, L.: Context-aware collaborative filtering recommender systems. PhD Dissertation, Free Univer-

sity of Bozen-Bolzano (2011)

Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. RecSys

2009 Workshop on Context-Aware Recommender Systems. New York, NY (2009).

Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item

splitting. User Model. User-Adapt. Interact., Special issue on Context-Aware Recommender Systems

(2013)

Bell, R.M., Koren, Y.: Scalable collaborative filtering with fointly derived neighborhood interpolation

weights. Seventh IEEE International Conference on Data Mining, pp. 43–52, Omaha (2007)

Bell, R.M., Koren, Y., Volinsky, C.: The Bellkor 2008 solution to the Netflix Prize. Netflix prize report

(2008)

Bellogín, A., Castells, P., Cantador, I.: Precision-based evaluation of recommender systems: an algorithmic

comparison. Fifth ACM Conference on Recommender Systems, pp. 333–336, Chicago (2011)

Bennet, J., Lanning, S.: The Netflix Prize. KDD Cup and Workshop, San Jose (2007)

Brenner, A., Pradel, B., Usunier, N., Gallinari, P.: Predicting most rated items in weekly recommendation

with temporal regression. Workshop on Context-Aware Movie Recommendation, pp. 24–27, Barcelona

(2010)

Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4),

331–370 (2002)

Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive

Web, pp. 377–408. Springer, Berlin (2007)

Campos, P.G., Bellogín, A., Díez, F., Chavarriaga, J.E.: Simple time-biased KNN-based recommendations.

Workshop on Context-Aware Movie Recommendation, pp. 20–23, Barcelona (2010)

Campos, P.G., Díez, F., Bellogín, A.: Temporal rating habits: a valuable tool for rater differentiation. Second

Workshop on Context-Aware Movie Recommendation, pp. 29–35, Chicago (2011a)

Campos, P.G., Díez, F., Sánchez-Montañés, M.: Towards a more realistic evaluation: testing the ability to

predict future tastes of matrix factorization-based recommenders. Fifth ACM Conference on Recom-

mender Systems, pp. 309–312, Chicago (2011b)

Cao, H., Chen, E., Yang, J., Xiong, H.: Enhancing recommender systems under volatile user interest drifts.

Eighteenth ACM conference on Information and knowledge management, pp. 1257–1266, Hong Kong

(2009)

Celma, O.: Music recommendation and discovery in the long tail. PhD Dissertation, Universitat Pompeu

Fabra, Spain (2010)

Chen, P., Tsai, C., Chen, Y., Chou, K., Li, C., Tsai, C., Wu, K., Chou, Y., Li, C., Lin, W., Yu, S., Chiu, R.,

Lin, C., Wang, C., Wang, P., Su, W., Wu, C., Kuo, T., McKenzie, T.G., Chang, Y., Ferng, C., Ni, C., Lin,

H., Lin, C., Lin, S.: A linear ensemble of individual and blended models for music rating prediction.

KDD-Cup Report, San Diego (2011a)

Chen, T., Zheng, Z., Lu, Q., Jiang, X., Chen, Y., Zhang, W., Chen, K., Yu, Y.: Informative ensemble of

multi-resolution dynamic factorization models’. KDD-Cup Report, San Diego (2011b)

Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing? How recommender interfaces

affect users’ opinions’. SIGCHI Conference on Human Factors in Computing Systems, pp. 585–592,

Fort Lauderdale (2003)

Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A.V., Turrin, R.: Looking for “Good” recommenda-

tions: a comparative evaluation of recommender systems’. Thirteenth IFIP TC 13 International confer-

ence on Human-computer interaction, pp. 152–168, Lisbon (2011)

Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation

tasks. Fourth ACM conference on Recommender systems, pp. 39–46, Barcelona (2010)

Cremonesi, P., Turrin, R.: Analysis of cold-start recommendations in IPTV systems. Third ACM Conference

on Recommender Systems, pp. 233–236, New York (2009)

Cremonesi, P., Turrin, R.: Time-evolution of IPTV recommender systems. Eighth International Interactive

Conference on Interactive TV & Video, pp. 105–114, Tampere (2010)

Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)

Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms.

Neural Comput. 10(7), 1895–1923 (1998)

123

116 P. G. Campos et al.

Ding, Y., Li, X.: Time weight collaborative filtering. Fourteenth ACM international Conference on Infor-

mation and Knowledge Management, pp. 485–492, Bremen (2005)

Ding, Y., Li, X., Orlowska, M.E.: Recency-based collaborative filtering. Seventeenth Australasian Database

Conference, pp. 99–107, Hobart, Tasmania (2006)

Dourish, P.: What we talk about when we talk about context. Pers. Ubiquitous Comput. 8(1), 19–30 (2004)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley. ISBN 0471056693 (2000)

Gantner, Z., Rendle, S., Schmidt-Thieme, L.: Factorization models for context-/time-aware movie recom-

mendations. Workshop on Context-Aware Movie Recommendation, pp. 14–19, Barcelona (2010)

Gordea, S., Zanker, M.: Time filtering for better recommendations with small and sparse rating matrices.

Eighth International Conference on Web Information Systems Engineering, pp. 171–183, Nancy (2007)

Gorgoglione, M., Panniello, U.: Including context in a transactional recommender system using a pre-

filtering approach: two real e-commerce applications. 2009 International Conference on Advanced

Information Networking and Applications Workshops, pp. 667–672, Bradford (2009)

Gorgoglione, M., Paniello, U., Tuzhilin, A.: The effect of context-aware recommendations on customer

purchasing behavior and trust’. Fifth ACM Conference on Recommender Systems, pp 85–82, Chicago

(2011)

Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach.

Learn. Res. 10, 2935–2962 (2009)

Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing col-

laborative Filtering. Twenty-Second Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 230–237, Berkeley (1999)

Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender

systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

Hermann, C.: Time-based recommendations for lecture materials. 2010 World Conference on Educational

Multimedia, Hypermedia and Telecommunications, pp. 1028–1033, Toronto (2010)

Hussein, T., Linder, T., Werner, G., Ziegler, J.: Hybreed: A software framework for developing context-

aware hybrid recommender systems. User Model. User-Adapt. Interact, Special Issue on Context-aware

Recommender Systems (2014)

Iofciu, T., Demartini, G.: Time based tag recommendation using direct and extended users sets’. ECML

PKDD discovery Challenge 2009, pp. 99–107, Paris (2009)

Jahrer, M., Töscher, A.: Collaborative filtering ensemble. KDD-Cup Report, San Diego (2011)

Jahrer, M., Töscher, A., Legenstein, R.: Combining predictions for accurate recommender systems. Six-

teenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 693–702,

Washington (2010)

Karatzoglou, A.: Collaborative temporal order modeling. Fifth ACM Conference on Recommender Systems,

pp. 313–316, Chicago (2011)

Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: N-dimensional

tensor factorization for context-aware collaborative filtering. Fourth ACM Conference on Recommender

Systems, pp. 79–86, Barcelona (2010)

Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of

recommender systems. User Model. User-Adapt. Interact. 22, 441–504 (2012)

Koenigstein, N., Dror, G., Koren, Y.: Yahoo! Music recommendations: modeling music ratings with temporal

dynamics and item taxonomy’. Fifth ACM Conference on Recommender Systems, pp. 165–172, Chicago

(2011)

Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.: Controlled experiments on the web: survey and

practical guide. Data Mining Knowl. Discov. 18(1), 140–181 (2009)

Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-

Adapt. Interact. 22, 101–123 (2012)

Koren, Y.: The BellKor solution to the Netflix grand prize’. Netflix Prize, Report (2009a)

Koren, Y.: Collaborative filtering with temporal dynamics. Fifteenth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pp. 447–456, Paris (2009b)

Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix

Anal. Appl 21(4), 1253–1278 (2000)

Lathia, N., Hailes, S., Capra, L.: Temporal collaborative filtering with adaptive neighbourhoods. Thirty-

Second International ACM SIGIR Conference on Research and Development in Information Retrieval,

pp. 796–797, Boston (2009)

123

Time-aware recommender systems 117

Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender systems. Thirty-Third

International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.

210–217, Geneva (2010)

Lee, D., Park, S., Kahng, M., Lee, S., Lee, S.: Exploiting contextual information from event logs for

personalized recommendation’. In Lee, R. (ed.), Computer and Information Science. ISBN 978-3-642-

15404-1 (2010)

Lee, T.Q., Park, Y., Park, Y.: A time-based approach to effective recommender systems using implicit

feedback. Expert Syst. Appl. 34(4), 3055–3062 (2008)

Lee, T.Q., Park, Y., Park, Y.: An empirical study on effectiveness of temporal information as implicit ratings.

Expert Syst. Appl. 36(2), 1315–1321 (2009)

Li, R., Li, B., Jin, C., Xue, X., Zhu, X.: Tracking user-preference varying speed in collaborative filtering.

Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco (2011)

Ling, C., Huang, J., Zhang, H.: AUC: A better measure than accuracy in comparing learning algorithms. In:

Xiang, Y., Chaib-draa B. (eds.). Advances in Artificial Intelligence 2671, pp. 329–341, LNCS (2003)

Lipczak, M., Hu, Y., Kollet, Y., Milios, E.: Tag sources for recommendation in collaborative tagging systems.

ECML PKDD Discovery Challenge 2009, pp. 157–172, Paris (2009)

Liu, N.N., Cao, B., Zhao, M., Yang, Q.: Adapting neighborhood and matrix factorization models for context

aware recommendation. Workshop on Context-Aware Movie Recommendation, pp. 7–13, Barcelona

(2010a)

Liu, N.N., Zhao, M., Xiang, E., Yang, Q.: Online evolutionary collaborative filtering. Fourth ACM Confer-

ence on Recommender Systems, pp. 95–102, Barcelona (2010b)

Lu, Z., Agarwal, D., Dhillon, I.S.: A spatio-temporal approach to collaborative filtering. Third ACM Con-

ference on Recommender Systems, pp. 13–20, New York (2009)

Ma, S., Li, X., Ding, Y., Orlowska, M.E.: A recommender system with interest-drifting. Eighth International

Conference on Web Information Systems Engineering, pp. 633–642, Nancy (2007)

Min, S., Han, I.: Detection of the customer time-variant pattern for improving recommender systems. Expert

Syst. Appl. 28(2), 189–199 (2005)

Montañés, E., Quevedo, J.R., Díaz, I., Ranilla, J.: Collaborative tag recommendation system based on

logistic regression. ECML PKDD Discovery Challenge 2009, pp. 173–188, Paris (2009)

Oku, K., Nakajima, S., Miyazaki, J., Uemura, S.: Context-aware SVM for context-dependent information

recommendation. Seventh International Conference on Mobile Data Management, pp. 109–109, Nara

(2006)

Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers

in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)

Panniello, U., Gorgoglione, M., Palmisano, C.: Comparing pre-filtering and post-filtering approach in

a collaborative contextual recommender system: an application to e-commerce. Tenth International

Conference on E-Commerce and Web Technologies, pp. 348–359, Linz (2009a)

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental comparison of

pre- vs. post-filtering approaches in context-aware recommender systems. Third ACM Conference on

Recommender Systems, pp. 265–268, New York (2009b)

Panniello, U., Tuzhilin, A., Gorgoglione, M.: Comparing context-aware recommender systems in terms of

accuracy and diversity: which contextual modeling, pre-filtering and post-filtering methods perform the

best. User Model. User-Adapt. Interact, Special Issue on Context-Aware Recommender Systems (2013)

Park, M.-H., Hong, J.-H., Cho, S.-B.: Location-based recommendation system using Bayesian user’s pref-

erence model in mobile devices. In: Indulska, J., Yang, L., Ungerer, L., Cao, J. (eds.) Proceedings of

Ubiquitous Intelligence and Computing, 4611, pp. 1130–1139. Springer, Berlin (2007)

Parra, D., Amatriain, X.: Walk the talk: analyzing the relation between implicit and explicit feedback for

preference elicitation. Nineteenth International Conference on User Modeling, Adaption, and Personal-

ization, pp. 255–268, Girona (2011)

Pradel, B., Sean, S., Delporte, J., Guérif, S., Rouveirol, C., Usunier, N., Fogelman-Soulié, F., Dufau-Joel, F.:

A case study in a recommender system based on purchase data. Seventeenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 377–385, San Diego (2011)

Rendle, S.: Time-variant factorization models. In Rendle, S. (ed.), Context-aware ranking with factorization

models. ISBN 978-3-642-16897-0 (2011)

Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with

factorization machines. Thirty-Fourth International ACM SIGIR Conference on Research and Develop-

ment in Information, pp. 635–644, Beijing (2011)

123

118 P. G. Campos et al.

Sarwar, B., Karypis, G., Konstan, J., Riedl., J.: Analysis of recommendation algorithms for e-commerce.

Second ACM Conference on Electronic Commerce, pp. 158–167, Minneapolis (2000)

Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B.,

Kantor, P.B. (eds.), Recommender Systems Handbook. ISBN 978-0-387-85820-3 (2011).

Stormer, H.: Improving e-commerce recommender systems by the identification of seasonal products.

Twenty-second Conference on Artificial Intelligence, pp. 92–99, Vancouver, British Columbia (2007).

Töscher, A., Jahrer, M.: The bigchaos solution to the Netflix prize 2008. Netflix Prize, Report (2008)

Töscher, A., Jahrer, M., Legenstein, R.: Improved neighborhood-based algorithms for large-scale recom-

mender systems. Second KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize

Competition, pp. 4:1–4:6, Las Vegas (2008)

Tang, T.Y., Winoto, P., Chan, K.C.C.: On the temporal analysis for improved hybrid recommendations.

2003 IEEE/WIC International Conference on Web Intelligence, pp. 214–220, Beijing (2003).

Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. Fifth

ACM Conference on Recommender Systems, pp. 109–116, Chicago (2011).

Vildjiounaite, E., Kyllönen, V., Hannula, T., Alahuhta, P.: Unobtrusive dynamic modelling of TV program

preferences in a household. In: Tscheligi, M., Obrist, M., Lugmayr, A. (eds.), Changing Television

Environments. ISBN 978-3-540-69477-9 (2008)

Weng, S.-S., Binshan, L., Chen, W.-T.: Using contextual information and multidimensional approach for

recommendation. Expert Syst. Appl. 36(2009), 1268–1279 (2009)

Whitrow, G. J.: Time in history: views of time from prehistory to the present day. Oxford University Press,

Oxford. ISBN 0-19-285211-6 (1988)

Wu, Y., Yan, Q., Bickson, D., Low, Y., Yang, Q.: Efficient multicore collaborative filtering. KDD-Cup

Report, San Diego (2011)

Xiang, L., Yang, Q.: Time-dependent models in collaborative filtering based recommender system. 2009

IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology,

pp. 450–457, Milano (2009)

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal recommendation on

graphs via long- and short-term preference fusion. Sixteenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 723–732, Washington (2010)

Xiong, L., Chen, X., Huang, T., Schneider, J., Carbonell, J.G.: Temporal collaborative filtering with Bayesian

probabilistic tensor factorization. SIAM Data Mining 2010, 211–222 (2010)

Zhan, S., Gao, F., Xing, C., Zhou, L.: Addressing concept drift problem in collaborative filtering systems.

ECAI 2006 Workshop on Recommender Systems, pp. 34–39, Riva del Garda (2006)

Zhang, M., Hurley, N.: Novel item recommendation by user profile partitioning. 2009 IEEE/WIC/ACM

International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp. 508–515,

Milano (2009)

Zheng, N., Li, Q.: A recommender system based on tag and time information for social tagging systems.

Expert Syst. Appl. 38(4), 4575–4587 (2011)

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-

accuracy dilemma of recommender systems. Natl. Acad. Sci. 107(10), 4511–4515 (2010)

Ziegler, C., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diver-

sification. Fourteenth International Conference on World Wide Web, pp. 22–32, Chiba (2005)

Zimdars, A., Chickering, D.M., Meek, C.: Using temporal data for making recommendations. Seventeenth

Conference in Uncertainty in Artificial Intelligence, pp. 580–588, Seattle (2001)

Author Biographies

Pedro G. Campos is an Assistant Professor at the Information Systems Department, Universidad del

Bío-Bío, Chile, and a Ph.D. student in the Information Retrieval Group at the Computer Science Depart-

ment of Universidad Autónoma de Madrid (UAM). He holds a M.Eng. in Software Engineering from the

Universidad de Tarapacá, Chile, and a M.Sc. in Computer Science and Telecommunications from UAM.

His current research is mainly focused on recommender systems, in particular on the exploitation and eval-

uation of time information for generating personalized recommendations.

Fernando Díez is an Assistant Professor of Computer Science at Universidad Autónoma de Madrid,

Spain, where he received the Ph.D. degree in Computer Engineering. He also holds MSc in Mathematics

from the Universidad Complutense de Madrid. During the late 80s and 90s he worked as a researcher in

123

Time-aware recommender systems 119

different computer science R&D departments, in companies like Telefónica R&D, and Intelligent Deci-

sion Systems. His main research interests currently rely on Information Retrieval, Recommender Systems,

e-Learning Systems, and Model Driven Engineering.

Iván Cantador is a Lecturer of Computer Science at Universidad Autónoma de Madrid, where he

received the PhD degree in 2008. During his doctoral studies, he was a research consultant at the Knowl-

edge Media Institute, and a research visitor at University of Southampton. After earning his PhD, he

worked as a research associate at University of Glasgow, and was a postdoctoral visitor at the Free Uni-

versity of Bozen-Bolzano. He has co-authored over fifty publications in international journals and confer-

ences on information retrieval, recommender systems, and Semantic Web.

123

	Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols
	Abstract
	1 Introduction
	2 Problem statement
	2.1 The recommendation problem
	2.2 Incorporating context into the recommendation problem
	2.3 Specifying time context in recommender systems
	2.4 Evaluating recommender systems
	2.5 Evaluating time-aware recommender systems

	3 Time as a contextual dimension in recommender systems
	3.1 Heuristic-based approaches
	3.1.1 Continuous time-aware heuristics
	3.1.2 Categorical time-aware heuristics
	3.1.3 Time adaptive heuristics

	3.2 Model-based approaches
	3.2.1 Continuous time-aware models
	3.2.2 Categorical time-aware models
	3.2.3 Time adaptive models

	4 On the use of evaluation protocols
	4.1 Online and offline evaluation of TARS
	4.2 Generic stages of offline evaluation
	4.3 Evaluation metrics
	4.4 Evaluation methodologies
	4.5 Methodological questions and evaluation conditions

	5 A methodological description framework to formalize TARS evaluation conditions
	5.1 General definitions
	5.2 Base set conditions
	5.3 Rating order conditions
	5.4 Size conditions
	5.5 Cross-validation conditions
	5.5.1 Time-independent cross-validation methods
	5.5.2 Time-dependent cross-validation methods

	5.6 Target item conditions
	5.7 Relevant item conditions

	6 Empirical comparison of TARS evaluation conditions
	6.1 Recommendation algorithms
	6.2 Datasets
	6.3 Evaluation metrics
	6.4 Evaluation methodologies
	6.5 Results and discussion

	7 Learnt lessons and open questions on TARS evaluation
	7.1 Evaluation conditions used in state-of-the-art TARS
	7.2 Analysis of key findings: General guidelines for TARS evaluation
	7.3 Open questions

	8 Conclusions
	Acknowledgements
	References

