
Time-Bounded Analysis of Real-Time Systems
Sagar Chaki

SEI/CMU
chaki@sei.cmu.edu

Arie Gurfinkel
SEI/CMU

arie@cmu.edu

Ofer Strichman
Technion

ofers@ie.technion.ac.il

Abstract—Real-Time Embedded Software (RTES) constitutes
an important sub-class of concurrent safety-critical programs.
We consider the problem of verifying functional correctness of
periodic RTES, a popular variant of RTES that execute periodic
tasks in an order determined by Rate Monotonic Scheduling
(RMS). A computational model of a periodic RTES is a finite
collection of terminating tasks that arrive periodically and must
complete before their next arrival.

We present an approach for time-bounded verification of safety
properties in periodic RTES. Our approach is based on sequen-
tialization. Given an RTES C and a time-bound W , we construct
(and verify) a sequential program S that over-approximates
all executions of C up to time W , while respecting priorities
and bounds on the number of preemptions implied by RMS.
Our algorithm supports partial-order reduction, preemption
locks, and priority locks. We implemented our approach for C
programs, with properties specified via user-provided assertions.
We evaluated our tool on several realistic examples, and were
able to detect a subtle concurrency issue in a robot controller.

I. INTRODUCTION

Real-Time Embedded Software (RTES) is an important
sub-class of concurrent safety-critical programs. They play a
crucial role in controlling systems ranging from airplanes and
cars, to infusion pumps and microwaves. We are increasingly
reliant on these cyber-physical systems to maintain our modern
technology-driven way of life. As such, verifying the correct
operation of RTES is an important and open challenge. Ad-
dressing this challenge is the subject of our paper.

Specifically, we focus on systems that receive as input a
collection of periodic tasks, where each task τi has, among
other things, a terminating task body Ti and a period Pi. The
tasks are prioritized in a Rate-Monotonic [1] fashion, which
means that tasks with shorter periods have higher priorities.
We call such an input pattern a periodic program.

A periodic program C is executed by running its tasks peri-
odically and concurrently with asynchronous priority-sensitive
interleaving. Thus, at each scheduling point, the active task
with the highest priority is selected for execution. A task τi
becomes inactive at the end of its body Ti, and is reactivated
after Pi time has passed since its last activation. A single
execution of a task body is called a job. It is convenient to
view an execution of C as an asynchronous priority-sensitive
interleaving of the jobs statements, where the statements arise
from the infinite job streams corresponding to the periodic
execution of the task bodies.

Periodic programs constitute an important fragment of
RTES that interact with the physical world. In particular, the
task periods are dictated by the physical environment and

the underlying control algorithms. Consider, for example, the
nxt/OSEK-based [2] LEGO MINDSTORM robot controller.
It has three periodic tasks: a balancer, with a 4 millisecond
(ms) period, maintains the balance of the robot; obstacle, with
a 50 ms period, monitors a sonar sensor to detect obstacles;
and bluetooth, with a 100 ms period, monitors a bluetooth
link for remote commands from the user. Another example is
a generic avionic mission system that was described in [3]. It
includes 10 periodic tasks, including weapon release (10 ms),
radar tracking (40 ms), target tracking (40 ms), aircraft flight
data (50 ms), display (50 ms) and steering (80 ms). Other
examples of periodic programs include phase-array radars and
aircraft collision-avoidance systems.

These examples demonstrate the fact that periodic programs
are used for developing a wide range of RTES that interact
with the physical world, and play an important role in the
correct operation of safety-critical systems. Statically predict-
ing behavior – by verifying logical and timing properties of
periodic programs – is a problem of great practical relevance.

Despite a wide body of work, the state-of-the-art in verifi-
cation of real-time and concurrent programs does not address
logical properties of periodic programs (with the exception
of the recent work of Kidd et al. [4], which we discuss in
Sec. VIII). On one hand, techniques for verifying properties
of timed systems [5], [6] are based on Timed Automata [7].
They abstract away significantly the behavior (i.e., control- and
data-flow) of target systems, and, therefore, are unsuitable for
analyzing logical properties. On the other hand, approaches
for concurrent software verification (e.g., [8]) employ a non-
deterministic scheduler model (i.e., tasks do not have priorities
or periods), and thus cannot handle the execution semantics
of periodic programs. Against this backdrop, our main con-
tribution is the development and evaluation of an approach to
verify logical properties of periodic programs.

Specifically, we present an approach for time-bounded ver-
ification of safety properties of periodic programs. The inputs
are: (i) a periodic program C; (ii) a safety property expressed
via an assertion A embedded in C, (iii) an initial condition Init
of C, and (iv) a time boundW . Time-bounded verification can
be seen as an analogue of Bounded Model Checking (BMC)
for RTES, since time is a natural way to bound an execution
of a periodic program for the purpose of verification.

Our solution for the time-bounded verification problem
is based on sequentialization – reducing verification of a
concurrent program to verification of a sequential program. It
is inspired by work on sequentialization for Context-Bounded

Analysis [8], [9], [10], [11], [12] (CBA) and Bounded Model
Checking [13] (BMC). A key distinguishing aspect of our
work is that instead of bounding the number of context
switches (as in CBA), or the number of execution steps (as in
BMC), the input time bound W translates in our model to a
bound on the number of jobs. This is a natural consequence
of the fact that tasks are periodic and, therefore, are activated
a finite number of times within W . Our solution also handles
two types of locks used commonly in periodic programs, and
incorporates two forms of partial-order reduction aimed at
reducing analysis time.

We have implemented our solution in a tool, called REK.
Our tool is able to verify periodic programs implemented in C
where tasks communicate via shared variables and synchronize
via locks. We have used it to verify several variants of a
nxt/OSEK-based [2] LEGO MINDSTORM robot controller.
In some instances, we found subtle concurrency issues in the
controller using our tool. We have also evaluated our tool on
several custom versions of the reader-writer protocol.

The rest of the paper is structured as follows: in the
next section we formally define a periodic program and its
semantics. In Sec. III, we describe time-bounded and job-
bounded abstractions. In Sec. IV, we describe our encoding
method. In Sec. V, we extend our model with locks, and
in Sec. VI describe partial-order reduction. In Sec. VII, we
describe our case study and experimental results. Finally, we
discuss related work in Sec. VIII, and conclude in Sec. IX.

II. PRELIMINARIES

A task τ is a tuple ⟨I, T, P, C,A⟩, where I is a task
identifier, T – a bounded procedure (i.e., no unbounded loops
or recursion) called the task body, P – a period, C – the worst
case execution time of T , and A, called the release time, is the
time at which the task is first enabled1. An N -task periodic
program C is a set {τ0, . . . , τN−1} of N tasks. For simplicity,
we assume that the id of task τi is i.

In this paper, we restrict the priorities of the tasks to be
rate-monotonic – tasks with smaller period have higher base
priority. For simplicity, we assume that the index of a task
represents its base priority. Thus, a task with a lower id has a
lower base priority (and higher period).

A periodic program is executed by running each task
periodically, starting at the release time. For k ≥ 0 the k-th job
of τi becomes enabled at time Ak

i = Ai+k×Pi. The execution
is asynchronous and priority-sensitive – at each point the CPU
is given to an enabled task with the highest priority. Priorities
can change dynamically, but must avoid priority inversion –
when a low base priority task preempting a higher base priority
task. This is known, somewhat misleadingly, as a fixed-priority
preemptive scheduling.

Formally, the semantics of an N -task periodic program C =
{τ0, . . . , τN−1} is the asynchronous concurrent program:

∥N−1
i=0 ki := 0 ; while(WAIT(τi, ki)) (Ti ; ki := ki + 1) (1)

1We assume that time is given in some fixed time unit (e.g., milliseconds).

4 8 12 16

τ0

τ1

τ2

Fig. 1. A schedule of three tasks from Example 1.

where ki is a numeric variable and WAIT(τi, ki) returns FALSE
if the current time is greater than Aki

i , and otherwise it disables
τi until the time is Aki

i and then returns TRUE.
An execution of each task body Ti in (1) is called a job.

A job’s arrival is the time when it becomes enabled (i.e.,
WAIT(τi, k) in (1) returns TRUE); start and finish are the times
when its first and last instructions are executed, respectively;
response time is the difference between its finish and arrival
times. The response time of a task is the maximum of response
times of all of its jobs in all possible executions.

Note that WAIT in (1) returns TRUE if a job has finished
before its next period. If this is always the case, i.e., WAIT
never returns FALSE, then the program is called schedulable.

Formally, a periodic program C is schedulable if for each
task τi, the response time RTi is less than the period Pi.
Response times are computed using Rate Monotonic Analysis
(RMA) [14]. For a periodic program C = {τ0, . . . , τN−1}, the
response time RTi of task τi is the smallest solution to the
following equation

RTi = Ci +
∑

i<k<N

⌈RTi

Pk
⌉ · Ck . (2)

Intuitively, the response time of a task is equal to its worst-case
execution time plus the time taken by all higher-priority tasks
that preempted it. RTi is computed by solving (2) iteratively
starting with RTi = Ci [14]. Note that for the highest-priority
task the response time RTN−1 is its execution time CN−1.

Example 1 Consider the task set:

Task Ci Pi

τ2 1 4
τ1 2 8
τ0 8 16

Solving (2) gives us RT2 = 1, RT1 = 3 and RT0 = 16. A
schedule demonstrating these values is shown in Fig. 1.

In this paper, we are interested in logical properties of periodic
programs. We assume that any program we analyze meets its
basic timing constraints. For that reason, we only deal with
schedulable periodic programs.

III. TIME-BOUNDED PERIODIC PROGRAMS

In this section, we present time-bounded semantics of
periodic programs and define a job-bounded abstraction that
is the formal foundations of our verification technique.

Given a periodic program C = {τ0, . . . , τN−1) and a time-
bound W , the time-bounded program CW executes like C for
timeW and then terminates. We assume thatW is divisible by
the period of each task. Furthermore, we assume that the first
job of each task finishes before its period, i.e., Ai ≤ Pi−RTi.
Under these assumptions, the time bound imposes a natural
limit on the number of jobs Ji of each task:

Ji =
W
Pi

. (3)

Therefore, the semantics of CW is equivalent to the asyn-
chronous concurrent program:

∥N−1
i=0 ki :=0;while(ki < Ji∧WAIT(τi, ki)) (Ti ;ki :=ki+1) .

(4)
This is analogous to the semantics of C in (1) except that each
task τi executes Ji jobs.

Job-bounded Abstraction. Since we are interested in logical
properties, we need to abstract the absolute time in (4) with
relative order of execution. A simple abstraction is to interpret
WAIT as a non-deterministic delay, effectively replacing a
time-bound with a job-bound. We further refine this abstraction
using the following observation about RMA (2). Let τi and τj
be two tasks of a schedulable periodic program C such that
i < j. Then RMA defines the preemption bound of i by j,
written PBj

i , as follows

PBj
i = ⌈RTi

Pj
⌉ . (5)

That is, PBj
i is an upper bound on the number of times

τj can preempt τi. Thus, in addition to treating WAIT as a
non-deterministic delay, we only allow for a job of task j to
preempt a job of task i if j > i and it does not violate the
preemption bound PBj

i . In other words, we only schedule at
most PBj

i jobs of τj while a job of τi is active. We call this
the job-bounded abstraction of CW and denote it by CJ(W).

Theorem 1 (Soundness of Job-bounded Abstraction) For
a periodic program C = {τ0, . . . , τN−1} and a time-bound
W s.t. ∀i · (Ai ≤ Pi−RTi)∧ (W|Pi), every execution of CW
is also an execution of CJ(W).

Obviously, job-bounded abstraction is incomplete, i.e.,
CJ(W) may have more executions than CW . The primary
reason being that the preemption bounds are only upper
bounds since they are computed from the worst-case execution
times, and rounded upwards in (5). The incompleteness due
to rounding up is shown by the following example.

Example 2 Let C = {τ0, τ1} such that P0 = 25, RT0 = 22
and P1 = 10, RT1 = 10, and W = 100. Then, PB1

0 = 3
and, therefore, in CJ(W) two consecutive jobs of τ0 can be
preempted three times, each, by jobs of τ1. However, in CW
two consecutive jobs of τ0, taken together, can be preempted
at most five times by jobs of τ1.

In the next section, we give an algorithm for constructing
and verifying the job-bounded abstraction CJ(W) from a
periodic program C.

IV. SEQUENTIALIZATION OF A PERIODIC PROGRAM

We use a two-step approach to verify an N -task periodic
program C = {τ0, . . . , τN−1} under a time boundW . The first
step, sequentialization, outputs a non-deterministic sequential
program with assume statements S, as shown in Alg. 1.
The program S is semantics preserving w.r.t. CJ(W) (see
Theorem 2). The second step is the verification of S with
an off-the-shelf program verifier. In the rest of this section,
we focus on sequentialization.

A. Sequentialization: Intuition

Our key insight is that any execution π of C can be
partitioned into scheduling rounds in the following way: (a) π
begins in round 0, and (b) a round ends and a new one begins
every time a job ends (i.e., the last instruction of some task
body is executed). For example, the bounded execution shown
in Fig. 1 is partitioned into 7 rounds as follows: round 0 is
the time interval [0, 1] – the end of the first job of τ2, round 1
is [1, 3] – the end of the first job of τ1, round 2 is [3, 5] – the
end of the second job of τ2 (note that there is only one job of
τ0 and it ends at time 16), round 3 is [5, 9], etc.

Observe that in each round, the tasks are executed sequen-
tially in the order of their priority starting with the task of the
lowest priority. Furthermore, a bounded execution in which
exactly k jobs start and end has exactly k rounds.

The basic idea of our sequentialization is to reduce a
bounded concurrent execution with k jobs into a sequential
execution with k rounds. Initially, jobs are allocated (or sched-
uled) to rounds. Then, each round is executed independently
(and sequentially) starting from a guessed initial state. Finally,
we check for each 0 ≤ i < (k − 1), that the guessed initial
state at round i+ 1 is the final state of round i.

Our sequentialization is inspired by the work of Lal and
Reps [9], but differs from it in several significant ways. First,
we deal with periodic programs and not non-deterministically
scheduled concurrent programs. Second, since we are not
exploring non-deterministic schedules, we use a more refined
scheduling scheme than the non-deterministic round-robin
used in [9]. Third, we partition each task (or, correspondingly,
a thread in [9]) into jobs and preserve all executions in which
all jobs terminate. In contrast, [9] only preserves executions
with a bounded number of thread-preemptions. Finally, we
take into account that preemption between tasks must respect
priorities and preemption bounds.

B. Sequentialization: Details

The sequential program S starts in MAIN (see Alg. 1). It
first allocates jobs to rounds (line 5), initializes global variables
(lines 6–8), executes all jobs of all tasks sequentially starting
with the first job of the lowest priority task (lines 9–13), and
finally checks correctness of guessed variables and assertions
(lines 14–15).

Job scheduling. A job schedule is a pair of mappings start
and end that map each job of each task to a starting and ending
round, respectively. We say that a job schedule is legal iff it
satisfies the following three properties: (a) jobs are sequential

– for a given task, for any pair i < j, job i starts and finishes
(i.e., precedes) job j, and (b) jobs are well-nested – if a higher
and a lower priority jobs overlap, then the higher priority job
must start and end within the rounds of the lower priority one,
and (c) jobs respect preemption bounds – no more than PB

tj
ti

jobs of task tj are scheduled inside any job of task ti.
SCHEDULEJOBS fills arrays start and end with a non-

deterministic legal job schedule. Line 24 ensures that the jobs
are sequential, while line 25 ensures that they are well-nested,
and line 26 ensures that they respect preemption bounds. To
understand line 26, suppose that PBt2

t1 = 3, j2 = 4 and that
j2 is nested in j1. Then, to satisfy PBt2

t1 , we require that job 1
of t2 has ended before j1 started. Otherwise, because the jobs
are sequential and well-nested, j1 contains jobs 1, 2, 3, and 4
of t2 – that is, it is preempted by more than three t2 jobs.

Global variables. For every global variable g, we create two
arrays g[] and vg[] such that g[i] is the value of g in round
i, and vg[i] is the guess of the initial value of g in round i.
The element g[0] is initialized in line 7 to the user-specified
initial value ig , and each other elements g[r] is assigned the
corresponding initial guess vg[r] in line 8.

In addition, a variable rnd tracks the current round, job
tracks the current job, and endRnd is the scheduled end round
of the current job.

Tasks. For each task t, MAIN uses a modified version T̂t

obtained from the original task body Tt by preceding each
statement st with a call to CS to emulate a preemption, and
replacing every global variable g in st with g[rnd]. This is
based on an assumption, without loss of generality, that each
global variable g is explicitly loaded and stored, i.e., g only
appears in statements of the form g := l or l := g, where l is
a local variable.

Preemption. CS models a preemption (a context switch to
a higher priority task) by increasing non-deterministically the
value of rnd to the round in which this task resumes execution.
However, not every round between the start and end of the
current job is legitimate. Line 21 ensures that the execution
is not resumed in a round used by a higher-priority task. CS
returns TRUE iff a preemption has occurred. This value is used
later in Sec. VI.

Prophecy-Check. Line 14 ensures that the value of each
global variable at the end of a round is equal to its guessed
value at the beginning of the next round.

Assertions. Assertions need special handling. They can only
be checked after the guesses have been validated via Prophecy-
Check. Without loss of generality, we assume a single call to
assert in the body of each task. We use an array localAssert
that maps a task and a job to the value of the assertion in it.
The element localAssert[t][j] is initialized to TRUE (line 6), set
to the value of the asserted expression (line 29), and asserted
to be TRUE (line 15) after the Prophecy-Check.

Our sequentialization procedure is semantic preserving as
expressed in the following theorem.

Theorem 2 Let C be a periodic program and W a time-
bound satisfying the conditions in Theorem 1. Then, for every

execution π of CJ(W) that violates an assertion in job j of
task t, there is a corresponding execution π′ of the sequential
program S that violates localAssert[t][j], and vice versa.

V. LOCKS

We support two types of locks: preemption locks and
priority ceiling locks. These locks are common in periodic
programs because they are non-blocking (acquiring a lock
always succeeds) and avoid common pitfalls such as priority
inversion and deadlocks.

A periodic program has a single preemption lock pl. Ac-
quiring pl disables the scheduler, preventing all priority-based
preemptions. Releasing pl re-enables the scheduler. An exam-
ple of such a mechanism is the taskLock / taskUnlock
routines in VxWorks [15].

Priority ceiling locks, or priority locks for short, are
based on dynamically raising the priority of the current job.
Each priority lock lck is associated with a fixed priority
LOCKPRIORITY(lck), which is given to a task if it acquires
lck. It is illegal for a task with current priority p to acquire a
priority lock lck such that LOCKPRIORITY(lck) is less than p.
Releasing a lock restores the priority. Priority locks are used
in the Highest Locker-Priority (HLP) protocol [16], where the
priority of a resource r is as high as the priority of any task
accessing r. This guarantees mutual exclusion (assuming there
is only one CPU) while avoiding blocking, deadlocks, and
priority inversion. Multiple priority locks must be acquired in
increasing order of priority, but can be released in an arbitrary
order. We now show our encoding of these locks.

Preemption locks. The preemption lock pl is modeled by
introducing a Boolean variable lock into T̂t. Specifically,
lock = TRUE iff the current task has acquired pl. The variable
is FALSE initially and is reset to FALSE at the end of a job.
Finally, calls to CS are conditioned by lock = FALSE.

Priority locks. To model priority locks, we need to model
the dynamic priority of each task. Let BASEPRIORITY(t) be a
function that returns the base priority of task t. We introduce
an array priority such that for every round r, priority[r] is
the priority of the task currently executing in round r. The
array is maintained by the function T̂t-WRAPPER (shown in
Alg. 2) that wraps the body T̂t of each task t. The wrapper
function saves the current priority (line 2), ensures that it is
below the base priority of the current task (line 3), raises the
priority to the priority of the current task (line 4), executes
the task body (line 5), and finally resets the priority (line 6).
Note that the task body is only executed if the task has higher
priority than the current dynamic one, and that the priority can
be raised further inside the task body itself.

We model priority locks with two functions GETLOCK and
RELEASELOCK shown in Alg. 2. The set of all locks held by
a task is maintained in a set lockSet that is local to each
task. Information about locks of other tasks is propagated
through priorities. Acquiring a lock (GETLOCK) raises the
dynamic priority to the one of the lock, releasing a lock
(RELEASELOCK) resets the priority to the base priority of the
task or to the priority of the highest lock in the lockSet in

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑
t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)

is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE
7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume((

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)
⇒

(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume((

t1 < t2 ∧ j2 ≥ PBt2
t1 ∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)
⇒

end[t2][j2 − PBt2
t1] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.

Correctness. We need to show that CS and SCHEDULEJOBS
in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.

Finally, since j1 can raise its priority, it seems that we also
need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

Algorithm 2 Priority locks.

1: function T̂t-WRAPPER()
2: sp := priority[rnd]
3: assume(sp ≤ BASEPRIORITY(t)))
4: priority[rnd] := BASEPRIORITY(t)
5: T̂t()
6: priority[rnd] := sp

7: function GETLOCK(Lock lck)
8: assert(LOCKPRIORITY(lck) ≥ priority[rnd])
9: lockSet := lockSet ∪ {lck}

10: priority[rnd] := LOCKPRIORITY(lck)

11: function RELEASELOCK(Task t, Lock lck)
12: lockSet := lockSet \ {lck}
13: if lockSet = ∅ then
14: priority[rnd] := BASEPRIORITY(t)
15: else
16: priority[rnd]:=priority of highest lock in lockSet

effective for symbolic methods as well [20]. In symbolic
verification, POR translates into additional constraints to the
underlying verification engine (in our case, CBMC and SAT).
This does not always makes the solver faster. We report on
our experience with this reduction in Sec. VII.

We propose two approaches for POR: syntactic and se-
mantic. In syntactic POR, we first partition global variables
into two groups – task local (accessed by a single task) and
shared (accessed by multiple tasks). Intuitively, task local
variables are local to a task, but preserved across jobs (e.g.,
static variables in C). Second, we allow preemptions only
before statements that access a shared variable. Note that this
also reduces the number of variables in the sequentialization
since global variables that are not shared do not need to be
guessed across rounds. We do not describe this reduction in
more details since it is well-known and used by many other
sequentialization approaches (e.g. [9]).

The idea behind semantic POR is to allow, for each shared
variable g, a task to be preempted: (i) before a store g := l
only by a computation that loads or stores g, and (ii) before a
load l := g only by a computation that stores g. Intuitively, if
a preempting computation does not affect the access to g then
it is scheduled after the access, while preserving behavior.

The semantic POR is implemented by adding Boolean
global read/write flags Wg and Rg for each shared g to
indicate whether g was stored or loaded, respectively. These
flags are treated as regular shared variables (i.e., guessed at
the beginning of each round and checked at the end of the
program). Each task body is changed as shown in Alg. 3.
Only the case for a store g := l is shown; the load l := g is
similar and is illustrated later with an example.

When a preemption happens before g := l, the read/write
flags of g are reset (line 4) in the round in which the pre-
emption happens. Then, at least one of the flags is assumed to
become true in the round in which the task resumes. Thus, any
computation in which the current task is preempted but g is not

Algorithm 3 A fragment of T̂t from Alg. 1 with POR. Only
the case of a store to shared variable g is shown.

1: function T̂t()
Same as Tt, but

each statement ‘g := l’ is replaced with:
2: oldRnd := rnd
3: if CS(t) then
4: Wg[oldRnd] :=Rg[oldRnd] := FALSE
5: assume(Wg[rnd] ∨Rg[rnd])

6: Wg[rnd] := TRUE
7: g[rnd] := l

accessed, is blocked. Note that since in the sequential program
we can access any round at any time, the resetting of the
read/write flags (line 4) follows the preemption sequentially,
but precedes it in the execution order. Finally, line 6 sets Wg

to true to indicate that g was stored.

Example 3 Under semantic POR, the two assignments
1: x := g ; g := y

in Tt, where x, y are local and g is shared, become the
sequence in T̂t that appears in Fig. 2.

1: oldRnd := rnd
2: if CS(t) then
3: Wg[oldRnd] :=Rg[oldRnd] := FALSE
4: assume(Wg[rnd])

5: Rg[rnd] := TRUE
6: x := g[rnd]
7: oldRnd := rnd
8: if CS(t) then
9: Wg[oldRnd] :=Rg[oldRnd] := FALSE

10: assume(Wg[rnd] ∨Rg[rnd])

11: Wg[rnd] := TRUE
12: g[rnd] := y

Fig. 2. An encoding for Example 3.

Let Spo denote the sequentialization with POR. The follow-
ing theorem shows that it is semantics preserving.

Theorem 3 Let C, W and S be as in Theorem 2 and Spo
the corresponding POR. Then, for every execution π of S that
violates a local assertion localAssert[t][j] of task t and job
j there is a corresponding execution π′ of Spo that violates
localAssert[t][j], and vice versa.

VII. CASE STUDIES

We implemented our approach in a tool called REK. REK
is built on top of CIL [21]. It takes as input C programs
annotated with entry points of each task, their periods, worst
case execution times, and the time bound W . The output is a
sequential C program S that is then verified by CBMC [22].

aso.ok2

aso.bug1

High-Priority Frequency vs Time

Fig. 3. Analysis time versus frequency of the highest-period time in ‘aso’.

To evaluate our approach, we have used REK to verify
several periodic programs. In the rest of this section, we report
on this experience. The tool and the case studies are available
at: http://www.andrew.cmu.edu/user/arieg/Rek.

Robot controller. The NXTway-GS controller, nxt for short,
runs on nxtOSEK [2] – a real-time operating system ported
to the LEGO MINDSTORM platform. nxtOSEK supports
programs written in C with periodic tasks and priority ceiling
locks. It is the target for Embedded Coder Robot NXT – a
Model-Based Design environment for using Simulink models
with LEGO robots.

The basic version of the controller has 3 periodic tasks: a
balancer, with period of 4ms, that keeps the robot upright and
monitors the bluetooth link for user commands, an obstacle,
with period 50ms, that monitors a sonar sensor for obstacles,
and a 100ms background task that prints debug information
on an LCD screen.

We verified several versions of this controller. All of the
properties verified involved the high-frequency balancer task.
The balancer goes through 3 modes of execution: INIT,
CALIBRATE, and CONTROL. In INIT mode all variables
are initialized, and in CALIBRATE a gyroscope is calibrated.
After that, balancer goes to CONTROL mode in which it
iteratively reads the bluetooth link, reads the gyroscope, and
sends commands to the two motors on the robot’s wheels.

The results are shown in the top part of Table I. We have
used W = 100ms, which is the minimum time needed for
all tasks to execute at least once. We did not enable semantic
POR since it was irrelevant in this case (all shared variables
were accessed by all tasks in all paths).

Experiments nxt.ok1 (nxt.bug1) check that the balancer is in
a correct (respectively, incorrect) mode at the end of the time
bound. Experiment nxt.ok2 checks that the balancer is always
in one of its defined modes. Experiment nxt.bug3 checks that
whenever balancer detects an obstacle, the balancer responds
by moving the robot. We found that since the shared variables
are not protected by a lock there is a race condition that causes
the balancer to miss a change in the state of obstacle for one
period. Experiment nxt.ok3 is the version of the controller
where the race condition has been resolved using locks.

For the second part of the robot case study, we modified
the original design to separate handling of each sensor by
a separate task. Our design, called ‘aso’ has 3 tasks: bal-

TABLE I
Experimental results. OL and SL = # lines of code in the original C

program and the generated sequentialization S, respectively; GL = size of
the GOTO program produced by CBMC; Var and Clause = # variables and
clauses in the SAT instance, respectively; S = verification result – ‘Y’ for

SAFE and ‘N’ for UNSAFE; Time = verification time in sec.

Name Program Size SAT Size S Time (s)
OL SL GL Var Clause

nxt.ok1 377 2,265 7,848 136K 426K Y 22.16
nxt.bug1 378 2,265 7,848 136K 426K N 9.95
nxt.ok2 368 2,322 8,572 141K 439K Y 13.92
nxt.bug2 385 2,497 10,921 144K 451K N 17.48
nxt.ok3 385 2,497 10,905 144K 449K Y 18.32
aso.bug1 401 2680 13106 178K 572K N 16.32
aso.bug2 400 2,682 13060 176K 566K N 15.01
aso.ok1 398 2,684 13,026 175K 560K Y 66.43
aso.bug3 426 3,263 19,211 373K 1,187K N 59.66
aso.bug4 424 3,250 18,503 347K 1,099K N 31.51
aso.ok2 421 3,251 18,589 348K 1,101K Y 328.32
RW1 190 3,428 5,860 42K 125K Y 20.74
RW1-PO 190 5,021 7,626 45K 134K Y 14.71
RW2 239 4,814 8,121 52K 152K Y 165.89
RW2-PO 239 7,356 10,388 56K 164K Y 162.20
RW3 285 7,338 21,163 139K 419K Y 436.86
RW3-PO 285 12,002 26,283 153K 467K Y 199.13
RW4 244 7,255 19,745 117K 350K Y 321.25
RW4-PO 244 12,272 24,261 130K 392K Y 59.66
RW5 188 3,198 5,208 41K 119K Y 47.83
RW5-PO 188 4,791 7,138 45K 131K Y 20.35
RW6 257 5,231 7,634 54K 157K Y 165.33
RW6-PO 257 8,235 10,119 59K 173K Y 157.43

ancer, observer, and bluetooth. The first two are the same
as before, and the bluetooth is responsible for the bluetooth
communication. We wanted a design in which the balancer
task is lock-free, which was challenging. During our design,
we unintentionally introduced subtle concurrency errors which
were detected by REK.

The results of these experiments are shown in the second
part of Table I. We checked consistency of communication
between the tasks. The experiments are: aso.bug1 and aso.bug2
– initial versions with inadequate locking leading to race
conditions. aso.ok1 is a correct design with preemption locks.
aso.bug3 is our first attempt at a lock-free implementation
that was fundamentally flawed and had to be abandoned.
aso.bug4 and aso.ok2 are a buggy and a correct version of
the final design in which obstacle and bluetooth synchronize
via priority locks and balancer is lock-free.

During the case study, we found it very convenient to
increase the period of the highest priority task (thus decreasing
its frequency). In many cases, this dramatically reduced verifi-
cation time, while allowing us to draw meaningful conclusions
from the counterexamples. Of course, this approach is not
sound in general. Fig. 3 shows the relationship between the
analysis time and the frequency of balancer for a correct and
an incorrect version of the controller. In case the design is
buggy, the time increased monotonically with the frequency.
However, for a safe design, the time behaves erratically: e.g.,
increasing the frequency from 20 to 26 made it easier to verify.
Such erratic behavior is common with SAT.

Reader-Writer. Reader-Writer (RW) is a common communi-
cation pattern in concurrent programs. We implemented three

lock-free flavors of a RW protocol (RW1, RW3, and RW5),
and their counterparts with locks (RW2, RW4, and RW6).
We checked consistency of communication between the tasks.
Each protocol was analyzed with 3 to 6 tasks (depending on
the protocol), with W such that every task executes once, and
with an increasing number of shared variables. The results are
shown in Table I. For each protocol, we only report on the
hardest instance solved in under 10 mins. In these examples,
semantic POR yields significant reduction in verification time.
The results with POR are shown in Table I in rows named
“PO”. Note that in all cases, the number of variables and
clauses with POR is larger, yet the verification time is smaller.

VIII. RELATED WORK

There is a large body of work in verification of logical prop-
erties of both sequential and concurrent programs (see [23] for
a recent survey). However, these techniques abstract away time
completely, by assuming a non-deterministic scheduler model.
In contrast, we use a priority-sensitive scheduler model, and
abstract time partially via our job-bounded abstraction.

A number of projects [5], [6] verify timed properties of
systems using discrete-time [24] or real-time [7] semantics.
They abstract away data- and control-flow, and verify models
only. We focus on the verification of implementations of
periodic programs, and do not abstract data- and control-flow.

Recently, Kidd et al. [4] showed a number of decidability
results for reachability in finite-state periodic programs with
recursion and locks. They apply sequentialization as well. The
key idea is to share a single stack between all tasks and model
preemptions by function calls. However, they not report on an
implementation. In contrast, we focus on a practical solution
to a bounded version of this problem.

In the context of concurrent software verification, several
flavors of sequentialization have been proposed and evalu-
ated (e.g., [9], [10], [11], [12]). Our procedure is closest to
the LR [9] style. However, it differs from LR significantly,
as discussed earlier (see Sec. IV-A), and provides a crucial
advantage over LR for periodic programs, as discussed next.

In both cases, ours and LR, the number of variables is
proportional to the number of rounds, R. However, LR al-
lows more computations since it does not enforce priority
constraints. In addition to yielding fewer false warnings, our
approach guarantees better coverage for the same number of
variables, as shown below:

Take two programs: (i) an N -task periodic program C with
a time bound that permits exactly one job per task; (ii) the
analogue of C, called C′, in a non-real-time setting, i.e., N
threads scheduled non-deterministically, each executing one
task of C. Consider the value of R required to cover all
reachable states, in our encoding S vs. the LR encoding of C′.
For LR, R is the number of possible context switches, which
by itself is proportional to the number of statements over
shared variables in C′. This value of R is needed to explore
a pathological path in C where, in each round, a single thread
is executed and the threads are picked in reverse-round-robin
order. In contrast, our approach only needs R = N , a much

smaller value in most practical cases. In fact, the pathological
path above is illegal, since scheduling tasks in reverse-round-
robin order violates priority constraints.

IX. CONCLUSION

Periodic programs, i.e., periodic RTES with rate-monotonic
scheduling, are an important sub-class of embedded real-time
software. In this paper, we address the time-bounded verifica-
tion of safety properties of periodic program implementations.
We present a solution involving two steps – convert the target
periodic program to a non-deterministic sequential program,
and then verify it with an off-the-shelf verification tool. Our
approach is sound, preserves both data- and control-flow, and
abstracts the effect of time via preemption-bounds. Some
of our techniques are applicable to other types of systems.
Specifically, note that we only used the assumption that the
verified system follows RMS in order to compute preemption
bounds. Other periodic RTES can be modeled with our method
by either supplying these bounds as part of the input, or by
removing line 26 in Alg. 1 (this may hinder completeness,
however). In addition, our partial order reduction is not re-
stricted to periodic RTES, and is applicable when analyzing
general multi-threaded programs.

We have implemented our approach in a tool, and used it
to identify subtle concurrency errors in a robot controller. We
believe that our work opens up several avenues for future
work in real-time software verification, notably unbounded
verification of periodic programs and the use of automated
abstraction refinement techniques.

REFERENCES

[1] C. L. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment,” J. of ACM, vol. 20, no. 1, 1973.

[2] “nxtOSEK/JSP Open Source Platform for LEGO MINDSTORMS
NXT,” http://lejos-osek.sf.net.

[3] D. C. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough, “Generic
Avionics Software Specification,” SEI/CMU, Tech. Rep. CMU/SEI-90-
TR-8-ESD-TR-90-209, 1990.

[4] N. Kidd, S. Jagannathan, and J. Vitek, “One Stack to Run Them All,”
in Proc. of SPIN’11, 2011.

[5] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” STTT,
vol. 1, no. 1-2, pp. 134–152, 1997.

[6] V. A. Braberman and M. Felder, “Verification of Real-Time Designs:
Combining Scheduling Theory with Automatic Formal Verification,” in
Proc. of ESEC/SIGSOFT FSE’99, 1999, pp. 494–510.

[7] R. Alur and D. Dill, “A Theory of Timed Automata,” Theor. Comp. Sci.,
vol. 126, pp. 183–235, 1994.

[8] S. Qadeer and D. Wu, “KISS: Keep It Simple and Sequential,” in Proc.
of PLDI’04, 2004, pp. 14–24.

[9] A. Lal and T. W. Reps, “Reducing Concurrent Analysis Under a Context
Bound to Sequential Analysis,” in Proc. of CAV’08, 2008, pp. 37–51.

[10] S. L. Torre, P. Madhusudan, and G. Parlato, “Reducing Context-Bounded
Concurrent Reachability to Sequential Reachability,” in Proc. of CAV’09,
2009, pp. 477–492.

[11] N. Ghafari, A. J. Hu, and Z. Rakamaric, “Context-Bounded Translations
for Concurrent Software: An Empirical Evaluation,” in Proc. of SPIN’10,
2010, pp. 227–244.

[12] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-Bounded Scheduling,”
in Proc. of POPL’2011, 2011, pp. 411–422.

[13] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zue, Bounded
Model Checking, ser. Advances in Computers. Academic Press, 2003,
vol. 58.

[14] N. Audsley, A. Burns, K. Tindell, and A. Wellings, “Applying New
Scheduling Theory to Static Priority Preemptive Scheduling,” Software
Eng. J., 1993.

[15] “VxWorks Programmer’s Guide.”
[16] R. Mall, Real-Time Systems: Theory and Practice. Prentice Hall, 2009.
[17] P. Godefroid, Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer, 1996, vol. 1032.

[18] D. Peled, “All from One, One for All: on Model Checking Using
Representatives,” in Proc. of CAV’93, 1993, pp. 409–423.

[19] D. Bosnacki and G. J. Holzmann, “Improving Spin’s Partial-Order
Reduction for Breadth-First Search,” in Proc. of SPIN’05, 2005.

[20] V. Kahlon, C. Wang, and A. Gupta, “Monotonic Partial Order Reduction:
An Optimal Symbolic Partial Order Reduction Technique,” in Proc. of
CAV’09, 2009, pp. 398–413.

[21] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs,”
in Proc. of CC’02, 2002.

[22] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proc. of TACAS’04, 2004, pp. 168–176.

[23] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Auto-
mated Techniques for Formal Software Verification,” IEEE Trans. on
CAD, vol. 27, no. 7, pp. 1165–1178, 2008.

[24] F. Laroussinie, N. Markey, and P. Schnoebelen, “Efficient Timed Model
Checking For Discrete-Time Systems,” Theor. Comput. Sci., vol. 353,
no. 1-3, pp. 249–271, 2006.

