
 Open access Book Chapter DOI:10.1007/978-3-319-02444-8_6

Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity and Fixed
Points — Source link

Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine ...+2 more authors

Institutions: University of Mons, Université libre de Bruxelles, University of Oxford

Published on: 15 Oct 2013 - Automated Technology for Verification and Analysis

Topics: Reachability problem, Reachability, Monotonic function, Fixed point and Bounded function

Related papers:

 A theory of timed automata

 Bounded ∈-reachability of linear hybrid automata with a deterministic and transversal discrete transition condition

 What's Decidable about Hybrid Automata?

 Subset Synchronization in Monotonic Automata

 On two-way FA with monotonic counters and quadratic Diophantine equations

Share this paper:

View more about this paper here: https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-
1m8kutzzrd

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-02444-8_6
https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd
https://typeset.io/authors/thomas-brihaye-3c0pma04lz
https://typeset.io/authors/laurent-doyen-hxvq86urzl
https://typeset.io/authors/gilles-geeraerts-1o3q43dbph
https://typeset.io/authors/joel-ouaknine-18dnfwq11d
https://typeset.io/institutions/university-of-mons-h9cv56le
https://typeset.io/institutions/universite-libre-de-bruxelles-2us6zg8h
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/conferences/automated-technology-for-verification-and-analysis-3m3oammj
https://typeset.io/topics/reachability-problem-20jssvvp
https://typeset.io/topics/reachability-2c10tla6
https://typeset.io/topics/monotonic-function-3uq05dor
https://typeset.io/topics/fixed-point-17vou1jr
https://typeset.io/topics/bounded-function-1gdgagxh
https://typeset.io/papers/a-theory-of-timed-automata-4c76mk41q7
https://typeset.io/papers/bounded-reachability-of-linear-hybrid-automata-with-a-5svc2cg0dk
https://typeset.io/papers/what-s-decidable-about-hybrid-automata-v3515i7f4g
https://typeset.io/papers/subset-synchronization-in-monotonic-automata-2vfnnw63b9
https://typeset.io/papers/on-two-way-fa-with-monotonic-counters-and-quadratic-3tvd860i9n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd
https://twitter.com/intent/tweet?text=Time-Bounded%20Reachability%20for%20Monotonic%20Hybrid%20Automata:%20Complexity%20and%20Fixed%20Points&url=https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd
https://typeset.io/papers/time-bounded-reachability-for-monotonic-hybrid-automata-1m8kutzzrd

Time-Bounded Reachability for Monotonic Hybrid

Automata: Complexity and Fixed Points⋆

T. Brihayea, L. Doyenb, G. Geeraertsc, J. Ouaknined, J.F. Raskinc, and J. Worrelld

a UMons, Belgium; b LSV Cachan, France; c ULB, Belgium; d Oxford University, UK

Abstract. We study the time-bounded reachability problem for monotonic hy-

brid automata (MHA), i.e., rectangular hybrid automata for which the rate of

each variable is either always non-negative or always non-positive. In this paper,

we revisit the decidability results presented in [5] and show that the problem is

NEXPTIME-complete. We also show that we can effectively compute fixed points

that characterise the sets of states that are reachable (resp. co-reachable) within

T time units from a given state.

1 Introduction

Hybrid systems form a general class of systems that mix continuous and discrete be-

haviors. Examples of hybrid systems abound in our everyday life, particularly in ap-

plications where an (inherently discrete) computer system interacts with a continuous

environment. The need for modeling and analysing hybrid systems is thus obvious.

Hybrid automata are arguably among the most prominent families of models for

hybrid systems [7]. Hybrid automata are finite automata (to model the discrete part of

the system) augmented with a finite set of real-valued variables (to model the continuous

part of the system). The variables evolve with time elapsing, at a rate which is given by

a flow that depends on the current location of the automaton. The theory of hybrid

automata has been well developed for about two decades, and tools to analyse them are

readily available, for instance HYTECH [8, 9].

Hybrid automata are thus a class of powerful models, yet their high expressive-

ness comes at a price, in the sense that the undecidability barrier is rapidly hit. Simple

reachability properties are undecidable even for the restricted subclass of stopwatch

automata, where the rate of growth of each variable stays constant in all locations and

is restricted to either 0 or 1 (see [10] for a survey).

On the other hand, a recent and successful line of research in the setting of timed

automata has outlined the benefits of investigating timed-bounded variants of classical

properties [12, 14]. For instance, while language inclusion is, in general undecidable for

timed automata, it is decidable when considering only executions of bounded duration

[14]. Following this line of research, we have recently investigated the decidability of

time-bounded reachability for rectangular hybrid automata, i.e., whether a given state

is reachable by an execution of duration at most T, for a given T [5]. We have shown

⋆ This work has been partly supported by a grant from the National Bank of Belgium, the ARC

project (number AUWB-2010-10/15-UMONS-3), the FRFC project (number 2.4545.11) and

a ‘Crédit aux chercheurs’ of the FRS – F.N.R.S.

1

that time-bounded reachability is decidable for rectangular hybrid automata with non-

negative rates (RHA≥0), while it is well-known that (plain, time unbounded) reachabil-

ity is undecidable for this class [10]. We have also shown that the decidability frontier

is quite sharp: time-bounded reachability becomes undecidable once we allow either

diagonal constraints in the guards or a single variable to have both positive and nega-

tive rates. The decidability result relies on a so-called contraction operator that allows

to construct, from any run of duration at most T of an RHA≥0 H, an equivalent run

that reaches the same state, but whose length (in terms of number of discrete transi-

tions) is uniformly bounded by a function F of the size of the automaton H and the

bound T. Hence, deciding reachability within T time units reduces to exploring runs of

bounded lengths only, which is algorithmically feasible [5]. Yet, this yields only a non-

deterministic algorithm with doubly exponential time complexity for a strict subclass of

RHA≥0, and no lower bound is given.

In the present work, we revisit and extend the results from [5], both from the theo-

retical and the practical points of view. First, we consider the class of monotonic hybrid

automata (MHA for short) which are rectangular hybrid automata where the rate of

each variable is either always non-negative or always non-positive (thus, MHA gen-

eralise RHA≥0). Second, we provide a new contraction operator that allows to derive

a singly exponential upper bound on the lengths of the runs that need to be consid-

ered, thereby providing an NEXPTIME algorithm for the whole class of MHA. Third,

we show that this new algorithm is optimal, by establishing a matching lower bound.

Hence, time-bounded reachability for RHA≥0 is NEXPTIME-complete. Fourth, we ex-

tend those results towards practical applications, by showing that we can effectively

compute the set of states that are reachable (resp. co-reachable) within T time units,

from a given state. Finally, we apply those ideas to two examples of RHA≥0 for which

the classical (time-unbounded) forward and backward fixpoints do not terminate. We

manage to compute, using HYTECH, the set of states reachable within T time units for

values of T that are sufficient to prove non-trivial properties of those examples

Note that the missing proofs can be found in the companion technical report [6].

2 Definitions

Let I be the set of intervals of real numbers with endpoints in Z ∪ {−∞,+∞}. Let X
be a set of continuous variables, and let Ẋ = {ẋ | x ∈ X} be the set of dotted variables,

corresponding to the variables’ time derivatives. A rectangular constraint over X is an

expression of the form x ∈ I where x belongs to X and I to I. A diagonal constraint

over X is a constraint of the form x − y ∼ c where x, y belong to X , c to Z, and ∼
is in {<,≤,=,≥, >}. Finite conjunctions of diagonal and rectangular constraints over

X are called guards, and over Ẋ are called rate constraints. A guard or rate constraint

is rectangular if all its constraints are rectangular. We denote by G (X) and R (X)
respectively the sets of guards and rate constraints over X .

Linear, rectangular and singular hybrid automata A linear hybrid automaton (LHA)

is a tuple H = (X,Loc,Edges,Rates, Inv, Init) where X = {x1, . . . , x|X|} is a finite

set of continuous variables ; Loc is a finite set of locations; Edges ⊆ Loc × G (X) ×

2

2X × Loc is a finite set of edges; Rates : Loc 7→ R (X) assigns to each location a

constraint on the possible variable rates; Inv : Loc 7→ G (X) assigns an invariant to

each location; and Init ⊆ Loc is a set of initial locations. For an edge e = (ℓ, g, Y, ℓ′),
we denote by src (e) and trg (e) the locations ℓ and ℓ′ respectively, g is called the guard

of e and Y is the reset set of e. In the sequel, we denote by rmax and cmax the maximal

constants occurring respectively in the constraints of {Rates(ℓ) | ℓ ∈ Loc} and of

{Rates(ℓ) | ℓ ∈ Loc} ∪ {g | ∃(ℓ, g, Y, ℓ′) ∈ Edges}.

An LHA has non-negative rates if for all variables x, for all locations ℓ, the con-

straint Rates(ℓ) implies that ẋ must be non-negative. A rectangular hybrid automaton

(RHA) is a linear hybrid automaton in which all guards, rates, and invariants are rectan-

gular. In the case of RHA, we view rate constraints as functions Rates : Loc×X → I
that associate with each location ℓ and each variable x an interval of possible rates

Rates(ℓ)(x). A monotonic hybrid automaton (MHA) is an RHA such that, for all vari-

able x: either Rates(ℓ, x) ⊆ [0,+∞) in all locations ℓ; or Rates(ℓ, x) ⊆ (−∞, 0] in all

locations ℓ. A singular hybrid automaton (SHA) is an RHA such that for all locations

ℓ and for all variables x: Rates(ℓ)(x) is a singleton. We note SMHA and RHA≥0 for

singular MHA, non-negative rates RHA resp. Note that MHA generalises RHA≥0.

LHA semantics A valuation of a set of variables X is a function ν : X 7→ R.

We denote by 0 the valuation that assigns 0 to each variable. For a valuation x of

X and a guard g ∈ G (X), we write v |= g iff v satisfies g. Given an LHA H =
(X,Loc,Edges,Rates, Inv, Init, X), a state of H is a pair (ℓ, ν), where ℓ ∈ Loc and

ν is a valuation of X . The semantics of H is defined as follows. For a state s = (ℓ, ν)

of H, an edge step (ℓ, ν)
e
−→ (ℓ′, ν′) can occur and change the state to (ℓ′, ν′) if

e = (ℓ, g, Y, ℓ′) ∈ Edges, ν |= g, ν′(x) = ν(x) for all x 6∈ Y , and ν′(x) = 0 for all

x ∈ Y ; for a time delay t ∈ R
+, a continuous time step (ℓ, ν)

t
−→ (ℓ, ν′) can occur and

change the state to (ℓ, ν′) if there is a vector r = (r1, . . . r|X|) such that r |= Rates(ℓ),
ν′ = ν + (r · t), and ν + (r · t′) |= Inv(ℓ) for all 0 ≤ t′ ≤ t.

A path in H is a finite sequence e1, e2, . . . , en of edges such that trg (ei) = src (ei+1)
for all 1 ≤ i ≤ n − 1. A timed path of H is a finite sequence of the form π =
(t1, e1), (t2, e2), . . . , (tn, en), such that e1, . . . , en is a path in H and ti ∈ R

+ for all

0 ≤ i ≤ n. For all k, ℓ, we denote by π[k : ℓ] the maximal portion (ti, ei), (ti+1, ei+1),
. . . , (tj , ej) of π such that {i, i + 1, . . . , j} ⊆ [k, ℓ] (note that the interval [k, ℓ] could

be empty, in which case π[k : ℓ] would be empty too). Given a timed path π =
(t1, e1), (t2, e2), . . . , (tn, en) of an SHA, we let Effect (π) =

∑n
i=1 Rates(ℓi−1) · ti

be the effect of π (where ℓi = src (ei) for all 1 ≤ i ≤ n).

A run in H is a sequence s0, (t1, e1), s1, (t2, e2), . . . , (tn, en), sn s.t. (i) (t1, e1),
(t2, e2), . . . , (tn, en) is a timed path in H, and (ii) for all 0 ≤ i < n, there exists

a state s′i of H with si
ti+1

−−→ s′i
ei+1

−−−→ si+1. Given a run ρ = s0, (t1, e1), . . . , sn,

let first (ρ) = s0, last (ρ) = sn, duration (ρ) =
∑n

i=1 ti, and |ρ| = n + 1. We say

that ρ is T-time-bounded (for T ∈ N) if duration (ρ) ≤ T. Given two runs ρ =
s0, (t1, e1), . . . , (tn, en), sn and ρ′ = s′0, (t

′
1, e
′
1), . . . , (t

′
k, e
′
k), s

′
k with sn = s′0, we let

ρ · ρ′ denote the run s0, (t1, e1), . . . , (tn, en), sn, (t
′
1, e
′
1), . . . , (t

′
k, e
′
k), s

′
k.

Note that a unique timed path TPath (ρ) = (t1, e1), (t2, e2), . . . , (tn, en), is asso-

ciated with each run ρ = s0, (t1, e1), s1, . . . , (tn, en), sn. Hence, we sometimes abuse

3

ℓ0
ẋ = 3
ẏ = 2

0 ≤ x, y ≤ 1

ℓ1
ẋ = 2
ẏ = 3

0 ≤ x, y ≤ 1
x = 1

x := 0

y = 1

y := 0 (0, 0)

y = 1

x = 1

ℓ0 :

(0, 0)

y = 1

x = 1

ℓ1 :

Fig. 1. An MHA with its set of reachable states.

notation and denote a run ρ with first (ρ) = s0, last (ρ) = s and TPath (ρ) = π by

s0
π
−→ s. The converse however is not true: given a timed path π and an initial state s0,

it could be impossible to build a run starting from s0 and following π because some

guards or invariants along π might be violated. However, when the automaton is singu-

lar, such a run is necessarily unique if it exists, and we denote by Run (s0, π) the func-

tion that returns the unique run ρ such that first (ρ) = s0 and TPath (ρ) = π if it exists,

and ⊥ otherwise. Note that, when considering an SHA: if ρ = (ℓ0, ν0)
π
−→ (ℓn, νn) is a

run, then for all x that is not reset along ρ: νn(x) = ν0(x) + Effect (π) (x).

Time-bounded reachability problem While the reachability problem asks whether there

is a run reaching a given goal location, we consider only runs with bounded duration.

Problem 1 (Time-bounded reachability problem). Given an LHA H = (X,Loc,Edges,
Rates, Inv, Init), a location Goal ∈ Loc and a time bound T ∈ N, the time-bounded

reachability problem is to decide whether there exists a finite run ρ = (ℓ0,0)
π
−→

(Goal, ·) of H with ℓ0 ∈ Init and duration (ρ) ≤ T.

This problem is decidable [5] for RHA≥0, but its exact complexity was left open until

now. We prove in Section 4 that it is NEXPTIME-complete for MHA. This problem

is known to become undecidable either when diagonal constraints are allowed in the

guards, or when non-monotonic RHA are considered [5]. In Section 5, we extend these

results by showing how to compute a finite and algorithmically manipulable represen-

tation of the set of states that are reachable within T time units.

Let us illustrate, by means of the MHA (actually an RHA≥0) H in Fig. 1 (left),

the difficulties encountered when computing the reachable states. In this example, one

can show that the set of reachable states is not a finite union of polyhedra, see Fig. 1

(right). Moreover, one can observe that the number of bits necessary to encode the states

reachable from (ℓ0, 0, 0) grows linearly with the length of the run. This example shows

that finding an adequate, compact and effective representation (such as regions in the

case of Timed Automata [2]) for the set of reachable states of an MHA is not trivial

(and, in full generality, impossible because reachability is undecidable for this class).

Nevertheless, in Section 5, we show that, for MHA, an effective representation of the

set of states that are reachable within T time units can be computed.

3 Bounding the length of time-bounded runs

In this section, we prove the main technical result of the paper. For the sake of clarity,

we consider a singular MHA H = (X,Loc,Edges,Rates, Inv, Init) and explain later

4

why the results extend to general MHA. The result we prove is that ‘H can reach a

state s within T time unit iff it can reach s within T time unit by a run of bounded

length, where the bound is uniform: it depends only on T and on the number |H| of bits

necessary to encode H (with standard encoding for the constants). More precisely, let

F (H,T) = 24× (T× rmax + 1)× |X|2 × |Loc|2 × (2× cmax + 3)2×|X|. Then:

Theorem 2. Let H be an SMHA, T be a time bound and let s1 and s2 be two states of

H. Then H admits a T-time-bounded run ρ with first (ρ) = s1 and last (ρ) = s2 iff it

admits a T-time-bounded run ρ′ s.t. |ρ′| ≤ F (H,T), first (ρ′) = s1 and last (ρ′) = s2.

This theorem will be used in the next sections to obtain optimal algorithms for deciding

time-bounded reachability. Observe that F (H,T) = O
(

T× 2|H|
)

. Thus, Theorem 2

says that, to decide T-time-bounded reachability, we only need to consider runs whose

length is exponential in the size of the instance (H,T).
We establish this result in two steps. First, we show that each time-bounded run

can be split into a bounded number of so-called type-2 (sub-)runs (see hereunder

for the definitions of type-0, type-1 and type-2 runs). Because of the density of time, we

cannot bound the length of those type-2 runs, yet we show that they enjoy properties

that allow us to replace each type-2 run by an equivalent run of bounded length.

By equivalent we mean a run that starts and ends in the same states, and has the same

duration. Combining the bounds on the number of type-2 runs and on the length of the

runs we substitute to the original type-2 runs, we obtain Theorem 2.

Contraction operator To obtain the bounded length runs that we substitute to the origi-

nal type-2 runs, we rely on a contraction operator. As this operator is central to our

proof we start by describing it intuitively1. Let ρ = (ℓ0, ν0), (t1, e1), (ℓ1, ν1), . . . ,
(tn, en), (ℓn, νn) be a run, and let π = TPath (ρ). We contract π by looking for a

pair of positions i < j s.t. ℓi = ℓj (i.e., π[i+ 1 : j] forms a loop) and s.t. all loca-

tions ℓi+1, ℓi+2, . . . , ℓj occur in the prefix π[1 : i]. An example is the timed path of the

run ρ in the top of Fig. 2. Then, the contraction consists, roughly speaking, in deleting

the portion π[i + 1 : j] from π, and in reporting the delays ti+1,. . . , tj−1 to the other

occurrences of ℓi, . . . , ℓj−1 in π (that exist by hypothesis), see Fig. 2. Obviously, this

contraction returns a timed path with shorter length. We show (Lemma 7 hereunder)

that, by repeatedly applying this contraction, we obtain a timed path Cnt∗ (π) whose

length is bounded by |Loc|2 + 1, i.e. a value that does not depend on the length of π.

Now, we can lift the definition of the contraction operator to runs: for a run ρ,

Cnt (ρ) = Run (first (ρ) ,Cnt∗ (TPath (ρ))). Clearly, there is, in general, no guarantee

that this contracted run exists, i.e. that Cnt (ρ) 6= ⊥ (see examples hereunder). However,

we will show that, when correctly applied to so-called type-2 runs (see hereunder for

the precise definition), Cnt (ρ) produces a genuine run of bounded length that starts and

ends in the same states as the original run.

Let us now discuss several concrete examples of this contraction procedure. In all

these examples, we assume an MHA with a single variable x whose rate is 1 in all lo-

cations, and we consider the run ρ depicted in Fig. 2. We also let π′ = Cnt (TPath (ρ))

1 The definition of this operator is crucial to obtain the NEXPTIME algorithm in Section 4. It

differs from the one introduced in [5], which does not allow to obtain an NEXPTIME algo-

rithm.

5

ρ = (ℓ0, ν0) (ℓ1, ν1) (ℓ0, ν2) (ℓ1, ν3) (ℓ2, ν4)
t1, e1 t2, e2 t3, e3 t4, e4

Cnt (TPath (ρ)) = ℓ0 ℓ1 ℓ2
t1 + t3, e1 t2 + t4, e4

cycle

Fig. 2. Illustrating the contraction operator

and ρ′ = Run ((ℓ0, ν0), π
′) – thus, ρ′ could be equal to ⊥. First assume that ν0(x) = 0,

that t1 = t2 = t3 = t4 = .1 and that all edges e1, . . . , e4 dot not reset x. In this case,

ρ′ is a genuine run that reaches (ℓ2, .4). However, as remarked above, there are many

cases where either ρ′ = ⊥ or ρ′ 6= ⊥ but does not reach the same state as ρ. Let us

observe four of these cases, as they will be used later to justify our constructions.

Case 1. Assume x is never reset along ρ, ν0(x) = 0, t1 = t3 = 1 and the guard of e1
is x = 1. Then, ρ′ = ⊥ as ν0(x) + t1 + t3 = 2 and does not satisfy the guard of e1.

Intuitively, the problem occurs because x crosses value 1 along ρ, and the compression

reports the delay t3, occurring after x crosses 1 in the original run, to a part where x ≤ 1
in the original run. To avoid this, we split the run once a variable changes its region,

where the regions are [0, 1) and all [a, a], (a, a+ 1) for a ≥ 1. Since we consider time-

bounded runs, we obtain a bounded number of sub-runs. Note that we do not split when

a variable moves from [0, 0] to (0, 1) or vice-versa, because the density of time allows

a variable to be reset and to increase strictly an unbounded number of times in any time

interval. Hence, this splitting strategy is not sufficient to guarantee that Cnt (ρ) 6= ⊥
and is equivalent to ρ, as shown by the next three cases, where x is in [0, 1) along ρ.

Case 2. Assume ρ′ 6= ⊥, e1 resets x, e2, e3 and e4 do not reset x and t1 = t2 = t3 =
t4 = .1. Then, ν4(x) = t2 + t3 + t4 = .3. Observe that ν4(x) depends only on the run

portion that occurs after e1 because e1 is the last edge to reset x. On the other hand,

ρ′ reaches a state (ℓ2, ν) with ν(x) = t2 + t4 = .2 6= ν4(x), because the contraction

reports, before the last reset (e1), the delay t3 that occurs after the last reset in ρ.

Case 3. Assume ν0(x) = .8, t1 = t3 = .1, the guard of e1 is x < 1 and e1 resets x.

Then, ρ′ = ⊥, as ν0(x)+t1+t3 = 1, which does not satisfy the guard of e1. Intuitively,

the problem occurs because the time delay t3 that takes place after the first reset of x in

ρ has been reported before the first reset of x.

Case 4. Assume ν0(x) = 0, t1 = 0, t2 = t3 = t4 = .1, e2, e3 and e4 reset x, and

the guard of e1 is x = 0. Further assume that that x has just been reset when entering

ℓ0. Then, ρ′ = ⊥, as ν0(x) + t1 + t3 = .1, which does not satisfy the guard of e1.

Intuitively, the problem occurs because, x is null when entering and leaving the first

occurrence of ℓ0, while it is null when entering and non-null when leaving the second

occurrence of ℓ0. Thus, the time delay t3 should not be reported to the first occurrence

of ℓ0. To avoid this, we label locations with special regions telling us whether x is null

when leaving the location (region 0
=) or not (0+), and we will forbid the contraction

operator to report delay from one location to another with different regions.

The actual splitting into type-2 runs proceeds stepwise: we split a run into type-1

runs, then each type-1 in type-2 runs, so that we avoid the pitfalls described above. As

6

explained in the discussion of case 1 above, we first need to track the regions of the

variables, thanks to the following construction.

Region labelling Let Reg (cmax) =
(

{[a, a], (a − 1, a) | a ∈ {1, . . . , cmax}} ∪

{0=,0+, (cmax,+∞)}
)

be the set of regions, and further let Reg (cmax, X) denote

the set of all functions r : X 7→ Reg (cmax) that assign a region to each variable. By

abuse of language, we sometimes call regions elements of Reg (cmax, X) too. Remark

that the definition of Reg (cmax, X) differs from the classical regions [2] by the ab-

sence of [0, 0] which is replaced by two symbols: 0= and 0
+, and by the fact that no

information is retained about the relative values of the fractional parts of the variables.

The reason of the introduction of the two regions 0
= and 0

+ is to avoid the problem

occurring in Case 4 above. When testing for membership to a region, 0+ and 0
= should

be interpreted as [0, 0], i.e., v ∈ 0
+ and v ∈ 0

= hold iff v = 0. Given a valuation ν of

the set of variable X , and r ∈ Reg (cmax, X), we let ν ∈ r iff ν(x) ∈ r(x) for all x,

and, provided that ν > 0, we denote by [ν] the (unique) element from Reg (cmax, X)
s.t. ν ∈ [ν]. Remark that for all sets of variable X and all maximal constants cmax:

|Reg (cmax, X) | ≤ (2×cmax+3)|X|. Let r1 and r2 be two regions in Reg (cmax, X),
and let v : X 7→ R be a function assigning a rate v(x) to each variable x. Then, we

say that r2 is a time successor of r1 under v (written r1 ≤v
ts r2) iff there are ν1 ∈ r1,

ν2 ∈ r2 and a time delay t s.t. ν2 = ν1 + t · v. Remark that, by this definition, we

can have r1 ≤v
ts r2, r1(x) = 0

= and r2(x) = 0
+ for some variable x (for instance, if

v(x) = 0).

Let us now explain how we label the locations of H by regions. We let R (H) =
(X,Loc′,Edges′,Rates′, Inv′, Init′) be the SMHA where:

– Loc′ = Loc× Reg (cmax, X) and Init′ = Init× {0=,0+}X

– for all (ℓ, r) ∈ Loc′: Rates′(ℓ, r) = Rates(ℓ); Inv(ℓ, r) = Inv(ℓ)∧
∧

x:r(x)=0=

x = 0

– There is an edge e′ =
(

(ℓ, r), g ∧ x ∈ r′′ ∧ g0, Y, (ℓ
′, r′)

)

in Edges′ iff there are an

edge e = (ℓ, g, Y, ℓ′) in Edges and a region r′′ s.t.: r ≤
Rates(ℓ)
ts r′′, for all x 6∈ Y :

r′(x) = r′′(x), for all x ∈ Y : r′(x) ∈ {0=,0+} and g0 =
∧

x∈X g0(x) where

for all x ∈ X: g0(x) = (x = 0) if r(x) = 0
=; g0(x) = (x > 0) if r(x) = 0

+;

and g0(x) = true otherwise. In this case, we say that e is the (unique) edge of H
corresponding to e′. Symmetrically, e′ is the only edge corresponding to e between

locations (ℓ, r) and (ℓ′, r′).

It is easy to see that this construction incurs an exponential blow up in the number

of locations, but preserves reachability of states. More precisely, |Loc′| ≤ |Loc| ×
|Reg (cmax, X) | = |Loc| × (2× cmax + 3)|X| and:

Lemma 3. H admits a run ρ with first (ρ) = (ℓ, ν) and last (ρ) = (ℓ′, ν′) iff there are

r and r′ s.t. R (H) admits a run ρ′ with first (ρ′) = ((ℓ, r), ν), last (ρ′) = ((ℓ′, r′), ν′),
duration (ρ) = duration (ρ′) and |ρ| = |ρ′|.

Intuitively, the regions that label locations in R (H) track the region to which each

variable belongs when entering the location. However, in the case where a variable x
enters a location with value 0, we also need to remember whether x is still null when

7

crossing the next edge, to avoid the issue with the contraction operator described in case

4 above. This explains the two regions, 0= and 0
+, corresponding to 0. They encode

the fact that the variable is null (resp. strictly positive) when leaving the location.

Type-0 and type-1 runs Without loss of generality, we assume that, if a state is reach-

able, then it is reachable by a run of the same duration which can be split into at most

T× rmax+ 1 portions of duration < 1
rmax . In practice, this can be achieved by adding

one self-loop on all locations of R (H), which does not impact time-bounded reachabil-

ity. Such runs of ρ of R (H) are called type-0 runs and are of the form ρ = ρ0 ·ρ1 · · · ρk
s.t. for all 0 ≤ i ≤ k: duration (ρi) <

1
rmax . Each ρi is called a type-1 run. Intuitively,

each variable will cross at most one integer value different from 0 in each type 1 run,

because the automaton is monotonic. For instance, if x ∈ (2, 3) at the beginning of a

type-1 run, then x can reach (3, 4) along the run, but will never cross 4. However, x
could be reset and cross 0 an unbounded number of times because of time density.

Type-2 runs Let ρ = (ℓ0, ν0), (t1, e1), (ℓ1, ν1), . . . , (tn, en), (ℓn, νn) be a type-1 run

s.t. duration (ρ) ≤ T. Let Sρ be the set of all 0 < i ≤ n s.t:

∃x ∈ X :
(

⌊νi−1(x)⌋ 6= ⌊νi(x)⌋
)

or
(

⌊νi−1(x)⌋ > 0 and 0 = 〈νi−1(x)〉 < 〈νi(x)〉
)

where ⌊x⌋ and 〈x〉 denote respectively the integral and fractional parts of x. Roughly

speaking, each transition (ti, ei) with i ∈ Sρ corresponds to the fact that a variable

changes its region, except in the case where the variable moves from 0 to (0, 1) or from

(0, 1) to 0: such transitions are not recorded in Sρ. Since each variable crosses a strictly

positive integer value at most once along the type-1 run ρ, |Sρ| can be bounded:

Lemma 4. For all type-1 run ρ: |Sρ| ≤ 3× |X|.

Had we recorded in Sρ the indices of the transitions from (ℓ, ν) to (ℓ′, ν′) s.t. ν(x) = 0
and ν(x) ∈ (0, 1) for some variable x, Lemma 4 would not hold, and we could not

bound the size of Sρ by a value independent from |ρ|. Indeed, in any time interval, the

density of time allows a variable to be reset and increase an arbitrary number of times.

Let us now explain how we split type-1 runs into type-2 runs. We first consider

an example. Consider an RHA with two variables x, y (with rate 1) and one of its

runs ρ = (ℓ0, 2.1, .7)
.4,e1
−−−→ (ℓ1, 2.5, 1.1)

.1,e2
−−−→ (ℓ2, 2.6, 1.2)

.1,e3
−−−→ (ℓ3, 0, 1.3)

.1,e4
−−−→

(ℓ4, .1, 1.4)
.1,e5
−−−→ (ℓ3, 0, 1.5), and where e3 and e5 reset x. Then Sρ = {1, 3} because

y changes its integral part from (ℓ0, 2.1, .7) to (ℓ1, 2.5, 1.1) and x is reset by e3 and

changes its integral part. Also, {4, 5} ∩ Sρ = ∅ as x and y stay resp. in [0, 1) and

(1, 2). Then, ρ is split in 5 parts: first ρ0 = (ℓ0, 2.1, .7); then ρ′1 = (ℓ0, 2.1, .7)
.4,e1
−−−→

(ℓ1, 2.5, 1.1); then ρ1 = (ℓ1, 2.5, 1.1)
.1,e2
−−−→ (ℓ2, 2.6, 1.2); then ρ′2 = (ℓ2, 2.6, 1.2)

.1,e3
−−−→

(ℓ3, 0, 1.3) and ρ2 = (ℓ3, 0, 1.3)
.1,e4
−−−→ (ℓ4, .1, 1.4)

.1,e5
−−−→ (ℓ3, 0, 1.5).

Formally, assume ρ = s0, (t1, e1), s1, . . . , (tn, en), sn, and Sρ = {p1, . . . , pk},

with p1 ≤ p2 ≤ · · · ≤ pk. Then, we let ρ0, ρ1, . . . , ρk be the sub-runs s.t.: ρ =
ρ0 ·sp1−1, (tp1

, ep1
), sp1

·ρ1 ·sp2−1, (tp2
, ep2

), sp2
, . . . , spk−1, (tpk

, epk
), spk

·ρk. Each

ρi is called a type-2 run, and can be empty. In the example above, ρ1 and ρ2 are type-2

runs. The next lemma summarises the properties of this construction:

8

Lemma 5. Let ρ be a type-1 run of R (H) with duration (ρ) ≤ T. Then, ρ is split into:

ρ0 ·ρ
′
1 ·ρ1 ·ρ

′
2 ·ρ2 · · · ρ

′
k ·ρk where each ρi is a type-2 run; k ≤ 3×|X|; |ρ′i| = 1 for all

1 ≤ i ≤ k; and for all 1 ≤ i ≤ k: ρi = (ℓ0, ν0), (t1, e1), . . . , (tn, en), (ℓn, νn) implies

that, for all x ∈ X: (i) either there is a ∈ N
>0 s.t. for all 0 ≤ j ≤ n: νj(x) = a and x

is not reset along ρi; (ii) or for all 0 ≤ j ≤ n: νj(x) ∈ (a, a+ 1) with a ∈ N
>0 and x

is not reset along ρi; (iii) or for all 0 ≤ j ≤ n: νj(x) ∈ [0, 1).

Observe that in the last case (i.e., x ∈ [0, 1)), the number of resets cannot be bounded a

priori. For the sake of clarity, let us summarise the construction so far:

Lemma 6. Each type-0 run of R (H) can be decomposed into k type-2 runs with k ≤
3× (T × rmax + 1)× |X|.

Contraction of type-2 runs We finish the construction by defining formally the contrac-

tion operator and establishing its properties. The formal definition follows the intuition

sketched at the beginning of the section (see Fig. 2). Let π = (t1, e1), (t2, e2), . . . ,
(tn, en) be a timed path, let ℓ0 = src (e1), and, for all 1 ≤ i ≤ n: ℓi = trg (ei). Assume

there are 0 ≤ i < j < n and a function h : {i + 1, . . . , j − 1} 7→ {0, . . . , i − 1}
s.t. (i) ℓi = ℓj and (ii) for all i < p < j: ℓp = ℓh(p). Then, we let Cnt (π) =
ℓ′0, (t

′
1, e
′
1), . . . , ℓ

′
m where: (i) m = n − (j − i); (ii) for all 0 ≤ p ≤ i: ℓ′p = ℓp;

(iii) for all 1 ≤ p ≤ i: e′p = ep and t′p = tp +
∑

k∈h−1(p−1) tk+1; (iv) e′i+1 = ej+1;

(v) t′i+1 = ti+1 + tj+1; and (vi) for all i + 1 < p ≤ m: ℓ′p = ℓp+j−i and (t′p, e
′
p) =

(tp+j−i, ep+j−i).
Then, given a timed path π, we let Cnt0 (π) = π, Cnti (π) = Cnt

(

Cnti−1 (π)
)

for

any i ≥ 1, and Cnt∗ (π) = Cntk (π) where k is the least value such that Cntk (π) =
Cntk+1 (π). Note that Cnt∗ (π) always exists since π is finite, and since, for all π: either

|Cnt (π)| < |π| or Cnt (π) = π. Moreover, the length of Cnt∗ (π) is always bounded

by a value that does not depend on |π|.

Lemma 7. For all timed path π: |Cnt∗ (π)| ≤ |Loc|2 + 1.

Let us now lift the definition of the contraction operator to runs of type-2. To

this end, we first need to further split type-2 runs into type-3 runs by splitting type-

2 runs according to the first and last resets (if they exist) of each variable. Formally,

let s0, (t1, e1), s1, . . . , (tn, en), sn be a type-2 run. Assume Yi is the reset set of ei,
for all 1 ≤ i ≤ n. We let FRρ = {i | ∃x ∈ Yi and ∀0 ≤ j < i : x 6∈ Yj} and

LRρ = {i | ∃x ∈ Yi and ∀i < j ≤ n : x 6∈ Yj} be respectively the set of edge

indices where a variable is reset for the first (last) in ρ. Let Rρ = FRρ ∪ LRρ and

assume Rρ = {p(1), p(2), . . . , p(k)} with p(1) ≤ p(2) ≤ · · · ≤ p(k). Then, we let

ρ0, ρ1, . . . , ρk be the type-3 runs making up ρ s.t. ρ = ρ0 · sp(1)−1, (tp(1), ep(1)), sp(1) ·
ρ1 · · · sp(k)−1, (tp(k), ep(k)), sp(k) · ρk. Note that each type-2 is split into at most 2 ×
|X| + 1 type-3 runs (i.e., k ≤ 2 × |X|). We can now define the contraction of ρ:

Cnt (ρ) = Run
(

first (ρ) , πCnt(ρ)

)

, where: πCnt(ρ) = Cnt∗ (TPath (ρ0)) , (tp(1), ep(1)),
Cnt∗ (TPath (ρ1)) , (tp(2), ep(2)), . . . , (tp(k), ep(k)),Cnt

∗ (TPath (ρk)). Equipped with

this definition, we can show that Cnt (ρ) is not only of bounded length, but is also

equivalent to the original type-2 run ρ, in the following sense:

9

Proposition 8. For all type-2 runs ρ, Cnt (ρ) 6= ⊥, first (Cnt (ρ)) = first (ρ),
last (Cnt (ρ)) = last (ρ) and |Cnt (ρ)| ≤ 8× |Loc|2 × |X|.

Proof (sketch). We sketch the proof assuming H has only one variable x with non-

negative rate (the arguments generalise easily). Let ρ = (ℓ0, ν0)
t1,e1
−−−→ (ℓ1, ν1) · · ·

tn,en
−−−→

(ℓn, νn) be a type-2 run, π = TPath (ρ), π′ = Cnt∗ (π) and ρ′ = Cnt (ρ). Observe that

duration (π′) = duration (ρ), and that Effect (π′) = Effect (π). Assume first that x is

never reset along ρ, and that ν0(x) 6∈ [0, 1). Then, all valuations of x along ρ are in

the same interval [a, a] or (a, a + 1) for a ≥ 1, by Lemma 5 (thus the issue of case 1

above is ruled out). In this case, all the guards are still satisfied in π′, and ρ′ 6= ⊥.

Finally, assuming last (ρ′) = (ℓn, ν
′
n), we have ν′n(x) = ν0(x) + Effect (π′) (x) =

ν0(x) + Effect (π) (x) = νn(x) because x is not reset along ρ. Second, assume x is

never reset along ρ and that ν0(x) ∈ [0, 1). In this case, we have to rule out an addi-

tional difficulty. Let k, j be s.t. k < j,. νj(x) = 0, tj+1 = 0, ej+1 has guard ‘x = 0’

and tk > 0: we must show that ℓk 6= ℓj (otherwise the delay tk > 0 could be ‘reported’

on ℓj , and the guard of ej would not be satisfied, this is the problem identified in case 4).

ℓk 6= ℓj holds because, by construction of Reg (H), ℓk = (ℓ,0=) and ℓj = (ℓ′,0+) for

some ℓ, ℓ′, because x is null when leaving ℓk, but not when leaving ℓj . Third, assume

x is reset along ρ, hence x takes values in [0, 1) only along ρ, by Lemma 5. Let j, k be

s.t. j < k and ej (resp. ek) is the first (last) edge to reset x along ρ. Then, by definition,

π′ = Cnt∗ (π[0 : j − 1]) , (tj , ej),Cnt
∗ (π[j + 1, k − 1]) (tk, ek)Cnt

∗ (π[k + 1, n]). In

Cnt∗ (π[0 : j − 1]) and Cnt∗ (π[k + 1, n]), x is not reset and takes values in [0, 1), thus

Cnt∗ (π[0 : j − 1]) and Cnt∗ (π[k + 1, n]) yield genuine runs, by the same arguments

as above. If x is reset in π[j+1, k−1], this is not the first reset along π, so we avoid the

issue of case 2. Thanks to the 0+ and 0
= regions, we are sure that the ‘x = 0’ guards are

still satisfied in Cnt∗ (π[j + 1, k − 1]), so it yields a genuine run. Thus, ρ′ 6= ⊥. Note

however that the value of x after firing Cnt∗ (π[0 : j − 1]) , (tj , ej),Cnt
∗ (π[j + 1, k − 1])

might not be the same as when firing π[0 : k− 1]. Yet, this does not prevent from firing

ek. Moreover, the value of x at the end of the run is preserved (i.e., we avoid the issue

of case 3 above): if last (ρ′) = (ℓn, ν
′
n), then ν′n(x) = Effect (Cnt∗ (π[k + 1, n])) (x)

(again because x is not reset along π[k + 1, n]) with Effect (Cnt∗ (π[k + 1, n])) (x) =
Effect (π[k + 1, n]) (x) = νn(x). ⊓⊔

We obtain Theorem 1 thanks to Proposition 8, Lemma 6 and the definition of Reg (H).

Rectangular rates Let us now briefly explain how we can adapt the previous construc-

tion to cope with non-singular rates. Let us first notice that for all MHA H, R (H) is

still well-defined. Then, we adapt the definition of timed path as follows. A timed path

is a sequence (t1, R1, e1) · · · (tn, Rn, en), where each Ri : X 7→ R gives the actual rate

that was chosen for each variable at the i-th continuous step. It is then straightforward

to extend the definitions of Cnt and Effect to take those rates into account and retain

the properties needed to prove Theorem 2. More precisely, the contraction of a set of

transitions (t1, R1, e1), . . . , (tn, Rn, en) yields a transition (t, R, e) with t =
∑n

i=1 ti

and, R =
∑

n

i=1
ti×Ri

t
. Note that we rely on the convexity of the invariants and rates in

an RHA to ensure that this construction is correct.

10

4 Time-bounded reachability is NEXPTIME-complete

In this section, we establish our main result:

Theorem 9. Time-bounded reachability for MHA is NEXPTIME complete.

An NEXPTIME algorithm Recall that an instance of the time-bounded reachability

problem is of the form (H, ℓ,T), where H is an MHA, ℓ is a location, and T is a

time bound (expressed in binary). We establish membership in NEXPTIME by giving a

non-deterministic algorithm that runs in time exponential in the size of (H, ℓ,T) in the

worst case. The algorithm guesses a sequence of edges E = e0e1 . . . en of H such that

n+1 ≤ F (H,T) and trg (en) = ℓ and builds a linear constraint Φ(E), that expresses all

the properties that must be satisfied by a run following the sequence of edges E (see [13]

for a detailed explanation on how to build such a constraint). This constraint uses n+1
copies of the variables in X and n+ 1 variables ti to model the time elapsing between

two consecutive edges, and imposes that the valuations of the variables along the run are

consistent with the rates, guards and resets of H. Finally, the algorithm checks whether

Φ(E) is satisfiable and returns ‘yes’ iff it is the case.

The number of computation steps necessary to build Φ(E) is, in the worst case,

exponential in the size of the instance (H,T). Moreover, checking satisfiability of Φ(E)
can be done in polynomial time (in the size of the constraint) using classical algorithms

to solve linear programs. Clearly this procedure is an NEXPTIME algorithm for solving

the time-bounded reachability problem for MHA.

NEXPTIME-hardness To establish the NEXPTIME-hardness, we encode the mem-

bership problem of non-deterministic exponential time Turing machines (NExpTM

for short) to time-bounded reachability for SMHA. An NExpTM is a tuple M =
(Q,Σ, Γ, q0, δ, F, ξ) where Q is the (nonempty and finite) set of control states, Σ =
{0, 1} is the (finite) input alphabet2, Γ = {♯, 0, 1} is the (finite) alphabet of the tape,

where ♯ is the blank symbol, q0 ∈ Q is the initial control state, δ ⊆ Q×Γ×Γ×{L,R}×
Q is the transition relation, F ⊆ Q is the set of accepting states, and ξ = O

(

2p(n)
)

(for

some polynomial p), is an exponential function to bound the execution length.

A state of M is a triple (q, w1, w2), where q ∈ Q, and w1, w2 ∈ Γ ∗ are resp.

the content to the left (to the right and below) of the reading head, excluding the

trailing sequence of ♯. We rely on the standard semantics for NExpTM: for example,

(q1, a, b, L, q2) means ‘when in q1 and a is below the head, replace a by b, move the

head to the left (L) and go to q2’. We write (q, w1, w2) ⊲ (q′, w′1, w
′
2) when there is a

transition from (q, w1, w2) to (q′, w′1, w
′
2). An execution of M on input w is a finite se-

quence of states c0c1 . . . cn such that: (i) n ≤ ξ(|w|); (ii) c0 = (q0, ε, w · ♯ξ(|w|)−|w|);
and (iii) for all 0 ≤ i < n: ci ⊲ ci+1. It is accepting iff cn = (q, w1, w2) with q ∈ F .

Let us show how to encode all executions of M into the executions of an SMHA

HM . We encode the words w1 and w2 as pairs of rational values (l1, c1) and (l2, c2)
where li =

1
2|wi|

encodes the length of the word wi by a rational number in [0, 1], and

ci encodes wi as follows. Assume w1 = σ0σ1 . . . σn. Then, we let c1 = Val←(w1) =

2 Having Σ = {0, 1} and Γ = Σ ∪ {♯} is without loss of generality.

11

σn · 1
2 + σn−1 · 1

4 + · · · + σ0 · 1
2n+1 . Intuitively, c1 is the value which is represented

in binary by 0.σnσn−1 · · ·σ0, i.e., w1 is the binary encoding of the fractional part of

c1 with the most significant bit in the rightmost position. For instance, if w1 = 001010
then Val←(w1) = 0 · 1

2 + 1 · 1
4 + 0 · 1

8 + 1 · 1
16 + 0 · 1

32 + 0 · 1
64 = 0.3125, and so w1

is encoded as the pair (1
64 , 0.3125). Note that we need to remember the actual length

of the word w1 because the function Val←(·) ignores the leading 0’s (for instance,

Val←(001010) = Val←(1010)). Symmetrically, if w2 = σ0σ1 . . . σn, we let c2 =
Val→(w2) = σ0 ·

1
2 + σ1 ·

1
4 + · · ·+ σn · 1

2n+1 (i.e., σ0 is now the most significant bit).

Then a state (q, w1, w2) of the NExpTM is encoded as follows: the control state q is

remembered in the locations of the automaton, and the words w1, w2 are stored, using

the encoding described above using four variables for the values (l1, c1) and (l2, c2).

With this encoding in mind, let us list the operations that we must be able to perform

to simulate the transitions of the NExpTM. Assume w1 = w1
0w

1
2 · · ·w

1
n and w2 =

w2
0w

2
2 · · ·w

2
k. To read the letter under the head we need to test the value of the bit w2

0 .

Clearly, w2
0 = 1 iff l2 ≤ 1/2, and c2 ≥ 1

2 ; w2
0 = 0 iff l2 ≤ 1/2, and c2 < 1

2 and w2
0 = ♯

iff l2 = 1 (which corresponds to w2 = ε). To test whether the head is in the leftmost

cell of the tape we must check whether w1 = ε, i.e. l1 = 1. To read the letter at the

left of the head (assuming that w1 6= ε) we must test the value of the bit w1
n. Clearly,

w1
n = 1 iff c1 ≥ 1

2 and w1
n = 0 iff c1 < 1

2 .

Then, let us describe the operations that are necessary to update the values on the

tape. Clearly, they can be carried out by appending and removing 0’s or 1’s to the

right of w1 or to the left of w2. Let us describe how we update c1 and l1 to simulate

these operations on w1 (the operations on w2 can be deduced from this description).

We denote by c′1 (resp. l′1) the value of c1 (l1) after the simulation of the NExpTM

transition. To append a 1 to the right of w1, we let l′1 = 1
2 × l1. We let c′1 = 1

2 if l1 = 1
(i.e. w1 was empty) and c′1 = 1

2 × c1 +
1
2 otherwise. To append a 0 to the right of w1,

we let l′1 = 1
2 × l1 and c′1 = 1

2 × c1. To delete a 0 from the rightmost position of w1,

we let l′1 = 2 × l1, c′1 = 2 × c1. To delete a 1 from the rightmost position of w1, we

let l′1 = 2 × l1, and c′1 = (c1 −
1
2) × 2. In addition, note that we can flip the leftmost

bit of w2 by adding or subtracting 1/2 from c2 (this is necessary when updating the

value under the head). Thus, the operations that we need to be able to perform on c1,

l1, c2 and l2 are: to multiply by 2, divide by 2, increase by 1
2 and decrease by 1

2 , while

keeping untouched the value of all the other variables. Fig. 3 exhibits four gadgets to

perform these operations. Note that these gadgets can be constructed in polynomial

time, execute in 1 time unit time and bear only singular rates.

We claim that all transitions of M can be simulated by combining the gadgets in

Fig. 3 and the tests described above. For instance, consider the transition: (q1, 1, 0, L, q2).
It is simulated as follows. First, we check that the reading head is not at the leftmost

position of the tape by checking that l1 < 1. Second, we check that the value below the

reading head is equal to 1 by testing that l2 < 1 and c2 ≥ 1
2 . Third, we change the value

below the reading head from 1 to 0 by subtracting 1
2 from c2 using an instance of gadget

(iii) in Fig. 3. And finally, we move the head one cell to the left. This is performed by

testing the bit on the left of the head, deleting it from w1 and appending it to the left of

w2, by the operations described above. All other transitions can be simulated similarly.

Note that, to simulate one NExpTM transition, we need to perform several tests (that

12

(i)

ẋ = 1
ż = 1

x ≤ 1

ẋ = 2
ż = 1

z ≤ 1

z := 0
x = 1
x := 0 z = 1

When crossing

this edge, z =
1− x0.

(ii)

ẋ = 1
ż = 2

z ≤ 1

z := 0 z = 1 ẋ = 1
ż = 1

x ≤ 1(iii)

ẋ = 1
ż = 1

z ≤ 1

z := 1/2
x = 1
x := 0 z = 1

z = 1/2+(1−x0)
when crossing this

edge

Fig. 3. Gadgets (i) for multiplication by 2, (ii) adding 1

2
and (iii) subtracting 1

2
. The rates of the

y 6∈ {x, z} is 0. Gadget (i) can be modified to divide by 2, by swapping the rates of x and z in

the second location. x0 is the value of x when entering the gadget.

carry out in 0 time units) and to: (i) update the bit under the reading head, which takes

1 time unit with our gadgets; (ii) remove one bit from the right of w1 (resp. left of w2),

which takes at most 3 time units and (iii) append this bit to the left of w2 (right of

w1), which takes at most 3 time units. We conclude that each NExpTM transition can

be simulate in at most 7 time units. Thus M has an accepting execution on word w (of

length at most ξ(|w|) iff HM has an execution of duration at most T = 7 · ξ(|w|) that

reaches a location encoding an accepting control state of M . This sets the reduction.

5 Computing all the states reachable within T time units

Let us now show that Theorem 2 (lifted to MHA) implies that, in an MHA, we can

compute a symbolic representation of the set of states reachable within T time units. We

show, by means of two examples, that this information can be used to verify meaningful

properties of MHA, in particular when time-unbounded fixed points do not terminate.

Post and Pre Let s be a state of an MHA with set of edges Edges. We let Post(s) =

{s′ | ∃e ∈ Edges, t ∈ R
+ : s

t,e
−−→ s′} and Pre(s) = {s′ | ∃e ∈ Edges, t ∈ R

+ :

s′
t,e
−−→ s}. We further let Reach≤T(s) = {s′ | ∃π : s

π
−→ s′ ∧ duration (π) ≤ T}, and

coReach≤T(s) = {s′ | ∃π : s′
π
−→ s ∧ duration (π) ≤ T} be respectively the set of

states that are reachable from s (that can reach s) within T time units. We extend all

those operators to sets of states in the obvious way. Our aim in this section is to compute

effective representations of Reach≤T(s) and coReach≤T(s), using fixed points.

Symbolic states To manipulate potentially infinite sets of MHA states, we need a sym-

bolic representation that is manipulable algorithmically. We rely on the notion of sym-

bolic states introduced as an algebra of regions in [11]. To manipulate sets of valu-

ations, we use formulas of (R, 0, 1,+,≤), i.e. the first-order logic of the reals3, with

the constants 0 and 1, the usual order ≤ and addition + [11]. Recall that the satis-

fiability problem for that logic is decidable [4] and that it admits effective quantifier

3 In practice, those formulas can be manipulated as finite unions of convex polyhedra for which

there exist efficient implementations, see [3] for example.

13

elimination. Furthermore, all guards of an MHA can be represented by a formula from

(R, 0, 1,+,≤) ranging over X . Let Ψ be a formula of (R, 0, 1,+,≤), and let ν be a

valuation of the free variables of Ψ . Then we write ν |= Ψ iff ν satisfies Ψ , and we let

[[Ψ]] be the set off all valuations ν such that ν |= Ψ . To emphasise the fact that a formula

Ψ ranges over the set of variables X , we sometimes denote it by Ψ(X).
Then a symbolic state of an MHA H with set of variables X is a function R mapping

each location ℓ of H to a quantifier free formula of (R, 0, 1,+,≤) with free variables in

X , representing sets of valuations for the variables in ℓ. Formally, R represents the set

of MHA states [[R]] = {(ℓ, ν) | ν ∈ [[R(ℓ)]]}. By abuse of notation, we assume that any

formula Φ of (R, 0, 1,+,≤) denotes the function f such that f(ℓ) = Φ for all ℓ. Clearly,

given symbolic states R1 and R2, one can compute symbolic states R1∨R2 and R1∧R2

representing resp. [[R1]] ∪ [[R2]] and [[R1]] ∩ [[R2]]; and one can test whether [[R1]] =
[[R2]] [11]. It is also possible (see details in the appendix) to compute Post and Pre

symbolically: we let post♯ and pre♯ be effective operators, returning symbolic states,

s.t. for all symbolic states R: [[post♯(R)]] = Post([[R]]) and [[pre♯(R)]] = Pre([[R]]).

Time-bounded forward and backward fixpoints Let H be an MHA with set of vari-

ables X , and let T ∈ N be a time bound. Let us augment H with a fresh variable t to

measure time (hence the rate of t is 1 in all locations, and t is never reset). Let S be

a set of states of H. Then the sets Reach≤T(S) and coReach≤T(S) can be defined by

means of fixed point equations: Reach≤T(S) = µY · ((S ∪ Post(Y)) ∩ [[0 ≤ t ≤ T]])
and coReach≤T(S) = µY · ((S ∪ Pre(Y)) ∩ [[0 ≤ t ≤ T]]). This observation forms

the basis of our algorithm for computing symbolic states representing Reach≤T([[R]])
and coReach≤T([[R]]) for some symbolic state R(X). Let (Fi)i≥0 and (Bi)i≥0 be the

sequences of symbolic states defined as follows: F0 = B0 = R(X)∧(0 ≤ t ≤ T); and

for all i ≥ 1: Fi = post♯(Fi−1)∧(0 ≤ t ≤ T)∨Fi−1 and Bi = pre♯(Bi−1)∧(0 ≤ t ≤
T) ∨Bi−1. Note that, for all i ≥ 1, Fi (resp. Bi) can be computed from Fi−1 (Bi−1).

Proposition 10. For all MHA H, all symbolic states R and all time bound T, there

are k and ℓ such that 0 ≤ k, ℓ ≤ F (H,T), [[Fk]] = [[Fk+1]] = Reach≤T([[R]]) and

[[Bℓ]] = [[Bℓ+1]] = coReach≤T([[R]]). Computing Fk and Bℓ takes at most doubly

exponential time.

By Theorem 9, this deterministic algorithm can be considered optimal (unless NEXP-

TIME=EXPTIME). Let us show, by two examples, the usefulness of our approach.

not leaking

ẋ = 1
ẏ = 1
ṫ = 1

0 ≤ x ≤ 1

leaking

ẋ = 1
ẏ = 0
ṫ = 1

x ≥ 0
x := 0

x ≥ 30

x := 0

Fig. 4. The leaking gas burner.

Example 1: Leaking gas burner With this

example, the time-unbounded forward fixed-

point computation does not terminate, in con-

trast to the time-bounded fixed-point compu-

tation. The gas burner in the example can be

either leaking or not leaking. Leakages are re-

paired within 1 second, and no leakage can

happen in the next 30 seconds after a re-

pair. An MHA modeling this gas burner [1]

is given in Fig. 4. Stopwatch y and clock t are used resp. to measure the leakage time

and the total elapsed time. One can show using backward analysis that, in any time

14

interval of at least 60 seconds, the leakage time is at most 5% of the elapsed time [8].

The backward fixpoint is obtained after 7 iterations but the forward does not terminate.

Using forward time-bounded reachability analysis we can prove that, in all time

intervals of fixed length T ≥ 60, the leakage time is at most T
20 . To prove that this prop-

erty holds in all time intervals, we first compute, using the algorithm described above

(see Proposition 10), Reach≤60([[R]]), where [[R]] = {(ℓ, v) | ℓ = leaking implies 0 ≤
v(x) ≤ 1}, i.e. R represents all possible states of the system. HYTECH computes

Reach≤60([[R]]) after 5 iterations of the forward time-bounded fixpoint. Then, we check

that ‘t = 60 implies y ≤ 60
20 = 3’ holds, in all states of Reach≤60([[R]]).

Example 2: bounded invariant Let us come back to the RHA≥0 of Fig. 1 (left). Notice

that all variables have a bounded invariant [0, 1]. The forward reachability analysis of

HyTech does not terminate here because the set of reachable states is not a finite union

of polyhedra, see Fig. 1 (right). Yet, the time-bounded forward fixpoint terminates for

all T by Proposition 10. This example shows that bounding the variables is not sufficient

to obtain termination while performing time-bounded analysis is.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. In Hybrid Systems, LNCS

736. Springer, 1993.

2. R. Alur and D. Dill. A theory of timed automata. TTCS, 126(2):183–235, 1994.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The parma polyhedra library: Toward a com-

plete set of numerical abstractions for the analysis and verification of hardware and software

systems. Sci. Comput. Program., 72(1-2), 2008.

4. S. Basu. New results on quantifier elimination over real closed fields and applications to

constraint databases. J. ACM, 46(4), 1999.

5. T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell. On reachability

for hybrid automata over bounded time. In ICALP’11, LNCS 6756. Springer, 2011.

6. T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell. Time-

bounded reachability for hybrid automata: Complexity and fixpoints. Technical report CoRR

abs/1211.1276, Cornell University Library, arXiv.org, 2012. http://arxiv.org/abs/1211.1276.

7. T. A. Henzinger. The theory of hybrid automata. In LICS’96. IEEE Computer Society, 1996.

8. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In TACAS’95, LNCS

1019. Springer-Verlag, 1995.

9. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.

In CAV’97, LNCS 1254. Springer, 1997.

10. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-

tomata. JCSS, 57(1):94–124, 1998.

11. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition

systems. ACM Trans. Comput. Log., 6(1):1–32, 2005.

12. M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. Alternating timed automata over

bounded time. In LICS’10. IEEE Computer Society, 2010.

13. S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability for linear hybrid

automata using iterative relaxation abstraction. In HSCC’07, LNCS 4416. Springer, 2007.

14. J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. In CONCUR’09,

LNCS 5710. Springer, 2009.

15

