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Abstract—This paper studies quantitative model checking of
infinite tree-like (continuous-time) Markov chains. These tree-
structured quasi-birth death processes are equivalent to proba-
bilistic pushdown automata and recursive Markov chains and are
widely used in the field of performance evaluation. We determine
time-bounded reachability probabilities in these processes —
which with direct methods, i.e., uniformization, results in an
exponential blow-up— by applying abstraction. We contrast
abstraction based on Markov decision processes (MDPs) and
interval-based abstraction; study various schemes to partition the
state space, and empirically show their influence on the accuracy
of the obtained reachability probabilities. Results show that grid-
like schemes, in contrast to chain- and tree-like ones, yield
extremely precise approximations for rather coarse abstractions.

I. INTRODUCTION

Probabilistic model checking is a verification technique for

Kripke structures in which time and transition probabilities

are specified stochastically. Popular models are discrete- and

continuous-time Markov chains (DTMC and CTMCs, respec-

tively) and variants thereof that exhibit nondeterminism such

as Markov decision processes (MDPs). CTMCs are heavily

used in the field of performance evaluation, and since model

checking offers various advantages to traditional CTMC analy-

sis techniques, tools such as SMART [8], GreatSPN [9], PEPA

Workbench [14], and so on, have been enriched with model-

checking facilities. Time-bounded reachability probabilities

are at the heart of these model-checkers and are reduced to

transient analysis [3]. Hence, efficient algorithms are available

for finite-state CTMCs, however, they are not applicable to

classes of infinite-state Markov chains such as tree-structured

quasi-birth death (QBD) processes [27], [31]. Tree-structured

QBDs have been applied to model single-server queues with

a LIFO service discipline [17], to analyze random access

algorithms [28], as well as priority queueing systems [29].

Discrete-time tree-structured QBDs are equivalent to proba-

bilistic pushdown automata [6] and recursive Markov chains

[12]. The analysis of (tree-structured) QBDs mostly focuses

on steady-state probabilities as these can be obtained using

matrix-geometric techniques [5]. Transient analysis has re-

ceived scant attention; the only existing approach is approxi-
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mate [30]. Recently, direct techniques based on uniformization

or variants thereof [15], have been proposed for reachability

properties for general infinite-state CTMCs [32] and for highly

structured infinite-state CTMCs, such as normal QBDs [24]

and Jackson queueing networks [23]. However, they all lead

to an exponential blow-up when applied to tree-structured

QBDs. Other related work includes model checking discrete-

time infinite-state probabilistic systems [1], [6], [25], [13].

Other abstraction techniques for MDPs such as magnifying

lens abstraction [11] and game-based abstraction [21] cannot

be easily adapted to the continuous-time setting and are thus

not applicable here. Whereas our technique guarantees to yield

upper and lower bounds of reachability probabilities, [30]

yields arbitrary approximations. In addition, applying transient

analysis to compute timed reachability probabilities requires

an amendment of the CTMC which destroys the tree structure;

therefore [30] cannot be directly applied to our setting.

In this paper, we determine time-bounded reachability

probabilities in tree-structured QBDs by applying CTMC

abstraction. To that end, we consider two techniques, interval-

based [19] and MDP-based abstraction [10], and compare

them. A major issue in state-based abstraction is to come up

with an adequate, i.e., small though precise, partitioning of the

state space. In fact, we identify various possibilities to partition

the state space of a tree-structured QBD, relate them formally

using simulation relations [4], and empirically investigate

their influence on the accuracy of the obtained time-bounded

reachability probabilities. The partitioning methods range from

simple schemes such as counter abstraction (group states with

equal number of customers) to more advanced schemes in

which the ordering of customers, and/or the service phase is

respected. This yields tree-, chain-, and grid-like abstractions.

We perform extensive experiments for phase-type service

distributions of different orders and analyze the influence of

parameter setting and partitioning scheme on the quality of

the results and on the size of the resulting abstract state space.

Our experiments show that grid-like schemes yield extremely

precise approximations for rather coarse abstractions.

Organization of the paper. Section II introduces CTMCs and

tree-structured QBDs and summarizes how to compute time-

bounded reachability properties. Section III contrasts interval

and MDP abstraction and provides some theoretical under-

pinnings. Different state-space partitionings of tree-structured

QBDs are considered in Section IV. Experimental results

on these abstractions are provided in Section V. Finally,

Section VI concludes the paper.



II. TREE-STRUCTURED QBDS

Notation. Let X be a countable set. For x ∈ X , X ′ ⊆ X and

f : X×X → R≥0 (and similarly for n-dimensional functions),

let f(x, X ′) =
∑

x′∈X′ f(x, x′) and let f(x, ·) be given by

y 7→ f(x, y) for all x, y ∈ X . A probability distribution µ :
X → [0, 1] assigns a probability to each x ∈ X such that
∑

x∈X µ(x) = 1. The set of all distributions on X is denoted

distr(X).

s1

L↓
L↓+R↓

s2

R↓
L↓+R↓

u

R

L

R↑L↑

Fig. 1. A CTMC.

Continuous-time Markov chains.

A CTMC is a Kripke structure

with randomized transitions and

exponentially distributed delays.

Formally it is denoted as tuple

(S,R, µ0) with countable state

space S, transition rate function

R : S×S → R≥0 with R(s,S) ∈
R≥0 for all s ∈ S and initial

distribution µ0 ∈ distr(S). Fig-

ure 1 shows a CTMC with S = {s1, s2, u}, R(s1, s2) = L,

R(u,S) = 0, µ0(s1) = L↓
L↓+R↓ and so forth.

By adding self-loops, a CTMC can be transformed into

a weakly bisimilar, uniform CTMC (S,R′, µ0) where for

all s ∈ S, R
′(s,S) = λ for some λ ∈ R>0 with λ ≥

sups∈S R(s,S), cf. [4]. Such a uniform CTMC can be seen

as a discrete-time Markov chain (S,P, µ0) with transition

probabilities P(s, s′) = R(s, s′)/λ where the probability to

perform a certain number of steps within [0, t] follows a

Poisson distribution with parameter λt [16]. The probability

to reach state s′ within t time units is now given by:
∑

s∈S µ0(s) · P(s, s′, t), with

P(s, s′, t) =
∑∞

i=0 P
i(s, s′) · e−λt (λt)i

i! ,

where P
i is the i-th power of P. To avoid the infinite

summation over the number of steps i, the sum needs to be

truncated. For an a priori defined maximum error bound ε > 0,

a given time bound t ∈ R≥0 and the uniformization rate λ
one can compute the truncation point nε. The overall time

complexity for computing reachability probabilities up to ε is

in O(N2λt) where N is the number of states in the CTMC

that are reachable in nε steps.

Queuing theory. Large classes of distributions can be approxi-

mated arbitrarily closely by phase-type distributions. A phase-

type distribution of order d (written PHd) is a probability dis-

tribution that can be characterized as the time until absorption

in an (d+1)-state CTMC [22]. The time until absorbtion in the

CTMC in Figure 1 is PH2 distributed. As example, an M|PH|1
queueing station describes a station with one processing unit

serving jobs according to a phase-type distribution and with

Markovian, i.e., exponentially distributed job arrival times.

CTMCs representing PH|PH|1 queuing stations with first

in first out (FIFO) service discipline correspond to QBD pro-

cesses [22], therefore their state spaces just grow linearly with

the number of queued jobs. This stems from the fact that jobs

are not preempted, i.e., jobs are served until completion and

only the service phase of the job currently in service needs to

be encoded in the state. For such systems, uniformization with

representatives is a feasible technique to compute transient

probabilities [24]. For queuing stations with preemptive last

in first out (LIFO) service discipline, however, the underlying

CTMCs are so-called tree-structured QBDs, whose size grows

exponentially with the queue length. In the following, for

simplicity we restrict ourselves to M|PH|1 queues, however,

our approach can also be applied to PH|PH|1 queues in the

same manner.

In principle, uniformization with representatives [24] can be

adapted to the analysis of tree-structured QBDs. However, for

PHd distributed service times, n uniformization steps and a

single starting state, one would have to consider O(dn) states,

which is practically infeasible. The same holds for techniques

based on uniformization like in [7], [32].

Definition 1: A d-ary tree-structured QBD T is a CTMC

(S,R, µ0) with state space S = {(x1, . . . , xn) | n ∈ N ∧
∀i ≤ n : xi ∈ {1, . . . , d}}. A state ~x = (x1, . . . , xn)
represents a queue of length n where jobs 1, 2, . . . , n−1
have been preempted in phase xi ∈ {1, . . . , d} and job n
is currently in service in phase xn ∈ {1, . . . , d}.

Transitions, represented by positive entries in R, can only

occur between a state and its parent, its children and its

siblings (cf. Figure 2). For ~x, ~y ∈ S:

R(~x, ~y) =




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rxm+1
↓ if ~x = (x1, . . . , xm), and

~y = (x1, . . . , xm+1)

rxm+1
↑ if ~x = (x1, . . . , xm+1), and

~y = (x1, . . . , xm)

rxm,ym
if ~x = (x1, . . . , xm), and

~y = (x1, . . . , xm−1, ym)

0 otherwise

The underlying state space of a preemptive LIFO M|PH2|1
queue with overall arrival rate L↓+R↓ and service time distri-

bution as depicted in Figure 1 is the (binary) tree-structured

QBD shown in Figure 2, where r1↓ = L↓, r2↓ = R↓, r1↑
= L↑, r2↑ = R↑, r1,2 = L, r2,1 = R. Note that, in contrast

to ordinary trees, in tree-structured QBDs, transitions between

siblings are allowed.

State ∅ = ( ) represents the empty queue. Arriving jobs

can either enter service phase 1 or 2, represented by the states

(1) and (2). Due to the preemptive LIFO service discipline, a
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Fig. 2. An example (binary) tree-structured QBD.



new job arrival causes the preemption of the job currently in

service and the service phase of the preempted job needs to

be stored. This results in a tree-structured state space.

Note that it has been shown in [26], that every tree-

structured QBD can be embedded in a binary tree-structured

Markov chain with a special structure.

A measure of interest for performance evaluation of M|PH|1
queues is: “if the queue is filled up to a certain level, what

is the probability for the system to process all but k jobs

within t time units?”. New jobs that arrive while serving

older jobs should be completed as well. This cannot be

answered with steady-state analysis that is typically conducted

on such queues. Hence, we resort to computing time-bounded

reachability probabilities on tree-structured QBDs.

III. ABSTRACTION

In the previous section, it was argued that direct methods

like uniformization are not feasible for analysing transient

behavior of tree-structured QBDs. Here, we discuss two ab-

straction techniques for CTMCs that preserve time-bounded

reachability probabilities and allow for huge reductions of the

state space. The first technique has been introduced in [19]

and will be referred to as interval abstraction in the following.

The second one is based on [10] and is referred to as MDP

abstraction.

As a preprocessing step for both techniques, the given

concrete CTMC is transformed into a weakly bisimilar uniform

CTMC. This can be done in linear time. For d-ary tree-

structured QBDs, the uniformization rate λ can be chosen

as maxi∈{1,...,d}

(

ri↑+
∑

j∈{1,...,d}(rj↓+ri,j)
)

, then the self-

loop probabilities need to be adapted accordingly. To explain

the abstraction concepts, in the remainder of the section a

finite-state example will be considered.

Interval abstraction. The main idea behind interval abstrac-

tion is to partition the state space and to keep track of the

minimal and maximal probabilities for taking exactly one

transition leading from a partition to a successor partition

(possibly the same). In the abstract model, these minimal and

maximal probabilities form the lower and upper bounds of

transition probability intervals.

To exemplify how to obtain an abstraction of a concrete

model, we consider the uniform CTMC depicted in Figure 3

(left). Given the partitioning A defined by abstraction function

α : S → A with α(si) = s, α(ui) = u and α(vi) = v for

all i ∈ {1, . . . , 5}, the abstract model is depicted in Figure 3

(right) with abstract states s, u, and v. To compute, say, the

probability bounds for taking a transition from abstract state s
to abstract state u, the minimal and maximal probabilities to

take corresponding transitions in the concrete model have to

be determined. The minimal probability of such a transition

in the concrete model is 1
5 for leaving s4 towards u2. The

maximum is 4
5 as for s2 there are two ways to reach a state

in u, the overall probability to do so is just the sum of the

probabilities ( 1
5 + 3

5 ), and there is no other state in s for which

there is a larger probability to reach states in u. This yields the

transition probability interval [15 , 4
5 ] for the abstract transition

from s to u. The intervals for the other abstract transitions are

computed similarly.

The probability to start in an abstract state is just the sum

of probabilities to start in the represented concrete states (the

same applies to MDP abstraction).

Formally, an abstract CTMC (ACTMC) is a tuple

(S,Pl,Pu, λ, µ0) where S is the set of states, Pl,Pu :
S × S → [0, 1] are the lower and upper transition probability

bound matrices such that for all s ∈ S : Pl(s,S) ≤ 1 ≤
Pu(s,S), λ ∈ R>0 is the uniform exit rate and µ0 ∈ distr(S)
is the initial distribution. The set of transition probability

distributions for ACTMC M is given by TM : S → 2distr(S)

where for all s ∈ S,

TM(s) =
{

P(s, ·) ∈ distr(S) |
∀s′ ∈ S : Pl(s, s

′) ≤ P(s, s′) ≤ Pu(s, s′)
}

.
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Fig. 4. An MDP abstraction.

MDP abstraction. The

idea behind MDP ab-

straction is to include

sets of distributions for

each state in the ab-

stract model. Instead of

keeping track of the ex-

treme behavior in terms

of minimal and max-

imal transition proba-

bilities, for each con-

crete state that is rep-

resented by an abstract

one, the transition proba-

bilities have to be stored.

Note that this technique

is not applicable when infinitely many probability distributions

have to be associated to an abstract state.
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Fig. 3. A uniform CTMC (left) and an interval abstraction (right).



Applying MDP abstraction to the example CTMC from

Figure 3 (left) yields the same state space as for the interval

abstraction, however, the transition structure is quite different.

The resulting abstract model is a uniform continuous-time

Markov decision process [2] (CTMDP; see Figure 4, dashed

arcs connect states to the associated distributions). For s1 and

s2 we obtain the same probability distributions for taking a

transition to the sets of states that are mapped to s, u and v by

abstraction function α, therefore, they can be collapsed in the

abstract model. For all other states in s, a distinct distribution

has to be added to the abstract state s.

Formally, a uniform CTMDP is a tuple (S, A,P, λ, µ0) with

set of states S, action set A, the three-dimensional probability

matrix P : S ×A×S → [0, 1] with P(s, a,S) = 1 for all s ∈
S, a ∈ A, uniform exit rate λ ∈ R>0 and initial distribution

µ0 ∈ distr(S). The set of transition distributions for CTMDP

M is given by TM : S → 2distr(S) where for all s ∈ S,

TM(s) =
{

P(s, a, ·) ∈ distr(S) | a ∈ A
}

.

Note that ACTMCs and uniform CTMDPs are conservative

extensions of uniform CTMCs, i.e., a uniform CTMC can be

represented as an ACTMC with Pl = Pu and as uniform

CTMDP with |A| = 1.

Nondeterminism. Both abstract models have a nondeterminis-

tic component. In ACTMCs, the transition probabilities have

to be chosen from the intervals in each step and in CTMDPs

an action has to be chosen, i.e., a distribution. Depending

on how these choices are made by the so-called scheduler

(also-called strategy, policy, adversary) the system may be-

have differently. Also time-bounded reachability probabilities

depend on the scheduler [2]. However, by computing the

minimal and maximal reachability probabilities in the abstract

model, one obtains firm lower and upper bounds for the value

in the concrete model. If the partitioning of the state space

has been chosen properly, enough information is preserved in

the abstract model to guarantee the desired minimal/maximal

reachability probabilities, also for the concrete model.

Comparison. First we intuitively explain the relation between

both abstractions using the examples above. Then we formal-

ize this relationship.

Fig. 5. Interval vs. MDP abstraction.

In principle, interval ab-

straction has more potential

for reduction of the model’s

size and MDP abstraction

preserves more information

from the original model.

This can be observed in

the diagram in Figure 5

where the possible choices

for transition probabilities

to leave s towards u and

v, respectively, are plotted

for both abstractions. The

choices of MDP abstraction are marked by the concrete

states they represent (cf. Figure 4). For interval abstraction,

all possible choices µ are given by the intersection of the

rectangle (all choices for µ(u) and µ(v) out of [15 , 4
5 ] and

[ 1
10 , 3

5 ]) and the trapezoid shape (the probability mass left for

distribution amongst µ(u) and µ(v) after choosing the self-

loop probability µ(s) from [0, 3
5 ], i.e. 1 − [0, 3

5 ] = [25 , 1]).
Removing the dark area (all the behavior under a ran-

domized scheduler in MDP abstraction) from that intersection

yields the three marked triangles that represent all the behavior

in interval abstraction that is not present in MDP abstraction.

We formalize this observation using the concept of prob-

abilistic simulation and give a variant of the definition in

[19] that is compatible with ACTMCs and uniform CTMDPs.

Intuitively, simulation relations are used to describe relations

between concrete and abstract models. The main idea is that

whenever some behavior occurs in the concrete model, it can

be mimicked in the abstract model. Also different abstractions

M and M′ can be related in the sense that, if M is simulated

by M′, its abstract behavior can be mimicked by M′.

Definition 2 (Simulation): Let M, M′ be abstract models

with state spaces S, S′, and transition distributions T, T
′.

Relation R : S × S′ is a simulation on S and S′, iff for all

s ∈ S, s′ ∈ S′, sRs′ implies: For any µ ∈ T(s) there exists

µ′ ∈ T
′(s′) and ∆ : S × S′ → [0, 1] such that for all u ∈ S,

u′ ∈ S′:

(a) ∆(u, u′) > 0 ⇒ uRu′,

(b) ∆(u,S′) = µ(u),
(c) ∆(S, u′) = µ′(u′).

We write s � s′ if sRs′ for some simulation relation R and

M � M′ if the initial distribution µ of M is simulated by the

initial distribution µ′ of M′, i.e. if there exists ∆ : S ×S′ →
[0, 1] such that for all u ∈ S, u′ ∈ S′ conditions (a) to (c) from

Def. 2 hold. For CTMC C and partitioning A of its state space,

we denote the interval abstraction (MDP abstraction resp.) of

C induced by A, by abstrInt(C,A) (abstrMDP(C,A) resp.).

Note that simulation preserves time-bounded reachability

probabilities [20], more precisely, lower and upper bounds

thereof.

Lemma 1: Let C be a uniform CTMC with state space

S and let A be a partitioning of S such that there exists

abstrMDP(C,A), then:

abstrMDP(C,A) � abstrInt(C,A).

The above lemma suggests that as long as abstrMDP(C,A)
does exist and is not significantly larger than abstrInt(C,A),
MDP abstraction is to be favored since the abstract model is at

least as accurate as in case of interval abstraction. Otherwise

interval abstraction would be the first choice.

IV. PARTITIONING A TREE-STRUCTURED QBD

In order to apply abstraction to a tree-structured QBD, first a

suitable partitioning of the state space has to be found. Recall

that the state-space of the tree-structured QBD results from

a PH service distribution with preemptive LIFO scheduling.

Every state of the tree represents (i) the number of jobs in

the queue, (ii) the service phases of the preempted jobs, (iii)

the phase of the job that is currently in service and (iv) the

precise order of jobs in the queue. The states with m jobs,

that are situated in the same layer of the tree, have the form

~x = (x1, x2, . . . , xm) where xi gives the service phase of the
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Fig. 6. Interval abstractions Mtree,2, Mqgrid,3, Mgrid,3, Mqbd,3 and Mbd,3 for L↑ +L◦ = R↑, L + L◦ = R, and L◦

◦
= L◦ + L◦.

i-th job in the queue. We abbreviate the prefix of ~x of length

n by ~x↓n and the number of jobs in ~x in phase i by #i~x.

In the following, we present abstractions that preserve

several of the above mentioned properties from (i) to (iv).

In order to obtain a finite abstract state space, we also have

to apply counter abstraction, i.e., we cut the state space at

layer n (denoted cut level in the following), which implies

that property (i) is only preserved for less than n customers.

Let T be a tree-structured QBD with state space S. For

partitioning scheme ps ∈ {tree, qgrid, grid, qbd, bd} and cut

level n ∈ N
+, we define partitioning Aps,n by abstraction

function αps,n : S → Aps,n. For ~x = (x1, x2, . . . , xm) ∈ S, let

αtree,n(~x) =

{

[~x] if m < n,

[~x↓n] otherwise;

αqgrid,n(~x) =











[#1~x, . . . ,#d~x; xm] if m < n,

[#1~x↓n−1 + #1(xm), . . . ,

#d~x↓n−1 + #d(xm); xm] otherwise;

αgrid,n(~x) =

{

[#1~x, . . . ,#d~x] if m < n,

[#1~x↓n, . . . ,#d~x↓n] otherwise;

αqbd,n(~x) =

{

[m; xm] if m < n,

[n; xm] otherwise;

αbd,n(~x) =

{

[m] if m < n,

[n] otherwise.

For example, when using the grid scheme, all states with

the same number of jobs (up to the n-th queued job) in phases

1, 2, . . . , d, respectively, are grouped together.

Scheme bd preserves property (i) only, grid addition-

ally preserves (ii), whereas qbd additionally preserves (iii).
Scheme tree preserves all properties and qgrid preserves all

but (iv). Interval abstractions of the binary tree-structured

QBD from Figure 2 are shown in Figure 6. From those,

it becomes clear that the partitioning schemes are named

after the structure of the abstract models. Schemes bd and

qbd yield chain-like structures similar to (quasi)-birth death



ps tree qgrid grid qbd bd

|Aps,n| O(dn) O(d·
“

d+n

d

”

) O(
“

d+n

d

”

) O(d·n) O(n)

#distrs < 1.5× < d× < d× < d× ≤ d×

TABLE I
SIZES OF ABSTRACT MODELS AND AVERAGE NUMBERS OF

DISTRIBUTIONS PER STATE (FOR d > 1)

processes, where the qbd scheme enhances the bd scheme by

storing the phase of the job currently in service. Similarly the

qgrid scheme enhances the grid scheme. For sufficiently large

n, the size of the abstract models decreases in the order of the

partitionings as presented in the first row in Table I. Positive

results on the relationship of abstractions induced by the

partitionings proposed above are given in the following lemma.

Note that for grid and qbd abstraction, a formal relationship

in terms of probabilistic simulation cannot be established as

each abstraction preserves information that is not preserved by

the other, (ii) and (iii) respectively.

Lemma 2: Let T be a tree-structured QBD, then for x ∈
{Int, MDP} and n ∈ N

+:

abstrx(T ,Atree,n) � abstrx(T ,Aqgrid,n)

abstrx(T ,Aqgrid,n) � abstrx(T ,Agrid,n) � abstrx(T ,Abd,n)

abstrx(T ,Aqgrid,n) � abstrx(T ,Aqbd,n) � abstrx(T ,Abd,n)

V. RESULTS

We compute lower and upper bounds for the probability to

reach a certain set of states within a given amount of time.

We stress that our abstractions guarantee that these bounds

are always safe, i.e., the results for the concrete model lie

within the computed bounds. To get an impression of how

the system evolves over time, we compute probability bounds

for gradually increasing time bounds up to a point where

the system approaches an equilibrium. The average number

of distributions per state never exceeds d (cf. second row in

Table I). Since we investigate phase-type service distributions

of the order d ≤ 5, with MDP abstraction, we obtain models

that are not much larger than the ones obtained by interval

abstraction. Due to Lemma 1, we therefore stick to MDP

abstraction in the following. Abstract models are generated

using a Java tool, and the analysis is done using MRMC

version 1.4 [18]. All experiments were run on a standard

desktop computer (Athlon X2 3800+, 2GB RAM).

Recall from Section II that we analyze the probability of

an M|PH|1 queue with preemptive LIFO scheduling, with a

given number of waiting jobs, to process all but k jobs within

t time units. We carry out the following six experiments. We

also provide the utilizations for each setting, i.e., the fraction

of time the server is busy serving jobs.

E1. Firstly, we compare the precision of the abstractions

induced by the partitionings presented in the previous section,

check if the results are consistent with Lemma 2 and provide

results for two sets of rates. We choose a low cut level for

all partitioning schemes and k = 0. Note that k = 0 is a

special case as the ordering of the jobs is of no relevance in

the concrete model as all jobs need to be served anyway before

k is reached. Hence, for all partitioning schemes preserving

the number of customers per phase, as tree, qgrid and grid, the

imprecisions have to result from the choice of the cut level.

E2. In the second experiment, we investigate the influence of

the cut level on the imprecisions occuring for the special case

k = 0. We focus on the grid scheme in this experiment.

E3. In a third experiment we compare the precision of the

grid-abstractions for varying goal levels k and fixed cut level.

E4. We then present a refinement of the grid abstraction, where

the tree is built in full breadth up to level c and the grid

abstraction is applied for higher levels. We present results for

varying c, fixed k = 4 and given cut level.

E5. In an additional experiment, we choose the cut levels such

that the resulting abstract state spaces are of approximately the

same size. Apart from the quality of the results, we compare

the time it takes to generate and analyse the abstract models.

Fig. 7. E1: Upper and lower bounds for bd, grid, tree abstractions (left) and qbd, qgrid, grid abstractions (right) with the same cut level and k = 0.



E6. To emphasize the generality of our approach we present

results for the refined grid abstraction, as presented in Exper-

iment 4, for a phase-type 5 distribution.

As standard parameters we choose L↓= 2, R↓= 3, L = 4,

R = 5, L ↑= 7.5, R ↑= 10, with a resulting utilization of

ρ = 57%.

E1. Partitioning schemes:

We compare three abstractions, Mtree,12, Mgrid,12 and

Mbd,12, where we choose initial states that simulate

(1, 2, 1, 2, 1, 2, 1, 2) in the concrete model, namely

[1, 2, 1, 2, 1, 2, 1, 2], [4, 4], and [8] respectively, and take

the empty state as goal state. The resulting lower and upper

probability bounds, for these abstractions are shown in

Figure 7 (left) where the x-axis shows the time bounds. As

expected, the most accurate results are obtained using tree

abstraction. However, the difference between the obtained

upper and lower bound is rather large for medium and large

time bounds, since the cut level 12 is too close to the initial

state. The second best abstraction is grid abstraction, that

is almost as good, especially for low time bounds. The bd

abstraction, while having the least memory requirements, is

clearly outperformed on the whole range of time bounds.

Note that, for large time bounds, results are not as bad

as for medium ones. This comes from the fact that upper

bounds are derived by assuming that jobs are processed

rather quickly while for lower bounds it is assumed that

jobs are processed slowly. However, in both cases all jobs

are processed eventually, due to a utilization which is less

than one. The results we described above reflect the relation

between the different abstractions as stated in Lemma 2.

The results for the other partitionings are presented in

Figure 7 (right). The initial states [4, 4; 2], [4, 4], and [8; 2] sim-

ulate (1, 2, 1, 2, 1, 2, 1, 2). Qbd abstraction performs signifi-

cantly better than bd abstraction (left), but still is outperformed

by grid abstraction for low and medium time bounds. For

large time bounds (starting at 95), qbd abstraction yields better

lower bounds, even though the state space is significantly

smaller than in case of grid abstraction. This comes from the

Fig. 8. E1 with an alternative parameter set: Upper and lower bounds for
bd, qbd and (q)grid abstractions with the same cut level and k = 0.

Fig. 9. E2: Upper and lower bounds for grid abstractions with increasing
cut levels and k = 0.

fact that qbd abstraction is aware of the job that is currently

processed. If that job is processed rather quickly, a transition

to a higher level (away from the cut level) is more probable.

This shows that grid and qbd abstractions are incomparable

(cf. Lemma 2). Finally, combining the advantages of grid

and qbd yields the inner pair of curves (qgrid). This scheme

outperforms the other two abstractions and comes close to the

tree scheme’s results (left), however, with a drastically lower

memory consumption (with a factor of 217).

Now, we consider an alternative set of parameters where

rates are much more diverse: L↓= 1, R↓= 5, L = 3, R = 15,

L↑= 8, R↑= 20, with a resulting utilisation of ρ = 46%. As

Figure 8 indicates, both bd and qbd abstractions perform badly

with these parameters. The reason is that only the total number

of jobs is stored and therefore in the best (worst) case, it is

assumed that only short (long) jobs are present in the queue.

On the contrary, grid and qgrid abstraction perform excellent

(lower and upper bounds are overlapping in the graph).

E2. Influence of the cut level:

In our second experiment, we investigate the influence of

the cut level on the quality of the results. We show upper and

lower bounds on the probability to reach the empty state from

initial state [4, 4] with grid abstraction and increasing cut level.

The parameters are chosen as in experiment 1, except L↓= 3
10

and R↓= 5 are larger, resulting in a very high utilization of

ρ = 96% and, hence, a much larger range on the time-axis.

Figure 9 shows that grid abstraction is capable of providing

lower and upper bounds that differ marginally, for large

enough cut levels. As all the jobs need to be served to reach

the empty state, the ordering of the jobs does not matter.

Hence, for cut level n → ∞, grid abstraction contains all

the necessary information, if the empty state is chosen as goal

state.

E3. Influence of the goal level:

We compare results obtained with grid abstraction for a

large enough cut level for increasing goal levels k. Figure 10

shows that with growing goal levels the difference between

upper and lower probability bounds increases. This is due to



Fig. 10. E3: Upper and lower bounds for grid abstraction with increasing
goal levels k and fixed cut level.

the fact, that in this setting grid abstraction does not contain

all necessary information, as the ordering of the jobs in the

queue influences the time that is needed to serve all but k jobs.

E4. Refinement:

To obtain more precise results, the grid partitioning scheme

is refined. Lack of information on the first jobs in the queue

leads to less tight bounds. Hence, the abstract states are refined

according to the ordering of the first jobs. We define αgrid,c,n

such that states are merged for which the order of the first c
job phases is the same and where the numbers of job phases

for jobs c + 1 up to n are equal as well:

αgrid,c,n(~x) =



















[~x↓c; #1(xc+1, . . . , xm),

. . . ,#d(xc+1, . . . , xm)] if m < n,

[~x↓c; #1(xc+1, . . . , xn),

. . . ,#d(xc+1, . . . , xn)] otherwise.

Fig. 11. E4: Upper and lower bounds for refined grid abstraction with
increasing c for k = 4 and fixed cut level.

depth states time/ms

tree 10 2047 989
qgrid 45 2071 1546
grid 63 2080 1378
qbd 1023 2047 1434
bd 2046 2047 1092

Fig. 12. E5: Upper and lower bounds for bd, tree, qbd and (q)grid

abstractions with similar sized state spaces for k = 0.

This still is a very natural partitioning scheme. For example,

for a binary tree-structured QBD, αgrid,2,8((1)) = [(1); 0, 0]
and αgrid,2,8((1, 2, 1, 1, 2, 1)) = [(1, 2); 3, 1].

In Figure 11, results for goal level k = 4 and refinement

levels c ∈ {0, 2, 4} are shown. If the refinement level c equals

the goal level k, and if the cut level is large enough, the

obtained lower and upper bounds are extremely tight.

E5. Similar sized state spaces:

While in the first experiment the cut level remained con-

stant, we now compare the different abstractions, while keep-

ing the size of the abstract state space approximately the same.

We select the same initial states and the same goal state as

in the first experiment, as well as the first set of rates. The

goal of this experiment is to determine which properties are

more important for the quality of the results, given a maximal

number of states.

The cut level, the number of states in the abstract model

and the time for generating the abstract state space and for

computing probability bounds are given in the table in Fig-

ure 12. While tree and bd abstraction use the least computation

time, their results, shown in Figure 12, are rather imprecise

compared to the other abstractions. Long-term behavior is not

captured very well by tree abstraction as the cut level is close

to the initial state. For small time bounds, bd abstraction is the

worst. Yet, it catches up with increasing time bounds, as it has

the largest depth and therefore very little probability mass is

lost in the cut level. However, neither one can compete with

grid and qgrid abstractions for which the lower and upper

bounds are almost identical. Here, the grid scheme is favorable

as the computation time is 12% smaller than for qgrid.
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Fig. 13. Phase-type 5 service distribution

E6. Phase-type 5 service distribution:

To emphasize the generality of our approach, we present

results on a M|PH5|1 queue with preemptive LIFO and a

utilization of ρ = 77%. The phase-type distribution is depicted

in Figure 13 and the parameters are shown below.

r↓=
(

0.5 1 0.75 1.25 1.5
)

r↑=
(

4 5 6 7 8
)

r =













2 0.5 2 1 1.5

0 2 1.5 2.5 1

0 0 2 2.5 2.5

0 0 0 4 3

0 0 0 0 7













Fig. 14. E6: Upper and lower bounds for refined grid abstractions with
increasing c for k = 4 and fixed cut level.

For initial state (2, 2, 2, 1, 1), goal level k = 4 and cut level

24, Figure 14 shows upper and lower bounds for the refined

grid abstraction with c = 0, 2, 4. Again, for matching goal and

refinement level, the results differ only marginally.

In the following, we investigate how the time for abstraction

and for the computation of probability bounds scales with the

cut level. The goal level is fixed to k = 0.

The results in Figure 15 and in Table II show that for large

enough cut level, the grid abstraction is capable of providing

upper and lower bounds that differ only marginally and scale

well with the size of the abstract model.

Note that the differences between upper and lower bounds of

reachability probabilities listed in Table II cannot get smaller

than ε = 10−6 because MRMC computes ε-approximations

of the probability bounds. In contrast, when using the uni-

formization method (cf. Section II), a massive number of

states would have to be considered (see Table II, right part).

Even with a terabyte of available memory, CTMCs with more

than 1014 states cannot be dealt with. This shows evidently

that abstraction is an attractive approach to computing time-

bounded reachability probabilities in tree-structured QBDs.

VI. CONCLUSIONS

In this paper we have shown that abstraction techniques

allow us to quickly compute highly-accurate time-bounded

reachability probabilities for a class of infinite-state CTMCs,

namely tree-structured QBDs. In queueing theory this model

Fig. 15. E6: Upper and lower bounds for grid abstractions with increasing
cut level and k = 0.

grid abstraction uniformization

diff grid 12 grid 16 grid 20 grid 24 grid 28 grid 32 grid 36 grid 40 trunc ≈ states

2.5 0.0224 0.001 10−6 10−6 10−6 10−6 10−6 10−6 185 10129

t 7.5 0.3117 0.0580 0.0062 0.0004 10−5 10−6 10−6 10−6 270 10188

15 0.4054 0.1345 0.0376 0.0086 0.0015 0.0002 2 · 10−5 3 · 10−6 398 10278

states 6188 20349 53130 118755 237336 435894 749398 1221759
distributions 28666 96901 256796 579151 1164206 2146761 3701296 6047091
time (h:m:s) 0:00:26 0:01:33 0:04:15 0:09:50 0:20:14 0:38:13 1:07:57 2:06:04

TABLE II
E5: DIFFERENCES BETWEEN LOWER AND UPPER BOUNDS IN grid ABSTRACTIONS VS. SIZE OF THE STATE SPACE FOR UNIFORMIZATION WITH ERROR

BOUND ε = 10−6 .



class is widely used, however, mostly for steady-state analysis.

Computing time-bounded reachability probabilities for tree-

structured QBDs has not been possible before. We present

non-trivial partitionings for the infinite state-space of tree-

structured QBDs that preserve different properties and discuss

how they formally relate. In six experiments we thoroughly

compare the efficiency of these partitionings, regarding the

size of the resulting state space and the difference between

upper and lower probability bounds, resulting from abstraction.

Grid-like schemes that neglect the order of the jobs in the

queue, have shown to perform best when the empty state is

chosen as goal state. When the cut level is chosen according

to the utilization and the choice of the initial and the goal

state, we achieve differences between the upper and the lower

probability bound of only 10−6. To reach the empty state, all

jobs need to be processed, regardless of their ordering, hence

grid abstraction contains all necessary information and hence

produces very tight bounds. In case goal states belong to higher

levels k > 0, we present a refinement of the grid abstraction,

where the state-space up to level k is not abstracted and

grid abstraction is used for all higher levels. This produce

extremely tight bounds for this setting as well.

Even though the tree-structured QBDs in this paper result

from M|PH|1 queues, our approach can also be used for

the more general PH|PH|1 queues. Future work will include

the automation of the parameterization, as well as finding

partitionings for other highly-structured, fast growing state

spaces, such as for multi-class queueing networks.
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