
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Pulkkinen, Petteri; Aittomaki, Tuomas; Strom, Anders; Koivunen, Visa
Time Budget Management in Multifunction Radars Using Reinforcement Learning

Published in:
2021 IEEE Radar Conference

DOI:
10.1109/RadarConf2147009.2021.9455344

Published: 07/05/2021

Document Version
Peer reviewed version

Please cite the original version:
Pulkkinen, P., Aittomaki, T., Strom, A., & Koivunen, V. (2021). Time Budget Management in Multifunction Radars
Using Reinforcement Learning. In 2021 IEEE Radar Conference: Radar on the Move, RadarConf 2021
[9455344] (Proceedings of the IEEE Radar Conference; Vol. 2021-May). IEEE.
https://doi.org/10.1109/RadarConf2147009.2021.9455344

https://doi.org/10.1109/RadarConf2147009.2021.9455344
https://doi.org/10.1109/RadarConf2147009.2021.9455344


Time Budget Management in Multifunction Radars
Using Reinforcement Learning

Petteri Pulkkinen∗†, Tuomas Aittomäki∗, Anders Ström‡ and Visa Koivunen∗
∗Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

Email: {petteri.pulkkinen,tuomas.aittomaki,visa.koivunen}@aalto.fi
†Saab Finland Oy, Helsinki, Finland

‡Radar Solutions, Saab AB, Göteborg, Sweden

Abstract—An adaptive revisit interval selection (RIS) in mul-
tifunction radars is an integral part of efficient time budget
management (TBM). In this paper, the RIS problem is for-
mulated as a Markov decision process (MDP) with unknown
state transition probabilities and reward distributions. A reward
function is proposed to minimize the tracking load (TL) while
maintaining the track loss probability (TLP) at a tolerable level.
The reinforcement learning (RL) problem is solved using the Q-
learning algorithm with an epsilon-greedy policy. Compared to a
baseline algorithm, the RL approach was capable of maintaining
the tracks while reducing the tracking load significantly.

Index Terms—reinforcement learning, revisit interval selection,
adaptive update rate, radar, Q-learning, time budget management

I. INTRODUCTION

Time budget management (TBM) is an important prob-
lem in modern multifunction radars that considers allocating
and scheduling radar time resources for various radar tasks
[1]. Modern multifunction radars typically use phased array
technology, such as the active electronically scanned array
(AESA), that enables steering the radar beam in any direc-
tion with a relatively short delay. Moreover, cognitive radars
employ the sense–learn–adapt cycle to exploit past obser-
vations and construct situational awareness for continuously
improving the radar performance [2]. Thus, intelligent radar
TBM algorithms are needed to fully utilize the capabilities of
cognitive multifunction radars.

An integral part of the TBM is the selection of the revisit
intervals (RIs) for the target tracking tasks [3]–[11]. The RI
is the time interval between track update attempts. The radar
time resources can be conserved in tracking tasks by using
long RIs. However, the RIs should be selected such that the
active tracks can be maintained. Short RIs should be used for
maneuvering targets to maintain the quality of state estimates
at a tolerable level. On the other hand, long RIs should be used
for non-maneuvering targets with stable trajectories because
the movement is predictable.

Revisit interval selection (RIS) algorithms are typically
either residual-based [6], [7] or prediction error covariance
matrix (PECM) based algorithms [3], [4], [8]. The residual-
based RIS algorithms select the RIs adaptively based on the
innovation sequence of a tracking filter. The PECM-based
algorithms impose a constraint for the PECM such that the
RIS problem can be formulated as an optimization problem.

In addition, many other RIS algorithms are based on similar
principles of the algorithms mentioned above [5], [9]–[11].
However, the previously proposed RIS algorithms use target,
radar, and environment models, making them vulnerable to
modeling errors. Consequently, the RIS problem could be
approached with reinforcement learning (RL) methods that
allow learning and autonomous performance improvements in
real-time while avoiding the modeling errors [12].

This paper proposes an RL algorithm to solve the RIS
problem. In other words, the RIS problem is formulated as
an RL problem and solved using the Q-learning algorithm
with an ε-greedy policy. The proposed RL algorithm learns to
select RIs to minimize the tracking load (TL) [3] while keeping
the track loss probability (TLP) [13] at a tolerable level.
The RL approach is trained in simulations using benchmark
trajectories introduced in [13], and the performance of the
proposed algorithm is compared against a baseline algorithm.
The proposed method is able to maintain the tracks while sig-
nificantly reducing the tracking load compared to the baseline
solution.

II. PROBLEM DESCRIPTION

The multifunction radar of the model assumed in this paper
searches for new targets using the search function. After a
new target is found, a track is initiated and the tracking loop,
shown in Fig. 1, will start. A multiple model estimator, such as
the interacting multiple model (IMM) estimator [14, pp. 453–
457], is used to predict and filter the target states. The tracking
loop would be the same for each target in a multi-target
tracking (MTT) scenario. However, a single-target tracking
(STT) scenario is assumed in this study such that only one
tracking loop occurs at a time. The STT scenario simplifies
the RIS problem because the track association does not have
to be considered. However, this allows better understanding of
the learning performance.

In the tracking loop, an RIS algorithm controls the RI
according to the information given for the algorithm. If a track
is updated at time instance t(k), then the next update time
instance is t(k + 1) = t(k) + tr(k), where tr(k) is the RI
chosen at time instance t(k). The utilization of time resources
for a given RI can be quantified with a TL [3] which is defined
as follows

Lk(tr) =
E [nk|tr] τd

tr
, (1)



Initialize
track

Predict target
position

Yes

No

Target
detected

No

Yes

Flag target
lost

Select the
revisit interval

Wait until time
to update track

Illuminate
target

Update state
estimate

Fig. 1. Tracking loop of the multifunction radar model.

where nk is the number of dwells needed to obtain a successful
detection, and τd is the dwell time. To save time resources,
the RI is selected to minimize the TL while keeping the TLP
at a tolerable level. The TLP [13] is defined as follows

Ploss(Ti) = Pr {track loss|Ti, π} (2)

which is the probability of losing a specific track Ti given the
RIS policy π. In [13], a performance criterion was defined that
bounds Ploss(Ti) below a specific value for any Ti. However,
here the RIS algorithms are evaluated in terms of the TLP.

III. REINFORCEMENT LEARNING

Reinforcement learning is a method for learning to act
in stochastic sequential decision-making problems without an
assumed model that describes the problem dynamics [12]. An
RL agent interacts with an environment by taking different
actions. After taking an action, the agent observes the envi-
ronment state and receives a scalar reward that quantifies the
quality of the action. Given the state of the environment, the
agent takes the next action. The learning is based on a trial
and error approach, which is controlled through the rewards.
The agent independently improves its performance by probing
different actions for different states to learn their consequences
towards maximizing future rewards.

A reinforcement learning problem is modeled as a Markov
decision process (MDP) in which the state transition probabil-
ities and rewards are unknown [12]. The agent needs to find
a policy π(a|s), which gives the probability for taking action
a ∈ A given the state s ∈ S. The optimal policy π∗ maximizes
the discounted sum of future rewards Gk given any initial state
s as follows [12]

π∗ = arg max
π

E [Gk|Sk = s, π] , (3)

where Sk is the state at time instance k and

Gk =

∞∑
i=0

λiRk+i+1. (4)

The parameter λ ∈ [0, 1) is called discount factor and Rk+i+1

is the immediate reward received after taking an action at time

instance k + i. For λ � 1, only near future and immediate
rewards have a significant effect on Gk. Otherwise, also the
long-term future rewards are weighted with large values. A
policy that considers only the immediate rewards is called a
myopic policy. In general, myopic policies are sub-optimal for
λ > 0.

Most RL algorithms are based on estimating either state-
values or action-values [12]. The state-value function for
policy π is defined as follows

vπ(s) = E [Gk|Sk = s, π] . (5)

Similarly, the action-value function can be written as follows

qπ(s, a) = E [Gk|Sk = s,Ak = a, π] , (6)

where Ak is the action chosen at time instance k. The state- or
action-values of an optimal policy are larger or equal compared
to the values of any other policy.

A. Exploration–exploitation trade-off

An RL agent taking an action to gain more knowledge about
the dynamics of the MDP is said to be exploring. Otherwise,
the agent is exploiting, which means that the agent chooses
the action currently believed to be the best one. The dilemma
of finding the balance between exploration and exploitation is
called the exploration–exploitation trade-off.

A widely used policy for balancing the exploration–
exploitation trade-off is the ε-greedy policy [12]. With the
ε-greedy policy, the agent chooses a random action with
probability ε. When not choosing the action randomly, the
action with the highest estimate of the action-value given the
state s ∈ S is selected. Therefore, the policy can be written
as follows

Ak =

{
arg maxa∈A q(s, a) with probability 1− ε
random action with probability ε, (7)

where q(s, a) is an estimate of the action-value qπ(s, a). The
estimate q(s, a) is also known as Q-value. The ε-greedy policy
cannot achieve optimality with a fixed exploration probability
ε because random actions will always be taken. One solution
is to let ε decay gradually.

B. Q-learning algorithm

The Q-learning algorithm is a specific off-policy temporal
difference (TD) learning algorithm [12]. It is called off-policy
algorithm because Q-learning uses different policies to update
Q-values (target policy) and take actions while learning (be-
havior policy). In the Q-learning algorithm, the target policy
selects the action with the highest Q-value, and the behavior
policy implements the exploration and exploitation trade-off.
For example, the behavior policy can be the ε-greedy policy.

The Q-learning algorithm updates the Q-values using the
following TD update rule

q(s, a)← q(s, a) + α (r + argmaxa′q(s
′, a′)− q(s, a)) (8)

where ← is the assignment operator, parameter α ∈ (0, 1]
is called the learning rate, s′ is the next state, and r is the



1: Initialize q(s, a), #(s, a) = 0 ∀ s ∈ S, a ∈ A
2: while learning do

3: a←
{

argmaxa′q(s, a
′) with probability 1− ε

random action with probability ε
4: r, s′ ← take action a
5: #(s, a)← #(s, a) + 1 . # of times a and s visited.
6: α← #(s, a)−ω

7: q(s, a)← q(s, a) + α(r+ λmaxa′ q(s′, a′)− q(s, a))
8: s← s′

9: end while

Fig. 2. The Q-learning algorithm with an ε-greedy policy [12] and asyn-
chronously decayed learning rate [15].

immediate reward received after taking action a. The target
policy is proven to converge to the optimal policy if the
behavior policy explores actions with a probability larger than
zero and α is sufficiently small [12]. The learning rate α can
be made decaying by using an asynchronous strategy with a
parameter ω ∈ [0.5, 1] as proposed in [15]. The Q-learning
algorithm with the ε-greedy policy and the asynchronously
decaying α is shown in Figure 2.

IV. RL FORMULATION OF THE RIS PROBLEM

A. Actions

The RL agent selects the RI from a set of intervals. In
other words, the selected RI is tr(k) = Ak, where Ak ∈
{amin, ..., amax} is the action taken at time instance k. The
action space is discretized such that the resulting RIs are
equally spaced. In addition, the minimum RI tmin = amin and
the maximum RI tmax = amax are defined. Therefore, the action
space can be written as follows

A = {ntmax + (Na − n− 1)tmin

Na − 1
}Na−1
n=0 , (9)

where Na is the size of the action space. Smaller Na enables
faster learning since there are fewer actions to be explored.
However, larger Na may enable higher performance since a
larger variety of RIs can be used.

B. Rewards

The agent’s overall objective is to minimize the time budget
needed to maintain a track and prevent track losses based on
the cost associated to losing a track. The objective should be
reflected in the immediate or cumulative rewards given for the
RL agent, as shown in (4). The proposed immediate rewards
are based on the TL in (1) and the track loss cost closs as
follows

r =

{
−closs if target lost
−nk

tr
τd otherwise. (10)

In the reward function, nk

tr
τd is the TL in (1) without expecta-

tion on the number of dwells. The discount factor λ in (4) can
be used to control how much the future TL and the probability
of losing a track are considered.

The value for closs can be selected using a heuristic design
rule based on a simplified MDP with two states. The states of

the MDP represent if a target is lost or not. An agent needs
to select an action from two competing actions. One of the
actions, denoted as a1, has a TL of Lref, and when taking it,
the track cannot be lost. On the other hand, the track is lost
with probability 1 if the other action a2 is taken. Assuming
that tracking a target with TL of Lref is equally bad as losing
the track, the parameter closs should be defined such that

closs =

∞∑
i=0

λiLref. (11)

Equation (11) can be rewritten into form

closs =
1

1− λ
Lref (12)

by using the geometric series.

C. States and observations

The RIS problem is a partially observable Markov decision
process (POMDP) meaning that the observations are not
Markovian [16]. Any POMDP can be converted to a con-
tinuous state MDP by using belief states as states. However,
the tabular Q-learning algorithm [12] requires the states to be
discrete making the state-space cardinality grow exponentially
as the number of state variables increase. RL algorithms can,
however, tolerate approximately Markovian states. Thus, only
relevant information needs to be extracted to prevent the
exponentially growing cardinality. Later on, those observations
will be referred to as states or agent states, interchangeably.

We propose various observations that can be used as agent
states and the performance of those will be evaluated in
Section VI-A. An important source of information from the
tracking filters is the innovation sequence. The simplest way to
utilize the innovation sequence in discrete RL algorithms is to
use the most recent innovation as a state. The size of the state
space can be further reduced by using only the innovation in
the target angle estimates, assuming that the predicted target
range is not critical for steering the radar beam in the correct
direction. Another option is to use the mode probabilities
of an IMM estimator as the states. The number of states is
manageable as long as the number of the quantized mode
probabilities and the target motion models remain sufficiently
small.

The state spaces based on the innovation or the mode
probabilities can be further extended by augmenting the most
recent RI to the state presentation. Also, two additional states
are included in the state space. One is for a lost target and the
other for a track initiation. The latter state enables the agent to
learn to select RI at the beginning of the tracking task because
the tracking filter might have unreliable estimates.

Each continuous state variable sm is discretized into N (m)
q

states by linearly quantizing observations between defined
minimum lm and maximum um and reserving two states for
observations below lm and above um. Thus, the number of
states is Ns = 2 +

∏M−1
m=0 N

(m)
q if the previous RI is not

included in the state. If the previous RI is included into the
state then Ns = 2 +Na

∏M−1
m=0 N

(m)
q .



V. NUMERICAL EXAMPLES

The developed RL approach for the RIS problem is eval-
uated in Monte Carlo (MC) simulations. The simulation sce-
nario contains a monostatic radar in two-dimensional (2-D)
space at the position x = 0 and y = 0. The probability of
detection is simulated for Swerling I target as follows [3]

Pd = P
1

1+SNR

fa , (13)

where Pfa = 1e−6 is the imposed probability of false alarm
constraint. However, Pfa is only utilized to calculate the
probability of detection and false alarms are not included in
the simulations. The target is considered lost after nmax = 20
subsequent dwells without a detection.

The angle error in illuminating the target is assumed to
affect the signal-to-noise ratio (SNR) based on the following
equation [3]

SNR = SN0 exp

(
− ln 2

(θ̂ − θ)2

B2

)
, (14)

where SN0 = 50 is the boresight SNR in a linear scale, B =
0.02 is half of the -3dB beamwidth in radians, θ is target angle
and θ̂ is the boresight angle. In addition, the boresight SNR
SN0 and half of the -3dB beamwidth B are constant in the
simulations.

The target trajectories are based on a benchmark dataset
introduced in [13]. However, the spatial dimension of the
trajectories is reduced from three-dimensional (3-D) to 2-D
space. The six different target trajectories include different
kinds of motion, such as constant-g turns and straight motion
with a constant or non-constant velocity.

A. CVCA-IMM estimator

The tracking filter employed in the simulations is an IMM
estimator that uses two linear Kalman filters configured for two
target motion models. The used target motion models are the
constant velocity (CV) and constant acceleration (CA) models
described in [14, pp. 273–275]. Only position measurements
in Cartesian coordinates are considered in both filters, and
the standard conversion [14, pp. 397-399] from the polar
coordinates to the Cartesian coordinates is used. The standard
deviations of the azimuth angle error σθ and the range error
σr are 0.002 and 2.85, respectively. The mode transition
probability, denoted as µ, from CV to CA and CA to CV
is set equal. This IMM estimator configuration will be called
the CVCA-IMM estimator.

The CVCA-IMM estimator has three parameters to be
tuned. These parameters are the acceleration noise variance
for the CV model σ2

CV, the acceleration noise variance for the
CA model σ2

CA, and the mode transition probability µ. The
mode transition probability is defined for a processing time
step ∆t = 0.1, which the tracker uses to predict the future
states recursively. The parameters µ = 0.028, σ2

CV = 747.5
and σ2

CA = 74.7 were found empirically by simulating the
CVCA-IMM estimator with different parameter combinations.

TABLE I
PROPOSED RL AGENT CONFIGURATIONS.

Agent ID State space λ ω

0 innovation 0.0 1.0
1 innovation 0.7 0.75
2 innovation & previous RI 0.0 1.0
3 innovation & previous RI 0.7 0.75
4 mode probability 0.0 1.0
5 mode probability 0.7 0.75
6 mode probability & previous RI 0.0 1.0
7 mode probability & previous RI 0.7 0.75

B. Baseline algorithm used in comparisons

A baseline algorithm is utilized to compare the RL approach
against a conventional RIS algorithm. The baseline RIS algo-
rithm is based on an approach proposed in [4]. This algorithm
is a PECM-based algorithm that optimizes

maxtr tr
s.t. σθ(t+ tr|t) ≤ V0B,

(15)

where V0 is called track sharpness parameter, and σθ(t+ tr|t)
is the standard deviation of the error of the predicted azimuth
angle. The longest RI to satisfy the constraint is found by
propagating the predictive equations of the CVCA-IMM esti-
mator with the processing time step ∆t. The track sharpness
V0 affects the TLP and needs to be tuned for the specific
IMM estimator. The performance with different values of V0
is discussed in Section VI-B.

C. Reinforcement learning agent configurations

Various RL agents are configured such that it is possible
to identify effective state spaces from the states discussed
in Section IV-C and to determine if using a myopic policy
is sufficient. All the agents use the Q-learning algorithm
presented in Figure 2.

The size of the action space Na = 10, the minimum RI
tmin = 0.1s, and the maximum RI tmax = 7.5s. State variables
used for the agents are the most recent innovation, the proba-
bility of the CV mode, and the previous RI. Combinations of
these state variables will be used as states, as shown in Table
I. The continuous state variables are quantized into Nq = 10
discrete bins. Therefore, the number of states Ns is 12 for the
state spaces not the augmenting with the RI, and Ns = 102
otherwise. For the innovation, the minimum and maximum
quantization values are l = 0.05B and u = 0.5B. For myopic
agents the discount factor λ = 0 and the learning rate decay
parameter ω = 1.0, and for non-myopic agents λ = 0.7 and
ω = 0.75 are used.

VI. SIMULATION RESULTS

The RIS algorithms are evaluated with TL and TLP based
measures. Especially, the mean tracking load (MTL) and the
mean track loss probability (MTLP) are defined to summarize
the algorithm performance. The MTL is the expected arith-
metic mean of TLs when a track is sampled from a probability



0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0.0

0.1

0.2

0.3

0.4

M
ea

n
tr

a
ck

lo
ss

p
ro

b
a
b

il
it

y
Target policies: Mean track loss probability

0: myopic, innov.

1: non-myopic, innov.

2: myopic, innov. & RI

3: non-myopic, innov. & RI

4: myopic, prob.

5: non-myopic, prob.

6: myopic, prob. & RI

7: non-myopic, prob. & RI

0.0000

0.0125

0.0250

0.0375

0.0500

(a) Mean track loss probability (MTLP).

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
ea

n
tr

a
ck

in
g

lo
a
d

×10−4 Target policies: Mean tracking load

0: myopic, innov.

1: non-myopic, innov.

2: myopic, innov. & RI

3: non-myopic, innov. & RI

4: myopic, prob.

5: non-myopic, prob.

6: myopic, prob. & RI

7: non-myopic, prob. & RI

(b) Mean tracking load (MTL).

Fig. 3. Target policy performance with different numbers of learning episodes.
The agent ID=4 achieves a great performance in terms of the learning speed,
the MTL and the MTLP.

distribution PT (i) and i is an index of a track. Similarly, the
MTLP is the TLP marginalized with the distribution PT (i).
Additionally, Euclidean distance between target position and
predicted target position is referred to as position prediction
error (PPE).

A. Reinforcement learning agent training

The RL agents shown in Table I were trained by uniformly
sampling the target trajectories from the employed benchmark
trajectories. Therefore, the sampling distribution PT (i) is a
discrete uniform distribution. Each agent configuration was
trained once for 4000 episodes. An episode means tracking
a target for the duration of a benchmark trajectory that ends
immediately if the target is lost. The parameter Lref was 0.2
such that, according to (12), the track loss cost closs = 0.2
for myopic agents and closs ≈ 0.667 for non-myopic agents.
The exploration probability was initially ε = 0.2, and it was
decayed between each episode. The decay factor was 0.99868,
which resulted in ε = 0.001 in the last training episode.

Figure 3a shows the MTLPs obtained by the target policies
with constant Q-values at different stages of the training. These
values were computed over 150 MC iterations per each stage.

A common decreasing trend can be seen in Fig. 3a that demon-
strates the improvement achieved via learning. In addition, two
distinct clusters can be seen in episodes approximately up to
1500. The agents appear in the clusters based on whether or
not the state space has been augmented with the previous RI.
Moreover, the agents with larger state spaces seem to learn
slower. Figure 3a also shows that most myopic agents have
larger MTLPs than the non-myopic counterparts (with an equal
state space).

Figure 3b shows the MTLs obtained by the target policies.
A small number of training episodes were required to achieve
low MTL, but it can also be seen that MTL increase as the
agents learn more. The myopic agents have significantly lower
MTL than non-myopic counterparts. Also, the non-myopic
agents with the augmented state spaces achieve significantly
smaller MTLs than the corresponding non-myopic agents not
augmenting the previous RI. However, no significant effect
on MTL can be seen for myopic agents when augmenting
state presentations with the previous RI. Assessing whether
augmenting state spaces with the previous RI can improve the
performance significantly is difficult since MTLP in Fig. 3a
increases similarly as the MTL decreases.

It is challenging to learn to maintain the tracks because the
track loss penalties are sparse. Therefore, having more state–
action pairs to be explored causes the clusters in Fig. 3a. In
contrast, the tracking load penalties are frequent, and hence
learning to choose short RIs to minimize the MTL requires a
small number of training episodes. The slight growth of MTL
shown in Fig. 3b is caused by the fact that the agents become
more conscious of losing tracks. In addition, the non-myopic
agents lose tracks less often than the myopic agents because
the long-term consequences for the actions are considered.
Consequently, the myopic agents have higher MTLP and lower
MTL when compared to non-myopic counterparts, as shown
in Figures 3a and 3b.

The behavior policy performance is somewhat similar com-
pared to a target policy during the first training episodes.
However, the random actions increases the MTL significantly
because those actions are taken with high probability before
the exploration probability ε has considerably decayed. The
effect to MTLP is not significant since the converge for target
policies is already slow.

B. Performance against the baseline algorithm

The desired attributes of an RL agent are a fast learning
speed, a low MTLP, and a low MTL. Based on the results
in Section VI-A, the agent ID = 4 meets these requirements
well. Therefore, this RL agent configuration was trained with
various values of closs to compare the performance against the
baseline algorithm. Figure 4 shows the MTL as a function of
MTLP for the RL agent (ID=4) and the baseline algorithm
with different values of V0. It can be seen that the RL
approach achieves a lower MTL than the baseline algorithm
when MTLP is below 0.02. However, for MTLPs larger than
approximately 0.02, the RL agent’s MTL is slightly higher
compared to the baseline algorithm. In other words, the RL



0.00 0.02 0.04 0.06 0.08

Mean track loss probability

2

3

4

5

6

7

8

9

M
ea

n
tr

a
ck

in
g

lo
a
d

×10−4

0.02

0.040.08
0.13
0.20

0.10

0.13

0.16
0.18

0.20 0.23
0.26

0.29

Description of the data point labels
Baseline algorithm: Track sharpness V0
RL agent (ID=4): Track loss cost closs

Algorithm comparison

Baseline algorithm

RL agent (ID=4)

Fig. 4. The MTL as a function of MTLP for the baseline algorithm and
the RL agent (ID=4). The RL agent achieves lower MTLs than the baseline
algorithm with MTLPs below 0.02.

agent is more reliable in maintaining the tracks with a low
MTL. It can also be seen that the MTL of the baseline
algorithm is quite sensitive to the selection of V0 parameter,
especially when selecting small values of V0 in order to
achieve a low MTLP.

The algorithms using parameters closs = 0.2 and V0 = 0.164
were selected for a closer examination. With the corresponding
parameters, the RL agent lost the track 4 once in 200 MC
iterations. The other tracks were not lost a single time.
The baseline algorithm did not lose any tracks in the MC
simulations.

Table II shows the RL agent performance relative to the
baseline algorithm performance. The performance is compared
using the mean and peak values of TLs and position prediction
errors (PPEs) for each track Ti ∈ {T1, . . . , T6}. The RL agent
achieves lower mean and peak TLs when compared to the
baseline algorithm. Notably, the TL peaks are reduced on
average by a factor of 0.55. The mean PPE is not increased
significantly in most of the tracks, but the PPE peaks are
slightly higher. An exception is the track 4, in which the RL
agent was struggling the most to maintain the track. Therefore,
the mean PPE was higher by a factor of 1.43 and the peak PPE
by a factor of 2.25 when compared to the baseline algorithm.
In general, tracks at a further distance are maintained more
reliably than the tracks closer to the radar.

VII. CONCLUSIONS

A reinforcement learning (RL) method based on the Q-
learning algorithm was proposed to address the revisit interval
selection (RIS) problem of multifunction radars. The method
utilizes its earlier tracking experience to learn a RIS policy
in real-time to minimize the tracking load (TL) while keeping
the risk of losing tracks at a tolerable level.

Differently configured RL agents were proposed and eval-
uated using Monte Carlo simulations. The results indicate
that the size of the state space affects the learning speed
significantly. Also, non-myopic agents were generally better

TABLE II
RL AGENT PERFORMANCE RELATIVE TO THE BASELINE ALGORITHM

T1 T2 T3 T4 T5 T6 Avg

TL Mean 0.98 0.77 0.89 0.60 0.95 0.81 0.83
Peak 0.64 0.47 0.58 0.51 0.57 0.50 0.55

PPE Mean 1.01 1.13 1.05 1.43 1.01 1.23 1.14
Peak 1.44 1.31 1.27 2.25 0.67 1.19 1.36

in maintaining the tracks. However, the myopic agent using
the mode probabilities as states achieved the most promising
performance in terms of mean track loss probability (MTLP),
mean tracking load (MTL) and ability to learn fast.

The most promising RL agent was also compared against
a conventional RIS algorithm. The MTL of the RL agent
was lower compared to the baseline algorithm when evaluated
with low MTLP values. Thus the proposed RL algorithm
maintained the tracks with a lower TL. It was especially
shown that the proposed RL algorithm had smaller TL peaks
compared to the baseline algorithm.

REFERENCES

[1] P. Moo and Z. Ding, Adaptive Radar Resource Management, 1st ed.
London, UK: Academic Press, 2015.

[2] S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Process.
Mag., vol. 23, no. 1, pp. 30–40, Jan. 2006.

[3] G. van Keuk and S. S. Blackman, “On phased-array radar tracking and
parameter control,” IEEE Trans. on Aerosp. and Electron. Syst., vol. 29,
no. 1, pp. 186–194, Jan. 1993.

[4] E. Daeipour, Y. Bar-Shalom, and X. Li, “Adaptive beam pointing control
of a phased array radar using an IMM estimator,” in Proc. of 1994 Amer.
Control Conf. - ACC ’94, vol. 2, Jun. 1994, pp. 2093–2097.

[5] H. Benoudnine, M. Keche, A. Ouamri, and M. S. Woolfson, “Fast
adaptive update rate for phased array radar using IMM target tracking
algorithm,” in 2006 IEEE Int. Symp. on Signal Process. and Inf. Technol.,
Aug. 2006, pp. 277–282.

[6] Cheng Ting, He Zi-shu, and Tang Ting, “An IMM-based adaptive-
update-rate target tracking algorithm for phased-array radar,” in 2007
Int. Symp. on Intell. Signal Process. and Communication Syst., Nov.
2007, pp. 854–857.

[7] S. H. Baek, H. Seok, K. H. Park, and J. Chun, “An adaptive update-rate
control of a phased array radar for efficient usage of tracking tasks,” in
2010 IEEE Radar Conf., May 2010, pp. 1214–1219.

[8] A. Charlish and F. Hoffmann, “Anticipation in cognitive radar using
stochastic control,” in 2015 IEEE Radar Conf., May 2015, pp. 1692–
1697.

[9] F. Masoumi-Ganjgah, R. Fatemi-Mofrad, and N. Ghadimi, “Target
tracking with fast adaptive revisit time based on steady state IMM filter,”
Digit. Signal Process., vol. 69, pp. 154–161, 2017.

[10] M. Pilté, S. Bonnabel, and F. Barbaresco, “Fully adaptive update rate
for non-linear trackers,” IET Radar, Sonar Navigation, vol. 12, no. 12,
pp. 1419–1428, 2018.

[11] J. M. Christiansen, K. E. Olsen, and G. E. Smith, “Fully adaptive radar
for track update-interval control,” in 2018 IEEE Radar Conf., Apr. 2018,
pp. 0400–0404.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: The MIT Press, 2018.

[13] W. D. Blair, G. A. Watson, T. Kirubarajan, and Y. Bar-Shalom, “Bench-
mark for radar allocation and tracking in ECM,” IEEE Trans. Aerosp.
Electron. Syst., vol. 34, no. 4, pp. 1097–1114, Oct. 1998.

[14] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation, 1st ed. New York: Wiley, 2001.

[15] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” J. of
Mach. Learning Research, vol. 5, pp. 1–25, 2003.

[16] V. Krishnamurthy, Partially Observed Markov Decision Processes: From
Filtering to Controlled Sensing, 1st ed. Cambridge, UK: Cambridge
University Press, 2016.


