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Abstract We present an improved model and theory for
time-causal and time-recursive spatio-temporal receptive
fields, obtained by a combination of Gaussian receptive
fields over the spatial domain and first-order integrators or
equivalently truncated exponential filters coupled in cas-
cade over the temporal domain. Compared to previous
spatio-temporal scale-space formulations in terms of non-
enhancement of local extrema or scale invariance, these
receptive fields are based on different scale-space axiomat-
ics over time by ensuring non-creation of new local extrema
or zero-crossings with increasing temporal scale. Specifi-
cally, extensions are presented about (i) parameterizing the
intermediate temporal scale levels, (ii) analysing the result-
ing temporal dynamics, (iii) transferring the theory to a
discrete implementation in terms of recursive filters over
time, (iv) computing scale-normalized spatio-temporal deriv-
ative expressions for spatio-temporal feature detection and
(v) computational modelling of receptive fields in the lat-
eral geniculate nucleus (LGN) and the primary visual cortex
(V1) in biological vision. We show that by distributing the
intermediate temporal scale levels according to a logarithmic
distribution, we obtain a new family of temporal scale-space
kernels with better temporal characteristics compared to a
more traditional approach of using a uniform distribution
of the intermediate temporal scale levels. Specifically, the
new family of time-causal kernels has much faster tempo-
ral response properties (shorter temporal delays) compared
to the kernels obtained from a uniform distribution. When
increasing the number of temporal scale levels, the temporal

B Tony Lindeberg
tony@kth.se

1 Department of Computational Biology, School of Computer
Science and Communication, KTH Royal Institute of
Technology, 100 44 Stockholm, Sweden

scale-space kernels in the new family do also converge very
rapidly to a limit kernel possessing true self-similar scale-
invariant properties over temporal scales. Thereby, the new
representation allows for true scale invariance over variations
in the temporal scale, although the underlying temporal scale-
space representation is based on a discretized temporal scale
parameter. We show how scale-normalized temporal deriva-
tives can be defined for these time-causal scale-space kernels
and how the composed theory can be used for computing
basic types of scale-normalized spatio-temporal derivative
expressions in a computationally efficient manner.
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1 Introduction

Spatio-temporal receptive fields constitute an essential con-
cept for describing neural functions in biological vision
[11,12,31–33] and for expressing computer vision methods
on video data [1,35,43,88,99].

For offline processing of pre-recorded video, non-causal
Gaussian or Gabor-based spatio-temporal receptive fields
may in some cases be sufficient. When operating on video
data in a real-time setting or when modelling biological
vision computationally, one does however need to take into
explicit account the fact that the future cannot be accessed
and that the underlying spatio-temporal receptive fields must
therefore be time-causal, i.e. the image operations should
only require access to image data from the present moment
and what has occurred in the past. For computational effi-
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ciency and for keeping down memory requirements, it is also
desirable that the computations should be time-recursive, so
that it is sufficient to keep a limited memory of the past that
can be recursively updated over time.

The subject of this article is to present an improved tem-
poral scale-space model for spatio-temporal receptive fields
based on time-causal temporal scale-space kernels in terms
of first-order integrators or equivalently truncated exponen-
tial filters coupled in cascade, which can be transferred to
a discrete implementation in terms of recursive filters over
discretized time. This temporal scale-space model will then
be combined with a Gaussian scale-space concept over con-
tinuous image space or a genuinely discrete scale-space
concept over discrete image space, resulting in both contin-
uous and discrete spatio-temporal scale-space concepts for
modelling time-causal and time-recursive spatio-temporal
receptive fields over both continuous and discrete spatio-
temporal domains. The model builds on previous work by
Fleet and Langley [20], Lindeberg and Fagerström [66], Lin-
deberg [56–59] and is here complemented by (i) a better
design for the degrees of freedom in the choice of time con-
stants for the intermediate temporal scale levels from the
original signal to any higher temporal scale level in a cas-
cade structure of temporal scale-space representations over
multiple temporal scales, (ii) an analysis of the resulting
temporal response dynamics, (iii) details for discrete imple-
mentation in a spatio-temporal visual front-end, (iv) details
for computing spatio-temporal image features in terms of
scale-normalized spatio-temporal differential expressions at
different spatio-temporal scales and (v) computational mod-
elling of receptive fields in the lateral geniculate nucleus
(LGN) and the primary visual cortex (V1) in biological
vision.

In previous use of the temporal scale-space model by
Lindeberg and Fagerström [66], a uniform distribution of
the intermediate scale levels has mostly been chosen when
coupling first-order integrators or equivalently truncated
exponential kernels in cascade. By instead using a log-
arithmic distribution of the intermediate scale levels, we
will here show that a new family of temporal scale-space
kernels can be obtained with much better properties in
terms of (i) faster temporal response dynamics and (ii) fast
convergence towards a limit kernel that possesses true scale-
invariant properties (self-similarity) under variations in the
temporal scale in the input data. Thereby, the new family of
kernels enables (i) significantly shorter temporal delays (as
always arise for truly time-causal operations), (ii) much better
computational approximation to true temporal scale invari-
ance and (iii) computationally much more efficient numerical
implementation. Conceptually, our approach is also related
to the time-causal scale-time model by Koenderink [39],
which is here complemented by a truly time-recursive for-
mulation of time-causal receptive fields more suitable for

real-time operations over a compact temporal buffer of what
has occurred in the past, including a theoretically well-
founded and computationally efficient method for discrete
implementation.

Specifically, the rapid convergence of the new family of
temporal scale-space kernels to a limit kernel when the num-
ber of intermediate temporal scale levels tends to infinity is
theoretically very attractive, since it provides a way to define
truly scale-invariant operations over temporal variations at
different temporal scales, and to measure the deviation from
true scale invariance when approximating the limit kernel
by a finite number of temporal scale levels. Thereby, the pro-
posed model allows for truly self-similar temporal operations
over temporal scales while using a discretized temporal scale
parameter, which is a theoretically new type of construction
for temporal scale spaces.

Based on a previously established analogy between scale-
normalized derivatives for spatial derivative expressions and
the interpretation of scale normalization of the corresponding
Gaussian derivative kernels to constant L p-norms over scale
[53], we will show how scale-invariant temporal derivative
operators can be defined for the proposed new families of
temporal scale-space kernels. Then, we will apply the result-
ing theory for computing basic spatio-temporal derivative
expressions of different types and describe classes of such
spatio-temporal derivative expressions that are invariant or
covariant to basic types of natural image transformations,
including independent rescaling of the spatial and temporal
coordinates, illumination variations and variabilities in expo-
sure control mechanisms.

In these ways, the proposed theory will present previ-
ously missing components for applying scale-space theory
to spatio-temporal input data (video) based on truly time-
causal and time-recursive image operations.

A conceptual difference between the time-causal temporal
scale-space model that is developed in this paper and Koen-
derink’s fully continuous scale-time model [39] or the fully
continuous time-causal semigroup derived by Fagerström
[16] and Lindeberg [56] is that the presented time-causal
scale-space model will be semi-discrete, with a continu-
ous time axis and discretized temporal scale parameter. This
semi-discrete theory can then be further discretized over time
(and for spatio-temporal image data also over space) into a
fully discrete theory for digital implementation. The reason
why the temporal scale parameter has to be discrete in this
theory is that according to theoretical results about variation
diminishing linear transformations by Schoenberg [81–87]
and Karlin [36] that we will build upon, there is no continu-
ous parameter semigroup structure or continuous parameter
cascade structure that guarantees non-creation of new struc-
tures with increasing temporal scale in terms of non-creation
of new local extrema or new zero-crossings over a continuum
of increasing temporal scales.
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When discretizing the temporal scale parameter into a dis-
crete set of temporal scale levels, we do however show that
there exists such a discrete parameter semigroup structure in
the case of a uniform distribution of the temporal scale levels
and a discrete parameter cascade structure in the case of a
logarithmic distribution of the temporal scale levels, which
both guarantee non-creation of new local extrema or zero-
crossings with increasing temporal scale. In addition, the
presented semi-discrete theory allows for an efficient time-
recursive formulation for real-time implementation based on
a compact temporal buffer, which Koenderink’s scale-time
model [39] does not, and much better temporal dynamics
than the time-causal semigroup previously derived by Fager-
ström [16] and Lindeberg [56].

Specifically, we argue that if the goal is to construct a
vision system that analyses continuous video streams in real
time, as is the main scope of this work, a restriction of the
theory to a discrete set of temporal scale levels with the tem-
poral scale levels determined in advance before the image
data are sampled over time is less of a practical constraint,
since the vision system anyway has to be based on a finite
amount of sensors and hardware/wetware for sampling and
processing the continuous stream of image data.

1.1 Structure of this Article

To give the contextual overview to this work, Sect. 2 starts
by presenting a previously established computational model
for spatio-temporal receptive fields in terms of spatial and
temporal scale-space kernels, based on which we will replace
the temporal smoothing step.

Section 3 starts by reviewing previously theoretical results
for temporal scale-space models based on the assumption
of non-creation of new local extrema with increasing scale,
showing that the canonical temporal operators in such a
model are first-order integrators or equivalently truncated
exponential kernels coupled in cascade. Relative to previous
applications of this idea based on a uniform distribution of
the intermediate temporal scale levels, we present a concep-
tual extension of this idea based on a logarithmic distribution
of the intermediate temporal scale levels, and show that
this leads to a new family of kernels that have faster tem-
poral response properties and correspond to more skewed
distributions with the degree of skewness determined by a
distribution parameter c.

Section 4 analyses the temporal characteristics of these
kernels and shows that they lead to faster temporal charac-
teristics in terms of shorter temporal delays, including how
the choice of distribution parameter c affects these character-
istics. In Sect. 5, we present a more detailed analysis of these
kernels, with emphasis on the limit case when the number of
intermediate scale levels K tends to infinity, and making con-

structions that lead to true self-similarity and scale invariance
over a discrete set of temporal scaling factors.

Section 6 shows how these spatial and temporal kernels
can be transferred to a discrete implementation while preserv-
ing scale-space properties also in the discrete implementation
and allowing for efficient computations of spatio-temporal
derivative approximations. Section 7 develops a model for
defining scale-normalized derivatives for the proposed tem-
poral scale-space kernels, which also leads to a way of
measuring how far from the scale-invariant time-causal limit
kernel a particular temporal scale-space kernel is when using
a finite number K of temporal scale levels.

In Sect. 8, we combine these components for comput-
ing spatio-temporal features defined from different types of
spatio-temporal differential invariants, including an analy-
sis of their invariance or covariance properties under natural
image transformations, with specific emphasis on inde-
pendent scalings of the spatial and temporal dimensions,
illumination variations and variations in exposure control
mechanisms. Finally, Sect. 9 concludes with a summary and
discussion, including a description about relations and dif-
ferences to other temporal scale-space models.

To simplify the presentation, we have put some of the
theoretical analysis in the appendix. Appendix 1 presents a
frequency analysis of the proposed time-causal scale-space
kernels, including a detailed characterization of the limit case
when the number of temporal scale levels K tends to infinity
and explicit expressions their moment (cumulant) descriptors
up to order four. Appendix 2 presents a comparison with the
temporal kernels in Koenderink’s scale-time model, includ-
ing a minor modification of Koenderink’s model to make the
temporal kernels normalized to unit L1-norm and a mapping
between the parameters in his model (a temporal offset δ and
a dimensionless amount of smoothing σ relative to a logarith-
mic time scale) and the parameters in our model (the temporal
variance τ , a distribution parameter c and the number of
temporal scale levels K ) including graphs of similarities vs.
differences between these models. Appendix 3 shows that for
the temporal scale-space representation given by convolution
with the scale-invariant time-causal limit kernel, the corre-
sponding scale-normalized derivatives become fully scale
covariant/invariant for temporal scaling transformations that
correspond to exact mappings between the discrete temporal
scale levels.

This paper is a much further developed version of a confer-
ence paper [62] presented at the SSVM 2015, with substantial
additions concerning

– the theory that implies that the temporal scales are
implied to be discrete (Sects. 3.1–3.2),

– more detailed modelling of biological receptive fields
(Sect. 3.6),
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– the construction of a truly self-similar and scale-invariant
time-causal limit kernel (Sect. 5),

– theory for implementation in terms of discrete time-
causal scale-space kernels (Sect. 6.1),

– details concerning more rotationally symmetric imple-
mentation over spatial domain (Sect. 6.3),

– definition of scale-normalized temporal derivatives for
the resulting time-causal scale-space (Sect. 7),

– a framework for spatio-temporal feature detection based
on time-causal and time-recursive spatio-temporal scale
space, including scale normalization as well as covari-
ance and invariance properties under natural image
transformations and experimental results (Sect. 8),

– a frequency analysis of the time-causal and time-recursive
scale-space kernels (Appendix 1),

– a comparison between the presented semi-discrete model
and Koenderink’s fully continuous model, including
comparisons between the temporal kernels in the two
models and a mapping between the parameters in our
model and Koenderink’s model (Appendix 2) and

– a theoretical analysis of the evolution properties over
scales of temporal derivatives obtained from the time-
causal limit kernel, including the scaling properties of
the scale normalization factors under L p-normalization
and a proof that the resulting scale-normalized deriva-
tives become scale invariant/covariant (Appendix 3).

In relation to the SSVM 2015 paper, this paper therefore
first shows how the presented framework applies to spatio-
temporal feature detection and computational modelling of
biological vision, which could not be fully described because
of space limitations, and then presents important theoretical
extensions in terms of theoretical properties (scale invari-
ance) and theoretical analysis as well as other technical
details that could not be included in the conference paper
because of space limitations.

2 Spatio-Temporal Receptive Fields

The theoretical structure that we start from is a general
result from axiomatic derivations of a spatio-temporal scale-
space based on the assumptions of non-enhancement of local
extrema and the existence of a continuous temporal scale
parameter, which states that the spatio-temporal receptive
fields should be based on spatio-temporal smoothing kernels
of the form (see overviews in Lindeberg [56,57]):

T (x1, x2, t; s, τ ; v,Σ)

= g(x1 − v1t, x2 − v2t; s,Σ) h(t; τ) (1)

where

– x = (x1, x2)
T denotes the image coordinates,

– t denotes time,
– s denotes the spatial scale,
– τ denotes the temporal scale,
– v = (v1, v2)

T denotes a local image velocity,
– Σ denotes a spatial covariance matrix determining the

spatial shape of an affine Gaussian kernel g(x; s,Σ) =
1

2πs
√

det Σ
e−xT Σ−1x/2s ,

– g(x1 − v1t, x2 − v2t; s,Σ) denotes a spatial affine
Gaussian kernel that moves with image velocity v =
(v1, v2) in space-time and

– h(t; τ) is a temporal smoothing kernel over time.

A biological motivation for this form of separability between
the smoothing operations over space and time can also be
obtained from the facts that (i) most receptive fields in the
retina and the LGN are to a first approximation space-time
separable and (ii) the receptive fields of simple cells in V1
can be either space-time separable or inseparable, where the
simple cells with inseparable receptive fields exhibit recep-
tive fields subregions that are tilted in the space-time domain
and the tilt is an excellent predictor of the preferred direction
and speed of motion [11,12].

For simplicity, we shall here restrict the above family of
affine Gaussian kernels over the spatial domain to rotation-
ally symmetric Gaussians of different size s, by setting the
covariance matrix Σ to a unit matrix. We shall also mainly
restrict ourselves to space-time separable receptive fields by
setting the image velocity v to zero.

A conceptual difference that we shall pursue is by relaxing
the requirement of a semigroup structure over a continuous
temporal scale parameter in the above axiomatic derivations
by a weaker Markov property over a discrete temporal scale
parameter. We shall also replace the previous axiom about
non-creation of new image structures with increasing scale in
terms of non-enhancement of local extrema (which requires a
continuous scale parameter) by the requirement that the tem-
poral smoothing process, when seen as an operation along
a one-dimensional temporal axis only, must not increase the
number of local extrema or zero-crossings in the signal. Then,
another family of time-causal scale-space kernels becomes
permissible and uniquely determined, in terms of first-order
integrators or truncated exponential filters coupled in cas-
cade.

The main topics of this paper are to handle the remaining
degrees of freedom resulting from this construction about
(i) choosing and parameterizing the distribution of temporal
scale levels, (ii) analysing the resulting temporal dynamics,
(iii) describing how this model can be transferred to a discrete
implementation over discretized time, space or both while
retaining discrete scale-space properties, (iv) using the result-
ing theory for computing scale-normalized spatio-temporal
derivative expressions for purposes in computer vision and
(v) computational modelling of biological vision.
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3 Time-Causal Temporal Scale-Space

When constructing a system for real-time processing of sen-
sor data, a fundamental constraint on the temporal smoothing
kernels is that they have to be time-causal. The ad hoc solu-
tion of using a truncated symmetric filter of finite temporal
extent in combination with a temporal delay is not appro-
priate in a time-critical context. Because of computational
and memory efficiency, the computations should furthermore
be based on a compact temporal buffer that contains suffi-
cient information for representing the sensor information at
multiple temporal scales and computing features therefrom.
Corresponding requirements are necessary in computational
modelling of biological perception.

3.1 Time-Causal Scale-Space Kernels for Pure

Temporal Domain

To model the temporal component of the smoothing opera-
tion in Eq. (1), let us initially consider a signal f (t) defined
over a one-dimensional continuous temporal axis t ∈ R. To
define a one-parameter family of temporal scale-space rep-
resentation from this signal, we consider a one-parameter
family of smoothing kernels h(t; τ) where τ ≥ 0 is the tem-
poral scale parameter

L(t; τ) = (h(·; τ) ∗ f (·))(t; τ)

=
∫ ∞

u=0
h(u; τ) f (t − u) du (2)

and L(t; 0) = f (t). To formalize the requirement that
this transformation must not introduce new structures from a
finer to a coarser temporal scale, let us following Lindeberg
[45] require that between any pair of temporal scale levels
τ2 > τ1 ≥ 0 the number of local extrema at scale τ2 must not
exceed the number of local extrema at scale τ1. Let us addi-
tionally require the family of temporal smoothing kernels
h(u; τ) to obey the following cascade relation

h(·; τ2) = (�h)(·; τ1 �→ τ2) ∗ h(·; τ1) (3)

between any pair of temporal scales (τ1, τ2) with τ2 > τ1 for
some family of transformation kernels (�h)(t; τ1 �→ τ2).
Note that in contrast to most other axiomatic scale-space
definitions, we do, however, not impose a strict semigroup
property on the kernels. The motivation for this is to make it
possible to take larger scale steps at coarser temporal scales,
which will give higher flexibility and enable the construction
of more efficient temporal scale-space representations.

Following Lindeberg [45], let us further define a scale-
space kernel as a kernel that guarantees that the number of
local extrema in the convolved signal can never exceed the
number of local extrema in the input signal. Equivalently,

this condition can be expressed in terms of the number of
zero-crossings in the signal. Following Lindeberg and Fager-
ström [66], let us additionally define a temporal scale-space

kernel as a kernel that both satisfies the temporal causality
requirement h(t; τ) = 0 if t < 0 and guarantees that the
number of local extrema does not increase under convolu-
tion. If both the raw transformation kernels h(u; τ) and the
cascade kernels (�h)(t; τ1 �→ τ2) are scale-space kernels,
we do hence guarantee that the number of local extrema in
L(t; τ2) can never exceed the number of local extrema in
L(t; τ1). If the kernels h(u; τ) and additionally the cascade
kernels (�h)(t; τ1 �→ τ2) are temporal scale-space kernels,
these kernels do hence constitute natural kernels for defining
a temporal scale-space representation.

3.2 Classification of Scale-Space Kernels for Continuous

Signals

Interestingly, the classes of scale-space kernels and tempo-
ral scale-space kernels can be completely classified based
on classical results by Schoenberg and Karlin regarding
the theory of variation diminishing linear transformations.
Schoenberg studied this topic in a series of papers over about
20 years [81–87], and Karlin [36] then wrote an excellent
monograph on the topic of total positivity.

Variation diminishing transformations. Summarizing main
results from this theory in a form relevant to the construction
of the scale-space concept for one-dimensional continuous
signals [48, Sect. 3.5.1], let S−( f ) denote the number of sign
changes in a function f

S−( f ) = sup V − ( f (t1), f (t2), . . . , f (tm)) , (4)

where the supremum is extended over all sets t1 < t2 < · · · <

tJ (t j ∈ R), J is arbitrary but finite, and V −(v) denotes the
number of sign changes in a vector v. Then, the transforma-
tion

fout(η) =
∫ ∞

ξ=−∞
fin(η − ξ) dG(ξ), (5)

where G is a distribution function (essentially the primi-
tive function of a convolution kernel), is said to be variation

diminishing if

S−( fout) ≤ S−( fin) (6)

holds for all continuous and bounded fin. Specifically, the
transformation (5) is variation diminishing if and only if G

has a bilateral Laplace-Stieltjes transform of the form [85]
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∫ ∞

ξ=−∞
e−sξ dG(ξ) = C eγ s2+δs

∞
∏

i=1

eai s

1 + ai s
(7)

for −c < Re(s) < c and some c > 0, where C 
= 0, γ ≥ 0,
δ and ai are real, and

∑∞
i=1 a2

i is convergent.

Classes of Continuous Scale-Space Kernels Interpreted in
the temporal domain, this result implies that for continuous
signals, there are four primitive types of linear and shift-
invariant smoothing transformations; convolution with the
Gaussian kernel,

h(ξ) = e−γ ξ2
, (8)

convolution with the truncated exponential functions,

h(ξ) =
{

e−|λ|ξ ξ ≥ 0,

0 ξ < 0,
h(ξ) =

{

e|λ|ξ ξ ≤ 0,

0 ξ > 0,
(9)

as well as trivial translation and rescaling. Moreover, it
means that a shift-invariant linear transformation is varia-
tion diminishing if and only if it can be decomposed into
these primitive operations.

3.3 Temporal Scale-Space Kernels Over Continuous

Temporal Domain

In the above expressions, the first class of scale-space kernels
(8) corresponds to using a non-causal Gaussian scale-space
concept over time, which may constitute a straightforward
model for analysing pre-recorded temporal data in an offline
setting where temporal causality is not critical and can be
disregarded by the possibility of accessing the virtual future
in relation to any pre-recorded time moment.

Adding temporal causality as a necessary requirement,
and with additional normalization of the kernels to unit L1-
norm to leave a constant signal unchanged, it follows that the
following family of truncated exponential kernels

hexp(t; μk) =
{ 1

μk
e−t/μk t ≥ 0

0 t < 0
(10)

constitutes the only class of time-causal scale-space kernels
over a continuous temporal domain in the sense of guar-
anteeing both temporal causality and non-creation of new
local extrema (or equivalently zero-crossings) with increas-
ing scale [45,66]. The Laplace transform of such a kernel is
given by

Hexp(q; μk) =
∫ ∞

t=−∞
hexp(t; μk) e−qt dt = 1

1 + μkq

(11)

and coupling K such kernels in cascade leads to a composed
kernel

hcomposed(·; μ) = ∗K
k=1hexp(·; μk) (12)

having a Laplace transform of the form

Hcomposed(q; μ) =
∫ ∞

t=−∞
∗K

k=1hexp(·; μk)(t) e−qt dt

=
K

∏

k=1

1

1 + μkq
. (13)

The composed kernel has temporal mean and variance

mK =
K

∑

k=1

μk τK =
K

∑

k=1

μ2
k . (14)

In terms of physical models, repeated convolution with such
kernels corresponds to coupling a series of first-order inte-

grators with time constants μk in cascade

∂t L(t; τk) = 1

μk

(L(t; τk−1) − L(t; τk)) (15)

with L(t; 0) = f (t). In the sense of guaranteeing non-
creation of new local extrema or zero-crossings over time,
these kernels have a desirable and well-founded smoothing
property that can be used for defining multi-scale obser-
vations over time. A constraint on this type of temporal
scale-space representation, however, is that the scale levels

are required to be discrete and that the scale-space represen-
tation does hence not admit a continuous scale parameter.
Computationally, however, the scale-space representation
based on truncated exponential kernels can be highly efficient
and admits for direct implementation in terms of hardware
(or wetware) that emulates first-order integration over time,
and where the temporal scale levels together also serve as a
sufficient time-recursive memory of the past (see Fig. 1).

3.4 Distributions of the Temporal Scale Levels

When implementing this temporal scale-space concept, a set
of intermediate scale levels τk has to be distributed between
some minimum and maximum scale levels τmin = τ1 and
τmax = τK . Next, we will present three ways of discretizing
the temporal scale parameter over K temporal scale levels.

Uniform Distribution of the Temporal Scales If one chooses
a uniform distribution of the intermediate temporal scales

τk = k

K
τmax (16)

123



56 J Math Imaging Vis (2016) 55:50–88

then the time constants of all the individual smoothing steps
are given by

μk =
√

τmax

K
. (17)

Logarithmic Distribution of the Temporal Scales with Free

Minimum Scale More natural is to distribute the temporal
scale levels according to a geometric series, corresponding
to a uniform distribution in units of effective temporal scale
τeff = log τ [47]. If we have a free choice of what minimum
temporal scale level τmin to use, a natural way of parame-
terizing these temporal scale levels is by using a distribution
parameter c > 1

τk = c2(k−K )τmax (1 ≤ k ≤ K ) (18)

which by Eq. (14) implies that time constants of the individ-
ual first-order integrators should be given by

μ1 = c1−K √
τmax (19)

μk =
√

τk − τk−1 = ck−K−1
√

c2 − 1
√

τmax

(2 ≤ k ≤ K ) (20)

Logarithmic Distribution of the Temporal Scales with Given

Minimum Scale. If the temporal signal is on the other hand
given at some minimum temporal scale τmin, we can instead

determine c =
(

τmax
τmin

) 1
2(K−1)

in (18) such that τ1 = τmin and

add K − 1 temporal scales with μk according to (20).

Logarithmic Memory of the Past When using a logarithmic
distribution of the temporal scale levels according to either
of the last two methods, the different levels in the temporal
scale-space representation at increasing temporal scales will
serve as a logarithmic memory of the past, with qualitative
similarity to the mapping of the past onto a logarithmic time
axis in the scale-time model by Koenderink [39]. Such a
logarithmic memory of the past can also be extended to later
stages in the visual hierarchy.

3.5 Temporal Receptive Fields

Figure 2 shows graphs of such temporal scale-space kernels
that correspond to the same value of the composed variance,
using either a uniform distribution or a logarithmic distribu-
tion of the intermediate scale levels.

In general, these kernels are all highly asymmetric for
small values of K , whereas the kernels based on a uniform
distribution of the intermediate temporal scale levels become
gradually more symmetric around the temporal maximum as
K increases. The degree of continuity at the origin and the
smoothness of transition phenomena increase with K such
that coupling of K ≥ 2 kernels in cascade implies a C K−2-

.

.

.

.

tuo_fni_f

Fig. 1 Electric wiring diagram consisting of a set of resistors and
capacitors that emulate a series of first-order integrators coupled in
cascade, if we regard the time-varying voltage fin as representing the
time-varying input signal and the resulting output voltage fout as repre-
senting the time- varying output signal at a coarser temporal scale. Such
first-order temporal integration can be used as a straightforward compu-
tational model for temporal processing in biological neurons (see also
Koch [37, Chapts. 11–12] regarding physical modelling of the informa-
tion transfer in dendrites of neurons)

continuity of the temporal scale-space kernel. To guarantee
at least C1-continuity of the temporal derivative computation
kernel at the origin, the order n of differentiation of a tem-
poral scale-space kernel should therefore not exceed K − 2.
Specifically, the kernels based on a logarithmic distribution
of the intermediate scale levels (i) have a higher degree of
temporal asymmetry which increases with the distribution
parameter c and (ii) allow for faster temporal dynamics com-
pared to the kernels based on a uniform distribution.

In the case of a logarithmic distribution of the intermediate
temporal scale levels, the choice of the distribution parame-
ter c leads to a trade-off issue in that smaller values of c

allow for a denser sampling of the temporal scale levels,
whereas larger values of c lead to faster temporal dynam-
ics and a more skewed shape of the temporal receptive fields
with larger deviations from the shape of Gaussian derivatives
of the same order (Fig. 2).

3.6 Computational Modelling of Biological Receptive

Fields

Receptive Fields in the LGN Regarding visual receptive
fields in the lateral geniculate nucleus (LGN), DeAngelis et
al. [11,12] report that most neurons (i) have approximately
circular centre-surround organisation in the spatial domain
and that (ii) most of the receptive fields are separable in space-
time. There are two main classes of temporal responses for
such cells: (i) a “non-lagged cell” is defined as a cell for
which the first temporal lobe is the largest one (Fig. 3, left),
whereas (ii) a “lagged cell” is defined as a cell for which the
second lobe dominates (Fig. 3, right).

Such temporal response properties are typical for first- and

second-order temporal derivatives of a time-causal temporal
scale-space representation. The spatial response, on the other
hand, shows a high similarity to a Laplacian of a Gaussian,
leading to an idealized receptive field model of the form [57,
Eq. (108)]
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Fig. 2 Equivalent kernels with temporal variance τ = 1 corresponding
to the composition of K = 7 truncated exponential kernels in cascade
and their first- and second-order derivatives. Top row Equal time con-

stants μ. Second row Logarithmic distribution of the scale levels for
c =

√
2. Third row Logarithmic distribution for c = 23/4. Bottom row

Logarithmic distribution for c = 2

hLG N (x, y, t; s, τ ) = ±(∂xx + ∂yy) g(x, y; s) ∂tn h(t; τ).

(21)

Figure 3 shows results of modelling separable receptive fields
in the LGN in this way, using a cascade of first-order inte-
grators/truncated exponential kernels of the form (12) for
modelling the temporal smoothing function h(t; τ).

Receptive Fields in V1 Concerning the neurons in the pri-
mary visual cortex (V1), DeAngelis et al. [11,12] describe

that their receptive fields are generally different from the
receptive fields in the LGN in the sense that they are (i) ori-
ented in the spatial domain and (ii) sensitive to specific
stimulus velocities. Cells (iii) for which there are precisely
localized “on” and “off” subregions with (iv) spatial summa-
tion within each subregion, (v) spatial antagonism between
on- and off-subregions and (vi) whose visual responses to
stationary or moving spots can be predicted from the spatial
subregions are referred to as simple cells as discovered by
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Fig. 3 Computational modelling of space-time separable receptive
field profiles in the lateral geniculate nucleus (LGN) as reported by
DeAngelis et al. [12] using idealized spatio-temporal receptive fields of
the form T (x, t; s, τ ) = ∂xα ∂tβ g(; s) h(t; τ) according to Eq. (1) and
with the temporal smoothing function h(t; τ) modelled as a cascade
of first-order integrators/truncated exponential kernels of the form (12).
Left a “non-lagged cell” modelled using first-order temporal derivatives.
Right a “lagged cell” modelled using second-order temporal derivatives.
Parameter values: a hxxt : σx = 0.5◦, σt = 40 ms. b hxxtt : σx = 0.6◦,
σt = 60 ms (Horizontal dimension: space x . Vertical dimension: time t)

Hubel and Wiesel [31–33]. In Lindeberg [57], an idealized
model of such receptive fields was proposed of the form

hsimple-cell(x1, x2, t; s, τ, v,Σ)

=
(

cos ϕ ∂x1 + sin ϕ ∂x2

)m1
(

sin ϕ ∂x1 − cos ϕ ∂x2

)m2

(

v1 ∂x1 + v2 ∂x2 + ∂t

)n

g(x1 − v1t, x2 − v2t; s Σ) h(t; τ)

(22)

where

– ∂ϕ = cos ϕ ∂x1 +sin ϕ ∂x2 and ∂⊥ϕ = sin ϕ ∂x1 −cos ϕ ∂x2

denote spatial directional derivative operators in two
orthogonal directions ϕ and ⊥ϕ,

– m1 ≥ 0 and m2 ≥ 0 denote the orders of differentiation in
the two orthogonal directions in the spatial domain with
the overall spatial order of differentiation m = m1 + m2,

– v1 ∂x1 + v2 ∂x2 + ∂t denotes a velocity-adapted temporal
derivative operator

and the meanings of the other symbols are similar as
explained in connection with Eq. (1).

Figure 4 shows the result of modelling the spatio-temporal
receptive fields of simple cells in V1 in this way, using the

general idealized model of spatio-temporal receptive fields
in Eq. (1) in combination with a temporal smoothing kernel
obtained by coupling a set of first-order integrators or trun-
cated exponential kernels in cascade. As can be seen from the
figures, the proposed idealized receptive field models do well
reproduce the qualitative shape of the neurophysiologically
recorded biological receptive fields.

These results complement the general theoretical model
for visual receptive fields in Lindeberg [57] by (i) temporal
kernels that have better temporal dynamics than the time-
causal semigroup derived in Lindeberg [56] by decreasing
faster with time (decreasing exponentially instead of polyno-
mially) and with (ii) explicit modelling results and a theory
(developed in more detail in following sections)1 for choos-
ing and parameterizing the intermediate discrete temporal
scale levels in the time-causal model.

With regard to a possible biological implementation of this
theory, the evolution properties of the presented scale-space
models over scale and time are governed by diffusion and
difference equations [see Eqs. (23–24) in the next section],
which can be implemented by operations over neighbour-

hoods in combination with first-order integration over time.
Hence, the computations can naturally be implemented in
terms of connections between different cells. Diffusion equa-
tions are also used in mean field theory for approximating
the computations that are performed by populations of neu-
rons, see e.g. Omurtag et al. [76], Mattia and Guidice [73],
Faugeras et al. [18].

By combination of the theoretical properties of these ker-
nels regarding scale-space properties between receptive field
responses at different spatial and temporal scales as well
as their covariance properties under natural image transfor-
mations (described in more detail in the next section), the
proposed theory can be seen as a both theoretically well-
founded and biologically plausible model for time-causal and
time-recursive spatio-temporal receptive fields.

3.7 Theoretical Properties of Time-Causal

Spatio-Temporal Scale-Space

Under evolution of time and with increasing spatial scale, the
corresponding time-causal spatio-temporal scale-space rep-
resentation generated by convolution with kernels of the form

1 The theoretical results following in Sect. 5 state that temporal scale
covariance becomes possible using a logarithmic distribution of the tem-
poral scale levels. Section 4 states that the temporal response properties
are faster for a logarithmic distribution of the intermediate temporal
scale levels compared to a uniform distribution. If one has requirements
about how fine the temporal scale sampling needs to be or maximally
allowed temporal delays, then Table 2 in Sect. 4 provides constraints on
permissable values of the distribution parameter c. Finally, the quanti-
tative criterion in Sect. 7.4 (see Table 5) states how many intermediate
temporal scale levels are needed to approximate temporal scale invari-
ance up to a given accuracy.
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Fig. 4 Computational modelling of simple cells in the primary visual
cortex (V1) as reported by DeAngelis et al. [12] using idealized
spatio-temporal receptive fields of the form T (x, t; s, τ, v) =
∂xα ∂tβ g(x − vt; s) h(t; τ) according to Eq. (1) and with the tem-
poral smoothing function h(t; τ) modelled as a cascade of first-order
integrators/truncated exponential kernels of the form (12). Left column

Separable receptive fields corresponding to mixed derivatives of first-

or second-order derivatives over space with first-order derivatives over
time. Right column Inseparable velocity-adapted receptive fields cor-
responding to second- or third-order derivatives over space. Parameter
values: a hxt : σx = 0.6◦, σt = 60 ms. b hxxt : σx = 0.6◦, σt = 80 ms.
c hxx : σx = 0.7◦, σt = 50 ms, v = 0.007◦/ms. d hxxx : σx = 0.5◦,
σt = 80 ms, v = 0.004◦/ms. (Horizontal axis: Space x in degrees of
visual angle. Vertical axis: Time t in ms)
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(1) with specifically the temporal smoothing kernel h(t; τ)

defined as a set of truncated exponential kernels/first-order
integrators in cascade (12) obeys the following system of
differential/difference equations

∂s L = 1

2
∇T

x (Σ ∇x L) , (23)

∂t L = −vT (∇x L) − 1

μk

δτ L , (24)

with the difference operator δτ over temporal scale

(δτ L)(x, t; s, τk; Σ, v)

= L(x, t; s, τk; Σ, v) − L(x, t; s, τk−1; Σ, v). (25)

Theoretically, the resulting spatio-temporal scale-space rep-
resentation obeys similar scale-space properties over the
spatial domain as the two other spatio-temporal scale-space
models derived in Lindeberg [56–58] regarding (i) linear-
ity over the spatial domain, (ii) shift invariance over space,
(iii) semigroup and cascade properties over spatial scales,
(iv) self-similarity and scale covariance over spatial scales
so that for any uniform scaling transformation (x ′, t ′)T =
(Sx, t)T the spatio-temporal scale-space representations are
related by L ′(x ′, t ′; s′, τk; Σ, v′) = L(x, t; s, τk; Σ, v)

with s′ = S2s and v′ = Sv and (v) non-enhancement of local
extrema with increasing spatial scale.

If the family of receptive fields in Eq. (1) is defined over
the full group of positive definite spatial covariance matri-
ces Σ in the spatial affine Gaussian scale-space [48,56,69],
then the receptive field family also obeys (vi) closedness and
covariance under time-independent affine transformations
of the spatial image domain, (x ′, t ′)T = (Ax, t)T imply-
ing L ′(x ′, t ′; s, τk; Σ ′, v′) = L(x, t; s, τk; Σ, v) with
Σ ′ = AΣ AT and v′ = Av, and as resulting from, e.g.,
local linearizations of the perspective mapping (with locality
defined as over the support region of the receptive field).
When using rotationally symmetric Gaussian kernels for
smoothing, the corresponding spatio-temporal scale-space
representation does instead obey (vii) rotational invariance.

Over the temporal domain, convolution with these ker-
nels obeys (viii) linearity over the temporal domain, (ix) shift
invariance over the temporal domain, (x) temporal causality,
(xi) cascade property over temporal scales, (xii) non-creation
of local extrema for any purely temporal signal. If using
a uniform distribution of the intermediate temporal scale
levels, the spatio-temporal scale-space representation obeys
a (xiii) semigroup property over discrete temporal scales.
Due to the finite number of discrete temporal scale levels,
the corresponding spatio-temporal scale-space representa-
tion cannot however for general values of the time constants
μk obey full self-similarity and scale covariance over tem-
poral scales. Using a logarithmic distribution of the temporal
scale levels and an additional limit case construction to the

infinity, we will however show in Sect. 5 that it is possi-
ble to achieve (xiv) self-similarity (41) and scale covariance
(49) over the discrete set of temporal scaling transformations
(x ′, t ′)T = (x, c j t)T that precisely corresponds to map-
pings between any pair of discretized temporal scale levels
as implied by the logarithmically distributed temporal scale
parameter with distribution parameter c.

Over the composed spatio-temporal domain, these ker-
nels obey (xv) positivity and (xvi) unit normalization in
L1-norm. The spatio-temporal scale-space representation
also obeys (xvii) closedness and covariance under local
Galilean transformations in space-time, in the sense that
for any Galilean transformation (x ′, t ′)T = (x − ut, t)T

with two video sequences related by f ′(x ′, t ′) = f (x, t),
their corresponding spatio-temporal scale-space represen-
tations will be equal for corresponding parameter values
L ′(x ′, t ′; s, τk; Σ, v′) = L(x, t; s, τk; Σ, v) with v′ =
v − u.

If additionally the velocity value v and/or the spatial
covariance matrix Σ can be adapted to the local image struc-
tures in terms of Galilean and/or affine invariant fixed point
properties [48,56,64,69], then the spatio-temporal receptive
field responses can additionally be made (xviii) Galilean
invariant and/or (xix) affine invariant.

4 Temporal Dynamics of the Time-Causal Kernels

For the time-causal filters obtained by coupling truncated
exponential kernels in cascade, there will be an inevitable
temporal delay depending on the time constants μk of the
individual filters. A straightforward way of estimating this
delay is by using the additive property of mean values under
convolution mK =

∑K
k=1 μk according to (14). In the special

case when all the time constants are equal μk =
√

τ/K , this
measure is given by

muni =
√

K τ (26)

showing that the temporal delay increases if the tempo-
ral smoothing operation is divided into a larger number of
smaller individual smoothing steps.

In the special case when the intermediate temporal scale
levels are instead distributed logarithmically according to
(18), with the individual time constants given by (19) and
(20), this measure for the temporal delay is given by

mlog =
c−K

(

c2 −
(√

c2 − 1 + 1
)

c +
√

c2 − 1 cK
)

c − 1

√
τ

(27)

with the limit value
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Table 1 Numerical values of the temporal delay in terms of the tem-

poral mean m =
∑K

k=1 μk in units of σ = √
τ for time-causal kernels

obtained by coupling K truncated exponential kernels in cascade in the
cases of a uniform distribution of the intermediate temporal scale levels
τk = kτ/K or a logarithmic distribution τk = c2(k−K )τ

Temporal mean values m of time-causal kernels

K muni mlog (c =
√

2) mlog (c = 23/4) mlog (c = 2)

2 1.414 1.414 1.399 1.366

3 1.732 1.707 1.636 1.549

4 2.000 1.914 1.777 1.641

5 2.236 2.061 1.860 1.686

6 2.449 2.164 1.910 1.709

7 2.646 2.237 1.940 1.721

8 2.828 2.289 1.957 1.726

mlog−limit = lim
K→∞

mlog =
√

c + 1

c − 1

√
τ (28)

when the number of filters tends to infinity.
By comparing Eqs. (26) and (27), we can specifically note

that with increasing number of intermediate temporal scale
levels, a logarithmic distribution of the intermediate scales
implies shorter temporal delays than a uniform distribution
of the intermediate scales.

Table 1 shows numerical values of these measures for dif-
ferent values of K and c. As can be seen, the logarithmic
distribution of the intermediate scales allows for significantly
faster temporal dynamics than a uniform distribution.

Additional Temporal Characteristics Because of the asym-
metric tails of the time-causal temporal smoothing kernels,
temporal delay estimation by the mean value may how-
ever lead to substantial overestimates compared to, e.g., the
position of the local maximum. To provide more precise
characteristics, let us first consider the case of a uniform
distribution of the intermediate temporal scales, for which
a compact closed-form expression is available for the com-
posed kernel and corresponding to the probability density
function of the Gamma distribution

hcomposed(t; μ, K ) = t K−1 e−t/μ

μK Γ (K )
. (29)

The temporal derivatives of these kernels relate to Laguerre
functions (Laguerre polynomials pα

n (t) multiplied by a trun-
cated exponential kernel) according to Rodrigues formula:

pα
n (t) e−t = t−α

n! ∂n
t (tn+αe−t ). (30)

Let us differentiate the temporal smoothing kernel

Table 2 Numerical values for the temporal delay of the local maxi-

mum in units of σ = √
τ for time-causal kernels obtained by coupling

K truncated exponential kernels in cascade in the cases of a uniform
distribution of the intermediate temporal scale levels τk = kτ/K or a
logarithmic distribution τk = c2(k−K )τ with c > 1

Temporal delays tmax from the maxima of time-causal kernels

K tuni tlog (c =
√

2) tlog (c = 23/4) tlog (c = 2)

2 0.707 0.707 0.688 0.640

3 1.154 1.122 1.027 0.909

4 1.500 1.385 1.199 1.014

5 1.789 1.556 1.289 1.060

6 2.041 1.669 1.340 1.083

7 2.268 1.745 1.370 1.095

8 2.475 1.797 1.388 1.100

∂t

(

hcomposed(t; μ, K )
)

=
e− t

μ ((K − 1)μ − t)
(

t
μ

)K+1

t3 Γ (K )

(31)

and solve for the position of the local maximum

tmax,uni = (K − 1) μ = (K − 1)√
K

√
τ . (32)

Table 2 shows numerical values for the position of the
local maximum for both types of time-causal kernels. As
can be seen from the data, the temporal response proper-
ties are significantly faster for a logarithmic distribution of
the intermediate scale levels compared to a uniform distri-
bution and the difference increases rapidly with K . These
temporal delay estimates are also significantly shorter than
the temporal mean values, in particular for the logarithmic
distribution.

If we consider a temporal event that occurs as a step func-
tion over time (e.g. a new object appearing in the field of
view) and if the time of this event is estimated from the local
maximum over time in the first-order temporal derivative
response, then the temporal variation in the response over
time will be given by the shape of the temporal smoothing
kernel. The local maximum over time will occur at a time
delay equal to the time at which the temporal kernel has its
maximum over time. Thus, the position of the maximum over
time of the temporal smoothing kernel is highly relevant for
quantifying the temporal response dynamics.

5 The Scale-Invariant Time-Causal Limit Kernel

In this section, we will show that in the case of a logarith-
mic distribution of the intermediate temporal scale levels, it is
possible to extend the previous temporal scale-space concept
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into a limit case that permits for covariance under tempo-
ral scaling transformations, corresponding to closedness of
the temporal scale-space representation to a compression or
stretching of the temporal scale axis by any integer power of
the distribution parameter c.

Concerning the need for temporal scale invariance of a
temporal scale-space representation, let us first note that one
could possibly first argue that the need for temporal scale
invariance in a temporal scale-space representation is dif-
ferent from the need for spatial scale invariance in a spatial
scale-space representation. Spatial scaling transformations
always occur because of perspective scaling effects caused
by variations in the distances between objects in the world
and the observer and do therefore always need to be han-
dled by a vision system, whereas the temporal scale remains
unaffected by the perspective mapping from the scene to the
image.

Temporal scaling transformations are, however, neverthe-
less important because of physical phenomena or spatio-
temporal events occurring faster or slower. This is analo-
gous to another source of scale variability over the spatial
domain, caused by objects in the world having different
physical size. To handle such scale variabilities over the
temporal domain, it is therefore desirable to develop tem-
poral scale-space concepts that allow for temporal scale
invariance.

Fourier Transform of Temporal Scale-Space Kernel When
using a logarithmic distribution of the intermediate scale
levels (18), the time constants of the individual first-order
integrators are given by (19) and (20). Thus, the explicit
expression for the Fourier transform obtained by setting
q = iω in (11) is of the form

ĥexp(ω; τ, c, K )

= 1

1 + i c1−K
√

τ ω

K
∏

k=2

1

1 + i ck−K−1
√

c2 − 1
√

τ ω
.

(33)

Characterization in Terms of Temporal Moments Although
the explicit expression for the composed time-causal ker-
nel may be somewhat cumbersome to handle for any finite
value of K , in Appendix 1(a) we show how one based on a
Taylor expansion of the Fourier transform can derive com-
pact closed-form moment or cumulant descriptors of these
time-causal scale-space kernels. Specifically, the limit val-
ues of the first-order moment M1 and the higher order central
moments up to order four when the number of temporal scale
levels K tends to infinity are given by

lim
K→∞

M1 =
√

c + 1

c − 1
τ 1/2 (34)

lim
K→∞

M2 = τ (35)

lim
K→∞

M3 = 2(c + 1)
√

c2 − 1 τ 3/2

(

c2 + c + 1
) (36)

lim
K→∞

M4 =
3
(

3c2 − 1
)

τ 2

c2 + 1
(37)

and give a coarse characterization of the limit behaviour
of these kernels essentially corresponding to the terms in
a Taylor expansion of the Fourier transform up to order four.
Following a similar methodology, explicit expressions for
higher order moment descriptors can also be derived in an
analogous fashion, from the Taylor coefficients of higher
order, if needed for special purposes.

In Fig. 9 in Appendix 1(a), we show graphs of the cor-
responding skewness and kurtosis measures as function of
the distribution parameter c, showing that both these mea-
sures increase with the distribution parameter c. In Fig. 12 in
Appendix 2, we provide a comparison between the behaviour
of this limit kernel and the temporal kernel in Koenderink’s
scale-time model showing that although the temporal kernels
in these two models to a first approximation share qualita-
tively coarsely similar properties in terms of their overall
shape (see Fig. 11 in Appendix 2), the temporal kernels in
these two models differ significantly in terms of their skew-
ness and kurtosis measures.

The Limit Kernel By letting the number of temporal scale
levels K tend to infinity, we can define a limit kernel
Ψ (t; τ, c) via the limit of the Fourier transform (33) accord-
ing to (and with the indices relabelled to better fit the limit
case):

Ψ̂ (ω; τ, c) = lim
K→∞

ĥexp(ω; τ, c, K )

=
∞
∏

k=1

1

1 + i c−k
√

c2 − 1
√

τ ω
.

(38)

By treating this limit kernel as an object by itself, which
will be well defined because of the rapid convergence by
the summation of variances according to a geometric series,
interesting relations can be expressed between the temporal
scale-space representations

L(t; τ, c) =
∫ ∞

u=0
Ψ (u; τ, c) f (t − u) du (39)

obtained by convolution with this limit kernel.

Self-Similar Recurrence Relation for the Limit Kernel over

Temporal Scales Using the limit kernel, an infinite number
of discrete temporal scale levels are implicitly defined given
the specific choice of one temporal scale τ = τ0:
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. . .
τ0

c6
,
τ0

c4
,
τ0

c2
, τ0, c2τ0, c4τ0, c6τ0, . . . (40)

Directly from the definition of the limit kernel, we obtain the
following recurrence relation between adjacent scales:

Ψ (·; τ, c) = hexp

(

·;
√

c2−1
c

√
τ
)

∗ Ψ
(

·; τ
c2 , c

)

(41)

and in terms of the Fourier transform:

Ψ̂ (ω; τ, c) = 1

1 + i
√

c2−1
c

√
τ ω

Ψ̂
(

ω; τ
c2 , c

)

. (42)

Behaviour Under Temporal Rescaling Transformations From
the Fourier transform of the limit kernel (38), we can observe
that for any temporal scaling factor S, it holds that

Ψ̂ (ω
S
; S2τ, c) = Ψ̂ (ω; τ, c). (43)

Thus, the limit kernel transforms as follows under a scaling
transformation of the temporal domain:

S Ψ (S t; S2τ, c) = Ψ (t; τ, c). (44)

If we for a given choice of distribution parameter c rescale
the input signal f by a scaling factor S = 1/c such that
t ′ = t/c, it then follows that the scale-space representation
of f ′ at temporal scale τ ′ = τ/c2

L ′
(

t ′; τ
c2 , c

)

=
(

Ψ
(

·; τ
c2 , c

)

∗ f ′(·)
) (

t ′; τ
c2 , c

)

(45)

will be equal to the temporal scale-space representation of
the original signal f at scale τ

L ′(t ′; τ ′, c) = L(t; τ, c). (46)

Hence, under a rescaling of the original signal by a scaling
factor c, a rescaled copy of the temporal scale-space repre-
sentation of the original signal can be found at the next lower
discrete temporal scale relative to the temporal scale-space
representation of the original signal.

Applied recursively, this result implies that the temporal
scale-space representation obtained by convolution with the
limit kernel obeys a closedness property over all temporal

scaling transformations t ′ = c j t with temporal rescaling

factors S = c j ( j ∈ Z) that are integer powers of the distri-

bution parameter c ,

L ′(t ′; τ ′, c) = L(t; τ, c) for t ′ = c j t and τ ′ = c2 jτ,

(47)

allowing for perfect scale invariance over the restricted subset
of scaling factors that precisely matches the specific set of

discrete temporal scale levels that is defined by a specific
choice of the distribution parameter c. Based on this desirable
and highly useful property, it is natural to refer to the limit
kernel as the scale-invariant time-causal limit kernel.

Applied to the spatio-temporal scale-space representa-
tion defined by convolution with a velocity-adapted affine
Gaussian kernel g(x − vt; s,Σ) over space and the limit
kernel Ψ (t; τ, c) over time

L(x, t; s, τ, c; Σ, v)

=
∫

η∈R2

∫ ∞

ζ=0
g(η − vζ ; s,Σ)Ψ (ζ ; τ, c)

f (x − η, t − ζ ) dη dζ, (48)

the corresponding spatio-temporal scale-space represen-
tation will then under a scaling transformation of time
(x ′, t ′)T = (x, c j t)T obey the closedness property

L ′(x ′, t ′; s, τ ′, c; Σ, v′) = L(x, t; s, τ, c; Σ, v) (49)

with τ ′ = c2 jτ and v′ = v/c j .

Self-Similarity and Scale Invariance of the Limit Kernel

Combining the recurrence relations of the limit kernel with its
transformation property under scaling transformations, it fol-
lows that the limit kernel can be regarded as truly self-similar
over scale in the sense that (i) the scale-space representation
at a coarser temporal scale (here τ ) can be recursively com-
puted from the scale-space representation at a finer temporal
scale (here τ/c2) according to (41), (ii) the representation at
the coarser temporal scale is derived from the input in a func-
tionally similar way as the representation at the finer temporal
scale and (iii) the limit kernel and its Fourier transform are
transformed in a self-similar way (44) and (43) under scaling
transformations.

In these respects, the temporal receptive fields arising from
temporal derivatives of the limit kernel share structurally sim-
ilar mathematical properties as continuous wavelets [10,30,
71,75] and fractals [5,6,72], while with the here conceptually
novel extension that the scaling behaviour and self-similarity
over scale is achieved over a time-causal and time-recursive
temporal domain.

6 Computational Implementation

The computational model for spatio-temporal receptive fields
presented here is based on spatio-temporal image data that
are assumed to be continuous over time. When implementing
this model on sampled video data, the continuous theory must
be transferred to discrete space and discrete time.

In this section, we describe how the temporal and spatio-
temporal receptive fields can be implemented in terms
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of corresponding discrete scale-space kernels that pos-
sess scale-space properties over discrete spatio-temporal
domains.

6.1 Classification of Scale-Space Kernels for Discrete

Signals

In Sect. 3.2, we described how the class of continuous
scale-space kernels over a one-dimensional domain can be
classified based on classical results by Schoenberg regard-
ing the theory of variation diminishing transformations as
applied to the construction of discrete scale-space theory in
Lindeberg [45] [48, Sect. 3.3]. To later map the temporal
smoothing operation to theoretically well-founded discrete
scale-space kernels, we shall in this section describe corre-
sponding classification result regarding scale-space kernels
over a discrete temporal domain.

Variation Diminishing Transformations Let v = (v1, v2,

. . . , vn) be a vector of n real numbers and let V −(v) denote
the (minimum) number of sign changes obtained in the
sequence v1, v2, . . . , vn if all zero terms are deleted. Then,
based on a result by Schoenberg [84], the convolution trans-
formation

fout(t) =
∞
∑

n=−∞
cn fin(t − n) (50)

is variation diminishing, i.e.,

V −( fout) ≤ V −( fin) (51)

holds for all fin if and only if the generating function of the
sequence of filter coefficients ϕ(z) =

∑∞
n=−∞ cnzn is of the

form

ϕ(z) = c zk e(q−1z−1+q1z)
∞
∏

i=1

(1 + αi z)(1 + δi z
−1)

(1 − βi z)(1 − γi z−1)
(52)

where c > 0, k ∈ Z, q−1, q1, αi , βi , γi , δi ≥ 0 and
∑∞

i=1(αi + βi + γi + δi ) < ∞. Interpreted over the tem-
poral domain, this means that besides trivial rescaling and
translation, there are three basic classes of discrete smooth-
ing transformations:

– two-point weighted average or generalized binomial
smoothing

fout(x) = fin(x) + αi fin(x − 1) (αi ≥ 0),

fout(x) = fin(x) + δi fin(x + 1) (δi ≥ 0),
(53)

– moving average or first-order recursive filtering

fout(x) = fin(x) + βi fout(x − 1) (0 ≤ βi < 1),

fout(x) = fin(x) + γi fout(x + 1) (0 ≤ γi < 1),

(54)

– infinitesimal smoothing2 or diffusion as arising from the
continuous semigroups made possible by the factor

e(q−1z−1+q1z).

To transfer the continuous first-order integrators derived in
Sect. 3.3 to a discrete implementation, we shall in this treat-
ment focus on the first-order recursive filters, which by
additional normalization constitute both the discrete corre-
spondence and a numerical approximation of time-causal and
time-recursive first-order temporal integration (15).

6.2 Discrete Temporal Scale-Space Kernels Based on

Recursive Filters

Given video data that have been sampled by some temporal
frame rate r , the temporal scale σt in the continuous model in
units of seconds is first transformed to a variance τ relative
to a unit time sampling

τ = r2 σ 2
t , (55)

where r may typically be either 25 fps or 50 fps. Then, a
discrete set of intermediate temporal scale levels τk is defined
by (18) or (16) with the difference between successive scale
levels according to �τk = τk − τk−1 (with τ0 = 0).

For implementing the temporal smoothing operation
between two such adjacent scale levels (with the lower level
in each pair of adjacent scales referred to as fin and the upper
level as fout), we make use of a first-order recursive filter

normalized to the form

fout(t) − fout(t − 1) = 1

1 + μk

( fin(t) − fout(t − 1)) (56)

and having a generating function of the form

Hgeom(z) = 1

1 − μk (z − 1)
(57)

which is a time-causal kernel and satisfies discrete scale-
space properties of guaranteeing that the number of local
extrema or zero-crossings in the signal will not increase with
increasing scale [45,66]. These recursive filters are the dis-
crete analogue of the continuous first-order integrators (15).

2 These kernels correspond to infinitely divisible distributions as can
be described with the theory of Lévy processes [80], where specifically
the case q−1 = q1 corresponds to convolution with the non-causal
discrete analogue of the Gaussian kernel [45] and the case q−1 = 0 to
convolution with time-causal Poisson kernel [66].
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Each primitive recursive filter (56) has temporal mean value
mk = μk and temporal variance �τk = μ2

k + μk , and we
compute μk from �τk according to

μk =
√

1 + 4�τk − 1

2
. (58)

By the additive property of variances under convolution, the
discrete variances of the discrete temporal scale-space ker-
nels will perfectly match those of the continuous model,
whereas the mean values and the temporal delays may dif-
fer somewhat. If the temporal scale τk is large relative to the
temporal sampling density, the discrete model should be a
good approximation in this respect.

By the time-recursive formulation of this temporal scale-
space concept, the computations can be performed based on
a compact temporal buffer over time, which contains the tem-
poral scale-space representations at temporal scales τk and
with no need for storing any additional temporal buffer of
what has occurred in the past to perform the corresponding
temporal operations.

Concerning the actual implementation of these operations
computationally on signal processing hardware of software
with built-in support for higher order recursive filtering, one
can specifically note the following: If one is only interested
in the receptive field response at a single temporal scale,
then one can combine a set of K ′ first-order recursive filters
(56) into a higher order recursive filter by multiplying their
generating functions (57)

Hcomposed(z) =
K ′
∏

k=1

1

1 − μk (z − 1)

= 1

a0 + a1 z + a2 z2 + · · · + aK ′ zK ′

(59)

thus performing K ′ recursive filtering steps by a single call
to the signal processing hardware or software. If using such
an approach, it should be noted, however, that depending
on the internal implementation of this functionality in the
signal processing hardware/software, the composed call (59)
may not be as numerically well-conditioned as the individual
smoothing steps (56) which are guaranteed to dampen any
local perturbations. In our Matlab implementation, for offline
processing of this receptive field model, we have therefore
limited the number of compositions to K ′ = 4.

6.3 Discrete Implementation of Spatial Gaussian

Smoothing

To implement the spatial Gaussian operation on discrete sam-
pled data, we do first transform a spatial scale parameter σx

in units of, e.g., degrees of visual angle to a spatial variance
s relative to a unit sampling density according to

s = p2σ 2
x , (60)

where p is the number of pixels per spatial unit, e.g., in terms
of degrees of visual angle at the image centre. Then, we
convolve the image data with the separable two-dimensional
discrete analogue of the Gaussian kernel [45]

T (n1, n2; s) = e−2s In1(s) In2(s), (61)

where In denotes the modified Bessel functions of integer
order and which corresponds to the solution of the semi-
discrete diffusion equation

∂s L(n1, n2; s) = 1

2

(

∇2
5 L

)

(n1, n2; s), (62)

where ∇2
5 denotes the five-point discrete Laplacian operator

defined by (∇2
5 f )(n1, n2) = f (n1−1, n2)+ f (n1+1, n2)+

f (n1, n2 − 1) + f (n1, n2 + 1) − 4 f (n1, n2). These kernels
constitute the natural way to define a scale-space concept for
discrete signals corresponding to the Gaussian scale-space
over a symmetric domain.

This operation can be implemented either by explicit spa-
tial convolution with spatially truncated kernels

N
∑

n1=−N

N
∑

n2=−N

T (n1, n2; s) > 1 − ε (63)

for small ε of the order 10−8 to 10−6 with mirroring at
the image boundaries (adiabatic boundary conditions cor-
responding to no heat transfer across the image boundaries)
or using the closed-form expression of the Fourier transform

ϕT (θ1, θ2) =
∞
∑

n1=−∞

∞
∑

n1=−∞
T (n1, n2; s) e−i(n1θ1+n2θ2)

= e
−2t

(

sin2
(

θ1
2

)

+sin2
(

θ2
2

))

. (64)

Alternatively, to approximate rotational symmetry by higher
degree of accuracy, one can define the 2-D spatial discrete
scale-space from the solution of [48, Sect. 4.3]

∂s L = 1

2

(

(1 − γ )∇2
5 L + γ∇2

×2 L
)

, (65)

where (∇2
× f )(n1, n2) = 1

2 ( f (n1 + 1, n2 + 1) + f (n1 +
1, n2 − 1) + f (n1 − 1, n2 + 1) + f (n1 − 1, n2 − 1) −
4 f (n1, n2)) and specifically the choice γ = 1/3 gives the
best approximation of rotational symmetry. In practice, this
operation can be implemented by first one step of diagonal
separable discrete smoothing at scale s× = s/6 followed by
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a Cartesian separable discrete smoothing at scale s5 = 2s/3
or using a closed-form expression for the Fourier transform
derived from the difference operators

ϕT (θ1, θ2) = e−(2−γ )t+(1−γ )(cos θ1+cos θ2)t+(γ cos θ1 cos θ2)t .

(66)

6.4 Discrete Implementation of Spatio-Temporal

Receptive Fields

For separable spatio-temporal receptive fields, we implement
the spatio-temporal smoothing operation by separable com-
bination of the spatial and temporal scale-space concepts in
Sects. 6.2 and 6.3. From this representation, spatio-temporal
derivative approximations are then computed from difference

operators

δt = (−1,+1) δt t = (1,−2, 1) (67)

δx =
(

−1

2
, 0,+1

2

)

δxx = (1,−2, 1) (68)

δy =
(

−1

2
, 0,+1

2

)

δyy = (1,−2, 1) (69)

expressed over the appropriate dimensions and with higher
order derivative approximations constructed as combina-
tions of these primitives, e.g. δxy = δx δy , δxxx = δx δxx ,
δxxt = δxx δt , etc. From the general theory in Lindeberg
[46,48], it follows that the scale-space properties for the orig-
inal zero-order signal will be transferred to such derivative
approximations, including a true cascade smoothing property
for the spatio-temporal discrete derivative approximations

L
x

m1
1 x

m2
2 tn (x1, x2, t; s2, τk2)

=
(

(

T (·, ·; s2 − s1) (�h)(·; τk1 �→ τk2)
)

∗

L
x

m1
1 x

m2
2 tn (·, ·, ·; s1, τk1)

)

(x1, x2, t; s2, τk2) (70)

and preservation of certain algebraic properties of Gaussian
derivatives (see [63] for additional statements).

For non-separable spatio-temporal receptive fields corre-
sponding to a non-zero image velocity v = (v1, v2)

T , we
implement the spatio-temporal smoothing operation by first
warping the video data (x ′

1, x ′
2)

T = (x1 − v1t, x2 − v2t)T

using spline interpolation. Then, we apply separable spatio-
temporal smoothing in the transformed domain and unwarp
the result back to the original domain. Over a continu-
ous domain, such an operation is equivalent to convolution
with corresponding velocity-adapted spatio-temporal recep-
tive fields, while being significantly faster in a discrete
implementation than explicit convolution with non-separable
receptive fields over three dimensions.

7 Scale Normalization for Spatio-Temporal

Derivatives

When computing spatio-temporal derivatives at different
scales, some mechanism is needed for normalizing the deriv-
atives with respect to the spatial and temporal scales, to make
derivatives at different spatial and temporal scales compara-
ble and to enable spatial and temporal scale selection.

7.1 Scale Normalization of Spatial Derivatives

For the Gaussian scale-space concept defined over a purely
spatial domain, it can be shown that the canonical way
of defining scale-normalized derivatives at different spatial
scales s is according to [53]

∂ξ1 = sγs/2 ∂x1 , ∂ξ2 = sγs/2 ∂x2 , (71)

where γs is a free parameter. Specifically, it can be shown [53,
Sect. 9.1] that this notion of γ -normalized derivatives cor-
responds to normalizing the m:th order Gaussian derivatives
gξm = g

ξ
m1
1 ξ

m2
2

in N -dimensional image space to constant

L p-norms over scale

‖gξm (·; s)‖p =
(∫

x∈RN

|gξm (x; s)|p dx

)1/p

= Gm,γs

(72)

with

p = 1

1 + |m|
N

(1 − γs)
(73)

where the perfectly scale-invariant case γs = 1 corresponds
to L1-normalization for all orders |m| = m1 + · · · + m N .
In this paper, we will throughout use this approach for nor-
malizing spatial differentiation operators with respect to the
spatial scale parameter s.

7.2 Scale Normalization of Temporal Derivatives

If using a non-causal Gaussian temporal scale-space con-
cept, scale-normalized temporal derivatives can be defined
in an analogous way as scale-normalized spatial derivatives
as described in the previous section.

For the time-causal temporal scale-space concept based
on first-order temporal integrators coupled in cascade, we
can also define a corresponding notion of scale-normalized
temporal derivatives

∂ζ n = τ nγτ /2 ∂tn (74)
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which will be referred to as variance-based normalization

reflecting the fact the parameter τ corresponds to the variance
of the composed temporal smoothing kernel. Alternatively,
we can determine a temporal scale normalization factor
αn,γτ (τ )

∂ζ n = αn,γτ (τ ) ∂tn (75)

such that the L p-norm [with p determined as function
of γ according to (73)] of the corresponding composed
scale-normalized temporal derivative computation kernel
αn,γτ (τ ) htn equals the L p-norm of some other reference
kernel, where we here initially take the L p-norm of the cor-
responding Gaussian derivative kernels

‖αn,γτ (τ ) htn (·; τ)‖p = αn,γτ (τ ) ‖htn (·; τ)‖p

= ‖gξn (·; τ)‖p = Gn,γτ .
(76)

This latter approach will be referred to as L p-normalization.3

For the discrete temporal scale-space concept over discrete
time, scale normalization factors for discrete lp-normal-
ization are defined in an analogous way with the only
difference that the continuous L p-norm is replaced by a dis-
crete lp-norm.

In the specific case when the temporal scale-space repre-
sentation is defined by convolution with the scale-invariant
time-causal limit kernel according to (39) and (38), it
is shown in Appendix 3 that the corresponding scale-
normalized derivatives become truly scale covariant under
temporal scaling transformations t ′ = c j t with scaling fac-
tors S = c j that are integer powers of the distribution
parameter c

L ′
ζ ′n (t

′; τ ′, c) = c jn(γ−1) Lζ n (t; τ, c)

= c j (1−1/p) Lζ n (t; τ, c)
(77)

between matching temporal scale levels τ ′ = c2 jτ . Specif-
ically, for γ = 1 corresponding to p = 1, the scale-
normalized temporal derivatives become fully scale invariant

L ′
ζ ′n (t

′; τ ′, c) = Lζ n (t; τ, c). (78)

7.3 Computation of Temporal Scale Normalization

Factors

For computing the temporal scale normalization factors

αn,γτ (τ ) = ‖gξn (·; τ)‖p

‖htn (·; τ)‖p

(79)

3 These definitions generalize the previously defined notions of L p-
normalization and variance-based normalization over discrete scale-
space representation in [53] and pyramids in [65] to temporal scale-
space representations.

in (75) for L p-normalization according to (76), we compute
the L p-norms of the scale-normalized Gaussian derivatives,
from closed-form expressions if γ = 1 (corresponding to
p = 1)

G1,1 =
∫ ∞

−∞
|gξ (u; t)| du

∣

∣

∣

∣

γ=1
=

√

2

π
≈ 0.797885, (80)

G2,1 =
∫ ∞

−∞
|gξ2(u; t)| du

∣

∣

∣

∣

γ=1
=

√

8

π e
≈ 0.967883,

(81)

G3,1 =
∫ ∞

−∞
|gξ3(u; t)| du

∣

∣

∣

∣

γ=1

=
√

2

π

(

1 + 4

e3/2

)

≈ 1.51003, (82)

G4,1 =
∫ ∞

−∞
|gξ4(u; t)| du

∣

∣

∣

∣

γ=1

= 4
√

3

e3/2+√
3/2

√
π

(

√

3 −
√

6 e
√

6 +
√

3 +
√

6)

≈ 2.8006. (83)

or for values of γ 
= 1 by numerical integration. For com-
puting the discrete lp-norm of discrete temporal derivative
approximations, we first (i) filter a discrete delta function
by the corresponding cascade of first-order integrators to
obtain the temporal smoothing kernel and then (ii) apply
discrete derivative approximation operators to this kernel to
obtain the corresponding equivalent temporal derivative ker-
nel, (iii) from which the discrete lp-norm is computed by
straightforward summation.

To illustrate how the choice of temporal scale normaliza-
tion method may affect the results in a discrete implementa-
tion, Tables 3 and 4 show examples of temporal scale normal-
ization factors computed in these ways by either (i) variance-
based normalization τ n/2 according to (74) or (ii) L p-norm-
alization αn,γτ (τ ) according to (75–76) for different orders
of temporal temporal differentiation n, different distribution
parameters c and at different temporal scales τ , relative to a
unit temporal sampling rate. The value c =

√
2 corresponds

to a natural minimum value of the distribution parameter
from the constraint μ2 ≥ μ1, the value c = 2 to a doubling
scale sampling strategy as used in a regular spatial pyramids
and c = 23/4 to a natural intermediate value between these
two. Results for additional values of K are shown in [63].

Notably, the numerical values of the resulting scale nor-
malization factors may differ substantially depending on
the type of scale normalization method and the underlying
number of first-order recursive filters that are coupled in cas-
cade. Therefore, the choice of temporal scale normalization
method warrants specific attention in applications where the
relations between numerical values of temporal derivatives
at different temporal scales may have critical influence.
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Table 3 Numerical values of
scale normalization factors for

discrete temporal derivative

approximations, using either
variance-based normalization
τ n/2 or lp-normalization
αn,γτ (τ ), for temporal
derivatives of order n = 1 and at
temporal scales τ = 1, τ = 16
and τ = 256 relative to a unit
temporal sampling rate with
�t = 1 and with γτ = 1, for
time-causal kernels obtained by
coupling K first-order recursive
filters in cascade with either a
uniform distribution of the
intermediate scale levels or a
logarithmic distribution for
c =

√
2, c = 23/4 and c = 2

K τ n/2 αn,γτ (τ ) (uni) αn,γτ (τ ) (c =
√

2) αn,γτ (τ ) (c = 23/4) αn,γτ (τ ) (c = 2)

Temporal scale normalization factors for n = 1 at τ = 1

2 1.000 0.744 0.744 0.737 0.723

4 1.000 0.847 0.814 0.771 0.737

8 1.000 0.935 0.823 0.772 0.738

16 1.000 0.998 0.823 0.772 0.738

Temporal scale normalization factors for n = 1 at τ = 16

2 4.000 3.056 3.056 3.016 2.938

4 4.000 3.553 3.432 3.223 3.068

8 4.000 3.809 3.459 3.228 3.071

16 4.000 3.891 3.460 3.338 3.071

Temporal scale normalization factors for n = 1 at τ = 256

2 16.000 12.270 12.270 12.084 11.711

4 16.000 14.242 13.732 12.932 12.162

8 16.000 15.145 13.817 12.922 12.151

16 16.000 15.583 13.816 12.922 12.151

Table 4 Numerical values of
scale normalization factors for

discrete temporal derivative

approximations, for either
variance-based normalization
τ n/2 or lp-normalization
αn,γτ (τ ), for temporal
derivatives of order n = 2 and at
temporal scales τ = 1, τ = 16
and τ = 256 relative to a unit
temporal sampling rate with
�t = 1 and with γτ = 1, for
time-causal kernels obtained by
coupling K first-order recursive
filters in cascade with either a
uniform distribution of the
intermediate scale levels or a
logarithmic distribution for
c =

√
2, c = 23/4 and c = 2

K τ n/2 αn,γτ (τ ) (uni) αn,γτ (τ ) (c =
√

2) αn,γτ (τ ) (c = 23/4) αn,γτ (τ ) (c = 2)

Temporal scale normalization factors for n = 2 at τ = 1

2 1.000 0.617 0.617 0.606 0.586

4 1.000 0.738 0.718 0.659 0.609

8 1.000 0.787 0.722 0.660 0.609

16 1.000 0.824 0.722 0.660 0.609

Temporal scale normalization factors for n = 2 at τ = 16

2 16.000 4.622 4.622 4.472 4.172

4 16.000 10.184 9.160 7.885 6.208

8 16.000 13.106 10.068 7.862 6.305

16 16.000 14.575 10.058 7.862 6.305

Temporal scale normalization factors for n = 2 at τ = 256

2 256.00 58.95 58.95 56.63 51.84

4 256.00 165.14 148.96 124.04 101.16

8 256.00 211.10 159.23 126.55 101.12

16 256.00 233.78 159.28 126.55 101.12

Specifically, we can note that the temporal scale normal-
ization factors based on L p-normalization differ more from
the scale normalization factors from variance-based normal-
ization (i) in the case of a logarithmic distribution of the
intermediate temporal scale levels compared to a uniform
distribution, (ii) when the distribution parameter c increases
within the family of temporal receptive fields based on a log-
arithmic distribution of the intermediate scale levels or (iii) a
very low number of recursive filters are coupled in cascade.
In all three cases, the resulting temporal smoothing kernels
become more asymmetric and do hence differ more from the
symmetric Gaussian model.

On the other hand, with increasing values of K , the numer-
ical values of the scale normalization factors converge much
faster to their limit values when using a logarithmic distri-

bution of the intermediate scale levels compared to using
a uniform distribution. Depending on the value of the dis-
tribution parameter c, the scale normalization factors do
reasonably well approach their limit values after K = 4 to
K = 8 scale levels, whereas much larger values of K would
be needed if using a uniform distribution. The convergence
rate is faster for larger values of c.

7.4 Measuring the Deviation from the Scale-Invariant

Time-Causal Limit Kernel

To quantify how good an approximation a time-causal kernel
with a finite number of K scale levels is to the limit case when
the number of scale levels K tends to infinity, let us measure
the relative deviation of the scale normalization factors from
the limit kernel according to
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Table 5 Numerical estimates of the relative deviation from the limit
case when using different numbers K of temporal scale levels for a
uniform vs. a logarithmic distribution of the intermediate scale levels

K εn (uni) εn (c =
√

2) εn (c = 23/4) εn (c = 2)

Relative deviation from limit of scale
normalization factors for n = 1 at τ = 256

2 0.233 1.1 × 10−1 6.5 × 10−2 3.6 × 10−2

4 0.110 6.1 × 10−3 8.5 × 10−4 8.6 × 10−4

8 0.053 4.9 × 10−4 1.1 × 10−5 2.0 × 10−7

16 0.026 1.2 × 10−7 9.0 × 10−13 1.5 × 10−15

32 0.013 3.1 × 10−14 2.9 × 10−14 3.4 × 10−14

Relative deviation from limit of scale
normalization factors for n = 2 at τ = 256

2 0.770 6.3 × 10−1 5.5 × 10−1 4.9 × 10−1

4 0.354 6.5 × 10−2 2.0 × 10−2 4.1 × 10−2

8 0.174 3.2 × 10−4 1.3 × 10−5 1.6 × 10−8

16 0.085 1.8 × 10−7 1.0 × 10−12 9.6 × 10−15

32 0.042 1.2 × 10−13 6.2 × 10−14 4.0 × 10−14

The deviation measure εn according to Eq. (84) measures the relative
deviation of the scale normalization factors when using a finite number
K of temporal scale levels compared to the limit case when the number
of temporal scale levels K tends to infinity (these estimates have been
computed at a coarse temporal scale τ = 256 relative to a unit grid
spacing so that the influence of discretization effects should be small.
The limit case has been approximated by K = 1000 for the uniform
distribution and K = 500 for the logarithmic distribution)

εn(τ ) = |αn(τ )|K − αn(τ )|K→∞|
αn(τ )|K→∞

. (84)

Table 5 shows numerical estimates of this relative deviation
measure for different values of K from K = 2 to K = 32
for the time-causal kernels obtained from a uniform vs. a
logarithmic distribution of the scale values. From the table,
we can first note that the convergence rate with increasing
values of K is significantly faster when using a logarithmic
vs. a uniform distribution of the intermediate scale levels.

Not even K = 32 scale levels is sufficient to drive the
relative deviation measure below 1 % for a uniform distri-
bution, whereas the corresponding deviation measures are
down to machine precision when using K = 32 levels for
a logarithmic distribution. When using K = 4 scale levels,
the relative derivation measure is down to 10−2 to 10−4 for a
logarithmic distribution. If using K = 8 scale levels, the rel-
ative deviation measure is down to 10−4 to 10−8 depending
on the value of the distribution parameter c and the order n

of differentiation.
From these results, we can conclude that one should not

use a too low number of recursive filters that are coupled
in cascade when computing temporal derivatives. Our rec-
ommendation is to use a logarithmic distribution with a
minimum of four recursive filters for derivatives up to order

two at finer scales and a larger number of recursive filters
at coarser scales. When performing computations at a single
temporal scale, we often use K = 7 or K = 8 as default.

8 Spatio-Temporal Feature Detection

In the following, we shall apply the above theoretical frame-
work for separable time-causal spatio-temporal receptive
fields for computing different types of spatio-temporal fea-
ture, defined from spatio-temporal derivatives of different
spatial and temporal orders, which may additionally be
combined into composed (linear or non-linear) differential
expressions.

8.1 Partial Derivatives

A most basic approach is to first define a spatio-temporal
scale-space representation L : R

2 × R × R+ × R+ from any
video data f : R

2 × R and then defining partial derivatives
of any spatial and temporal orders m = (m1, m2) and n at
any spatial and temporal scales s and τ according to

L
x

m1
1 x

m1
2 tn (x1, x2, t; s, τ )

= ∂
x

m1
1 x

m2
2 tn ((g(·, ·; s) h(·; τ))

∗ f (·, ·, ·)) (x1, x2, t; s, τ ) (85)

leading to a spatio-temporal N -jet representation of any order

{

Lx , L y, L t , Lxx , Lxy, L yy, Lxt , L yt , L t t , . . .
}

. (86)

Figure 5 shows such kernels up to order two in the case of a
1+1-D space-time.

8.2 Directional Derivatives

By combining spatial directional derivative operators over
any pair of ortogonal directions ∂ϕ = cos ϕ ∂x + sin ϕ ∂y

and ∂⊥ϕ = sin ϕ ∂x −cos ϕ ∂y and velocity-adapted temporal
derivatives ∂tv = ∂t +vx ∂x +vy ∂y over any motion direction
v = (vx , vy, 1), a filter bank of spatio-temporal derivative
responses can be created

Lϕm1⊥ϕm2 tn
v

= ∂m1
ϕ ∂

m2
⊥ϕ∂n

tv
L (87)

for different sampling strategies over image orientations ϕ

and ⊥ϕ in image space and over motion directions v in space-
time (see Fig. 6 for illustrations of such kernels up to order
two in the case of a 1+1-D space-time).

Note that as long as the spatio-temporal smoothing oper-
ations are performed based on rotationally symmetric Gaus-
sians over the spatial domain and using space-time separable
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Fig. 5 Space-time separable kernels Txm tn (x, t; s, τ ) =
∂xm tn (g(x; s) h(t; τ)) up to order two obtained as the composi-
tion of Gaussian kernels over the spatial domain x and a cascade
of truncated exponential kernels over the temporal domain t with
a logarithmic distribution of the intermediate temporal scale levels
(s = 1, τ = 1, K = 7, c =

√
2) (Horizontal axis: space x . Vertical

axis: time t)

kernels over space-time, the responses to these directional
derivative operators can be directly related to corresponding
partial derivative operators by mere linear combinations. If
extending the rotationally symmetric Gaussian scale-space
concept to an anisotropic affine Gaussian scale-space and/or
if we make use of non-separable velocity-adapted receptive
fields over space-time in a spatio-temporal scale space, to
enable true affine and/or Galilean invariances, such linear
relationships will, however, no longer hold on a similar form.

For the image orientations ϕ and ⊥ϕ, it is for purely spatial
derivative operations, in the case of rotationally symmetric
smoothing over the spatial domain, in principle sufficient to
to sample the image orientation according to a uniform dis-
tribution on the semi-circle using at least |m| + 1 directional
derivative filters for derivatives of order |m|.

For temporal directional derivative operators to make fully
sense in a geometrically meaningful manner (covariance
under Galilean transformations of space-time), they should
however also be combined with Galilean velocity adaptation
of the spatio-temporal smoothing operation in a correspond-
ing direction v according to (1) [42,44,51,56]. Regarding the
distribution of such motion directions v = (vx , vy), it is nat-

ural to distribute the magnitudes |v| =
√

v2
x + v2

y according

to a self-similar distribution

Fig. 6 Velocity-adapted spatio-temporal kernels Txm tn (x, t; s, τ, v)

= ∂xm tn (g(x − vt; s) h(t; τ)) up to order two obtained as the compo-
sition of Gaussian kernels over the spatial domain x and a cascade of
truncated exponential kernels over the temporal domain t with a log-
arithmic distribution of the intermediate temporal scale levels (s = 1,
τ = 1, K = 7, c =

√
2, v = 0.5) (Horizontal axis: space x . Vertical

axis: time t)

|v| j = |v|1 ̺ j j = 1 . . . J (88)

for some suitably selected constant ρ > 1 and using a uni-
form distribution of the motion directions ev = v/|v| on the
full circle.

8.3 Differential Invariants Over Spatial Derivative

Operators

Over the spatial domain, we will in this treatment make use
of the gradient magnitude |∇(x,y)L|, the Laplacian ∇2

(x,y)L ,
the determinant of the Hessian det H(x,y)L , the rescaled level
curve curvature κ̃(L) and the quasi quadrature energy mea-
sure Q(x,y)L , which are transformed to scale-normalized
differential expressions with γ = 1 [48,53,55]:

|∇(x,y),norm L| =
√

sL2
x + sL2

y =
√

s |∇(x,y)L|, (89)

∇2
(x,y),norm L = s (Lxx + L yy) = s ∇2

(x,y)L , (90)

det H(x,y),norm L = s2(Lxx L yy − L2
xy)

= s2 det H(x,y)L , (91)

κ̃norm(L) = s2(L2
x L yy + L2

y Lxx − 2Lx L y Lxy)

= s2 κ̃(L), (92)
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Q(x,y),norm L = s (L2
x + L2

y)

+Cs2
(

L2
xx + 2L2

xy + L2
yy

)

, (93)

(and the corresponding unnormalized expressions are obtained
by replacing s by 1).4 For mixing first- and second-order
derivatives in the quasi quadrature entity Q(x,y),norm L , we
use C = 2/3 or C = e/4 according to [52].

8.4 Space-Time-Coupled Spatio-Temporal Derivative

Expressions

A more general approach to spatio-temporal feature detec-
tion than partial derivatives or directional derivatives consists
of defining spatio-temporal derivative operators that com-
bine spatial and temporal derivative operators in an integrated
manner.

Temporal Derivatives of the Spatial Laplacian Inspired by
the way neurons in the lateral geniculate nucleus (LGN)
respond to visual input [11,12], which for many LGN cells
can be modelled by idealized operations of the form [57,
Eq. (108)]

hLGN(x, y, t; s, τ )

= ±(∂xx + ∂yy) g(x, y; s) ∂tn h(t; τ), (94)

we can define the following differential entities

∂t (∇2
(x,y)L) = Lxxt + L yyt (95)

∂t t (∇2
(x,y)L) = Lxxtt + L yytt (96)

and combine these entities into a quasi quadrature measure
over time of the form

Qt (∇2
(x,y)L) =

(

∂t (∇2
(x,y)L)

)2
+ C

(

∂t t (∇2
(x,y)L)

)2
, (97)

where C again may be set to C = 2/3 or C = e/4. The first
entity ∂t (∇2

(x,y)L) can be expected to give strong responses
to spatial blob responses whose intensity values vary over
time, whereas the second entity ∂t t (∇2

(x,y)L) can be expected
to give strong responses to spatial blob responses whose
intensity values vary strongly around local minima or local
maxima over time.

By combining these two entities into a quasi quadra-
ture measure Qt (∇2

(x,y)L) over time, we obtain a differential
entity that can be expected to give strong responses when the
intensity varies strongly over both image space and over time,

4 When using the Laplacian operator in this paper, the notation ∇2
(x,y)

should be understood as the covariant expression ∇2
(x,y) = ∇T

(x,y)∇(x,y)

with ∇(x,y) = (∂x , ∂y)
T , etc.

while giving no response if there are no intensity variations
over space or time. Hence, these three differential operators
could be regarded as primitive spatio-temporal interest oper-
ators that can be seen as compatible with existing knowledge
about neural processes in the LGN.

Temporal Derivatives of the Determinant of the Spatial

Hessian Inspired by the way local extrema of the determi-
nant of the spatial Hessian (91) can be shown to constitute a
better interest point detector than local extrema of the spatial
Laplacian (89) [60,61], we can compute corresponding first-
and second-order derivatives over time of the determinant of
the spatial Hessian

∂t (det H(x,y)L) = Lxxt L yy + Lxx L yyt − 2Lxy Lxyt (98)

∂t t (det H(x,y)L) = Lxxtt L yy + 2Lxxt L yyt + Lxx L yytt

− 2L2
xyt − 2Lxy Lxytt (99)

and combine these entities into a quasi quadrature measure
over time

Qt (det H(x,y)L)

=
(

∂t (det H(x,y)L)
)2 + C

(

∂t t (det H(x,y)L)
)2

. (100)

As the determinant of the spatial Hessian can be expected
to give strong responses when there are strong intensity
variations in two spatial directions, the corresponding spatio-
temporal operator Qt (det H(x,y)L) can be expected to give
strong responses at such spatial points at which there are
additionally strong intensity variations over time as well.

Genuinely Spatio-Temporal Interest Operators A less tem-
poral slice oriented and more genuine 3-D spatio-temporal
approach to defining interest point detectors from second-
order spatio-temporal derivatives is by considering feature
detectors such as the determinant of the spatio-temporal

Hessian matrix

det H(x,y,t)L = Lxx L yy L t t + 2Lxy Lxt L yt

− Lxx L2
yt − L yy L2

xt − L t t L2
xy, (101)

the rescaled spatio-temporal Gaussian curvature

G(x,y,t)(L)

=
(

(L t (Lxx L t − 2Lx Lxt ) + L2
x L t t )×

(L t (L yy L t − 2L y L yt ) + L2
y L t t )

− (L t (−Lx L yt + Lxy L t − Lxt L y) + Lx L y L t t )
2
)

/L2
t ,

(102)
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which can be seen as a 3-D correspondence of the 2-D
rescaled level curve curvature operator κ̃norm(L) in Eq. (92),
or possibly trying to define a spatio-temporal Laplacian

∇2
(x,y,t)L = Lxx + L yy + ̹2 L t t . (103)

Detection of local extrema of the determinant of the spatio-
temporal Hessian has been proposed as a spatio-temporal
interest point detector by Willems et al. [96]. Properties of
the 3-D rescaled Gaussian curvature have been studied by
Lindeberg [60].

If aiming at defining a spatio-temporal analogue of the
Laplacian operator, one does, however, need to consider that
the most straightforward way of defining such an opera-
tor ∇2

(x,y,t)L = Lxx + L yy + L t t is not covariant under
independent scaling of the spatial and temporal coordinates
as occurs if observing the same scene with cameras hav-
ing independently different spatial and temporal sampling
rates. Therefore, the choice of the relative weighting fac-
tor ̹2 between temporal vs. spatial derivatives introduced in
Eq. (103) is in principle arbitrary. By the homogeneity of the
determinant of the Hessian (101) and the spatio-temporal
Gaussian curvature (102) in terms of the orders of spa-
tial vs. temporal differentiation that are multiplied in each
term, these expressions are on the other hand truly covari-
ant under independent rescalings of the spatial and temporal
coordinates and therefore better candidates for being used as
spatio-temporal interest operators, unless the relative scal-
ing and weighting of temporal vs. spatial coordinates can be
handled by some complementary mechanism.

Spatio-Temporal Quasi Quadrature Entities Inspired by the
way the spatial quasi quadrature measure Q(x,y)L in (93) is
defined as a measure of the amount of information in first- and
second-order spatial derivatives, we may consider different
types of spatio-temporal extensions of this entity

Q1,(x,y,t)L = L2
x + L2

y + ̹2 L2
t +

+ C
(

L2
xx + 2L2

xy + L2
yy + ̹2(L2

xt + L2
yt ) + ̹4L2

t t

)

,

(104)

Q2,(x,y,t)L = Qt L × Q(x,y)L

=
(

L2
t + C L2

t t

)

×
(

L2
x + L2

y + C
(

L2
xx + 2L2

xy + L2
yy

))

, (105)

Q3,(x,y,t)L = Q(x,y)L t + C Q(x,y)L t t

= L2
xt + L2

yt + C
(

L2
xxt + 2L2

xyt + L2
yyt

)

+ C
(

L2
xtt + L2

ytt

+ C
(

L2
xxtt + 2L2

xytt + L2
yytt

))

, (106)

where in the first expression when needed because of dif-
ferent dimensionalities in terms of spatial vs. temporal
derivatives, a free parameter ̹ has been included to adapt
the differential expressions to unknown relative scaling and
thus weighting between the temporal vs. spatial dimensions.5

The formulation of these quasi quadrature entities is
inspired by the existence of non-linear complex cells in the
primary visual cortex that (i) do not obey the superposition
principle, (ii) have response properties independent of the
polarity of the stimuli and (iii) are rather insensitive to the
phase of the visual stimuli as discovered by Hubel and Wiesel
[31,32]. Specifically, De Valois et al. [92] show that first- and
second-order receptive fields typically occur in pairs that can
be modelled as approximate Hilbert pairs.

Within the framework of the presented spatio-temporal
scale-space concept, it is interesting to note that non-linear
receptive fields with qualitatively similar properties can be
constructed by squaring first- and second-order derivative
responses and summing up these components as proposed by
Koenderink and van Doorn [40]. The use of quasi quadrature
model can therefore be interpreted as a Gaussian derivative-
based analogue of energy models as proposed by Adelson
and Bergen [1] and Heeger [29]. To obtain local phase
independence over variations over both space and time simul-
taneously, we do here additionally extend the notion of quasi
quadrature to composed space-time, by simultaneously sum-
ming up squares of odd and even filter responses over both
space and time, leading to quadruples or octuples of fil-
ter responses, complemented by additional terms to achieve
rotational invariance over the spatial domain.

For the first quasi quadrature entity Q1,(x,y,t)L to respond,
it is sufficient if there are intensity variations in the image
data either over space or over time. For the second quasi
quadrature entity Q2,(x,y,t)L to respond, it is on the other
hand necessary that there are intensity variations in the image
data over both space and time. For the third quasi quadra-
ture entity Q3,(x,y,t)L to respond, it is also necessary that
there are intensity variations in the image data over both
space and time. Additionally, the third quasi quadrature entity
Q3,(x,y,t)L requires there to be intensity variations over both
space and time for each primitive receptive field in terms of
plain partial derivatives that contribute to the output of the
composed quadrature entity. Conceptually, the third quasi

5 To make the differential entities in Eqs. (104), (105) and (106) fully
consistent and meaningful, they do additionally have to be transformed
into scale-normalized derivatives as later done in Eqs. (109), (110)
and (111). With scale-normalized derivatives for γ = 1, the resulting
scale-normalized derivatives then become dimensionless, which makes
it possible to add first- and second-order derivatives of the same variable
(over either space or time) in a scale-invariant manner. Then, similar
arguments as are used for deriving the blending parameter C between
first- and second-order temporal derivatives in [52] can be used for
deriving a similar blending parameter between first- and second-order
spatial derivatives.
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quadrature entity can therefore be seen as more related to
the form of temporal quasi quadrature entity applied to the
idealized model of LGN cells in (97)

Qt (∇2
(x,y)L) =

(

∇2
(x,y)L t

)2
+ C

(

∇2
(x,y)L t t

)2
(107)

with the difference that the spatial Laplacian operator ∇2
(x,y)

followed by squaring in (107) is here replaced by the spatial
quasi quadrature operator Q(x,y).

These feature detectors can therefore be seen as biologi-
cally inspired change detectors or as ways of measuring the
combined strength of a set of receptive fields at any point, as
possibly combined with variabilities over other parameters
in the family of receptive fields.

8.5 Scale-Normalized Spatio-Temporal Derivative

Expressions

For regular partial derivatives, normalization with respect to
spatial and temporal scales of a spatio-temporal scale-space
derivative of order m = (m1, m2) over space and order n

over time is performed according to

L
x

m1
1 x

m2
2 tn ,norm = s(m1+m2) αn(τ ) L

x
m1
1 x

m2
2 tn . (108)

Scale normalization of the spatio-temporal differential expres-
sions in Sect. 8.4 is then performed by replacing each
spatio-temporal partial derivative by its corresponding scale-
normalized expression (see [63] for additional details).

For example, for the three quasi quadrature entities in
Eqs. (104), (105) and (106), their corresponding scale-
normalized expressions are of the form:

Q1,(x,y,t),norm L

= s (L2
x + L2

y) + α2
1(τ ) ̹2 L2

t

+ C
(

s2(L2
xx + 2L2

xy + L2
yy)

+ s α2
1(τ ) ̹2(L2

xt + L2
yt ) + α2

2(τ ) ̹4L2
t t

)

, (109)

Q2,(x,y,t),norm L

= Qt,norm L × Q(x,y),norm L

=
(

α2
1(τ ) L2

t + C α2
2(τ ) L2

t t

)

×
(

s (L2
x + L2

y) + C s2
(

L2
xx + 2L2

xy + L2
yy

))

, (110)

Q3,(x,y,t),norm L

= Q(x,y),norm L t + C Q(x,y),norm L t t

= α2
1(τ )

(

s (L2
xt + L2

yt ) + C s2
(

L2
xxt + 2L2

xyt + L2
yyt

))

+ C α2
2(τ )

(

s (L2
xtt + L2

ytt )

+ Cs2(L2
xxtt + 2L2

xytt + L2
yytt )

)

. (111)

8.6 Experimental Results

Figure 7 shows the result of computing the above differential
expressions for a video sequence of a paddler in a kayak.

Comparing the spatio-temporal scale-space representa-
tion L in the top middle figure to the original video f in
the top left, we can first note that a substantial amount of
fine scale spatio-temporal textures, e.g. waves of the water
surface, is suppressed by the spatio-temporal smoothing
operation. The illustrations of the spatio-temporal scale-
space representation L in the top middle figure and its first-
and second-order temporal derivatives L t,norm and L t t,norm

in the left and middle figures in the second row do also show
the spatio-temporal traces that are left by a moving object;
see in particular the image structures below the raised paddle
that respond to spatial points in the image domain where the
paddle has been in the past.

The slight jagginess in the bright response that can be seen
below the paddle in the response to the second-order temporal
derivative L t t,norm is a temporal sampling artefact caused
by sparse temporal sampling in the original video. With 25
frames per second, there are 40 ms between adjacent frames,
during which there may happen a lot in the spatial image
domain for rapidly moving objects. This situation can be
compared to mammalian vision where many receptive fields
operate continuously over time scales in the range 20-100
ms. With 40 ms between adjacent frames, it is not possible to
simulate such continuous receptive fields smoothly over time,
since such a frame rate corresponds to either zero, one or at
best two images within the effective time span of the receptive
field. To simulate rapid continuous time receptive fields more
accurately in a digital implementation, one should therefore
preferably aim at acquiring the input video with a higher
temporal frame rate. Such higher frame rates are indeed now
becoming available, even in consumer cameras. Despite this
limitation in the input data, we can observe that the proposed
model is able to compute geometrically meaningful spatio-
temporal image features from the raw video.

The illustrations of ∂t (∇2
(x,y),norm L) and ∂t t (∇2

(x,y),norm L)

in the left and middle of the third row show the responses
of our idealized model of non-lagged and lagged LGN cells
complemented by a quasi quadrature energy measure of these
responses in the right column. These entities correspond to
applying a spatial Laplacian operator to the first- and second-
order temporal derivatives in the second row and it can be
seen how this operation enhances spatial variations. These
spatio-temporal entities can also be compared to the purely
spatial interest operators, the Laplacian ∇2

(x,y),norm L and the
determinant of the Hessian det H(x,y),norm L in the first and
second rows of the third column. Note how the genuine
spatio-temporal recursive fields enhance spatio-temporal
structures compared to purely spatial operators and how static
structures, such as the label in the lower right corner, disap-
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Fig. 7 Spatio-temporal features computed from a video sequence in
the UCF-101 dataset (Kayaking_g01_c01.avi, cropped) at spatial scale
σx = 2 pixels and temporal scale σt = 0.2 seconds using the proposed
separable spatio-temporal receptive field model with Gaussian filtering
over the spatial domain and here a cascade of 7 recursive filters over
the temporal domain with a logarithmic distribution of the intermediate
scale levels for c =

√
2 and with lp-normalization of both the spatial

and temporal derivative operators. Each figure shows a snapshot around
frames 90–97 for the spatial or spatio-temporal differential expression
shown above the figure with in some cases additional monotone stretch-
ing of the magnitude values to simplify visual interpretation (Image
size: 258 × 172 pixels of original 320 × 240 pixels and 226 frames at
25 frames per second)
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pear altogether by genuine spatio-temporal operators. The
fourth row shows how three other genuine spatio-temporal
operators, the spatio-temporal Hessian ∂t (∇2

(x,y),norm L), the
rescaled Gaussian curvature G(x,y,t),norm L and the quasi
quadrature measure Qt (det H(x,y),norm L), also respond to
points where there are simultaneously both strong spatial
and strong temporal variations.

The bottom row shows three idealized models defined
to mimic qualitatively known properties of complex cells
and expressed in terms of quasi quadrature measures of
spatio-temporal scale-space derivatives. For the first quasi
quadrature entity Q1,(x,y,t),norm L to respond, in which time
is treated in a largely qualitatively similar manner as space,
it is sufficient if there are strong variations over either
space or time. It can be seen that this measure is therefore
not highly selective. For the second and the third entities
Q2,(x,y,t),norm L and Q3,(x,y,t),norm L , it is necessary that there
are simultaneous variations over both space and time, and it
can be seen how these entities are as a consequence more
selective. For the third entity Q3,(x,y,t),norm L , simultaneous
selectivity over both space and time is additionally enforced
on each primitive linear receptive field that is then combined
into the non-linear quasi quadrature measure. We can see
how this quasi quadrature entity also responds stronger to
the moving paddle than the two other quasi quadrature mea-
sures.

8.7 Geometric Covariance and Invariance Properties

Rotations in Image Space The spatial differential expres-
sions |∇(x,y)L|, ∇2

(x,y)L , det H(x,y), κ̃(L) and Q(x,y)L are
all invariant under rotations in the image domain and so
are the spatio-temporal derivative expressions ∂t (∇2

(x,y)L),

∂t t (∇2
(x,y)L),Qt (∇2

(x,y)L), ∂t (det H(x,y)L), ∂t t (det H(x,y)L),

Qt (det H(x,y)L), det H(x,y,t)L , G(x,y,t)L , ∇2
(x,y,t)L ,

Q1,(x,y,t)L , Q2,(x,y,t)L and Q3,(x,y,t)L as well as their cor-
responding scale-normalized expressions.

Uniform Rescaling of the Spatial Domain Under a uniform
scaling transformation of image space, the spatial differential
invariants |∇(x,y)L|, ∇2

(x,y)L , det H(x,y) and κ̃(L) are covari-
ant under spatial scaling transformations in the sense that
their magnitude values are multiplied by a power of the scal-
ing factor, and so are their corresponding scale-normalized
expressions. Also the spatio-temporal differential invariants
∂t (∇2

(x,y)L), ∂t t (∇2
(x,y)L), ∂t (det H(x,y)L), ∂t t (det H(x,y)L),

det H(x,y,t)L and G(x,y,t)L and their corresponding scale-
normalized expressions are covariant under spatial scaling
transformations in the sense that their magnitude values are
multiplied by a power of the scaling factor under such spatial
scaling transformations.

The quasi quadrature entity Q(x,y),norm L is however not
covariant under spatial scaling transformations and not the

spatio-temporal differential invariants Qt,norm(∇2
(x,y)L),

Qt,norm(det H(x,y)L), Q1,(x,y,t),norm L , Q2,(x,y,t),norm L and
Q3,(x,y,t),norm L either. Due to the form of Q(x,y),norm L ,
Qt,norm(∇2

(x,y)L),Qt,norm(det H(x,y)L),Q2,(x,y,t),norm L and
Q3,(x,y,t),norm L as being composed of sums of scale-
normalized derivative expressions for γ = 1, these derivative
expressions can, however, anyway be made scale invariant
when combined with a spatial scale selection mechanism.

Uniform Rescaling of the Temporal Domain Independent

of the Spatial Domain Under an independent rescaling of
the temporal dimension while keeping the spatial dimen-
sion fixed, the partial derivatives L

x
m1
1 x

m1
2 tn (x1, x2, t; s, τ )

are covariant under such temporal rescaling transformations,
and so are the directional derivatives Lϕm1⊥ϕm2 tn for image
velocity v = 0. For non-zero image velocities, the image
velocity parameters of the receptive field would on the other
hand need to be adapted to the local motion direction of the
objects/spatio-temporal events of interest to enable matching
between corresponding spatio-temporal directional deriva-
tive operators.

Under an independent rescaling of the temporal dimension
while keeping the spatial dimension fixed, also the spatio-
temporal differential invariants ∂t (∇2

(x,y)L), ∂t t (∇2
(x,y)L),

∂t (det H(x,y)L), ∂t t (det H(x,y)L), det H(x,y,t)L andG(x,y,t)L

are covariant under independent rescaling of the temporal vs.
spatial dimensions. The same applies to their corresponding
scale-normalized expressions.

The spatio-temporal differential invariants Qt,norm

(∇2
(x,y)L), Qt,norm(det H(x,y)L), Q1,(x,y,t),norm L ,

Q2,(x,y,t),norm L and Q3,(x,y,t),norm L are however not covari-
ant under independent rescaling of the temporal vs. spatial
dimensions and would therefore need a temporal scale selec-
tion mechanism to enable temporal scale invariance.

8.8 Invariance to Illumination Variations and Exposure

Control Mechanisms

Because of all these expressions being composed of spatial,
temporal and spatio-temporal derivatives of non-zero order,
it follows that all these differential expressions are invariant
under additive illumination transformations of the form L �→
L + C .

This means that if we would take the image values f

as representing the logarithm of the incoming energy f ∼
log I or f ∼ log I γ = γ log I , then all these differential
expressions will be invariant under local multiplicative illu-
mination transformations of the form I �→ C I implying
L ∼ log I + log C or L ∼ log I γ = γ (log I + log C).
Thus, these differential expressions will be invariant to local
multiplicative variabilities in the external illumination (with
locality defined as over the support region of the spatio-
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temporal receptive field) or multiplicative exposure control
parameters such as the aperture of the lens and the integration
time or the sensitivity of the sensor.

More formally, let us assume a (i) perspective camera
model extended with (ii) a thin circular lens for gathering
incoming light from different directions and (iii) a Lam-
bertian illumination model extended with (iv) a spatially
varying albedo factor for modelling the light that is reflected
from surface patterns in the world. Then, by theoretical
results in Lindeberg [57, Sect. 2.3] a spatio-temporal recep-
tive field response Lxm1 ym2 tn (·, ·; s, τ ) where Ts,τ represents
the spatio-temporal smoothing operator can be expressed as

Lxm1 ym2 tn

= ∂xm1 ym2 tn Ts,τ

(

log ρ(x, y, t) + log i(x, y, t)

+ log Ccam( f̃ (t)) + V (x, y)
)

(112)

where (i) ρ(x, y, t) is a spatially dependent albedo factor,
(ii) i(x, y, t) denotes a spatially dependent illumination field,
(iii) Ccam( f̃ (t)) = π

4
d
f

represents possibly time-varying
internal camera parameters and (iv) V (x, y) = −2 log(1 +
x2 + y2) represents a geometric natural vignetting effect.

From the structure of Eq. (112), we can note that for any
non-zero order of spatial differentiation m1 + m2 > 0, the
influence of the internal camera parameters in Ccam( f̃ (t))

will disappear because of the spatial differentiation with
respect to x1 or x2, and so will the effects of any other multi-
plicative exposure control mechanism. Furthermore, for any
multiplicative illumination variation i ′(x, y) = C i(x, y),
where C is a scalar constant, the logarithmic luminosity will
be transformed as log i ′(x, y) = log C + log i(x, y), which
implies that the dependency on C will disappear after spa-
tial differentiation. For purely temporal derivative operators,
that do not involve any order of spatial differentiation, such as
the first- and second-order derivative operators, L t and L t t ,

strong responses may on the other hand be obtained due to
illumination compensation mechanisms that vary over time
as the results of rapid variations in the illumination. If one
wants to design spatio-temporal feature detectors that are
robust to illumination variations and to variations in exposure
compensation mechanisms caused by these, it is therefore
essential to include non-zero orders of spatial differentiation.
The use of Laplacian-like filtering in the first stages of visual
processing in the retina and the LGN can therefore be inter-
preted as a highly suitable design to achieve robustness of
illumination variations and adaptive variations in the diame-
ter of the pupil caused by these, while still being expressed in
terms of rotationally symmetric linear receptive fields over
the spatial domain.

If we extend this model to the simplest form of position-
and time-dependent illumination and/or exposure variations
as modelled on the form

L �→ L + Ax + By + Ct (113)

then we can see that the spatio-temporal differential invari-
ants ∂t (∇2

(x,y)L), ∂t t (∇2
(x,y)L),Qt (∇2

(x,y)L), ∂t (det H(x,y)L),
∂t t (det H(x,y)L), Qt (det H(x,y)L), det H(x,y,t)L , G(x,y,t)L

∇2
(x,y,t)L andQ3,(x,y,t)L are all invariant under such position-

and time-dependent illumination and/or exposure variations.
The quasi quadrature entities Q1,(x,y,t)L and Q2,(x,y,t)L

are however not invariant to such position- and time-
dependent illumination variations. This property can in
particular be noted for the quasi quadrature entity Q1,(x,y,t)L ,
for which what seems as initial time-varying exposure com-
pensation mechanisms in the camera lead to large responses
in the initial part of the video sequence (see Fig. 8, left). Out
of the three quasi quadrature entities Q1,(x,y,t)L , Q2,(x,y,t)L

and Q3,(x,y,t)L , the third quasi quadrature entity does there-
fore possess the best robustness properties to illumination
variations (see Fig. 8, right).

Fig. 8 Illustration of the influence of temporal illumination or expo-
sure compensation mechanisms on spatio-temporal receptive field
responses, computed from the video sequence Kayaking_g01_c01.avi
(cropped) in the UCF-101 dataset. Each figure shows a snapshot at
frame 8 for the quasi quadrature entity shown above the figure with addi-
tional monotone stretching of the magnitude values to simplify visual
interpretation. Note how the time-varying illumination or exposure

compensation leads to a strong overall response in the first quasi quadra-
ture entity Q1,(x,y,t),norm L caused by strong responses in the purely
temporal derivatives L t and L t t , whereas the responses of second and
the third quasi quadrature entities Q2,(x,y,t),norm L and Q3,(x,y,t),norm L

are much less influenced. Indeed, for a logarithmic brightness scale,
the third quasi quadrature entity Q3,(x,y,t),norm L is invariant under such
multiplicative illumination or exposure compensation variations
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9 Summary and Discussion

We have presented an improved computational model for
spatio-temporal receptive fields based on time-causal and
time-recursive spatio-temporal scale-space representation
defined from a set of first-order integrators or truncated expo-
nential filters coupled in cascade over the temporal domain
in combination with a Gaussian scale-space concept over the
spatial domain. This model can be efficiently implemented
in terms of recursive filters over time and we have shown
how the continuous model can be transferred to a discrete
implementation while retaining discrete scale-space proper-
ties. Specifically, we have analysed how remaining design
parameters within the theory, in terms of the number of
first-order integrators coupled in cascade and a distribution
parameter of a logarithmic distribution, affect the temporal
response dynamics in terms of temporal delays.

Compared to other spatial and temporal scale-space rep-
resentations based on continuous scale parameters, a concep-
tual difference with the temporal scale-space representation
underlying the proposed spatio-temporal receptive fields is
that the temporal scale levels have to be discrete. Thereby, we
sacrifice a continuous scale parameter and full scale invari-
ance as resulting from the Gaussian scale-space concepts
based on causality or non-enhancement of local extrema pro-
posed by Koenderink [38] and Lindeberg [56] or used as a
scale-space axiom in the scale-space formulations by Iijima
[34], Florack et al. [23], Pauwels et al. [77] and Weickert
et al. [93–95], Duits et al. [14,15] and Fagerström [16,17];
see also the approaches by Witkin [97], Babaud et al. [3],
Yuille and Poggio [98], Koenderink and van Doorn [40,41],
Lindeberg [45,48–51,58], Florack et al. [21–23], Alvarez et
al. [2], Guichard [26], ter Haar Romeny et al [27,28], Fels-
berg and Sommer [19] and Tschirsich and Kuijper [90] for
other scale-space formulations closely related to this work,
as well as Fleet and Langley [20], Freeman and Adelson
[25], Simoncelli et al. [89] and Perona [78] for more filter-
oriented approaches, Miao and Rao [74], Duits and Burgeth
[13], Cocci et al. [9], Barbieri et al. [4] and Sharma and
Duits [91] for Lie group approaches for receptive fields and
Lindeberg and Friberg [67,68] for the application of closely
related principles for deriving idealized computational mod-
els of auditory receptive fields.

When using a logarithmic distribution of the intermediate
scale levels, we have however shown that by a limit con-
struction when the number of intermediate temporal scale
levels tends to infinity, we can achieve true self-similarity
and scale invariance over a discrete set of scaling factors.
For a vision system intended to operate in real time using no
other explicit storage of visual data from the past than a com-
pact time-recursive buffer of spatio-temporal scale-space at
different temporal scales, the loss of a continuous temporal
scale parameter may however be less of a practical constraint,

since one would anyway have to discretize the temporal scale
levels in advance to be able to register the image data to be
able to perform any computations at all.

In the special case when all the time constants of the first-
order integrators are equal, the resulting temporal smoothing
kernels in the continuous model (29) correspond to Laguerre
functions (Laguerre polynomials multiplied by a truncated
exponential kernel), which have been previously used for
modelling the temporal response properties of neurons in the
visual system by den Brinker and Roufs [8] and for com-
puting spatio-temporal image features in computer vision by
Berg et al. [79] and Rivero Moreno and Bres [7]. Regard-
ing the corresponding discrete model with all time constants
equal, the corresponding discrete temporal smoothing ker-
nels approach Poisson kernels when the number of temporal
smoothing steps increases while keeping the variance of the
composed kernel fixed [66]. Such Poisson kernels have also
been used for modelling biological vision by Fourtes and
Hodgkin [24]. Compared to the special case with all time
constants equal, a logarithmic distribution of the intermedi-
ate temporal scale levels (18) does on the other hand allow for
larger flexibility in the trade-off between temporal smoothing
and temporal response characteristics, specifically enabling
faster temporal responses (shorter temporal delays) and
higher computational efficiency when computing multiple
temporal or spatio-temporal receptive field responses involv-
ing coarser temporal scales.

From the detailed analysis in Sect. 5 and Appendix 1, we
can conclude that when the number of first-order integra-
tors that are coupled in cascade increases while keeping the
variance of the composed kernel fixed, the time-causal ker-
nels obtained by composing truncated exponential kernels
with equal time constants in cascade tend to a limit kernel
with skewness and kurtosis measures zero, or equivalently
third- and fourth-order cumulants equal to zero, whereas
the time-causal kernels obtained by composing truncated
exponential kernels having a logarithmic distribution of the
intermediate scale levels tend to a limit kernel with non-
zero skewness and non-zero kurtosis This property reveals
a fundamental difference between the two classes of time-
causal scale-space kernels based on either a logarithmic or a
uniform distribution of the intermediate temporal scale lev-
els.

In a complementary analysis in Appendix 2, we have
also shown how our time-causal kernels can be related to
the temporal kernels in Koenderink’s scale-time model [39].
By identifying the first- and second-order temporal moments
of the two classes of kernels, we have derived closed-form
expressions to relate the parameters between the two mod-
els, and showed that although the two classes of kernels to
a large extent share qualitatively similar properties, the two
classes of kernels differ significantly in terms of their third-
and fourth-order skewness and kurtosis measures.
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The closed-form expressions for Koenderink’s scale-time
kernels are analytically simpler than the explicit expressions
for our kernels, which will be sums of truncated exponential
kernels for all the time constants with the coefficients deter-
mined from a partial fraction expansion. In this respect, the
derived mapping between the parameters of our and Koen-
derink’s models can be used, e.g., for estimating the time of
the temporal maximum of our kernels, which would other-
wise have to be determined numerically. Our kernels do on
the other hand have a clear computational advantage in that
they are truly time-recursive, meaning that the primitive first-
order integrators in the model contain sufficient information
for updating the model to new states over time, whereas the
kernels in Koenderink’s scale-time model appear to require
a complete memory of the past, since they do not have any
known time-recursive formulation.

Regarding the purely temporal scale-space concept used
in our spatio-temporal model, we have notably replaced the
assumption of a semigroup structure over temporal scales
by a weaker Markov property, which however anyway guar-
antees a necessary cascade property over temporal scales,
to ensure gradual simplification of the temporal scale-space
representation from any finer to any coarser temporal scale.
By this relaxation of the requirement of a semigroup over
temporal scales, we have specifically been able to define
a temporal scale-space concept with much better temporal
dynamics than the time-causal semigroups derived by Fager-
ström [16] and Lindeberg [56]. Since this new time-causal
temporal scale-space concept with a logarithmic distribution
of the intermediate temporal scale levels would not be found
if one would start from the assumption about a semigroup
over temporal scales as a necessary requirement, we propose
that in the area of scale-space axiomatics, the assumption
of a semigroup over temporal scales should not be regarded
as a necessary requirement for a time-causal temporal scale-
space representation.

Recently, and during the development of this article,
Mahmoudi [70] has presented a very closely related while
more neurophysiologically motivated model for visual recep-
tive fields, based on an electrical circuit model with spatial
smoothing determined by local spatial connections over a
spatial grid and temporal smoothing by first-order tempo-
ral integration. The spatial component in that model is very
closely related to our earlier discrete scale-space models over
spatial and spatio-temporal grids [45,51,54] as can be mod-
elled by Z-transforms of the discrete convolution kernels and
an algebra of spatial or spatio-temporal covariance matrices
to model the transformation properties of the receptive fields
under locally linearized geometric image transformations.
The temporal component in that model is in turn similar to our
temporal smoothing model by first-order integrators coupled
in cascade as initially proposed in [45,66], suggested as one
of three models for temporal smoothing in spatio-temporal

visual receptive fields in [57–59] and then refined and fur-
ther developed in [62,63] and this article. Our model can also
be implemented by electric circuits, by combining the tem-
poral electric model in Fig. 1 with the spatial discretization
in Sect. 6.3 or more general connectivities between adja-
cent layers to implement velocity-adapted receptive fields
as can then be described by their resulting spatio-temporal
covariance matrices. Mahmoudi compares such electrically
modelled receptive fields to results of neurophysiological
recordings in the LGN and the primary visual cortex in a
similar way as we compared our theoretically derived recep-
tive fields to biological receptive fields in [51,56,57,62] and
in this article.

Mahmoudi shows that the resulting transfer function in the
layered electric circuit model approaches a Gaussian when
the number of layers tends to infinity. This result agrees with
our earlier results that the discrete scale-space kernels over a
discrete spatial grid approach the continuous Gaussian when
the spatial scale increment tends to zero, while the spatial
scale level is held constant [45] and that the temporal smooth-
ing function corresponding to a set of first-order integrators
with equal time constants coupled in cascade tends to the
Poisson kernel (which in turn approaches the Gaussian ker-
nel) when the temporal scale increment tends to zero while
the temporal scale level is held constant [66].

In his article, Mahmoudi [70] makes a distinction between
our scale-space approach, which is motivated by the mathe-
matical structure of the environment in combination with a set
of assumptions about the internal structure of a vision system
to guarantee internal consistency between image representa-
tions at different spatial and temporal scales, and his model
motivated by assumptions about neurophysiology. One way
to reconcile these views is by following the evolutionary
arguments proposed in Lindeberg [57,59]. If there is a strong
evolutionary pressure on a living organism that uses vision as
a key source of information about its environment (as there
should be for many higher mammals), then in the competi-
tion between two species or two individuals from the same
species, there should be a strong evolutionary advantage for
an organism that as much as possible adapts the structure
of its vision system to be consistent with the structural and
transformation properties of its environment. Hence, there
could be an evolutionary pressure for the vision system of
such an organism to develop similar types of receptive fields
as can be derived by an idealized mathematical theory, and
specifically develop neurophysiological wetware that per-
mits the computation of sufficiently good approximations to
idealized receptive fields as derived from mathematical and
physical principles. From such a viewpoint, it is highly inter-
esting to see that the neurophysiological cell recordings in the
LGN and the primary visual cortex presented by DeAngelis
et al. [11,12] are in very good qualitative agreement with the
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predictions generated by our mathematically and physically
motivated normative theory (see Figs. 3 and 4).

Given the derived time-causal and time-recursive formu-
lation of our basic linear spatio-temporal receptive fields, we
have described how this theory can be used for computing
different types of both linear and non-linear scale-normalized
spatio-temporal features. Specifically, we have emphasized
how scale normalization by L p-normalization leads to fun-
damentally different results compared to more traditional
variance-based normalization. By the formulation of the cor-
responding scale normalization factors for discrete temporal
scale space, we have also shown how they permit the for-
mulation of an operational criterion to estimate how many
intermediate temporal scale levels are needed to approximate
true scale invariance up to a given tolerance.

Finally, we have shown how different types of spatio-
temporal features can defined in terms of spatio-temporal
differential invariants built from spatio-temporal receptive
field responses, including their transformation properties
under natural image transformations, with emphasis on
independent scaling transformations over space vs. time,
rotational invariance over the spatial domain and illumina-
tion and exposure control variations. We propose that the
presented theory can be used for computing features for
generic purposes in computer vision and for computational
modelling of biological vision for image data over a time-
causal spatio-temporal domain, in an analogous way as the
Gaussian scale-space concept constitutes a canonical model
for processing image data over a purely spatial domain.
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Appendix 1: Frequency Analysis of the

Time-Causal Kernels

In this appendix, we will perform an in-depth analysis of
the proposed time-causal scale-space kernels with regard to
their frequency properties and moment descriptors derived
via the Fourier transform, both for the case of a logarithmic
distribution of the intermediate temporal scale levels and a
uniform distribution of the intermediate temporal scale lev-
els. Specifically, the results to be derived will provide a way
to characterize properties of the limit kernel when the number
of temporal scale levels K tends to infinity.

Logarithmic Distribution of the Intermediate Scale

Levels

In Sect. 5, we gave the following explicit expressions for
the Fourier transform of the time-causal kernels based on a
logarithmic distribution of the intermediate scale levels

ĥexp(ω; τ, c, K ) = 1

1 + i c1−K
√

τ ω

K
∏

k=2

1

1 + i ck−K−1
√

c2 − 1
√

τ ω
(114)

for which the magnitude and the phase are given by

|ĥexp(ω; τ, c, K )|

= 1
√

1 + c2(1−K )τ ω2

K
∏

k=2

1
√

1 + c2(k−K−1)(c2 − 1)τ ω2
,

(115)

arg ĥexp(ω; τ, c, K )

= arctan
(

c1−K √
τ ω

)

+
K

∑

k=2

arctan
(

ck−K−1
√

c2 − 1
√

τ ω
)

.

(116)

Let us rewrite the magnitude of the Fourier transform on
exponential form

|ĥexp(ω; τ, c, K )| = elog |ĥexp(ω; τ,c,K )|

= e− 1
2 log(1+c2(1−K )τ ω2)− 1

2

∑K
k=2 log(1+c2(k−K−1)(c2−1)τ ω2)

(117)

and compute the Taylor expansion of

log |ĥexp(ω; τ, c, K )| = C2ω
2 + C4ω

4 + O(ω6), (118)

where

C2 = −τ

2
, (119)

C4 = −
τ 2

(

−2c4−4K − c2 + 1
)

4
(

c2 + 1
) →

(

c2 − 1
)

τ 2

4
(

c2 + 1
) , (120)

and the rightmost expression for C4 shows the limit value
when the number K of first-order integrators coupled in cas-
cade tends to infinity.

Let us next compute the Taylor expansion of

arg ĥexp(ω; τ, c, K ) = C1ω + C3ω
3 + O(ω5) (121)
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where the coefficients are given by

C1 =
√

τc−K
(

−c2 +
√

c2 − 1c −
√

c2 − 1cK + c
)

c − 1

→ −

√

(

c2 − 1
) √

τ

c − 1
, (122)

C3 =
√

c2 − 1τ 3/2

3
(

c2 + c + 1
)

((

c3K + c3K+1 − c4 − c3
)

c−3K

+
(

c5 + c4 + c3
)

τ 3/2c−3K
)

→ (c + 1)
√

c2 − 1 τ 3/2

3
(

c2 + c + 1
) , (123)

and again the rightmost expressions for C1 and C3 show
the limit values when the number K of scale levels tends to
infinity.

Following the definition of cumulants κn defined as the
Taylor coefficients of the logarithm of the Fourier transform

log h(ω) =
∞
∑

n=0

κn

(−iω)n

n! , (124)

we obtain

log ĥexp (ω; τ, c, K )

= −C1 (−iω) − C2 (−iω)2 + C3 (−iω)3

+ C4 (−iω)4 + O

(

iω5
)

= κ0 + κ1

1! (−iω) + κ2

2!
(

−iω2
)

+ κ3

3! (−iω)3

+ κ4

4! (−iω)4 + O

(

iω5
)

(125)

and can read the cumulants of the underlying temporal scale-
space kernel as κ0 = 0, κ1 = −C1, κ2 = −2C2, κ3 = 6C3

and κ4 = 24C4. Specifically, the first-order moment M1 and
the higher order central moments M2, M3 and M4 are related
to the cumulants according to

M1 = κ1 = −C1 →

√

(

c2 − 1
) √

τ

c − 1
, (126)

M2 = κ2 = −2C2 = τ, (127)

M3 = κ3 = 6C3 → 2(c + 1)
√

c2 − 1 τ 3/2

(

c2 + c + 1
) , (128)

M4 = κ4 + 3κ2
2 = 24C4 + 12C2

2 →
3
(

3c2 − 1
)

τ 2

c2 + 1
. (129)

Fig. 9 Graphs of the skewness measure γ1 (130) and the kurtosis
measure γ2 (131) as function of the distribution parameter c for the time-
causal scale-space kernels corresponding to limit case of K truncated
exponential kernels having a logarithmic distribution of the intermedi-
ate scale levels coupled in cascade in the limit case when the number
of scale levels K tends to infinity

Thus, the skewness γ1 and the kurtosis γ2 measures of the
corresponding temporal scale-space kernels are given by

γ1 = κ3

κ
3/2
2

= M3

M
3/2
2

= 3C3√
2(−C2)3/2

→ 2(c + 1)
√

c2 − 1
(

c2 + c + 1
) ,

(130)

γ2 = κ4

κ2
2

= M4

M2
2

− 3 = 6
C4

C2
2

→
6
(

c2 − 1
)

c2 + 1
. (131)

Figure 9 shows graphs these skewness and kurtosis measures
as function of the distribution parameter c for the limit case
when the number of scale levels K tends to infinity. As can
be seen, both the skewness and the kurtosis measures of the
temporal scale-space kernels increase with increasing values
of the distribution parameter c.

123



J Math Imaging Vis (2016) 55:50–88 81

(b) Uniform Distribution of the Intermediate Scale

Levels

When using a uniform distribution of the intermediate scale
levels (16), the time constants of the individual first-order
integrators are given by (17), and the explicit expression for
the Fourier transform (11) is

ĥexp(ω; τ, K ) = 1
(

1 + i
√

τ
K

ω
)K

. (132)

Specifically, the magnitude and the phase of the Fourier trans-
form are given by

|ĥexp(ω; τ, K )| = 1
(

1 + τ
K

ω2
)K/2

, (133)

arg ĥexp(ω; τ, K ) = −K arctan

(
√

τ

K
ω

)

. (134)

Let us rewrite the magnitude of the Fourier transform on
exponential form

|ĥexp(ω; τ, K )| = elog |ĥexp(ω; τ,K )| = e− K
2 log(1+ τ

K
ω2)

(135)

and compute the Taylor expansion of

log |ĥexp(ω; τ, K )| = C2ω
2 + C4ω

4 + O(ω6) (136)

where

C2 = −τ

2
, (137)

C4 = τ 2

4K
. (138)

Next, let us compute the Taylor expansion of

arg ĥexp(ω; τ, K ) = C1ω + C3ω
3 + O(ω5) (139)

where the coefficients are given by

C1 = −
√

K τ , (140)

C3 = τ 3/2

3
√

K
. (141)

Following the definition of cumulants κn according to (124),
we can in an analogous way to (125) in previous section read
κ0 = 0, κ1 = −C1, κ2 = −2C2, κ3 = 6C3 and κ4 = 24C4,
and relate the first-order moment M1 and the higher order
central moments M2, M3 and M4 to the cumulants according
to

M1 = κ1 = −C1 =
√

K τ , (142)

M2 = κ2 = −2C2 = τ, (143)

M3 = κ3 = 6C3 = 2τ 3/2

√
K

, (144)

M4 = κ4 + 3κ2
2 = 24C4 + 12C2

2 = 3τ 2 + 6τ 2

K
. (145)

Thus, the skewness γ1 and the kurtosis γ2 of the correspond-
ing temporal scale-space kernels are given by

γ1 = κ3

κ
3/2
2

= M3

M
3/2
2

= 2√
K

, (146)

γ2 = κ4

κ2
2

= M4

M2
2

− 3 = 6

K
. (147)

From these expressions, we can note that when the num-
ber K of first-order integrators that are coupled in cascade
increases, these skewness and kurtosis measures tend to
zero for the temporal scale-space kernels having a uniform
distribution of the intermediate temporal scale levels. The
corresponding skewness and kurtosis measures (130) and
(131) for the kernels having a logarithmic distribution of
the intermediate temporal scale levels do on the other hand
remain strictly positive. These properties reveal a funda-
mental difference between the two classes of time-causal
kernels obtained by distributing the intermediate scale levels
of first-order integrators coupled in cascade according to a
logarithmic vs. a uniform distribution.

Appendix 2: Comparison with Koenderink’s

Scale-Time Model

In his scale-time model, Koenderink [39] proposed to per-
form a logarithmic mapping of the past via a time delay
δ and then applying Gaussian smoothing on the trans-
formed domain, leading to a time-causal kernel of the
form, here largely following the notation in Florack [21,
result 4.6, p. 116]

hlog(t; σ, δ, a) = 1√
2πσ(δ − a)

e
−

log2
(

t−a
δ−a

)

2σ2 (148)

with a denoting the present moment, δ denoting the time
delay and σ is a dimensionless temporal scale parameter rel-
ative to the logarithmic time axis. For simplicity, we will
henceforth assume a = 0 leading to kernels of the form

hlog(t; σ, δ) = 1√
2πσ δ

e
− log2( t

δ )
2σ2 (149)

and with convolution reversal of the time axis such that
causality implies hlog(t; σ, δ) = 0 for t < 0. By integrating
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this kernel symbolically in Mathematica, we find

∫ ∞

t=−∞
hlog(t; σ, δ) dt = e

σ2

2 (150)

implying that the corresponding time-causal kernel normal-
ized to unit L1-norm should be

hKoe(t; σ, δ) = 1√
2πσ δ

e
− log2( t

δ )
2σ2 − σ2

2 . (151)

The temporal mean of this kernel is

M1 = t̄ =
∫ ∞

t=−∞
t hKoe(t; σ, δ) dt = δ e

3σ2

2 (152)

and the higher order central moments are

M2 =
∫ ∞

t=−∞
(t − t̄)2 hKoe(t; σ, δ) dt

= δ2e3σ 2
(

eσ 2 − 1
)

, (153)

M3 =
∫ ∞

t=−∞
(t − t̄)3 hKoe(t; σ, δ) dt

= δ3e
9σ2

2

(

eσ 2 − 1
)2 (

eσ 2 + 2
)

, (154)

M4 =
∫ ∞

t=−∞
(t − t̄)4 hKoe(t; σ, δ) dt (155)

= δ4e6σ 2
(

eσ 2 − 1
)2 (

3e2σ 2 + 2e3σ 2 + e4σ 2 − 3
)

.

(156)

Thus, the skewness γ1 and the kurtosis γ2 of the temporal
kernels in Koenderink’s scale-time model are given by (see
Fig. 10 for graphs)

γ1 = M3

M
3/2
2

=
√

eσ 2 − 1
(

eσ 2 + 2
)

, (157)

γ2 = M4

M2
2

− 3 = 3e2σ 2 + 2e3σ 2 + e4σ 2 − 6. (158)

If we want to relate these kernels in Koenderink’s scale-
time model to our time-causal scale-space kernels, a natural
starting point is to require that the total amount of tempo-
ral smoothing as measured by the variances M2 of the two
kernels should be equal. Then, this implies the relation

τ = δ2e3σ 2
(

eσ 2 − 1
)

. (159)

If we additionally relate the kernels by enforcing the temporal
delays as measured by the first-order temporal moments to
be equal, then we obtain for the limit case when K → ∞

Fig. 10 Graphs of the skewness measure γ1 (157) and the kurtosis
measure γ2 (158) as function of the dimensionless temporal scale para-
meter σ relative to the logarithmic transformation of the past for the
time-causal kernels in Koenderink’s scale-time model

t̄ =
√

c + 1

c − 1

√
τ = δ e

3σ2

2 . (160)

Solving the system of Eqs. (159) and (160) then gives the fol-
lowing mappings between the parameters in the two temporal
scale-space models

⎧

⎨

⎩

τ = δ2 e3σ 2
(

eσ 2 − 1
)

c = eσ2

2−eσ2

⎧

⎪

⎨

⎪

⎩

σ =
√

log
(

2c
c+1

)

δ = (c+1)2√τ

2
√

2
√

(c−1)c3

(161)

which hold as long as c > 1 and σ <
√

log 2 ≈ 0.832.
Specifically, for small values of σ , a series expansion of the
relations to the left gives

{

τ = δ2σ 2
(

1 + 7σ 2

2 + 37σ 4

6 + 175σ 6

24 + O(σ 8)
)

,

c = 1 + 2σ 2 + 3σ 4 + 13σ 6

3 + O(σ 8).
(162)

If we additionally reparameterize the distribution parameter
c such that c = 2a for some a > 0 and perform a series
expansion, we obtain
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a =
σ 2 − log

(

2 − eσ 2
)

log(2)

= 2σ 2

log 2

(

1 + σ 2

2
+ σ 4

2
+ 13σ 6

24
+ O(σ 8)

)

(163)

and with b = a log 2 to simplify the following expressions

⎧

⎨

⎩

σ =
√

b√
2

(

1 − b
8 − b2

128 + 13b3

3072 + 49b4

98304 + O(b5)
)

,

δ =
√

2
√

τ√
b

(

1 − 3b
4 + 49b2

96 − 31b3

128 + 959b4

10240 + O(b5)
)

.

(164)

These expressions relate the parameters in the two temporal
scale-space models in the limit case when the number of
temporal scale levels tends to infinity for the time-causal
model based on first-order integrators coupled in cascade and
with a logarithmic distribution of the intermediate temporal
scale levels.

For a general finite value of K , the corresponding relation
to (160) that identifies the first-order temporal moments does
instead read

t̄ =
c−K

(

c2 −
(
√

c2 − 1 + 1
)

c +
√

c2 − 1 cK
)

c − 1

√
τ = δ e

3σ2

2 .

(165)

Solving the system of Eqs. (159) and (165) then gives

⎧

⎪

⎨

⎪

⎩

σ =
√

log
(

A
B

)

δ = C
√

τ

2
√

2(c−1)cK
(

D
E

)3/2
(166)

where

A = 2c
(

c4K − 4cK+2 − 4cK+3 + 3c2K+3

− 3c3K+2 + c4K+1 + 2c3

+
(
√

c2 − 1 − 1
)

c3K −
(
√

c2 − 1 − 4
)

c2K+1

+
(
√

c2 − 1 + 5
)

c2K+2 −
(
√

c2 − 1 + 4
)

c3K+1
)

,

(167)

B =
(

c2K − 2cK+1 − 2cK+2 + c2K+1 + 2c2
)2

, (168)

C =
(

c2 −
(
√

c2 − 1 + 1
)

c +
√

c2 − 1cK
)

, (169)

D = c
(

c4K − 4cK+2 − 4cK+3 + 3c2K+3 − 3c3K+2

+ c4K+1 + 2c3

+
(
√

c2 − 1 − 1
)

c3K −
(
√

c2 − 1 − 4
)

c2K+1

+
(
√

c2 − 1 + 5
)

c2K+2 −
(
√

c2 − 1 + 4
)

c3K+1
)

,

(170)

E =
(

c2K − 2cK+1 − 2cK+2 + c2K+1 + 2c2
)2

. (171)

Unfortunately, it is harder to derive a closed-form expression
for c as function of σ for a general (non-infinite) value of K .

Figure 11 shows examples of kernels from the two fam-
ilies generated for this mapping between the parameters in
the two families of temporal smoothing kernels for the limit
case (161) when the number of temporal scale levels tends to
infinity. As can be seen from the graphs, the kernels from
the two families do to a first approximation share qual-
itatively largely similar properties. From a more detailed
inspection, we can, however, note that the two families of
kernels differ more in their temporal derivative responses
in that (i) the temporal derivative responses are lower and
temporally more spread out (less peaky) in the time-causal
scale-space model based on first-order integrators coupled
in cascade compared to Koenderink’s scale-time model and
(ii) the temporal derivative responses are somewhat faster in
the temporal scale-space model based on first-order integra-
tors coupled in cascade.

A side effect of this analysis is that if we take the liberty
of approximating the limit case of the time-causal kernels
corresponding to a logarithmic distribution of the interme-
diate scale levels by the kernels in Koenderink’s scale-time
model with the parameters determined such that the first- and
second-order temporal moments are equal, then we obtain the
following approximate expression for the temporal location
of the maximum point of the limit kernel

tmax ≈ (c + 1)2 √
τ

2
√

2
√

(c − 1)c3
= δ. (172)

From the discussion above, it follows that this estimate can
be expected to be an overestimate of the temporal location of
the maximum point of our time-causal kernels. This overes-
timate will, however, be better than the previously mentioned
overestimate in terms of the temporal mean. For finite values
of K not corresponding to the limit case, we can for higher
accuracy alternatively estimate the position of the local max-
imum from δ in (166).

Figure 12 shows an additional quantification of the dif-
ferences between these two classes of temporal smoothing
kernels by showing how the skewness and the kurtosis mea-
sures vary as function of the distribution parameter c for the
same mapping (161) between the parameters in the two fam-
ilies of temporal smoothing kernels. As can be seen from
the graphs, both the skewness and the kurtosis measures
are higher for the kernels in Koenderink’s scale-time model
compared to our time-causal kernels corresponding to first-
order integrators coupled in cascade and do in these respect
correspond to a larger deviation from a Gaussian behav-
iour over the temporal domain. (Recall that for a purely
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h(t; K = 7, c =
√

2) ht(t; K = 7, c =
√

2) htt(t; K = 7, c =
√

2)

h(t; K = 7, c = 23/4) ht(t; K = 7, c = 23/4) htt(t; K = 7, c = 23/4)

h(t; K = 7, c = 2) ht(t; K = 7, c = 2) htt(t; K = 7, c = 2)

Fig. 11 Comparison between the proposed time-causal kernels corre-
sponding to the composition of truncated exponential kernels in cascade
(blue curves) for a logarithmic distribution of the intermediate scale lev-
els and the temporal kernels in Koenderink’s scale-time model (brown

curves) shown for both the original smoothing kernels and their first-
and second-order temporal derivatives. All kernels correspond to tem-
poral scale (variance) τ = 1 with the additional parameters determined

such that the temporal mean values (the first-order temporal moments)
become equal in the limit case when the number of temporal scale lev-
els K tends to infinity (Eq. 161). Top row Logarithmic distribution of
the temporal scale levels for c =

√
2 and K = 10. Middle row Corre-

sponding results for c = 23/4 and K = 10. Bottom row Corresponding
results for c = 2 and K = 10

Gaussian temporal model all the cumulants of higher order
than two are zero, including the skewness and the kurtosis
measures.)

Appendix 3: Scale Invariance and Covariance of

Scale-Normalized Temporal Derivatives Based on

the Limit Kernel

In this appendix, we will show that in the special case
when the temporal scale-space concept is given by con-
volution with the limit kernel according to (39) and (38),
the corresponding scale-normalized derivatives by either
variance-based normalization (74) or L p-normalization (75)
are perfectly scale invariant for temporal scaling transforma-
tions with temporal scaling factors S that are integer powers
of the distribution parameter c. As a pre-requisite for this

result, we start by deriving the transformation property of
scale-normalized derivatives by L p-normalization (75) under
temporal scaling transformations.

(a) Transformation Property of L p-Norms of

Scale-Normalized Temporal Derivative Kernels Under

Temporal Scaling Transformations

By differentiating the transformation property (44) of the
limit kernel under scaling transformations for S = c j

Ψ (t; τ, c) = c jΨ (c j t; c2 jτ, c) (173)

we obtain

Ψtn (t; τ, c) = c j cnjΨtn (c j t; c2 jτ, c)

= c j (n+1)Ψtn (c j t; c2 jτ, c). (174)
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Fig. 12 Comparison between the skewness and the kurtosis measures
for the time-causal kernels corresponding to the limit case of K first-
order integrators coupled in cascade when the number of temporal scale
levels K tends to infinity (blue curves) and the corresponding temporal
kernels in Koenderink’s scale-time model (brown curves) with the para-
meter values determined such that the first- and second-order temporal
moments are equal (Eq. 161)

The L p-norm of the n:th-order derivative of the limit kernel
at temporal scale τ = c2 j

‖Ψtn (·; c2 j, c)‖p
p =

∫ ∞

u=0

∣

∣

∣ψtn (u; c2 j, c)

∣

∣

∣

p

(175)

can then by the change of variables u = c j z with du = c j dz

and using the transformation property (174) be transformed
to the L p-norm at temporal scale τ = 1 according to

‖ψtn (·; c2 j, c)‖p
p =

(∫ ∞

z=0

∣

∣

∣c
− j (n+1)Ψtn (z; 1, c)

∣

∣

∣

p

dz

)

c j

= c− j (n+1)p+ j‖ψtn (·; 1, c)‖p
p

(176)

thus implying the following transformation property over
scale

‖ψtn (·; c2 j, c)‖p = c− j (n+1)+ j/p‖ψtn (·; 1, c)‖p. (177)

Thereby, the scale normalization factors for temporal deriv-
atives in Eq. (76)

αn,γ (c2 j ) = Gn,γ

‖htn (·; c2 j )‖p

= c j (n+1)− j/p Gn,γ

‖ψtn (·; 1, c)‖p

= c j (n+1)− j/p Nn,γ (178)

evolve in a similar way over temporal scales as the scaling
factors of variance-based normalization (74) for τ = c2 j

τ nγ /2 = c jnγ (179)

if and only if

p = 1

1 + n(1 − γ )
. (180)

(b) Transformation Property of Scale-Normalized

Temporal Derivatives Under Temporal Scaling

Transformations

Consider two signals f and f ′ that are related by a temporal
scaling transform f ′(t ′) = f (t) for t ′ = c j ′− j t according to
(46)

L ′(t ′; τ ′, c) = L(t; τ, c) (181)

between corresponding temporal scale levels τ ′ = c2( j ′− j)τ .
By differentiating (181) and with ∂t = c j ′− j∂t ′ we obtain

cn( j ′− j)L t ′n (t
′; τ ′, c) = L tn (t; τ, c). (182)

Specifically, for any temporal scales τ ′ = c2 j ′ and τ = c2 j ,
we have

cnj ′ L t ′n (t
′; c2 j ′ , c) = cnj L tn (t; c2 j , c). (183)

This implies that for the temporal scale-space concept

defined by convolution with the limit kernel, scale-normalized

derivatives computed with scale normalization factors

defined by either L p-normalization (178) for p = 1 or

variance-based normalization (179) for γ = 1 will be equal

L ′
ζ ′n (t

′; τ ′, c) = Lζ n (t; τ, c) (184)

between matching scale levels under temporal scaling trans-

formations with temporal scaling factors S = c j ′− j that are

integer powers of the distribution parameter c.
More generally, for L P -normalization for any value of p

with a corresponding γ -value according to (180), it holds
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that

L ′
ζ ′n (t

′; τ ′, c) = αn,γ (τ ′) L ′
t ′n (t

′; τ ′, c) = {eq. (178)}

= c j ′(n+1)− j ′/p Nn,γ L ′
t ′n (t

′; cnj ′ , c) = {eq. (180)}
= c j ′nγ Nn,γ L ′

t ′n (t
′; cnj ′, c)

= c j ′n(γ−1) Nn,γ c j ′n L ′
t ′n (t

′; cnj ′, c) = {eq. (183)}
= c j ′n(γ−1) Nn,γ c jn L tn (t; cnj , c)

= c( j ′− j)n(γ−1) c jnγ Nn,γ L tn (t; cnj , c)

= c( j ′− j)n(γ−1) c j (n+1)− j/p Nn,γ L tn (t; cnj , c)

= c( j ′− j)n(γ−1) αn,γ (τ ) L tn (t; τ, c)

= c( j ′− j)n(γ−1) Lζ n (t; τ, c) = {eq. (180)}
= c( j ′− j)(1−1/p) Lζ n (t; τ, c) (185)

In the proof above, we have for the purpose of calcula-
tions related the evolution properties over scale relative
to the temporal scale τ = 1 and normalized the relative
strengths between temporal derivatives of different order to
the corresponding strengths Gn,γ of L p-norms of Gaussian
derivatives. These assumptions are however not essential for
the scaling properties and corresponding scaling transfor-
mations can be derived relative to any other temporal base
level τ0 as well as for other ways of normalizing the relative
strengths of scale-normalized derivatives between different
orders n and distribution parameters c.
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