
Time Complexity of the Incremental-Pruning Algorithm for
Markov Decision Networks

H.H.L.M. Donkers J.W.H.M. Uiterwijk H.J. van den Herik
{donkers,uiterwijk,herik}@cs.unimaas.nl

Department of Computer Science, matriks-cs
Universiteit Maastricht

P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract

A new representation technique for the planning of decisions under
uncertainty is presented. The technique, called Markov decision
networks (mdns), solves planning tasks that cannot or can hardly
be solved by any other known representation technique, such as
decision trees, in‡uence diagrams, and pomdps.
We show that linear mdns are pomdps. Hence, the incremental-
pruning algorithm for pomdps is applicable to this subclass of
mdns. It turns out that the time complexity of the algorithm
is lower for mdns than for general pomdps, due to the division of
the state space into state groups. An example shows the practical
bene…t of our …ndings: an optimal strategy can be computed in a
few seconds.

Contents

1 Introduction 2

2 Markov decision networks 3
2.1 A framework for mdns . 3
2.2 A graphical representation . 4
2.3 Semantics . 4

3 Solving MDNs for restricted strategy sets 5
3.1 Decision-tree approach . 5
3.2 History rules . 5

4 Solving linear MDNs 6
4.1 Linear mdns as pomdps . 6
4.2 Incremental pruning . 7
4.3 Specializing incremental pruning for mdns . 7
4.4 Linking IP-scheme results . 8
4.5 The incremental-pruning algorithm for MDNs . 9

5 Time complexity of the incremental-pruning algorithm for MDNs 10

6 Example 12

7 Conclusion 13

8 References 13

1

1. Introduction

In Arti…cial Intelligence, the planning of decisions
for agents in uncertain environments is a main topic.
The treatment of the subject is diverse. Depending
on the kinds of decisions, agents, and uncertainty,
a whole range of representation techniques is avail-
able to model and solve the planning tasks [8]. In
this paper we concentrate on those planning problems
for which (1) the uncertainty is modelled by Bayesian
probabilistics, (2) there is one single agent that must
build an optimal decision plan, (3) all decision options
are completely known to the agent, and (4) the quality
of a plan is measured only by its expected pay-o¤.

At present, there are several techniques available
to deal with the above type of decision problem, but
none of them is capable of solving all decision prob-
lems so typed satisfactorily. The oldest technique is
the classical decision tree. It can only be used in small
instances for which an exhaustive search through all
possible plans is feasible. The in‡uence diagram, in
its original form, has as drawback that the ordering
of the decision options is …xed by the structure of the
diagram, and that repetition of decisions is inhibited.
There are some alterations of the in‡uence diagrams
that try to alleviate these shortcomings, but full ‡ex-
ibility is still not reached. The technique of partially
observed Markov decision processes (pomdps) o¤ers
the highest possible ‡exibility of combining decision
options in any order. It con…nes the probabilities in-
volved to behave Markovian, but it lacks the clear
semantics of the in‡uence diagrams. Moreover, even
the most e¢cient exact solution method for pomdps
(i.e., incremental pruning) is only feasible for small
instances [10].

In this paper we introduce a new technique for solv-
ing a special type of decision problem: the Markov
decision network (mdn)1 . As the name indicates, we
use a Markovian probability model, which gives the
technique the same kind of planning ‡exibility as the
pomdp technique does. However, we combine this
‡exibility with a graphical representation and under-

1 Part of this paper has been submitted for publication else-
where ([5]).

standable semantics, both improving the capability to
model decision problems. The demands imposed on
the decision problems to be modelled by an mdn are
severe. But once these demands have been complied
with, mdns o¤er a clear representation and a set of
e¢cient solution methods.

After introducing the framework for mdns and two
general solution methods, we show that linear mdns,
a subclass of mdns, are pomdps. This means that
for these mdns, solution methods for pomdps are
applicable. Especially the incremental-pruning algo-
rithm seems to be appropriate. The particular struc-
ture of mdns enables us to improve this algorithm for
mdns.

The time complexity of this improved algorithm is
investigated and we show it to be lower than that of
the general algorithm for pomdps. To conclude this
paper, we give a small example of an mdn and its
solution obtained by incremental pruning.

2

2. Markov decision networks

The concept of mdns originates from the same
source as the in‡uence diagram, namely from the de-
cision tree. The observation that di¤erent end nodes
in a decision tree often represent the same …nal states
of the world and that sometimes even whole subtrees
are repeated in a decision tree, led Scott Olmsted in
1983 to the introduction of the concept of coalescence
in decision trees [7]. An analogous observation in de-
cision trees for medical use resulted in the introduc-
tion of the concept of mdns [2]. The idea of an mdn
representation also stems from the …rst author’s ob-
servation at the Department of Medical Informatics
that medical students often have di¢culties to under-
stand and set up decision trees. Both observations
motivated our group to simplify the concept of deci-
sion trees in the direction of compressing the tree into
a network [2]. The idea was to provide the students
with a straightforward technique to model and solve
(medical) decision tasks. Of course, we were aware
that such a simpli…cation would reduce the class of
decision tasks that could be handled. Later it tran-
spired that the new concept was pivotal for solving
planning tasks automatically, which is our present fo-
cus of research. Below we present a concise formal
framework for mdns. The complete framework, along
with the necessary proofs, is given in [3].

2.1. A framework for MDNs

An mdn is a quintuple of sets hA;E; Z;W; Gi, where
A is the set of available actions a1; a2; : : :, and E the
set of available experiments e1; e2; : : :. Actions change
the state of the world, experiments give uncertain in-
formation on the actual state of the world by produc-
ing some outcome. For every experiment ei, a non-
empty set Zei

of outcomes (or results) zei;1; zei;2; : : :
exists. The set Z is the union of these outcome sets
Zei . The results of an action or an experiment only de-
pend on the actual state of the world. This property,
the Markov property, gave its name to the Markov
decision network.

The states of the world are represented by the …nite

set W = fw1; w2; : : :g: The set G = fG1;G2; : : :g is the
set of state groups, where Gi µ W: These state groups
form a partition of W . Two special state groups are
the start group and the end group, represented by G0

and Gu
1 , respectively. The start group G0 is the group

in which the world is at the start of a plan, the end
group Gu is the group that must always be reached
when the plan ends and in which the …nal rewards
(utilities) are received. It is possible to have a state
group that is both start group and end group.

Three functions Gin, Gout, and Gtest determine
the structure of an mdn: function Gin(a) gives the
state group for which action a is meaningful, function
Gout(a) gives the state group that has been reached af-
ter action a has been performed, and function Gtest(e)
gives the state group for which experiment e is mean-
ingful. The inverse functions, A(G) and E(G), give
the actions and experiments that are available for
group G.

The probabilities in an mdn are de…ned by: (1) for
each action a in A: a jGout(a)j £ jGin(a)j transition
probability matrix Aa, where Aa(i; j) is the probabil-
ity that state i in group Gout(a) will be reached if
the world was in state j of group Gin(a) just before
the action was performed; (2) for each experiment e
in E: a jZej £ jGtest(e)j sensitivity matrix Ee, where
Ee(i; j) is the probability that the i-th outcome of Ze

is observed by the agent when the world is in state j
of group Gtest(e); and (3) for the prior probabilities:
a probability vector x0, a jG0j-sized vector in which
x0(i) denotes the prior probability of the world being
in state i of group G0:

As a result of these probabilities, the state groups
are mutually exclusive with respect to the probabil-
ity distribution over the states. If there is a positive
probability of the world being in one state of a group,
then there is zero probability of the world being in a
state of another group.

The costs in an mdn are given by the two functions
K(a), the cost of doing action a, and K(e), the cost of

1The subscript u in Gu refers to the fact that the states of
the end group are connected to u tilities.

3

performing experiment e. Utilities are expressed in a
jGuj-sized utility vector u in which u(i) 2 R denotes
the utility of the world reaching …nal state i of end
group Gu.

Decision plans are called strategies in mdns. Strate-
gies can be represented by strings of action symbols
ai, experiment symbols ei, and a special ending sym-
bol 3. For instance, the strategy s = he1; a1;3; a2;3i
denotes the decision plan to start with experiment e1

and to perform action a1 if the …rst outcome of e1 is
observed, and a2 if the second outcome of e1 is ob-
served. Strategies that can actually be realized in an
mdn are called legal.

An episode is a sequence of events (actions and ex-
periments) that could actually happen if the agent fol-
lows a legal strategy. Episodes can be represented by
simple strings of symbols for actions and outcomes of
experiments. (The string h = hze1;1; a1i denotes the
episode of experiment e1 resulting in the …rst outcome,
whereafter action a1 is performed).

The (pay-o¤) value V (h) of an episode h is some
function of the collected costs K(h) and the expected
utility U(h) of the episode. The form of this value
function V (h) can be chosen at will. However, any
choice does in‡uence (or even determine) the solution
method to be used for solving the mdn. The expected
value V (s) of a strategy s is the expected (pay-o¤)
value of the episodes that can happen if that strategy
is followed:

V (s) =
X

h2s

P(h)V (h) (2.1)

In this formula, P(h) is the probability that episode
h occurs if strategy s is followed. Finally, the general
task of solving an mdn is to …nd a legal strategy s¤

which has the highest expected value V (s¤) among all
legal strategies.

2.2. A graphical representation

The graphical representation of an mdn is an aug-
mented directed graph. The graph has a node for
every state group, represented by an oval. The names
of the states in the group can be written inside the
oval. If needed, the groups themselves can also be
named. This group name is placed outside the oval.
The start group and end group can be marked specif-
ically. Actions are represented by directed arcs be-
tween the nodes. The names of the actions are writ-

ten alongside the arcs. Finally, experiments are repre-
sented as triangles that are linked to the oval of their
test group. The outcomes of an experiment are not
represented in the graph.

Figure 2.1 gives an example of the graphical repre-
sentation for an mdn that models a simple diagnostic
planning task for repairing parts. In this case there are
two state groups, each containing two states. There
are also two actions (“Repair” and “Don’t Repair”)
and two experiments (“test 1” and “test 2”). The
planning task is to decide how to combine both tests
in such a manner that a maximum number of parts is
…xed while keeping the total costs as low as possible.
On the base of this example we brie‡y discuss some
extra semantics that mdns give rise to, in comparison
with in‡uence diagrams and pomdps.

broken /
not broken

fixed /
not fixed

start group end group
Repair

Don't Repair

test 1

test 2

Figure 2.1: The graphical representation of an mdn.

2.3. Semantics

The meaning of a state group in mdns is broader than
just an arbitrary set of states. State groups often de-
note speci…c views on the world that the agent uses
at di¤erent moments in time. In the example of …gure
2.1, the …rst state group represents the view in which
parts are either broken or not broken. The second
group represents the view in which the agent looks
upon parts as being …xed or not …xed. According to
the graph, performing diagnostic tests is not mean-
ingful in this stage and neither is reparation. Moving
from one state group to another means not only chang-
ing the world, but also changing the perspective of the
agent. Sometimes, the change of perspective is even
the only alteration that is caused by an action. Hence,
an action in an mdn means more than just having an
e¤ect on the environment: it also changes, and some-
times exclusively, the inner state of the agent.

4

3. Solving MDNs for restricted strategy sets

Mdns were developed not only to model planning
tasks, but also to provide a way of solving these plan-
ning tasks automatically. In this section, two solution
methods for mdns are discussed that restrict the set
of investigated strategies, viz. the standard decision-
tree approach, and the decision-tree approach enriched
with history rules.

3.1. Decision-tree approach

The decision-tree solution method is straightforward
but restricted. It can be useful in many practical cases.
In this approach, the mdn is used only as some kind of
language through which a decision tree is constructed
by the agent. The decision tree contains all plans that
the agent judges to be relevant to investigate. The
available decision options for the construction of the
decision tree are derived from the arcs in the network.
The branches of the chance nodes are constructed in
accordance with the outcomes of the experiments.

After the construction of the tree, the quantitative
information of the mdn is used to …ll in the probabili-
ties and utilities of the decision tree automatically, and
the classical folding-back procedure is used to solve the
decision tree. In [2] a computer program is described
that o¤ers this solution method in a user-friendly way.

3.2. History rules

The second solution method is an extension of the
decision-tree approach. Instead of specifying a com-
plete decision tree, the agent just states a set of rules
that the generated plans should comply with. These
rules are called history rules, because they should be
able to decide whether a decision option is feasible
given a history of actions and outcomes of experi-
ments. Examples of history rules are: “never repeat
an action” and “allow this action only after a positive
test outcome.” In [3, 4] an algorithm is presented that
solves an mdn, given a set of history rules. It is im-
posed that these rules may not allow in…nite episodes,
since then the algorithm will not end.

The history-rule algorithm handles four tasks in one
run: it collects costs, computes probabilities, calcu-
lates expected values, and constructs an optimal strat-
egy. In essence, it is the same as performing the
folding-back procedure. The main di¤erence is that
the decision tree itself is never constructed explicitly.

The complexity of this algorithm depends primarily
on the history rules given. For instance, if one history
rule would be “allow n subsequent repetitions of an
experiment” then the complexity of the algorithm is
at least O(kn), where k is the number of outcomes in
the experiment.

5

4. Solving linear MDNs

The two methods for solving mdns discussed above
restricted the number of plans under consideration.
In this section, we introduce another solving method,
incremental pruning, that considers all plans, but con-
…nes the value function V (h) of the mdn to a linear
one. The strength of this method compared to the
former two methods is that not all plans have to be
investigated to solve the mdn: an optimal strategy is
constructed directly.

4.1. Linear MDNs as POMDPs

Mdns with a linear value function (which will be called
linear mdns) are in fact a special case of partially ob-
served Markov decision processes (pomdps). Linear
value functions have the form V (h) = ¸U(h) ¡ K(h).
With this form it is possible to distribute the total
pay-o¤ value of an episode as partial rewards over
the individual steps. At every step but the last one,
the immediate reward is the negative cost of the ac-
tion performed, or of the experiment performed, being
¡K(a) or ¡K(e), respectively. At the last step the
reward is the (weighted) expected utility ¸U(h). The
sum of these immediate rewards is the total pay-o¤
value of the episode.

Because linear mdns are pomdps, algorithms for
general pomdps are also applicable to linear mdns,
although it might not always be such a good idea to
do so. Algorithms for general pomdps are designed
to deal with di¢culties that occur often in normal
pomdps but that are less frequent in mdns.

General pomdps (see [1, 6]) are characterized by
three discrete and …nite sets and three functions. The
sets are: a set of states of the world W , a set of ac-
tions A, and a set of observations Z: The functions
are: a state-transition probability function P(w0jw; a),
an observation probability function P(zjw; a), and a
real-valued reward function r(a;w;w0; z), with a 2 A;
w;w0 2 W and z 2 Z (The reward function can be
reduced to a function ra(w) when rewards do not de-
pend on the observation z or the next state w0, as is
the case in [1].)

In regard to general pomdps, linear mdns have four
special properties: (1) separation of actions and ob-
servations, (2) …xed rewards, (3) partition of the state
space, and (4) end-state utilities. These properties
cause mdns to have a particular structure that can
be exploited for e¢ciency. Below, each propriety will
be explained in detail.

Separation of actions and observations – In
standard pomdps every action is immediately followed
by an observation. The mdn framework separates the
actions from the observations: actions do not lead to
observations and experiments do not change the state
of the world. A linear mdn is converted into an equiva-
lent pomdp by letting all actions be followed by a …xed
single dummy-observation z0 so that no information is
gained by the actions (P(zojw;a) = 1), and by using a
unit function as state-transition probability for every
experiment (P(w0 = wjw; e) = 1). Furthermore, the
observations that can occur at an experiment are re-
stricted to the possible outcomes of that experiment
(P(zjw; e) = 0 if z =2 Ze).

The separation of actions and experiments reduces
the complexity of computations needed to obtain state
probability vectors. In case of an action only a state
transition matrix has to be applied; in case of an ex-
periment only Bayes’ rule has to be used.

Fixed rewards – The rewards that are obtained
at each step in a general pomdp depend on the actual
state, the action performed at that step, the obser-
vation obtained, and the next state. Often the re-
wards are a function of a subset of these four factors.
The framework for mdns reduces the reward function
to a minimum: the rewards at each step, except for
the last one, only depend on the action or experiment
performed at that step. They are equal to the nega-
tive costs of that action or experiment (r(a;w;w0; z) =
r(a) = ¡K(a); and r(e;w;w0; z) = r(e) = ¡K(e)).

Partitioned state space – The most apparent dif-
ference between mdns and general pomdps is the par-
tition of the state space. The states in a mdn are
partitioned into state groups, such that all probability
mass is always concentrated in one group. Even more

6

important is the fact that the availability of every ac-
tion and experiment is con…ned to one group.

End-state utilities – The pomdp “rewards” in
mdns are de…ned as costs of actions and experiments.
The real rewards are obtained after the …nal step when
an end state is reached. These rewards are called util-
ities in mdns and the values of these utilities are de-
termined by the end state. The fact that utilities can
only be obtained in end states means that precisely
those strategies that always lead to the end group are
feasible.

4.2. Incremental pruning

An algorithm that …ts naturally to the kind of
special properties of mdns described above, is the
incremental-pruning algorithm of Zhang and Liu [1, 9].
The basic step in the derivation of this algorithm, ac-
cording to [1], is to split the value function:

V 0(x) =max
a2A

Ã X

w2W

ra(w)x(w) + °
X

z2Z

P(zjx; a)V (xa
z)

!

(4.1)
into simpler parts:

V 0(x) = max
a2A

V a(x) (4.2)

V a(x) =
X

z2Z

V a
z (x) (4.3)

V a
z (x) =

P
w2W

ra(w)x(w)

jZj + ° P(zjx; a)V (xa
z)

(4.4)

and to solve them separately:

S0 = purge

Ã [

a2A

Sa

!
(4.5)

Sa = purge

ÃM

z2Z

Sa
z

!
(4.6)

Sa
z = purge (f¿(®; a; z)j® 2 Sg) (4.7)

¿(®; a; z)(w) = (1=jZj)ra(w) + °
X

w02W

f®(w0):

P(zjw0; a)P(w0jw;a)g (4.8)

The solution V (x) of a pomdp is expressed in a set
S of jW j-sized vectors ®, each vector representing a
separate strategy. In the formulas above, the notation
x is used to denote the actual belief state, which is a
probability vector de…ned on the states of the world,
where x(w) denotes the probability of the world be-
ing in state w. The notation xa

z is used to denote the
revised belief state after performing action a and ob-
serving z. The constant ° is a discount rate that is
only used in in…nite horizon cases, otherwise ° is 1.

The function purge is an algorithm that reduces a
given set of jW j-sized vectors to those vectors ® for
which ®:x is maximal for some belief state x. The
“incremental pruning” in a more strict sense is laid
down in the solution of equation (4.6):

Sa = purge

ÃM

z2Z

Sa
z

!

´ purge(Sa
z1

© Sa
z2

© Sa
z3

© ::: © Sa
zjZj) (4.9)

= purge(:::(purge(Sa
z1

© Sa
z2

) © Sa
z3

)::: © Sa
zjZj)

(4.10)

The operator © has the following meaning: if S1 and
S2 are sets of vectors of equal length, then S1 © S2 is
the set of vectors: fs1 + s2 j s1 2 S1; s2 2 S2g.

4.3. Specializing incremental pruning
for MDNs

There are in fact three types of decisions in mdns: (1)
the decision to perform an action a, (2) the decision
to perform an experiment e, and (3) the decision to
stop (d¦). The last decision is available whenever the
world is in the end group Gu. Each one of the three
types of decision has its own solution method: for
stop-decisions, just the utility vector has to be used;
for action-decisions, a transition matrix has to be ap-
plied; and for experiment-decisions, all outcomes have
to be inspected. Hence, formula (4.2) can be rewrit-
ten into (4.11). Each of the partial solutions V u; V a;
and V e can be worked out separately according to the
type of decision:

V 0(x) = max

8
>><
>>:

V u(x)
max

a2A(G(x))
V a(x)

max
e2E(G(x))

V e(x)
(4.11)

7

Because the probability mass in a belief state x is
always concentrated in one state group, it makes sense
to use the expression G(x) to denote that state group.
As a result, A(G(x)) and E(G(x)) form the decision
options that are available at belief state x.

The solution for V u is straightforward: the reward
when stopping is the weighted expected utility ¸:u:x:

V u(x) = ¸:u:x (4.12)

At action-decisions, we just have to apply the appro-
priate transition matrix Aa to compute xa

z in formula
(4.4). The rewards ra(s) are laid down in the costs
¡K(a).

V a(x) = V (xa
z) ¡ K(a) = V (Aax) ¡ K(a) (4.13)

For experiment-decisions, we need the following for-
mula:

V e(x) =
X

z

P(zjx; e)V (xe
z) ¡ K(e) (4.14)

The posterior vector xe
z can be computed by appli-

cation of the sensitivity matrix Ee:

xe
z =

d(Ez
e):x

P(zjx; e)
(4.15)

We use d(Ez
e) to denote the diagonal matrix whose

trace is equal to row z in matrix Ee. This notation
seems awkward, but because V (x) is a linear function,
the term P(zjx; e) will cancel out and only d(Ez

e) re-
mains, so V e(x) becomes:

V e(x) =
X

z

V (d(Ez
e):x) ¡ K(e) (4.16)

These formulas result in the following incremental
pruning (ip) scheme:

S0(G) = purge
¡
Sd(G)

¢
(4.17)

Sd(G) = Su(G) [SA(G) [SE(G) (4.18)

Su(G) =

½ f¸:ug if G = Gu

; if G 6= Gu
(4.19)

SA(G) =
[

a2A(G)

Sa(G) (4.20)

SE(G) =
[

e2E(G)

Se(G) (4.21)

Sa(G) = purge(f®:Aaj® 2 Sp(a)(G0)g) ¡ K(a)

(G0 = Gout(a)) (4.22)

Se(G) = purge(
M

z2Ze

Se
z(G)) ¡ K(e) (4.23)

Se
z(G) = purge(f®:d(Ez

e)j® 2 Sp(e)(G)g) (4.24)

(The notation Sp(:) will be explained in the next
section.) As is apparent from these formulas, a sepa-
rate ip scheme exists for every state group G. In each
step during the value-iteration process, this ip scheme
can be performed for every group independently from
the schemes of other groups. The complexity of an ip
scheme is determined by the size of its state group,
the number of actions and experiments attached to
this group, and the number of outcomes that each ex-
periment has.

4.4. Linking IP-scheme results

The ip scheme for a state group is linked to the re-
sults of ip schemes in previous value-iteration steps.
In formula (4.22) a link is made to the ip scheme of the
outgoing group Gout(a) of action a through the expres-
sion Sp(a)(Gout(a)). A similar link is made through
Sp(e)(G) in formula (4.24).

The ip scheme can only be performed for a state
group if that state group can have probability mass
in the actual value-iteration step. At the …rst value-
iteration step, for instance, only the end group Gu can
have probability mass, because every strategy in an
mdn should …nish in the end group for all episodes. At
the second value-iteration step only those state groups
can have positive probability mass when the end group
is reachable in one step through an action in the mdn
graph. In general, at the n-th value-iteration step,
only those groups can have positive probability mass,
and therefore have their ip scheme performed, if the
end group is reachable in exactly n¡1 steps in the mdn
graph. If a link has to be made from one ip scheme
to another in a previous step, the algorithm has to
look for the most recent step in which the target ip
scheme is available. In Sp(a)(Gout(a)), the function
p(a) denotes the “previous” step, which is the most
recent value-iteration step in which an ip scheme exists
for the group Gout(a).

8

MdnIncPrune (M = hA; E;Z; W;Gi, maxHor)
1. S0(:) Ã ;, S0(Gu) Ã {(d¦,¸:u)}
2. for h Ã 1 to maxHor:
3. Sh(:) Ã ;
4. for all G 2 G:
5. p Ã max(q j q < h;Sq(G) 6= ;))
6. if p 6= ? then
7. Sh(G) Ã purge(Sh(G) [À(Sp(G); d0))
8. for all e 2 E(G):
9. S0 Ã purge(f®:d(E1

e)j® 2Sp(G)g)
10. for z Ã 2 to jZej:
11. S0 Ã purge(S0 ©

purge(f®:d(Ez
e)j® 2Sp(G)g))

12. Sh(G) Ã purge(Sh(G) [À(S0; de))
13. for all a 2 A(G):
14. G0 Ã Gout(a)
15. p Ã max(q j q < h;Sq(G0) 6= ;))
16. if p 6= ? then
17. S0 Ã purge(f®:Aaj® 2Sp(G0)g)
18. Sh(G) Ã purge(Sh(G) [À(S0; da))
19. If Sh(G0) 6= ; and d = d0

for all decisions in Sh(G0) then Stop.

Figure 4.1: Implementation of the incremental-
pruning algorithm attempting to solve the mdn M
in at most maxHor steps.

4.5. The incremental-pruning algorithm
for MDNs

Figure 4.1 gives the pseudocode for an implementation
of the incremental-pruning algorithm for mdns. The
value-iteration steps are indicated here by the horizon
variable h. A separate ip scheme is performed at every
step for each state group. The results of the ip schemes
for state group G at step h are represented by the set
Sh(G) of tuples hd, ®i.

At line 7 a new, auxiliary decision is introduced: the
wait-decision d0. This decision has no meaning in the
mdn itself, but is used in this algorithm to implement
a stopping mechanism. The wait-decision is a deci-
sion to keep everything exactly the same for one step.
The set Sh(G) is …lled at line 7 with the contents of
the previous vector set for this group. The algorithm
stops at line 19 when no decision can give a higher
expected value than the wait-decision for any belief
state in the start group G0, which means that Sh(G0)
only contains wait-decisions. The wait-decision has
another e¤ect: it is now only necessary to add a stop-

decision to S0(Gu). The other stop-decisions that are
mentioned in formula (4.19) of the ip scheme are re-
placed by wait-decisions added to Sh(Gu). Function
À(S; d) at lines 7, 12 and 18 returns a set that contains
all entries of S having the decision set to d and having
® diminished with the costs of the decision d.

The purge routine called at lines 9, 11, 12, 17,
and 18 is implemented by a slightly altered version
of Lark’s Filter algorithm as described in [1, 10].
The iterative purging process as described at line 11
is in fact the most simple incremental-pruning method
possible and could well be replaced by one of the more
e¢cient methods (see [1]).

9

5. Time complexity of the incremental-pruning
algorithm for MDNs

We are curious to see whether a decrease of the time
complexity is caused by the special structure of mdns.
More speci…cally, we would like to investigate the role
of the division of the state space into state groups.
Hence, we are not aiming at obtaining a general for-
mulation of the time complexity of the incremental-
pruning algorithm for mdns,

Figure 5.1 provides the time complexity for each
line of the algorithm given in …gure 4.1. The time
complexities are based on the following assumptions:

² The number of value-iteration steps needed is at
most ĥ.

² The size of all state groups is at most ŝ.

² The number of actions per group is at most â.

² The number of experiments per group is at most
ê.

² The number of outcomes per experiment is at
most r̂.

² The number of ®-vectors produced per group per
value-iteration step is at most ®̂.

² The time complexity of the purge algorithm is at
most T(purge(®̂; ŝ)).

From …gure 5.1 we can derive the following formula
for the overall complexity:

T 6 1 + ĥ:[1 + jGj:[ĥ + 1 + ®̂:(ŝ + 1) + Tp +
ê:f(®̂:ŝ + Tp) + (r̂ ¡ 1):(®̂:ŝ + ®̂2:ŝ + 2:Tp)+

®̂:(ŝ + 1) + Tpg +

â:f2 + ĥ + ®̂:ŝ2 + Tp + ®̂:(ŝ + 1) + Tpg] + ®̂]
(5.1)

(The symbol ‘Tp’ is an abbreviation of
T(purge(®̂; ŝ)).) This formula can be rearranged by
collecting all terms in ĥ, ®̂, ŝ, and Tp:

1. 1
2. ĥ£ {
3. 1
4. jGj£ {
5. ĥ
6. 1
7. ®̂:(ŝ + 1) + T(purge(®̂; ŝ))
8. ê£ {
9. ®̂:ŝ + T(purge(®̂; ŝ))
10. (r̂ ¡ 1)£ {
11. ®̂:ŝ + ®̂2:ŝ + 2.T(purge(®̂; ŝ)) }
12. ®̂:(ŝ + 1) + T(purge(®̂; ŝ)) }
13. â£ {
14. 1
15. ĥ
16. 1
17. ®̂:ŝ2 + T(purge(®̂; ŝ))
18. ®̂:(ŝ + 1) + T(purge(®̂; ŝ)) }}
19. ®̂ }

Figure 5.1: Complexity per line of the algorithm given
in …gure 4.1.

T 6 1 + ĥ + ĥ:®̂+

(ĥ:jGj)f [1 + 2:â]+

[1 + â]:ĥ + [1 + ê + â]:®̂+
[ê:(r̂ + 1) + â + 1]:®̂:ŝ+
[ê:(r̂ ¡ 1)]:®̂2:ŝ + [â]:®̂:ŝ2+
[2:ê:r̂ + 2:â + 1]:Tp g

(5.2)

The square-bracketed terms in this formula are all
bounded by:

d̂ = 2:ê:r̂ + 2:â + 1 (5.3)

So, the formula can be rewritten into:

T < 1 + ĥ + ĥ:®̂+

(d̂:ĥ:jGj)f1 + ĥ + ®̂ + ®̂:ŝ+
®̂2:ŝ + ®̂:ŝ2 + Tp g

(5.4)

10

When the state groups in an mdn are of compara-
ble size and each group has a comparable number of
actions, experiments, and outcomes per experiment,
then the following approximations can be made:

d̂ =
D

jGj (5.5)

ŝ =
jW j
jGj (5.6)

where D is de…ned by:

D = 2:jEj: max
e2E

jRej + 2:jAj + 1 (5.7)

This leads to the following formula for the time com-
plexity:

T < 1 + ĥ + ĥ:®̂+

(D:ĥ):f1 + ĥ + ®̂ + ®̂: jW j
jGj +

®̂2: jW j
jGj + ®̂: jW j2

jGj2 + Tp g
(5.8)

which …nally can be rewritten into:

T 6 [1 + ĥ + ĥ:®̂ + D:ĥ:(1 + ĥ + ®̂)]+

[D:ĥ:(®̂ + ®̂2):jW j]
jGj +

[D:ĥ:®̂:jW j2]
jGj2 + [D:ĥ]:Tp

(5.9)

On base of this formula, the time complexity of the
incremental-pruning algorithm for mdns can be ex-
pressed as a function of the number of state groups,
jGj:

T (jGj) = O(K1 +
K2

jGj +
K3

jGj2 + K4:T (purge(®̂;
jW j
jGj)))

(5.10)

where K1::K4 are the terms that do not depend on the
number of groups. The time complexity of the purge
routine is a function of the number of vectors (®̂) and
the size of the vectors (jW j=jGj). This function de-
pends highly on the implementation of the Filter al-
gorithm, but for the size of the vectors the time com-
plexity will be more than linear.

To conclude, an increase in the number of groups jGj
will either have no e¤ect on a term in expression (5.10)
or will lower the value of a term. The total time com-
plexity will therefore decrease if the number of state
groups increases. Going from a general pomdp with
only one state group to an mdn with multiple state
groups will therefore decrease the total time complex-
ity of the incremental-pruning algorithm.

11

6. Example

We will use a small example to show the working of
mdns. Assume an agent has to go through 9 di¤erent
subsequent stadia before reaching a …nal rewarding
stadium. In every stadium the agent can be in one of
two states (a good state and a bad one) but the actual
state is unknown to the agent.

Going from one stadium to the next one, the agent
can try to improve his situation by investing 25 units,
having a probability of 30% to reach a good state from
a bad state, but also having a probability of 20% to
arrive in a bad state from a good one. The agent can
decide to do nothing instead of investing, in which case
he has only a probability of 10% to change his state
from a bad one to a good on and also a probability of
10% to change from a good state into a bad one.

Investment actions are named a,b,c... and the do-
nothing actions a0; b0; c0,.... At every stadium, except
the last one, the agent can use an experiment (named
A, B, C, ...) with two outcomes to gain information
on the actual state. The experiments cost 10 units
each but are erroneous in 5% of the cases. The utility
for reaching the bad state in the last stadium is 0, and
is 1 for reaching the good state. The value function
used is: V (h) = ¸U(h) ¡ K(h), which is linear. The
structure of the mdn that models this problem is given
in …gure 6.1.

0 u

ba c e f g hd

B C D E F G HA
a' b' c' d' e' f' g' h'

i

i'
I

Figure 6.1: Graphical representation of the 10-stadia
example.

Depending on the weight ¸, the incremental-
pruning algorithm …nds the following optimal
strategies:

s1 : ha0b0c0d0e0f 0g0h0i0}i
s2 : ha0b0c0d0e0f 0g0h0Ii}i0}i
s3 : ha0b0c0d0e0f 0g0HhIi}i0}h0i0}i
s4 : ha0b0c0d0e0f 0GgHhIi}i0}h0i0}g0h0Ii}i0}i
s5 : ha0b0c0d0e0f 0GgHhIi}i0}h0IIi}i0}i0}g0h0Ii}i0}i

In s2 we see, for example, the application of experi-
ment I . It decides on a continuation with i or ¶{0. The
solution sets of strategies that are optimal for some
region of the prior belief space are for di¤erent levels
of ¸:

¸ = 1 : fs1g ¸ = 300 : fs2; s3g
¸ = 200 : fs1g ¸ = 325 : fs3g
¸ = 250 : fs1; s2g ¸ = 475 : fs3; s4g
¸ = 275 : fs2g ¸ = 500 : fs3; s4; s5g

So, the higher the weight factor on the utilities, the
more the agent is willing to invest in experiments. The
understanding that investing is a good (even optimal)
strategy, starts in the last stadium and progresses for-
wards in relation to an increase of the weight ¸. The
computations took at most 7 seconds on a Pentium II,
300 Mhz personal computer.

12

7. Conclusion

The new technique for modeling decision planning
in uncertain environments, mdn, adequately combines
the ‡exibility of pomdps with the semantics of in-
‡uence diagrams. Having shown that linear mdns
are pomdps, we adapted the most e¢cient algorithm
for solving pomdps known today i.e., the incremen-
tal pruning algorithm, to make it …t for linear mdns.
We showed that the incremental-pruning algorithm
adapted for mdns is more e¢cient in terms of time
complexity than that for general pomdps.

Acknowledgement

The research is supported by the Dutch organization
for air (Dutch: Lucht) and Water environment Infor-
mation systems (lwi).

8. References

[1] Cassandra, A.R., Littman, M.L., and Zhang,
N.L. (1997). Incremental Pruning: A Simple,
Fast, Exact Method for Partially Observable
Markov Decision Processes. Proceedings of the
thirteenth conference on Uncertainty in Arti…cial
Intelligence, pp. 54-61. Morgan Kaufmann Publ.,
San Mateo, CA. ISBN 1-55860-485-5.

[2] Donkers, H.H.L.M. and Hasman, A. (1988).
Strategy, een Nieuwe Kijk op Beslisbomen. Pro-
ceedings of the 8 stDutch Medical Informatics
Congress, pp. 65-69. VMBI, Utrecht, The Nether-
lands. ISBN 90-5005-022-0.

[3] Donkers, H.H.L.M. (1997). Markov Decision Net-
works. Technical Report CS 97-04. Universiteit
Maastricht, Maastricht, The Netherlands.

[4] Donkers, H.H.L.M, Uiterwijk, J.W.H.M., and
Herik, H.J. van den (1998). Markov Decision Net-
works. Submitted to ECAI’98.

[5] Donkers, H.H.L.M, Uiterwijk, J.W.H.M., and
Herik, H.J. van den (1998). Solving Markov De-

cision Networks using Incremental Pruning. Sub-
mitted to UAI’98.

[6] Lovejoy, W.S. (1991). A Survey of Algorithmic
Methods for Partially Observed Markov Decision
Processes. Annals of Operations Research, 28(1-
4), pp. 47-66. ISSN 0254-5330.

[7] Olmsted, S.M. (1983). On Representing and
Solving Decision Problems. Ph.D. Dissertation
Engineering-Economic Systems. Stanford Univer-
sity, Stanford, CA.

[8] Pomerol, J.C. (1997). Arti…cial Intelligence and
Human Decision Making. European Journal of
Operations Research, 99, pp. 3-25. ISSN 0377-
2217.

[9] Zhang, N.L. and Liu, W (1996). Planning in
Stochastic Domains: Problem Characteristics
and Approximation. Technical Report HKUST-
CS96031, Hong Kong University of Science and
Technology.

[10] Zhang, N.L. and Liu, W (1997). A Model Ap-
proximation for Planning in Partially Observable
Stochastic Domains. Journal of Arti…cial Intelli-
gence Research, 7, pp. 199-230.

13

