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“The problem with Quantitative Easing (QE) is it works in practice, but it doesn’t work in

theory,” Ben Bernanke, Chairman of the Federal Reserve, Jan 16, 2014 just before leaving office.

1 Introduction

Since the onset of the economics crisis in 2008, the Federal Reserve has expanded its balance sheet

by large amounts, on the order of 3 trillion mostly under the rubric of Quantitative Easing (QE).

To date the accumulated amount of QE corresponds to about 20% percent of annual GDP. The

enormous scale of this policy has largely been explained by the fact that the Federal Reserve was

unable to cut the Federal Fund rate further, due the zero lower bound on the short term nominal

interest rate. Meanwhile, high unemployment, slow growth, and low inflation desperately called

for further stimulus measures.

Many commentators argue that QE in the United States prevented a much stronger contraction,

and that QE is a key reason for why the US has recovered more rapidly from the Great Recession

than some its counterparts. As pointed out by Ben Bernanke, however, one problem is that even

if this might be true in practice, a coherent theoretical rationale has been hard to formulate. This

paper contributes to filling this gap. We providing an explicit theoretical underpinning for QE:

It works because it allows the central bank to credibly commit to expansionary future policy in a

zero lower bound situation. We not only explicitly account for QE in theory, but also show some

numerical examples in which the effect is non-trivial.

What is QE? Under our interpretation, it is when the central bank buys long-term government

debt with money. We interpret this action though the lenses of two models. First, we treat the

central bank and the treasury as one agent, i.e. policy is coordinated and budget constraints of the

Treasury and the central bank are consolidated. Second, we treat the central bank as “independent”

in the sense that it faces its own budget constraint (and thus cares about it own balance sheet)

and its objective may be different from social welfare.

Consider first QE under coordinated monetary and fiscal policy, the main benchmark in the

paper.1 Since the nominal interest rate was zero when QE was implemented in the United States,

it makes no difference if QE was done by printing money (or more precisely bank reserves) or by

issuing short-term government debt: both are government issued papers that yield a zero interest

rate. From the perspective of the government as a whole, QE at zero nominal interest rates can then

simply be thought of as shortening the maturity of outstanding government debt. The government

is simply exchanging long term bonds in the hands of the public with short term ones.

Consider next QE from the perspective of the central bank in isolation. QE creates a “duration

mismatch” on the balance sheet of the central bank as it is issuing money/reserves (“short-term

debt”) in exchange for long term treasuries (“long term assets”). This opens up the possibility of

possible future balance sheet losses/gains by the central bank, because the price of its liabilities

1Here we will be abstracting from variation in real government spending, a focus of Christiano, Eichenbaum and
Rebelo (2011), Eggertsson (2010), Woodford (2011) and Werning (2012).
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may fall/rise relative to its assets. We can interpret QE as simply increasing the size of the balance

sheet of the central bank, keeping the extent of the duration mismatch on its balance sheet fixed.

Alternatively we can interpret it as only increasing the duration on its asset side, keeping the

liability side and size of the balance sheet unchanged. Either interpretation is valid, and we will

look at the data to sort out which interpretation fits the facts better for a particular QE episode.

Whether we consider QE from the perspective of a consolidated government budget constraint,

or an independent central bank, we arrive at the same conclusion. In both settings, QE operates

as a “signal” for lower future short term interest rates in a way we make precise.

The main goal of QE in the United States was to reduce long-term interest rates, even when the

short-term nominal interest rate could not be reduced further, and thereby, stimulate the economy.

Indeed, several empirical studies find evidence of reduction in long-term interest rates following

these policy interventions by the Federal Reserve (see e.g. Gagnon et al (2011), Krishnamurthy

and Vissing-Jorgensen (2011), Hamilton and Wu (2012), Swanson and Williams (2013) and Bauer

and Rudebusch (2013)).2

From a theoretical perspective however, the effect of such policy is not obvious since open market

operations of this kind are neutral (or irrelevant) in standard macroeconomic models holding the

future interest rate reaction function constant. This may have motivated Ben Bernanke’s quote

cited above. This was pointed out first in a well-known contribution by Wallace (1981) and further

extended by Eggertsson and Woodford (2003) to a model with sticky prices and an explicit zero

lower bound on nominal interest rates. These papers showed how absent some restrictions in asset

trade that prevent arbitrage, a change in the relative supplies of various assets in the hands of the

private sector has no effect on equilibrium quantities and asset prices.

For this reason, some papers have recently incorporated frictions such as participation con-

straints due to “preferred habitat” motives in order to make assets of different maturities im-

perfect substitutes. This in turn negates the neutrality of open market operations as in such an

environment, QE can reduce long-term interest rates because it decreases the risk-premium, see

for example Chen, Curdia, and Ferrero (2012). Others, such as Gertler and Karadi (2012), provide

a framework in which these operations can have an effect due to limits to arbitrage.3 Overall,

our reading of this literature is that the effect of QE is modest in these models, with the possible

exception of QE1 when there were significant disruptions in the financial markets.

As pointed out by Eggertsson and Woodford (2003) (and further illustrated in Woodford (2012)

in the context of the crisis) QE need not be effective only because it reduces risk premiums or due

to limits on arbitrage. QE can also reduce long-term interest rates if it signals to the private

2For example, Gagnon et al (2011) estimate that the $1.75 trillion worth 2009 program reduced long-term interest
rates by 58 basis points while Krishnamurthy and Vissing-Jorgensen (2011) estimate that the $600 billion worth 2010
program reduced long-term interest rates by 33 basis points. In addition, Hamilton and Wu (2012), Swanson and
Williams (2013), and Bauer and Rudebusch (2013) also find similar effects on long-term interest rates. Note however
that empirical studies typically measure nominal interest rates, while theoretically, it is the ability to influence real
interest rates that matter.

3Del Negro et al (2012) is another example which focuses more on QE1 which has an effect in their model due to
imperfect liquidity of private paper. That work, however, is less suitable to think about QE2 and QE3.
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sector that the central bank will keep the short-term interest rates low once the zero lower bound

is no longer a constraint, i.e. signals a change in the policy rule taken as given in Eggertsson

and Woodford’s (2003) irrelevant result. In fact, arguably, much of the findings of the empirical

literature on reduction of long-term interest rates due to QE can be attributed to expectations

of low future short-term interest rates. Indeed, Krishnamurthy and Vissing-Jorgensen (2011) and

Bauer and Rudebusch (2013) find evidence in support of this channel in their study of the various

QE programs.

Our contribution in this paper is to provide a formal theoretical model of such a “signalling” role

of QE in a standard general equilibrium model. To do this we analyze a Markov Perfect Equilibrium

(MPE) in a game between the government and the private sector. In this equilibrium, agents will

use the “natural” state variables of the game to predict the behavior of future governments. QE

will have an effect because it changes the endogenous state variables of the game. In this respect

our model of signaling is different from models in a related literature on signalling in which central

bank types are fixed (they can either be “doves” or “hawks”, see e.g. Barro (1986)). In these

models, central banks use nominal interest rates to signal how much they care about inflation.

Our signalling mechanism is different from this literature, because the central bank’s “type” or

preference for inflation is derived endogenously and depends upon the size and composition of the

asset holdings of the central bank (moreover, there is full information about the preferences of the

government). Thus our interpretation of “signalling” is somewhat different, namely, it has to do

with credibly changing the central banks’ future policy incentives, or “types” in the language of

this earlier literature.

The paper connects more closely to the theoretical literature on how the maturity structure of

debt can be manipulated to eliminate the dynamic inconsistency problems in monetary models.

Well known examples include Lucas and Stokey (1983), Persson, Persson, and Svensson (1987 and

2006), Calvo and Guidotti (1990 and 1992) and Alvarez, Kehoe, and Neumeyer (2004). While the

focus of these papers is generally on policies that eliminates the government’s incentive to inflate,

our application is the opposite. In our setting, the maturity structure of debt is made shorter to

solve the deflation bias (Eggertsson (2006)) that arises when the zero bound is binding. In terms

of modelling strategy, a key difference relative to this work is that because we assume sticky prices,

the government has an effect not only on inflation, but also on the real interest rate which gives

rise to a new margin for policy that will prove to be important. Finally, the part of our paper with

an independent central bank that has balance sheet concerns is related to Jeanne and Svensson

(2007) and Berriel and Bhattarai (2009). The key difference is that this work focuses on the effects

of foreign exchange intervention and does not have long-term assets, while we analyze the size and

maturity composition of central bank balance sheet in order to connect to QE.

Below we outline the organization of the paper and preview some of the key findings. We

start out by defining a Markov Perfect Equilibrium (MPE) in the standard New Keynesian model

(Section 2). The key difference relative to standard treatments is that we allow for long-term

government debt. An important simplification is that we assume that the long-term debt is of
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some fixed duration and we will interpret QE as a one-time reduction in this duration. We defer

to Section 5 to define the MPE with time varying and optimally chosen duration of government

debt.

We first define the equilibrium in the fully non-linear model, assuming that monetary and

fiscal policy are coordinated. In this case a natural objective for the government is utility function

of the representative agent. We then (Section 3) show how the model can be approximated via

log-linearization of the constraints and quadratic approximation of social welfare. This is helpful

because it simplifies the model considerably and allows for a more transparent discussion of the

main results. A key proposition (Proposition 1) shows that the MPE of this approximate economy is

equivalent to a first order approximation of the MPE of the non-linear model. This is an important

step, because linear-quadratic approximation are in general not valid for this class of problems.4

An important element of Section 3 is that we define the MPE not only in the context of

coordinated monetary and fiscal policy but also if the central bank has its own objective and

budget constraint. One conclusion that emerges from Section 3 is that which model one adopts has

critical effects on how one interprets the data. If we think of the government as a unified entity then

what is important is the term structure of the government debt held in the hands of the private

sector. In contrast, for an independent central bank, what is important is the size and duration of

the central banks assets and liabilities on its balance sheet. We use the model to organize the data

under both approaches. The main findings of the data section will then serve as the basis of the

numerical experiments in Section 4.

The baseline New Keynesian model is perhaps too simple for us to take numerical simulations

literally as point estimates of the effect of QE. Nevertheless, we think it is useful to explicitly

parameterize the model to organize the key results and get some sense for the orders of magnitudes.

This is what we do in Section 4. To parameterize the model we ask it to replicate five targets,

which we formalize by choosing parameters to minimize the mean squared errors of the model

variables relative to the targets. We construct the targets as follows. First, we want the model

to generate a substantial recession. To do so, we ask the model to generate a recession at zero

interest rate due to drop in the efficient rate of interest as in Eggertsson and Woodford (2003).

More specifically, we ask the model to generate a fall in inflation of 2 percent, an output gap of -10

percent, and an expected duration of liquidity trap of 3 years. We then use the numbers about the

size of QE we construct in Section 3 and ask the model to generate a response to this policy on

future inflation and long-term yields estimated by Krishnamurthy and Vissing-Jorgensen (2011).

The approach is then to ask the parameterized model the following question: Given that we match

these five targets as best as we can, what does the model predict would have happened to output

and inflation in the absence of QE? The answer to this question is that output would have been

30 basis point lower and inflation 14 basis points lower (annualized) in the model with coordinated

monetary and fiscal policy for the episode we label QE2. For the central bank with balance sheet

4Recent literature on log-linear approximations at the ZLB suggests that these approximations can be surprisingly
accurate, even under extreme circumstances such as those that are meant to replicate the Great Depression at the
ZLB (Eggertsson and Singh (2015)). We do no consider such extreme examples here, however.
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concerns model, the analogous numbers are 45 basis points for output and 14 for inflation. What

we label as the Maturity Extension Program or QE3 in contrast had a bigger effect, yielding 90

basis points for output and 40 basis point for inflation under coordinated policy but these effects

are smaller for a central bank with balance sheet concerns. These experiments suggest that the

signalling effect can in principle be substantial in modern monetary models.

2 Benchmark model

We start by outlining our benchmark model in which case monetary and fiscal policy are coordi-

nated to maximize social welfare under discretion (i.e. the government cannot commit to future

policy). The model is a standard general equilibrium sticky-price closed economy set-up with an

output cost of taxation, along the lines of Eggertsson (2006). The main difference in the model

from the literature is the introduction of long-term government debt. While it may seem like a

distraction to write out the fully non-linear model and define the equilibrium in that context, as

we will later on analyze a linear quadratic version of this model, this is useful for two reasons.

First, we will formally show that the linearized first-order conditions of the government’s original

non-linear problem are the same as in our linear quadratic model (and this in general need not

be the case, see e.g. Eggertsson (2006)). Second, the non-linear version of the problem will be

important in section 5 once we allow for fully time-varying duration of government debt, where the

linear quadratic approximation is no longer valid. Laying out the model in this way, also, makes

transparent the relationship between social welfare and the ad-hoc objectives we will assign to the

central bank when it is independent in an alternative variation of the model which we propose in

Section 3. There, again, we will be working in a linear quadratic framework.

2.1 Private sector

A representative household maximizes expected discounted utility over the infinite horizon

Et

∞∑

t=0

βtUt = Et

∞∑

t=0

βt [u (Ct) + g (Gt)− v(ht))] ξt (1)

where β is the discount factor, Ct is household consumption of the final good, Gt is government

consumption of the final good, ht is labor supplied, and ξt is a shock. Et is the mathematical

expectation operator conditional on period-t information, u (.) is concave and strictly increasing in

Ct, g (.) is concave and strictly increasing in Gt, and v (.) is increasing and convex in ht.
5

The final good is an aggregate of a continuum of varieties indexed by i, Ct =
∫ 1
0

[
ct(i)

ε−1
ε di

] ε
ε−1

,

where ε > 1 is the elasticity of substitution among the varieties. The optimal price index for the

final good is given by Pt =
[∫ 1
0 pt(i)

1−εdi
] 1

1−ε
, where pt(i) is the price of the variety i. The demand

5We abstract from money in the model and are thus directly considering the “cash-less limit.”
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for the individual varieties is then given by ct(i)
Ct

=
(
pt(i)
Pt

)
−ε

. Finally, Gt is defined analogously to

Ct and so we omit detailed description of government spending.
The household is subject to a sequence of flow budget constraints

PtCt +B
S
t + StBt + Et{Qt,t+1At+1} ≤ ntht + (1 + it−1)B

S
t−1 + (1 + ρSt)Bt−1 +At − PtTt +

∫
1

0

Zt(i)di (2)

where nt is nominal wage, Zt(i) is nominal profit of firm i, BS
t is the household’s holding of one-

period risk-less nominal government bond at the beginning of period t+1, Bt is a perpetuity bond,

St its price, and ρ its decay factor (further described below). At+1 is the value of the complete set

of state-contingent securities at the beginning of period t+ 1 and Qt,t+1 is the stochastic discount

factor between periods t and t+ 1 that is used to value random nominal income in period t+ 1 in

monetary units at date t.6 Finally, it−1 is the nominal interest rate on government bonds at the

beginning of period t and Tt is government taxes.

The way we introduce long term bonds into the model is to assume that government debt

not only takes the form of a one period risk-free debt, BS
t , but that the government also issues a

perpetuity in period t which pays ρj dollars j + 1 periods later, for each j ≥ 0 and some decay

factor 0 ≤ ρ < β−1.7 St is the price of the perpetuity nominal bond which depends on the decay

factor ρ. The main convenience of introducing long term bond in this way is that we can consider

government debt of arbitrary duration. For example, a value of ρ = 0 implies that this bond is

simply a short-term bond while ρ = 1 corresponds to a classic console bond. More generally, in

an environment with stable prices, the duration of this bond is (1 − βρ)−1. Thus, this simple

assumption allows us to explore a change in the duration of government debt in a transparent way.

The appendix contains details on why the budget constraint takes the form (2). In particular, the

modeling of long-term bond in this way admits a simple recursive formulation of the price of old

government bonds.

For now, observe that we treat ρ as a constant. We will explore a one-time reduction in this

duration as a main “comparative static” of interest. In other words, a reduction in ρ answers the

question: What does a permanent reduction in the maturity of government debt do?8 Toward the

end of the paper, however, we will extend the analysis so that ρ becomes a time varying choice

variable ρt. The main reason for our initial benchmark assumption is simplicity (and the fact that

we get a clean comparative static). But perhaps more importantly, we will see later that a one-time

reduction in ρ (in a liquidity trap) turns out to be a reasonably good approximation because ρt is

close to a random walk under optimal policy under discretion at a positive interest rate.

The maximization problem of the household is now entirely standard, with the additional

feature of the portfolio choice between long and short term bonds.9 Let us now turn to the firm

6The household is subject to a standard no-Ponzi game condition.
7We follow Woodford (2001).
8When we move towards an independent central bank, the thought experiment will be somewhat different, as we

soon explain.
9The problem of the household is thus to choose {Ct+s, ht+s, B

S
t+s, Bt+s, At+s} to maximize (1) subject

to a sequence of flow budget constraints given by (2), while taking as exogenously given initial wealth and
{Pt+s,nt+s, it+s, St+s(ρ), Qt,t+s, ξt+s, Zt+s(i), Tt+s}.
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side of the model. There is a continuum of monopolistically competitive firms indexed by i. Each

firm produces a variety i according to the production function that is linear in labor yt(i) = ht(i).

As in Rotemberg (1983), firms face a cost of changing prices given by d
(

p(i)
pt−1(i)

)
.10 The demand

function for variety i is given by
yt(i)

Yt
=

(
pt(i)

Pt

)
−ε

(3)

where Yt is total demand for goods. The firm maximizes expected discounted profits

Et

∞∑

s=0

Qt,t+sZt+s(i) (4)

where the period profits Zt(i) are given by

Zt(i) =

[
(1 + s)Ytpt(i)

1−εP εt − nt(i)Ytpt(i)
−εP εt − d

(
pt(i)

pt−1(i)

)
Pt

]

where s is a production subsidy which we will set to eliminate the steady state distortion of

monopolistic competition as is common in the literature.11

We can now write down the necessary conditions for equilibrium that arise from the maximiza-

tion problems of the private sector described above. We focus on a symmetric equilibrium where all

firms charge the same price and produce the same amount of output. The households optimality

conditions are given by
vh (ht)

uC (Ct)
=
nt
Pt

(5)

1

1 + it
= Et

[
β
uC(Ct+1)ξt+1
uC(Ct)ξt

Π−1t+1

]
(6)

St = Et

[
β
uC(Ct+1)ξt+1
uC(Ct)ξt

Π−1t+1 (1 + ρSt+1)

]
(7)

where Πt =
Pt
Pt−1

is gross inflation.12 The firm’s optimality condition from price-setting is given by

εYt [uC (Ct)− vy(Yt)] ξt + uC(Ct)ξtd
′ (Πt)Πt = Et

[
βuC(Ct+1)ξt+1d

′ (Πt+1)Πt+1
]

(8)

where with some abuse of notion we have replaced vh with vy since in a symmetric equilibrium

ht(i) = yt(i) = Yt.

10Our result are not sensitive to assuming instead the alternative Calvo model of price setting, provided we do not
assume there are large resource costs of price changes. This is explained in detail in Eggertsson and Singh (2015).
The reason we adapt the Rotemberg specification is simplicity, i.e., it allows us to abstract from price dispersion as
a state variable.
11The problem of the firm is thus to choose {pt+s(i)} to maximize (4), while taking as exogenously given

{Pt+s,Yt+s, nt+s, Qt,t+s, ξt+s}
12We may also add a standard transversality condition as a part of these conditions or a natural borrowing limit.
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2.2 Government

There is an output cost of taxation (for example, as in Barro (1979)) captured by the function

s(Tt − T ) where T is the steady-state level of taxes. Thus, in steady-state, there is no tax cost.

Total government spending is then given by

Ft = Gt + s(Tt − T )

where Gt is aggregate government consumption of the composite final good defined before.

It remains to write down the (consolidated) flow budget constraint of the government. Note

that the government issues both a one-period bond BS
t and the perpetuity Bt. We can write the

flow budget constraint as

BS
t + StBt = (1 + it−1)Bt−1 + (1 + ρSt)Bt−1 + Pt (Ft − Tt) .

Next, we assume that the one-period bond is in net-zero supply (i.e. BS
t = 0, which makes clear

that we only introduce this bond explicitly as the one period risk free short term nominal rate is

the key policy instrument of monetary policy), and write the budget constraint in real terms as

Stbt = (1 + ρSt) bt−1Π
−1
t + (Ft − Tt) (9)

where bt =
Bt
Pt
. We now define fiscal policy as the choice of Tt, Ft , and bt. For simplicity, we will

from now on suppose that total government spending is constant so that Ft = F. Conventional

monetary policy is the choice of it. We simply impose the zero bound constraint on the setting of

monetary policy so that13

it ≥ 0. (10)

2.3 Private sector equilibrium

The goods market clearing condition gives the overall resource constraint as

Yt = Ct + Ft + d (Πt) . (11)

We can then define the private sector equilibrium, that is the set of possible equilibria that are

consistent with household and firm maximization and the technological constraints of the model. A

private sector equilibrium is a collection of stochastic processes {Yt+s, Ct+s, bt+s, St+s, Πt+s, it+s,

Qt,t+s, Tt+s, Ft+s, Gt+s} for s ≥ 0 that satisfy equations (5)-(10), for each s ≥ 0, given bt−1 and an

exogenous stochastic process for {ξt+s}. To determine the set of possible equilibria in the model,

we now need to be explicit about how policy is determined.

13This bound can be explicitly derived in a variety of environments, see e.g. Eggertsson and Woodford (2003) who
assume money in the utility function.
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2.4 Markov-perfect equilibrium

We characterize a Markov-perfect (time-consistent) Equilibrium in which the government cannot

commit and acts with discretion every period.14 A key assumption in a Markov-perfect Equilibrium

is that government policy cannot commit to actions for the future government. Following Lucas

and Stokey (1983), however, we suppose that the government is able to commit to paying back the

nominal value of its debt.15 The only way the government can influence future governments, then,

is via any endogenous state variables that may enter the private sector equilibrium conditions.

Before writing up the problem of the government, it is therefore necessary to write the system in

a way that makes clear what are the endogenous state variables of the game we study.

Define the expectation variables fEt , g
E
t , and h

E
t . The necessary and sufficient conditions for

a private sector equilibrium are now that the variables {Yt, Ct, bt, St, Πt, it, Tt} satisfy: (a) the

following conditions

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π
−1
t + (F − Tt) (12)

1 + it =
uC (Ct) ξt

βfEt
, it ≥ 0 (13)

St(ρ) =
1

uC (Ct) ξt
βgEt (14)

βhEt = εYt

[
ε− 1

ε
uC (Ct) ξt − ṽy (Yt) ξt

]
+ uC (Ct) ξtd

′ (Πt)Πt (15)

Yt = Ct + F + d (Πt) (16)

given bt−1 and the expectations f
E
t , g

E
t , and h

E
t ; (b) expectations are rational so that

fEt = Et
[
uC (Ct+1) ξt+1Π

−1
t+1

]
(17)

gEt = Et
[
uC (Ct+1) ξt+1Π

−1
t+1 (1 + ρSt+1(ρ))

]
(18)

hEt = Et
[
uC (Ct+1) ξt+1d

′ (Πt+1)Πt+1
]
. (19)

Note that the possible private sector equilibrium defined above depends only on the endogenous

state variable bt−1 and the shock ξt. Given that the government cannot commit to future policy

(apart from through the endogenous state variable), a Markov-perfect Equilibrium then requires

that the expectations fEt , g
E
t , and h

E
t are only a function of these two state variables, i.e, we can

define the expectation functions

fEt = f̄E(bt, ξt), g
E
t = ḡE(bt, ξt), and h

E
t = h̄E(bt, ξt). (20)

We can now write the discretionary government’s optimization problem as a dynamic program-

14See Maskin and Tirole (2001) for a formal definition of the Markov-perfect Equilibrium.
15One could model this more explicitly by assuming that the cost of outright default is arbitrarily high.
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ming problem

V (bt−1, ξt) = max
it,Tt

[U (.) + βEtV (bt, ξt+1)] (21)

subject to the private sector equilibrium conditions (12)-(16) and the expectation functions (20).

Note that in equilibrium, the expectation functions satisfy the rational expectation restrictions (17)-

(19). Here, U (.) is the utility function of the household in (1) and V (.) is the value function.16

The detailed formulation of this maximization problem and the associated first-order necessary

conditions, as well as their linear approximation, are provided in the appendix.17

3 Linear-quadratic approach

For most of our analysis we take a linear-quadratic approach to the optimal policy problem, which

we will show explicitly is a correct approximation to the original non-linear optimal policy problem

of the government that is maximizing social welfare. This characterization will directly apply when

we consider the consolidated government. In this section, we also consider an independent central

bank. The problem of the independent central bank will be similar to that of the consolidated

government, apart from that it has its own budget constraint and an objective that may deviate

from social welfare due to political economy constraints. We consider first the coordinated policy,

and then move to an independent central bank.

3.1 Coordinated monetary and fiscal policy

We start with the baseline model above of the coordinated government case where the budget

constraints are consolidated and government objective is to maximize welfare. We approximate

our non-linear model of the previous section around an efficient non-stochastic steady-state with

zero inflation.18 Moreover, there are no tax collection costs in steady-state.19 Thus, there is a

non-zero steady-state level of debt.20 In steady-state, we assume that there is some fixed total

market-value of public debt Sb = Γ̄. Then, the following relationships hold

1 + i = β−1, S =
β

1− ρβ
, b =

1− ρβ

β
Γ̄ and T = F +

1− β

β
Γ̄.

We log-linearize the private sector equilibrium conditions around the steady state above to obtain

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1 − r
e
t ) (22)

πt = κŶt + βEtπt+1 (23)

16Using compact notation, note that we can write the utility function as [u (Ct) + g (F − s(Tt − T ))− v (Yt)]ξt.
17Note here that we assume that the government and the private-sector move simultaneously.
18Variables without a t subscript denote a variable in steady state. Note that output is going to be at the efficient

level in steady state because of the assumption of the production subsidy (appropriately chosen) we have made before.
19We can think of this as being due to a limited set of lump sum taxation.
20The steady-state is efficient even with non-zero steady-state debt because of our assumption that taxes do not

entail output loss in steady-state.
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b̂t = β−1b̂t−1 − β
−1πt − (1− ρ)Ŝt − ψT̂t (24)

Ŝt = −ı̂t + ρβEtŜt+1 (25)

where κ and σ are a function of structural model parameters that do not depend upon ρ and ret

is the efficient rate of interest that is a function of the shock ξt.
21 The coefficient ψ ≡ T

Γ̄
is also

independent of ρ in our experiment.22

Here, (22) is the linearized household Euler equation, (23) is the linearized Phillips curve, (24)

is the linearized government budget constraint, and (25) is the linearized forward-looking asset-

pricing condition.23 (22) and (23) are standard relationships depicting how current output depends

on expected future output and the current real interest rate gap and how current inflation depends

on expected future inflation and the current output respectively.24

(24) shows that since debt is nominal, its real value is decreased by inflation. Higher taxes also

reduce the debt burden. Moreover, an increase in the price of the perpetuity bond decreases the

real value of debt, with the effect depending on the duration of debt: longer the duration, lower is

the effect of the bond price on debt. Finally, (25) shows that the price of the perpetuity bond is

determined by (the negative of) expected present value of future short-term interest rates. Hence,

lower current or future short-term nominal interest rate will increase the price of the perpetuity

bond. Note that when ρ = 0, all debt is of one-period duration and (24) reduces to the standard

linearized government budget constraint while (25) reduces to Ŝt = −ı̂t.
25

A second-order approximation of household utility around the efficient non-stochastic steady

state gives

Ut = −
[
λππ

2
t + Ŷ

2
t + λT T̂

2
t

]
(26)

where λπ and λT are a function of structural model parameters.
26 Compared to the standard loss-

function in models with sticky prices that contains inflation and output, (26) features losses that

arise from output costs of taxation outside of steady-state.

To analyze optimal policy under discretion in the linear-quadratic framework we once again

maximize utility, subject to the now linear private sector equilibrium conditions, taking into account

that the expectation are functions of the state variables of the game. In the linear system, the

exogenous state is now summarized with ret while the endogenous state variable is once again b̂t−1.

21The details of the derivation are in the appendix.
22Since we are thinking of changes in ρ in our experiment as exchanging short bonds with long bonds — effec-

tively reducing/increasing ρ — this interpretation would imply that total value of debt in steady-state — Γ̄— remains
unchanged.
23Variables with hats denote log-deviations from steady state except for the nominal interest rate, which is given

as ı̂t =
it−i
1+i

. Since in the non-stochastic steady state with zero inflation, 1 + i = 1

β
, this means that the zero lower

bound on nominal interest rates imposes the following bound on ı̂t : ı̂t ≥ − (1− β) .
24We write directly in terms of output rather than the output gap since we will not be considering shocks that

perturb the efficient level of output in the model.
25 It is important to point out one technical detail in this case. The interpretation in this case of b̂t is that it is

the real value of the debt inclusive of the interest rate payment to be paid next period, that is, if all debt were one

period bt = (1 + it)
BSt
Pt
.

26The details of the derivation are in the appendix. In particular, λπ =
ε
k
.
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Moreover, the expectation variables appearing in the system are now EtŶt+1, EtŜt+1, and Etπt+1.

Accordingly, we will define the game in terms of the state variables (ret , b̂t−1) and the government

now takes as given the expectation functions Ȳ E(b̂t, r
e
t ), S̄

E(b̂t, r
e
t ), and π̄

E(b̂t, r
e
t ).

The discretionary government’s optimization problem can then be written recursively as a

linear-quadratic dynamic programming problem

V (b̂t−1, r
e
t ) = min[λππ

2
t + Ŷ

2
t + λT T̂

2
t + βEtV (b̂t, r

e
t+1)]

s.t.

Ŷt = Ȳ E(b̂t, r
e
t )− σ(̂ıt − π̄

E(b̂t, r
e
t )− r

e
t )

πt = κŶt + βπ̄
E(b̂t, r

e
t )

b̂t = β−1b̂t−1 − β
−1πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβS̄
E(b̂t, r

e
t ).

Observe that once again, in equilibrium, the expectation functions need to satisfy the rational

expectations restrictions that EtŶt+1 = Ȳ E(b̂t, r
e
t ), EtSt+1 = S̄E(b̂t, r

e
t ), and Etπt+1 = π̄E(b̂t, r

e
t ).

We prove in the proposition below that this linear-quadratic approach gives identical linear

optimality conditions as the one obtained by linearizing the non-linear optimality conditions of the

original non-linear government maximization problem that we described in the previous section.

This provides the formal justification for our simplified approach.

Proposition 1 The linearized dynamic system of the non-linear Markov Perfect Equilibrium is

equivalent to the linear dynamic system of the linear-quadratic Markov Perfect Equilibrium.

Proof. In Appendix.

3.1.1 Interpreting data from QE through the lens of the model

Let us now briefly review the data we will use when we do numerical experiments with this bench-

mark model. We are asking the data to give us some numbers for the following thought experiment:

What happens when you reduce the maturity of government debt? In the context of the model, we

are interested in getting some values for changes in ρ as representing a particular unconventional

monetary policy intervention.

According to the model, under coordinated policy and consolidated budget constraints we

should only be considering the debt held by the public (thus, we net out government debt held

by the Federal Reserve). Consistent with the model, also, we count reserves issued by the Federal

Reserve as short-term government debt. The duration of the consolidated government’s debt is

given below in Fig. 1.27 The vertical dashed lines are important events associated with the Federal

27 In generating this figure, we first use estimates from Chadha, Turner, and Zampoli (2013) on the duration of
treasury debt held outside the Federal Reserve, which we then augment with data on reserves issued by the Federal
Reserve that is available from public sources (FRED).
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Reserve buying long-term treasury bonds: November 2008 and March 2009 (Quantitative Easing

1); November 2010 (Quantitative Easing 2 (QE 2)); September 2011 (Maturity Extension Program

(MEP)); and September 2012 and December 2012 (Quantitative Easing 3 (QE3)). Around those

dates, the maturity of outstanding government debt declined. The baseline estimation of our model

will be based on the November 2010 or the Quantitative Easing 2 (QE2) program, a common focal

point in the literature. Given the parameter estimates from the QE2 program, we can also assess

the macroeconomic impact of the September 2011 or the Maturity Extension Program (MEP).

The reduction in maturity observed in Fig. 1 will be the input in our policy experiments under

coordinated policy and consolidated budget constraints.28

3.2 An independent central bank

We now present an alternate model where the central bank faces its own budget constraint and

minimizes an ad-hoc loss function that captures directly its balance sheet concerns. This model

has a political economy related justification to why the central bank might care about transfers to

the treasury. This alternative formulation, as will become clear, will also require us to view the

data through different lenses than in the last subsection. As we shall see later on, however, the

central insights will remain the same, i.e. QE has an effect via signalling.

We are now interested in studying the problem from the perspective of an independent central

bank that need not act in concert with the rest of the government. The first step is to explicitly

write down its budget constraint, before we move on to its objectives. We consider the case where

the central bank holds long-term assets (long term government debt). It buys these assets by

issuing one-period liabilities (approximating interest-bearing reserves). We also introduce some

“seigniorage net of operations cost” of the central bank that is not time-varying (similar to fiscal

spending that is not time-varying in our previous characterization when monetary and fiscal policy

are coordinated). Denote central bank holdings of assets by BCB
t and its liabilities by Lt (with

prices Sγt and Qt respectively) and the “seigniorage net of operations cost” by K. The assets of

the central bank are in the form of a perpetuity bond of the same kind we analyzed before with

duration γ. Moreover, let Vt be the transfers to the treasury.

The flow budget constraint of the central bank is then given by

Sγt B
CB
t + PtVt −QtLt − PtK = (1 + γSγt )B

CB
t−1 − Lt−1

where the price of the liabilities, Qt, is inverse of the (gross) short-term nominal interest rate.29

This can be written in real terms as

Sγt b
CB
t −Qtlt = (1 + γS

γ
t ) b

CB
t−1Π

−1
t − lt−1Π

−1
t +K − Vt.

28We will for the rest of the paper take September 2011, September 2012, December 2012 as one policy intervention
and with abuse of terminology, refer it as MEP.
29For earlier work in this vein, see Jeanne and Svensson (2007) and Berriel and Bhattarai (2009). For recent work

exploring the implications of the central bank budget constraint, see Hall and Reis (2013) and Del Negro and Sims
(2015), who explore positive issues related to solvency and determinacy.
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The debt of the treasury is now either held by the central bank or the general public. The market

clearing condition for treasury debt (BT
t ) is thus given by B

T
t = BCB

t + Bt where Bt is debt held

by the public. We assume that the treasury follows passive fiscal policy that ensures stable debt

dynamics. Thus we completely abstract from fiscal policy considerations. We also assume for

simplicity that all central bank reserves are held by the public.

With some algebra outlined in the footnote, and some simplifying assumptions, we can write

the linearized budget constraint as

[
b̂CBt − l̂t

]
= β−1

[
b̂CBt−1 − l̂t−1

]
− (1− γ) Ŝγt + Q̂t − ψV V̂t (27)

where ψV ≡ V
SγbCB

.30 Moreover, the price of the long term assets, Ŝγt , is given by the same

asset-pricing condition as before

Ŝγt = −ı̂t + γβEtŜ
γ
t+1

while the price of the short-term asset, which is just the negative of the short-term interest rate,

is given by Q̂t = −ı̂t.

Before we made the critical assumption that in steady state the market value of public debt was

given by some fixed number Sb = Γ̄ that we linearized around. Here, the most important parameter

is the scale of the balance sheet, measured by ψV . This number reflects how large the asset side of

the balance sheet, SγbCB, is relative to the steady state transfers to the treasury, V. Also, note here

that the budget constraint is written in terms of the difference between the central banks holding

of long term government debt b̂CBt which has a fixed duration of γ and it own issuance of short

term debt (interest bearing reserves) l̂t. It can thus be re-written in terms of the net asset position

of the bank, which we define as b̂N,CBt = b̂CBt − l̂t. We will use that formulation later below.

There are several noteworthy features in (27). First notice that up to first-order inflation has

30The two nonlinear asset pricing conditions will take the form

S
γ
t = Et

[
β
uC(Ct+1)ξt+1
uCCt)ξt

Π−1t+1
(
1 + γS

γ
t+1

)]
, Qt =

1

1 + it
= Et

[
β
uC(Ct+1)ξt+1
uC(Ct)ξt

Π−1t+1

]
.

In steady-state, like before, we have Q−1 = 1 + i = β−1, Sγ = β

1−γβ
. Moreover, define, as before SγbT = Γ̄, which

from market clearing gives
(
bCB + b

)
= Γ̄. The central bank budget constraint is then given in steady-state by

S
γ
b
CB −Ql = (1 + γS

γ) bCB − l +K − V.

We will focus on a steady-state where SγbCB = Ql. Since Sγ

Q
= 1

1−γβ
, we will have bCB

l
= (1− γβ) . This then

implies that K = V. We can now linearize the non-linear asset pricing and central bank budget constraint. First,
we have Ŝγt = Q̂t + γβEtŜ

γ
t+1where in terms of our previous notation the following holds Q̂t = −ı̂t. Thus, we have

exactly like before the asset pricing condition for the long-term asset Ŝγt = −ı̂t + γβEtŜ
γ
t+1. The linearized budget

constraint is now given by

[
b̂
CB
t −

Ql

SγbCB
l̂t

]
= β

−1

[
b̂
CB
t−1 −

Ql

SγbCB
l̂t−1

]
− β

−1

[
1−

Ql

SγbCB

]
πt − (1− γ) Ŝt +

Ql

SγbCB
Q̂t − ψV V̂t

where ψV = V

SγbCB
is a parameter. We have to make some assumptions on the steady-state ratio of (mkt value)

of liabilities to assets of the central bank: Ql

SγbCB
. We will assume that it is 1. That gives the linearized budget

constraint in the text.
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no effect on the net asset position of the bank. The reason for this is that inflation depreciates the

value of the assets (nominal long term bonds) and liabilities (short term nominal debt) to exactly

the same extent. This is a critical difference relative to the consolidated budget constraint. Long

term debt does, however, have an important effect on the net asset position of the central bank.

This is because while assets are long-term, the liabilities are short term. There is thus generally a

“duration mismatch” in the central bank’s balance sheet.

To see fully the implications of this duration mismatch, consider first the case in which γ = 0.

Then, both the assets and the liabilities have the same duration and variations in the short term

nominal interest rate have no effect on the net worth of the central bank, as Q̂t and Ŝt cancel out.

Consider now the case in which γ > 0. Now the central bank is holding long dated assets and short

dated liabilities. In this case we see that an increase in the short-term nominal interest rate reduces

the net worth of the bank. The reason for this is that an increase in the short rate increases the

borrowing cost of the bank one-to-one. Meanwhile, on the assets side, the increase in the short

term nominal interest rate has a more limited effect , since they are long-dated securities (so the

nominal interest rate is multiplied by 1 − γ in (27)). Thus, increasing the short-term nominal

interest rate sharply will lead to balance sheet losses for the central bank.

What does quantitative easing mean in the context of this budget constraint? We can model

it in two ways. First, recall that for the consolidated budget constraint we interpreted it as a one

time decline in ρ. Here, an analogous experiment is that it corresponds to a one time increase in

γ, i.e. the degree of duration mismatch is enhanced by making longer the duration of the assets

held by the central bank. This interpretation is about the change in composition of the asset side

of the central bank’s balance sheet.

While an increase in γ is one way of interpreting quantitative easing, there is another comple-

mentary interpretation. An increase in γ means that it is replacing shorter term bonds on its asset

side with bonds of longer duration. But the total value of bonds on the asset side is constant.

Thus, it is simply a change in the composition of the balance sheet. Now consider the following

experiment: Suppose all bonds on the asset side have some fixed γ (say, corresponding to five

years). Now imagine the central bank increases the purchases of these these bonds by printing

interest-bearing reserves. While this is not affecting the average duration of bonds on the asset

side of the balance sheet (or average duration mismatch since γ is fixed), it is increasing the scale

of the central bank balance sheet. The scale of the balance sheet in steady state was evaluated

by the parameter ψV =
V

SγbCB
. A permanent expansion in the balance sheet is therefore measured

as a drop in ψV . Observe that the increase in scale will simply expand the number of assets and

liabilities, but in steady state the remittances, V , remain unchanged. Hence an alternative way of

interpreting quantitative easing is an increase in the size of the balance sheet of the Fed, or a drop

in ψV., without changing the composition. We will use both the first and second interpretation to

study the implications of different QE episodes.
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We can write (27) in terms of one state variable, b̂N,CBt−1 = b̂CBt−1 − l̂t−1, as

b̂N,CBt = β−1b̂N,CBt−1 − (1− γ) Ŝγt + Q̂t − ψV V̂t. (28)

Observe that all the private-sector equilibrium conditions remain the same as when we studied the

consolidated budget constraint. We can now conduct the experiment of an increase in the central

bank’s balance sheet via decrease in ψV , holding γ fixed. We can also conduct the experiment of

larger holding of long-term assets as an increase in γ, holding ψV fixed.

In terms of the central bank’s objective, we take here an ad-hoc loss-function approach, which

has a rich and long history in monetary economics. We posit that the central bank directly cares

about transfers to the treasury for political economy reasons. This means that its period loss

function now incorporates a term related to target transfers to the Treasury, Vt, in addition to the

usual terms related to inflation and output. It is thus given by

[
λππ

2
t + Ŷ

2
t + λV V̂

2
t

]
.

Does this objective make sense? There is some evidence that central banks care about the transfers

to the treasury.31 Moreover, as we have seen, to the extent that these transfers affect tax collection,

the central bank should care also from a social welfare point of view.

The discretionary central bank’s optimization problem can then be written recursively as a

linear-quadratic dynamic programming problem

V (b̂N,CBt−1 , ret ) = min[λππ
2
t + Ŷ

2
t + λT T̂

2
t + βEtV (b̂

N,CB
t , ret+1)]

s.t.

Ŷt = Ȳ E(b̂N,CBt , ret )− σ(̂ıt − π̄
E(b̂N,CBt , ret )− r

e
t )

πt = κŶt + βπ̄
E(b̂N,CBt , ret )

b̂N,CBt = β−1b̂N,CBt−1 − (1− γ) Ŝγt + Q̂t − ψV V̂t

Ŝγt = −ı̂t + γβS̄
γE(b̂N,CBt , ret ).

Observe that once again, in equilibrium, the expectation functions need to satisfy the rational

expectations restrictions that EtŶt+1 = Ȳ E(b̂N,CBt , ret ), EtS
γ
t+1 = S̄γE(b̂N,CBt , ret ), and Etπt+1 =

π̄E(b̂N,CBt , ret ).

The behavior of this model will critically depend up on the initial value of the net capital of

the bank b̂N,CBt−1 . If this number is negative, then the path for V̂t will generally be below what the

central bank would ideally like it to be during the transition to steady state. Moreover, interest-

31Central bank governors that incur large balance sheet losses – e.g. the Central Bank of Iceland in 2008 which
lost money corresponding to 30% of GDP — usually find themselves without a job shortly thereafter. Berriel and
Bhattarai (2009) contains some other anecdotal evidence of such central bank worries. In related frameworks, Jeanne
and Svensson (2007) and Berriel and Bhattarai (2009) include the central bank’s net worth directly in the loss
function. Our modeling approach here is thus different.
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rates will be rising during this transition. We think this provides the most natural interpretation

of the political economy objectives of a central bank as we further discuss in Section 4.2 when we

calibrate the model.

3.2.1 Interpreting data from QE through the lens of the model

This alternative model of QE provided by modeling an independent central bank leads one to

consider different aspects of the data relative to if we were to assume coordinated government

policy. Now we are not interested in the composition of the net government debt held by the

public, but instead the balance sheet of the central bank directly. Ratio of the assets of the Federal

Reserve (holdings of treasuries like our model) to average pre-crisis GDP is given below in Fig. 2.

This is the counterpart to the parameter 1
ψV

in the model above.32 Average maturity of treasury

holdings by the Federal Reserve is given below in Fig. 3. This is the counterpart to the parameter

γ in the model above.33 Again, the vertical dashed lines are important events associated with the

Federal Reserve buying long-term treasury bonds: November 2008 and March 2009 (Quantitative

Easing 1); November 2010 (Quantitative Easing 2 (QE 2)); September 2011 (Maturity Extension

Program (MEP)); and September 2012 and December 2012 (Quantitative Easing 3 (QE3)). The

baseline parameterization of our model will be based on the November 2010 or the Quantitative

Easing 2 (QE2) program. Fig. 2 shows that the defining feature of that program was an increase

in the size of the Federal Reserve’s balance sheet with the average maturity not changing by much.

The figures also help us assess the macroeconomic impact of the September 2011 or the Maturity

Extension Program (MEP). Fig. 3 shows that the defining feature of that program was an increase

in the maturity of treasury holdings, with the size of the balance sheet not changing by much.

4 Results

4.1 Coordinated monetary and fiscal policy

Let us start with our baseline model where the budget constraints of the treasury and the central

bank are consolidated and the government maximizes the welfare of the representative household

under discretion. We discuss the calibration of this model next. As we mentioned before, the

baseline calibration of this model will be based on the effects of the QE2 program. For the steady-

state level of debt-to-taxes, bS
T
= Γ̄

T
, we use data from the Federal Reserve Bank of Dallas to get

the long-run average of market value of debt over output ( bS
Y
) and NIPA data to estimate the ratio

of taxes over output ( T
Y
). This gives us the value bS

T
= Γ̄

T
= 7.2. We start with a baseline maturity

of 16.87 q., which is the level at the beginning of the QE2 program. Then, as a measure of the

effects on the average maturity of outstanding government debt from QE2, we take the difference

32 In the model, this parameter is the Ratio of assets to remittances to Treasury and that is what we indeed use for
calibration. For ease of interpretation, we present in the figure the Ratio of assets to annual GDP, which is a scaled
version. These two measures are simply related by a ratio: that of pre-crisis remittances to Treasury to GDP.
33We used data from publicly available sources to construct these figures (FRED and the Federal Reserve Board

of Governors website).
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in Fig. 1 between QE2 and the MEP (the third and fourth dashed vertical lines), which is 0.67 q.

That is, according to our measure, the reduction in maturity was from 16.87 q to 16.2 q, with a

difference of 0.67q.

To model the case of a liquidity trap, we follow Eggertsson and Woodford (2003) and assume

a negative shock to the exogenous efficient rate of interest, ret , which makes the zero lower bound

binding.34 The process for ret follows a two-state Markov process with an absorbing state: From

period 0 on then ret takes on a negative value of r
e
L. It remains at this value with probability µ in

every period, while with probability 1 − µ, it reverts back to steady-state and stays there forever

after. This means that the economy will exit the liquidity trap with a constant probability of 1−µ

every period and that once it exits, it does not get into the trap again. The appendix contains

details about the computation algorithm.

To parameterize the model we use a mix of calibration/estimation based on the effects of QE2

on inflation and yields calculated by Krishnamurthy and Vissing-Jorgensen (2011) as well as the

expected duration of the zero lower bound episode and its effects on output and inflation. We pick

the quarterly discount factor of β = 0.99 and we fix the elasticity of substitution among varieties

of goods at a standard value of 8. We allow for debt while at the liquidity trap to be 30% above

its steady-state value, which is in line with the Federal Reserve Bank of Dallas data.35

Then, we estimate (σ, λT , κ, r
e
L, µ) by matching five targets. Our first two targets are a

reduction in 8 quarters ahead yield of ∆i∗ (8) = −16 b.p. and an increase in expected cumulative

inflation over 10 years of ∆π∗ (40) = 5b.p. as a result of the QE2 program when the economy is

initially in a ZLB situation. These were the estimates in Krishnamurthy and Vissing-Jorgensen

(2011) of the effects of the QE2 program. Our third target is a 3-year average duration of the ZLB

period (for an average ZLB duration of about 3 years, we target µ∗ = 0.91). Finally, our fourth

and fifth targets are a drop in output of 10% and a 2% percent drop in inflation during the ZLB

episode to make the experiment relevant for the recent “Great Recession” in the United States

(Y ∗ (1) and π∗ (1) of −0.10 and -0.02 respectively).36

Our criterion for estimation is the mean squared weighted relative error given by

L =

√(
∆π (40)

∆π∗ (40)
− 1

)2
+

(
∆i (8)

∆i∗ (8)
− 1

)2
+

(
Q (µ)

Q (µ∗)
− 1

)2
+

(
Y (1)

Y ∗ (1)
− 1

)2
+

(
π (1)

π∗ (1)
− 1

)2

where Q (µ) = 1
1−µ is the expected duration in quarters of the ZLB episode. The values of the

targets for our best match are π (1) = −0.021, Y (1) = −0.091, ∆π (40) = 4.72 b.p., ∆i (8) = −5.87

b.p., and µ = 0.89 (about 2.25 years). Our estimated parameter values are given in Table 1.

34One can think of this here as being driven by a preference shock. For an alternate way of generating a liquidity
trap in monetary models, based on an exogenous drop in the borrowing limit, see Eggertsson and Krugman (2012).
35We also adjust the quantity of debt level after QE2 to keep the market value of the debt fixed during the QE2

intervention (it has to be adjusted to 0.297).
36One can alternatively impose some priors on the parameters we estimate using Bayesian methods, but we felt

this strategy is more transparent, given that our estimated value for the parameters are relatively reasonable.
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4.1.1 Solution at positive interest rates

We start by showing the solution at positive interest rates to show how debt maturity changes

the policy incentives of the government. The complication in solving a MPE is that we do not

know the unknown expectation functions π̄E , Ȳ E , and S̄E . To solve this, we use the method of

undetermined coefficients. All the details of the derivations are provided in the appendix.

Let us first consider the most basic exercise to clarify the logic of the government’s problem.

How do the dynamics of the model look like in the absence of shocks when the only difference from

steady state is that there is some initial value of debt with some fixed value for debt duration?

Fig. 4 shows the dynamics of the endogenous variables in the model for an initial value of debt

that is 30 percent above the steady state. We see that if debt is above steady state, it is paid over

time back to steady state. For our baseline duration of 16.87 quarters (solid line), the half-life of

debt repayment is about 12 quarters. In the transition inflation is about 0.75 percent above steady

state and the real interest rate is below its steady state. As a consequence, output is also above

its steady state value. This result is in contrast to the classic Barro tax smoothing result whereby

debt follows a random walk. The reason is that debt creates an incentive to create inflation for a

discretionary government as further described below. By paying down debt back to steady state,

the government eliminates this incentive and achieves the first best outcome in the model.

The figure illustrates that for a given maturity of government debt, debt is inflationary and

implies a lower future real interest rate until a new steady state is reached. What is the logic for

this result? Perhaps the best way to understand the logic is by inspecting the government budget

constraint (24). Recall that debt issued in nominal terms, although in the budget constraint we

have rewritten it in terms of b̂t =
Bt
Pt
−b̄

b̄
. This implies that for a given outstanding debt b̂t−1, any

actual inflation will reduce the real value of the outstanding debt. Accordingly we have the term

β−1πt term in the budget constraint which reflects this inflation incentive. As the literature has

stressed in the past (see e.g. Calvo and Guidotti (1990 and 1992)), if prices are flexible then this

will reduce actual debt in equilibrium only if the inflation is unanticipated. The reason for this

is that otherwise anticipated inflation will be reflected one-to-one in the interest rate paid on the

debt.

Apart from the incentive to depreciate the real value of the debt via inflation, there is a second

force at work. In our model, the government is not only able to affect the price level, it can also

have an effect on the real interest rate. Hence, we see that in Fig. 4 the real interest rate is below

steady state during the entire transition path back to steady state. This reduces the real interest

rate payments the government needs to pay on debt — in contrast to the classic literature with

flexible prices where the (ex-ante) real interest rate is exogenous. We refer to this as the rollover

incentive of the government.

Intuitively, it may be most straight forward to see the rollover incentive by simplifying the

model down to the case in which ρ = 0 and there is only one period debt. In that case, the budget
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constraint of the government can be written as

b̂t = β−1b̂t−1 − β
−1πt + ı̂t − ψT̂t (29)

and now b̂t is the real value of one period risk-free nominal debt in period t which is inclusive of

interest paid (to relate to our prevision notation in (2) then when ρ = 0 we have bt =
Bt
Pt
=

(1+it)BSt
Pt

where BS
t was the one period government debt that did not include interest payment). This

expression shows that while πt has a direct effect by depreciating the real value of government

debt, the government has another important margin by which it can influence its debt burden.

The term ı̂t reflects the rolling-over-cost of the one-period debt. In particular, we see that if the

interest rate is low, then the cost of rolling over debt is smaller. This latter mechanism will be

critical when considering the effects of varying debt maturity since its force depends on the value

of ρ.

How are these dynamics affected by the term structure of government debt? We now consider

the importance of variations in ρ. As noted before, our main interest in understanding this effect

is that a natural interpretation of QE is that it corresponds to a reduction in ρ as in our model the

duration of debt is given by (1 − βρ)−1. In Fig. 4 we consider a reduction in duration from 16.8

q to 16.2 and 15.6 q. As the figure shows this increases inflation in equilibrium considerably, but

also reduces the real rate further. Similarly, we see that the debt is now paid down at a faster clip

as higher output gap and inflation causes increased distortions, a point we will return to.

To obtain some intuition for this result, let us again write out the budget constraint, this time

substituting out for St to obtain

b̂t = β−1b̂t−1 − β
−1πt + (1− ρ)[̂ıt − ρβŜ

E(b̂t, r
e
t )]− ψT̂t. (30)

We observe here that the rollover interest rate is now multiplied by the term (1 − ρ). Intuitively,

if a larger part of government debt is held with long maturity, the short-term rollover rate matters

less, as the terms of the loans are to a greater extent predetermined. Hence, the incentive of the

government to lower the short-term interest rate is reduced.

Again, considering special cases here can be useful. We already noted the case in which ρ =

0 (only one-period debt) which gave us equation (29). It shows that the short-term interest rate

affects debt burden in next period one-to-one, this is the rollover incentive of the government.

Consider now the other polar case in which ρ = 1 (with classic console only). Then we get

b̂t = β−1b̂t−1 − β
−1πt − ψT̂t

which shows that the short-term nominal interest rate does not affect debt dynamics at all. Thus

the rollover incentive is completely eliminated by making debt long-term. This is the key reason

why short-term debt creates more inflationary and lower interest rate incentive than long term

debt.
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Having established intuitively and numerically that at positive interest rates, decreasing the

duration of debt increases the incentives of the government to lower short-term real interest rates,

we now move on to analyzing the case where the nominal interest rate is at the zero lower bound.

At the ZLB, manipulating this incentive can be particularly valuable.

4.1.2 Solution at the ZLB: QE2

Consider the following policy experiment: In the liquidity trap, the level of debt is constant at

b̂L. When out of the trap, then b̂L is optimally determined by the government according to the

MPE previously described. Why is this an interesting environment? Now we can ask the following

question: What would be the effect of changing the duration of debt once-and-for-all, while the zero

lower bound is binding? In other words, we are interested in the comparative static of the model as

we vary the duration of debt in the liquidity trap, but at the same time holding aggregate debt, b̂L,

constant. We think this is an interesting comparative static, because it corresponds so closely to

QE. QE did not involve increasing aggregate government debt, as pointed out in the introduction.

Instead it just involved exchanging long-term government debt with short-term government debt

(money), which we interpret here as a reduction in ρ. In our experiment the steady-state market

value of debt to taxes is always kept fixed. For now, however, a key abstraction is that the value

of ρ is fixed so that once you change ρ (QE), it does not revert back to where it was. We will come

back to this issue in Section 5.

Before exploring the comparative static at the heart of this section, let us review first how the

model behaves in the absence of any intervention, i.e., the evolution of each of the endogenous

variables in the face of the shock we chose in the last section. Figs. 5 and 6 show the response

of inflation and output to a negative shock to the efficient rate of interest in the benchmark

economy, when the duration of government debt is fixed at 16.87 quarters. We will be interested

in understanding if QE can improve upon the outcome we see in these figures, which feature an

output drop of approximately 10 percent and inflation drop of 2 percent (by construction of our

calibration).

Some comments are in order about the baseline economy in the absence of QE. First note that

the shock here generates a considerable recession and a drop in inflation. This is driven entirely by

the fact that the central bank cannot accommodate the shock via cuts in the nominal interest rate.

This creates a gap between the equilibrium real interest rate, rt, and the efficient rate of interest r
e
t

(i.e. the real interest rate needed for output to remain at the first best steady state). This interest

rate gap is shown in Fig. 7. It is well known from the existing literature (see e.g. Eggertsson and

Woodford (2003)), that this situation can be greatly improved if the central bank could commit

to keeping the nominal interest rate low for some time after the shock is over. This is beneficial

because aggregate demand depends not only on the current interest rate gap but the entire path

of future interest rates.

The optimal commitment analyzed by Eggertsson and Woodford (2003) is not possible in our

environment, however. The reason is that we are considering a MPE, so the government cannot
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commit to future policy that is dynamically inconsistent (this is the so called “deflationary bias”

of discretionary policy at the ZLB, see Eggertsson (2006)). The optimal commitment involves

promising real interest rate below the efficient rate of interest rate when the shock is over — but at

that time the government has little incentive to deliver on this promise.

Another point worth stressing in Fig. 5 is that once the shock is over (and each of the thin

lines revert up) then inflation overshoots its long run value in our MPE. This is a feature of our

calibration, as we assumed that there is outstanding government debt of 30 percent above steady

state. Thus the government does already have some incentive to inflate which is reflected in these

numbers. The fact that output drops by about 10 percent in Fig. 6 simply suggests that this

incentive is not strong enough for the government to be able to escape the ZLB. One solution to

this problem, then, would be simply to issue even more nominal debt (this is a solution analyzed

in Eggertsson (2006)), an approach we abstract from here by virtue of b̂L being constant.
37

To motivate this abstraction, i.e. fixed b̂L, we can think of some political or economic limits on

how much total aggregate government debt can be issued (e.g. a debt limit imposed by Congress

or that too high debt gives rise to perception of default, a consideration we have not included in

our model). Moreover, when we consider the case of the independent central bank, the option of

raising total number of government bonds may not be available. In any case, when the government

has two instruments — the stock of nominal debt and its composition in terms of duration — we want

to understand how both margins work, and our focus is on the latter. This leads us to consider

next the central comparative static of this paper: What happens when you permanently reduce the

duration of government debt in the MPE? Can manipulating the term structure make expansionary

future monetary policy “credible” without further cuts in the current nominal interest rate?

In Figs. 8 and 9 we see what happens if the government reduces the duration of government

debt from 16.87 quarters to 16.2 quarters, this is the number we computed on the basis of the

data from QE2. The figures shows the change in output and inflation as a result of this policy

intervention. The bottom-line is that inflation now increases by 14 basis points (annualized) and

output increases by 30 basis points. We can also ask how large intervention would have been needed

to fully close the output gap. The answer to this question is that the duration would have had to

go down from 16.87 to 8.5 quarters.

What is the key logic? Because government has more short-term debt the central bank keeps

the short-term real interest rates lower in future in order to keep the real interest rate low on the

debt it is rolling over. Thus, QE provides a “signal” about the future conduct of monetary policy.

In particular it generates a credible signal about the future path of short-term interest rates. This

then enables it to have effect on macroeconomic prices and quantities at the zero lower bound. The

change in the response of the real interest rate is given in Fig. 10, where one can see that the real

interest rate is lower throughout the horizon post QE.38

37Note that we keep the market value of debt constant (before and after change in duration) in our numerical
experiments via appropriate adjustments.
38This result thus connects our paper with Persson, Persson, and Svensson (1987 and 2006), who show in a flexible

price environment that a manipulation of the maturity structure of both nominal and indexed debt can generate an
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4.1.3 Capital losses from reneging on optimal policy

We have emphasized so far that the reason why lowering the duration of debt during a liquidity

trap situation is beneficial is that it provides incentives for the government to keep the real interest

rate low in future as it is now rolling over more short-term debt. We have shown these results by

comparing the path of the real interest rate under optimal policy at a baseline and lower duration

of debt.

Another way of framing this is that otherwise it would suffer capital losses on its balance sheet.

These losses then would have to be accounted for by raising costly taxes. One way to illustrate the

mechanism behind this result is to conduct the following thought experiment: suppose that once

the liquidity trap is over, the government reneges on the path for inflation and output dictated by

optimal policy under discretion and instead perfectly stabilizes them at zero. In such a situation,

how large are capital losses, or equivalently, how high do taxes have to rise out of zero lower

bound compared to if the government had continued to follow optimal policy? In particular, is

this increase in taxes more when debt is of shorter duration ? We show in Fig. 11 the change

in taxes (which are scaled as a fraction of output) if the government were to renege on optimal

policy at different durations of debt. The increase in taxes out of zero lower bound are higher at

a shorter duration of outstanding debt. Thus, lowering the duration of government debt provides

the government with more of an incentive to keep the real interest rate low in future in order to

avoid having to raise costly taxes.

4.1.4 Quantitative assessment of MEP/QE3

Given the parameter estimates based on QE2 and its effects on expected inflation and future

short-term interest rates given in Table 1, we now conduct an assessment of the macroeconomic

effects of MEP/QE3. This policy involved a reduction in the duration of outstanding government

debt as well, as can be seen from Fig. 1. Our experiment is based on the difference in duration

between September 2011 and September 2013 (we thus use the entire period following MEP for

this calibration), which is equal to 1.8 q and bigger than the effect from QE2.39 Accordingly, the

macroeconomic effects, as shown below in Figs. 12-13 are larger as well as the drop in the real

interest rate, as shown in Fig. 14 below, is now bigger. The extent of deflation is now reduced by

30 basis points, and output is higher as a consequence on the order of 90 basis points.

4.2 An independent central bank

We now model the effect of QE using the political economy set-up where the central bank directly

cares about transfers to the treasury. To parameterize the model we use quarterly average from

2003-2008 of remittances to Treasury from the Federal Reserve to get the steady state value of V .

Our baseline value of 1
ψV

= SγbCB

V
= Ql

V
= 111.47 corresponds to the average ratio of holdings of

equivalence between discretion and commitment outcomes.
39As noted before, this measure of policy intervention will also include policy changes brought about by QE3.
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Treasuries by the Federal Reserve to remittances to Treasury over the period of 2003-2008. When

considering QE as an increase in the scale of the balance sheet, we assume V is fixed at the steady

state value while the scale of assets and liabilities (SγbCB = Ql) increases. In Fig. 2 we show the

asset side of the Fed’s balance sheet as a ratio of annual GDP, where we use Treasury holdings of

the Fed as a proxy for the asset side. This gives a baseline ratio of the Fed’s assets over annual

GDP pre-crisis as 5.1%. Then, as a measure of the effects on the size of the Federal Reserve’s

balance sheet from QE2, we take the difference in Fig. 2 between QE2 and the MEP (the third

and fourth dashed vertical lines), which is an increase in the Fed’s balance sheet (ratio of asset

to annual GDP) from 5.1% to 10.6%. Finally, we also pick the value of γ based on the average

maturity of Treasury holdings of the FED during 2003-2008, which is equal to 7.57 q. We model

the liquidity trap in the same way as before.

For the other structural parameters of the model, like before for the consolidated budget con-

straint case, we estimate them using a mean squared relative error criterion. Unlike for the con-

solidated government debt, however, since there is no clear metric on the net asset position of the

Federal Reserve during the crisis (in terms of deviation from steady-state), we choose to estimate

that parameter bN,CBL , along with five others from before.40 The targets in the criterion are the

same as before and the values of the targets for our best match are π (1) = −0.02, Y (1) = −0.10,

∆π (40) = 5.1 b.p., ∆i (8) = −16.5 b.p., and µ = 0.85 (6.7 quarters). Our estimated parameter

values are given in Table 2.

4.2.1 Solution at positive interest rates

Let us again first consider the most basic exercise to clarify the logic of the central bank’s problem.

How do the dynamics of the model look like in the absence of shocks when the only difference

from steady state is that there is some initial negative value of net asset of the central bank (thus,

net assets is below steady-state) with some fixed value of asset duration? We consider transition

dynamics when net asset is below steady-state initially, while in the consolidated budget constraint

case we had considered a case where debt is above steady-state initially. These are exactly the

same thought experiments because in both cases there is asset accumulation along the transition.

Moreover, in both cases, the real interest rate is rising along the transition, which is the main

mechanism behind our paper. Our assumption is saying that the Fed would like to have higher

net worth at the onset of our experiment, which we believe is a reasonable assumption under QE

when the Fed exposed itself to possible balance sheet losses.

We will be looking at comparative statics of those transition dynamics with respect to the size

of the central bank balance sheet (holding the duration of the assets fixed) as well as the duration of

the assets on the central bank’s balance sheet (holding the size of the balance sheet fixed). These,

as we have already stressed, is how we interpret QE2 and MEP/QE3.

Fig. 15 shows the dynamics of the endogenous variables in the model for an initial value of net

asset of the central bank that is 15 percent below the steady state. Analogous to the consolidated

40We also adjust this to keep the market value of the net asset position constant as a result of the QE intervention.
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government budget constraint model, we see that if net asset is below steady state, it is accumulated

over time back to steady state. Moreover, in this transition, inflation is above steady state and the

real interest rate is below its steady state. As a consequence, output is also above its steady state

value. What is the logic? Consider the linearized budget constraint of the central bank (28)

b̂N,CBt = β−1b̂N,CBt−1 − (1− γ) Ŝγt + Q̂t − ψV V̂t.

The liabilities of the central bank are affected directly by the short-term nominal interest rate

whose price is Q̂t = −ı̂t. The price of its assets, which is long term, however, is given by Ŝ
γ
t =

−ı̂t + γβEtŜ
γ
t+1. If γ = 0 then its assets are simply equivalent in duration to the liabilities and

cutting or raising the nominal interest rate has no effect on the evolution of the net worth of the

bank, b̂N,CBt . Once γ > 0, however, then cutting the nominal interest rate will have a bigger effect

on the rollover cost of the liabilities of the bank than on the price of the long-term assets, thus

generating capital gains. That is precisely what you want to obtain when b̂N,CBt < 0 and the more

so, the higher is γ.

We now consider the effect of increasing the size of the balance sheet. We define the size as the

ratio of assets to transfers to the treasury while holding the duration of the assets on the balance

sheet fixed. In Fig. 15 we show that bigger the size of the balance sheet (our baseline calibration

is 5.1), bigger is the drop in the real interest rate. What is the intuition for this result? Consider

the linearized flow budget constraint of the central bank (28) again where recall that ψ−1V is our

measure of the size of the central bank’s balance sheet. Now multiply both sides of the equation

above with ψ−1V to get

ψ−1V b̂N,CBt = β−1ψ−1V b̂N,CBt−1 − ψ−1V

[
(1− γ) Ŝγt − Q̂t

]
− V̂t.

This shows that even if we hold γ fixed, an increase in ψ−1V makes the effect of the duration

mismatch between assets and liabilities of the central bank worse. Thus, when assets are long-term

and liabilities short-term, for a higher ψ−1V , the central bank’s balance sheet is more exposed to

interest-rate risk along the transition where assets are being accumulated and the interest rate is

rising, like in Fig. 15. Thus, in order to avoid capital losses on its balance, the central bank has

incentives to keep interest rates lower with a higher ψ−1V .

Fig. 16 considers how increasing the duration of the assets of the central bank, while holding

the size of the balance sheet fixed, affects the transition dynamics we described above. Fig. 16

shows that longer is the duration of assets held by the central bank (our baseline calibration is a

duration of 7.57 quarters), larger is the drop in the real interest rate along the transition. This is

a counterpart of our results for the consolidated government budget constraint model. Let us now

move to the case in which the ZLB is binding.
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4.2.2 Solution at the ZLB: QE2 and MEP/QE3

At the ZLB we consider a thought experiment that is comparable to what we did with coordinated

policy. Suppose bN,CBL is fixed at some constant number at the ZLB but then optimally determined

by the central bank according to the MPE out of ZLB. We are interested in two comparative statics.

First, what is the effect of increasing the scale of the balance sheet once and for all holding the

duration on the asset side fixed? Second, what is the effect of changing the duration of the bonds

on the asset side, holding the scale of the balance sheet fixed? As we saw in Section 3.2.1, QE2

corresponds quite closely to a thought experiment in which the Fed increased the scale of its balance

sheet while holding the duration on its asset side fixed. Meanwhile, the MPE/QE3 corresponds

more closely to a change in the maturity of the bonds on its asset side, while the scale of the

balance sheet remained fixed.

Figs. 17 and 18 show the response of inflation and output to a negative shock to the efficient

rate of interest when the size of the central bank’s balance sheet is 5.1 and the duration of the

central bank’s assets is 7.57 quarters. As before, because of the zero lower bound constraint, the

economy suffers from deflation and because of the increase in the real interest rate that it creates

(that is, a gap between the real interest rate and its efficient counterpart), also from a negative

effect on output. The real interest rate gap is shown in Fig. 19. Thus again, optimal policy at the

zero lower bound would entail reducing the real interest rate gap at the present and in future, but

this is not credible in a MPE.

An increase in the size of the central bank’s balance sheet, given by the parameter ψ−1V , helps

solve the problem. Figs. 20 and 21 show the change in response of output and inflation to a

negative shock to the efficient rate of interest when balance sheet is more than doubled from 5.1 to

10.6 based upon the data from QE2 in Section 3.2.1 (again the duration of the central bank’s assets

is still fixed at 7.57 quarters). The extent of deflation is reduced by 14 basis points (annualized) as

well as the negative effect on output by 45 basis points. Once the shock is over and the zero lower

bound is no longer a constraint, the change in response of inflation and output is positive. These

effects are in the same order of magnitude as the effects obtained with the consolidated government

budget constraint.

The main reason why this is achieved is that because the central bank’s balance sheet bigger, it

magnifies the effects of interest rate changes on the balance sheet due to the mismatch in duration

between its assets (which are long-term) and liabilities (which are short-term). The central bank

then keeps the short-term real interest rates lower in future, especially once the zero lower bound is

not binding, in order to keep the real interest rate low. Otherwise, it would suffer from capital losses

which are costly for the central bank. Thus, quantitative easing indeed provides a signal about

the future conduct of monetary policy and in particular, the future path of short-term interest

rates. The change in the response of the real interest rate comparing smaller to bigger duration

of debt is given in Fig. 22, where one can see that the real interest rate is lower through out the

horizon. This, then, is a reaffirmation of the central result of our paper: quantitative easing acts

as a commitment device during a liquidity trap situation.
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Consider now the effect of increasing the duration of the bonds on the asset side of the Fed,

holding the scale of the balance sheet constant. As we pointed out in Section 3.2.1 this corresponds

relatively closely to MEP/QE3. For this exercise we compute the average maturity of the treasuries

on the Federal Reserve’s balance sheet at September 2011 (13.6 q) and September 2013 (18.95 q).

The difference between the maturities is 5.4 q. Figs. 24-25 show the associated increase in output

and inflation while Fig. 26 shows the resulting decrease in the real interest rate due to this policy

intervention that increases maturity of central bank assets by 5.4 q compared to baseline maturity.

We see that output increases by 12 bp while inflation by 2.5 bp. For an independent central bank

the MEP is therefore less powerful than QE2. This is in contrast to our previous result under

coordinated policy which suggested that MEP was more effective than QE2.

4.2.3 Capital losses from reneging on optimal policy

As in the model with a consolidated government, we now provide an alternative illustration of the

mechanisms behind the model with an independent central bank. The exercise shows the capital

losses on the balance sheet if the central bank were to renege on optimal policy. These balance

sheet losses would be costly for the central bank in the model as it would reduce remittances to

the treasury too sharply.

We thus conduct the following thought experiment: suppose that once the liquidity trap is over,

the central bank reneges on the path for inflation and output dictated by optimal policy under

discretion and instead perfectly stabilizes them at zero. In such a situation, how large are capital

losses, or equivalently, how much lower are transfers to the treasury out of the zero lower bound

compared to if the government had continued to follow optimal policy? In particular, is this decline

in transfers more when the central bank’s balance sheet is bigger ? We show in Fig. 23 the change

in transfers to the treasury if the central bank were to renege on optimal policy at different balance

sheet sizes (the transfers here are scaled as a fraction of output). The decrease in transfers out of

zero lower bound is higher at a larger balance sheet of the central bank. Thus, increasing the size

of its balance sheet provides the central bank with more of an incentive to keep the real interest

rate low in future in order to avoid having to suffer from costly capital losses.

5 Extensions

In the previous section with coordinated monetary and fiscal policy, we focused on analyzing a

situation where the duration of government debt is reduced once-and-for all. That is, we have

studied comparative statics experiments with respect to ρ. A natural question that arises in this

context is whether there is an incentive for the government to increase the duration of debt once

the economy has recovered and if by not considering that, we are overstating our results.41 Another

interesting extension to consider is whether the particular way we have modeled the term-structure,

41Similar considerations would apply for the independent central bank model. We focus on the first model only
for brevity.
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using a perpetuity bond that pays geometrically declining coupons, might be overly restrictive and

driving some of our results. While this was a very convenient modeling device, in particular while

calibrating the model to various average debt durations using a single parameter, it is natural to

explore a model with zero-coupon nominal government bonds with finite maturity.

5.1 Time-varying optimal duration

To address the first question, we now extend our model to allow the government (again, we only

consider the consolidated government model here for brevity) to pick the duration of government

debt optimally, period by period. That is, now, ρ is time-varying. In particular, the government

issues a perpetuity bond in period t (Bt) which pays ρ
j
t dollars j + 1 periods later. Following very

similar manipulations as for the fixed duration case, the flow budget constraint of the government

can be written as

St(ρt)bt = (1 + ρt−1Wt(ρt−1)) bt−1Π
−1
t + (F − Tt) (31)

where St(ρt) is the period-t price of the government bond that pays ρ
j
t dollars j + 1 periods later

while Wt(ρt−1) is the period-t price of the government bond that pays ρ
j
t−1 dollars j + 1 periods

later. Moreover, bt =
Bt
Pt
. Given these types of government bonds, the asset-pricing conditions then

take the form

St(ρt) = Et

[
β
uC (Ct+1, ξt+1)

uC (Ct, ξt)
Π−1t+1 (1 + ρtSt+1(ρt))

]
(32)

Wt(ρt−1) = Et

[
β
uC (Ct+1, ξt+1)

uC (Ct, ξt)
Π−1t+1 (1 + ρt−1Wt+1(ρt−1))

]
. (33)

The rest of the model is the same as before.

The government’s instruments are now it, Tt , and ρt. Moreover, it follows from the expressions

above that in addition to bt−1, now, ρt−1 is also a state variable in the model. Then, we can write

the discretionary government’s problem recursively as

J (bt−1, ρt−1, ξt) = max [U (.) + βEtJ (bt, ρt, ξt+1)]

subject to the three new constraints, (31)-(33), as well as the other private sector equilibrium

conditions that are common from the model in the previous section. Here, U (.) is the utility

function of the household in (1) and J(.) is the value function.42 The detailed formulation of

this maximization problem and the associated first-order necessary conditions are provided in the

appendix. We discuss below why we take this non-linear as opposed to a linear-quadratic approach.

We proceed by computing the non-stochastic steady-state and then taking a first-order approx-

imation of the non-linear government optimality conditions as well as the non-linear private sector

equilibrium conditions around the steady-state. Of particular note is that a first-order approxima-

42Using compact notation, note that we can write the utility function as u (Ct, ξt)+g (F − s(Tt − T ), ξt)−ṽ (Yt, ξt) .
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tion of (31)-(33) leads to

v̂t = β−1v̂t−1 − β
−1π̂t − (1− ρ) L̂t − ψT̂t (34)

where

v̂t = b̂t +
ρβ

1− ρβ
ρ̂t (35)

and L̂t = −ı̂t + ρβEtL̂t+1, Ŝt − Ŵt = ρ̂t − ρ̂t−1. Thus, after undertaking a transformation of

variables as given by (35), (34) takes the same form as (24), the linearized government budget

constraint when there was no time variation in duration. Thus, time-variation in duration does

not play a separate role in government debt dynamics up to first order.43 Therefore, if we had

taken a linear-quadratic approach, like before, then with the quadratic loss-function (26) and the

linearized private sector equilibrium conditions including (34), we would not be able to solve for

optimal debt duration dynamics at all.

Given this appropriate redefinition of the state variable, we can show that the (bounded)

solution of the model at positive interest rates takes the form

[
v̂t

ρ̂t

]

=

[
ρ 0

ρv 1

][
v̂t−1

ρ̂t−1

]

,





Ŷt

πt

r̂t




 =





Yv 0

πv 0

rv 0






[
v̂t−1

ρ̂t−1

]

where, ρv, Yv, πv, and rv are functions of the model parameters. Here, for simplicity, we are only

focussing on solution of some of the endogenous model variables and do not consider shocks.

Two results stand out: first, ρ̂t follows a random-walk like behavior; second, ρ̂t−1 does not

affect directly other variables such as output, inflation, and the real interest rate. This suggests

then that even if we allow the government to pick the duration optimally period by period, there

is no incentive for it to increase the duration of debt after the economy has recovered following a

liquidity trap episode. Therefore, the simple comparative static analysis that we focussed on in

the main part of the paper does not appear to be overstating our results. We show the transition

dynamics at positive interest rates with debt above steady-state in Fig. 27 below that highlights

the solution of this extended model. Given these two properties of the solution, it is now clear that

if we consider the sufficient state variable v̂t−1 similar to b̂t−1, then this model with time-varying

duration would lead to similar results as our baseline model with a fixed duration.

5.2 Alternate model of maturity structure

We now consider a model where the government issues zero-coupon nominal bonds with finite

maturity (again for brevity, we only consider the baseline model with a consolidated government).

Since the goal of this section is only qualitative, we consider a simple environment of one-period

(BS
t ) and two-period

(
BL
t

)
zero-coupon nominal bonds. Total bond supply then is given by Bt =

43This is also the case in the portfolio choice literature based on approximations, e.g. Berriel and Bhattarai (2013).
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BS
t +B

L
t and we use a notation similar to before, where the ratio of the two-period to one-period

bonds is given by ρ = BL
t /Bt. Thus, a reduction in ρ will imply that a larger fraction of government

debt is short-term. Again, similar to the notation above, we will denote the two bond prices by

(1 + it)
−1 and St respectively.

We can write down the flow budget constraints of the consumer and the government respectively

as follows

PtCt + (1 + it)
−1BS

t + StB
L
t = BS

t−1 + (1 + it)
−1BL

t−1 − PtTt

(1 + it)
−1BS

t + StB
L
t = BS

t−1 + (1 + it)
−1BL

t−1 + Pt (F − Tt) .

Note here that in writing these flow budget constraints, we already impose some arbitrage restric-

tions. For future purpose, using the market clearing condition we can write the government budget

constraint in real terms as

bt

(
(1− ρ)

(1 + it)
+ ρSt

)
= bt−1

(
1− ρ+

ρ

(1 + it)

)
Π−1t + (F − Tt) (36)

where bt =
Bt
Pt
and Πt =

Pt
Pt−1

. The asset pricing conditions then are given by the two relationships

(1 + it)
−1 = Et

[
β
uC (Ct+1)

uC (Ct)
Π−1t+1

]
, St = Et

[
β
uC (Ct+1)

uC (Ct)
Π−1t+1(1 + it+1)

−1

]
. (37)

Like before, we can now proceed with a log-linearization around a zero-inflation steady-state,

where we will use ψ for the steady-state ratio of taxes to market-value of debt
(
ψ = T

b(1−ρ+ρβ)β

)
.

Then, (37) log-linearized gives

Ŝt = − (̂ıt + Etı̂t+1) (38)

which is an illustration of the expectation hypothesis in the model while (36) log-linearized gives

b̂t = β−1b̂t−1 − β
−1πt +

(
1− 2ρ

(1− ρ) + ρβ

)
ı̂t −

ρβ

(1− ρ) + ρβ
Ŝt − ψT̂t. (39)

Further, using (38), one can then write (39) as

b̂t = β−1b̂t−1 − β
−1πt +

(
1− 2ρ

(1− ρ) + ρβ

)
ı̂t +

ρβ

(1− ρ) + ρβ
(̂ıt + Etı̂t+1)− ψT̂t.

To get some insights on how the maturity composition of debt affects the roll-over incentives of

the government in determining the short-term interest rate, denote by γ = Et ı̂t1
ı̂t
, the equilibrium

rate of mean reversion of debt. That is, suppose that bt is the only state variable (as is the case

in this simple model), which in the stationary Markov-perfect equilibrium solution with no shocks,

gives b̂t = bbb̂t−1 and ı̂t = ιbbt−1. Then this rate is constant over time and equal to γ = bb < 1.

This rate is, in general equilibrium, an endogenous function of the model parameters (including ρ).

But for now, we will next take it as given to gain some insights using only the government budget

constraint, like we did before to illustrate the intuition of our mechanism. We can then re-write
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the final log-linearized government budget constraint as

b̂t = β−1b̂t−1 − β
−1πt + Γı̂t − ψT̂t (40)

where Γ (ρ, β, γ) = 1−ρ+ρβ(1+γ−β−1)
1−ρ+ρβ < 1 for γ < β−1 and ρ > 0. (Note that in a stationary

equilibrium, γ < 1). What we call the“roll-over incentive” in the paper is captured by how much

the current, short-term interest rate affects debt/tax dynamics in the flow budget constraint. That

is, we are interested in how, in (40), Γ is affected by ρ. In particular, for our mechanism to be

at work, we need Γ to decrease as ρ increases. Here, since we hold γ constant in this thought-

experiment, we have directly that Γ depends negatively on ρ

∂Γ (ρ, β, γ)

∂ρ
=

βγ − 1

((β − 1)ρ+ 1)2
< 0.

Thus, longer is the maturity composition of government debt, lower is the effect on debt dynamics

of the current, short-term interest rate. This is the main mechanism behind the results in our

paper and it continues to be in operation in this alternate model of the term structure.

6 Conclusion

We present a theoretical model where open market operations that reduce the duration of out-

standing government debt or change the size/composition of the central bank’s balance sheet, so

called “quantitative easing,” are not neutral because they affect the incentive structure of the cen-

tral bank. In particular, in a Markov-perfect equilibrium of our model, reducing the duration of

outstanding government debt or increasing the balance sheet size and duration of assets held by

an independent central bank, provides an incentive for the central bank to keep short-term interest

rates low in future in order to avoid balance sheet losses. When the economy is in a liquidity trap,

such a policy is thus effective at generating inflationary expectations and lowering long-term in-

terest rates, which in turn, helps mitigate the deflation and negative output gap that would ensue

otherwise. In other words, quantitative easing is effective because it provides a “signal” to the

private sector that the central bank will keep the short-term real interest rates low even when the

zero lower bound is no longer a constraint in future.

In future work, it would be of interest to evaluate fully the quantitative importance of our model

mechanism in a medium-scale sticky price model, along the lines of Christiano, Eichenbaum, and

Evans (2005) and Smets and Wouters (2007). Computation of Markov-perfect Equilibrium under

coordinated monetary and fiscal policy at the ZLB appears to not have been investigated for such

models in the literature. Moreover, as a methodological extension, it would be fruitful to allow for

time-varying duration of government debt to affect real variables. To do so, it will be necessary to

take a higher order approximation of the equilibrium conditions and modify the guess-and-verify

algorithm to compute the Markov-perfect equilibrium accordingly. Needless to say one could also

do such higher order approximations to more accurately characterize the current model. We leave
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that to future extensions.
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7 Figures and Tables

Fig 1: Maturity of outstanding govt debt adjusted for reserves issued by the Federal Reserve

Fig 2: Ratio of Federal Reserve’s holdings of Treasuries to pre-crisis average GDP

Fig 3: Maturity of Federal Reserve’s holdings of Treasuries
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Fig 4: Transition dynamics to an increase in debt outstanding at different levels of duration of debt
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Fig 5: Response of inflation when the duration of government debt is

16.87 quarters. Each thin line represents the response when the efficient

rate of interest returns to its steady-state in that period, while the dark

line is the probability weighted path.

0 10 20 30 40 50
t

0.08

0.06

0.04

0.02

Y

Fig 6: Response of output when the duration of government debt is

16.87 quarters.
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Fig 7: Response of the real interest rate gap when the duration of

government debt is 16.87 quarters.
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Fig 8: Change in output when the duration of government debt is

reduced from 16.87 to 16.2 quarters.
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Fig 9: Change in inflation when the duration of government debt is

reduced from 16.87 to 16.2 quarters.
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Fig 10: Change in the real interest rate when the duration of

government debt is reduced from 16.87 to 16.2 quarters.

Fig 11: Increase in taxes from reneging on optimal policy
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Fig 12: Change in output when the duration of government debt is

reduced to 15.07 quarters.
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Fig 13: Change in inflation when the duration of government debt is

reduced to 15.07 quarters.
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Fig 14: Change in the real interest rate when the duration of

government debt is reduced to 15.07 quarters.

Fig 15: Transition dynamics to a decrease in net assets of the central bank at different sizes of the

central bank balance sheet
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Fig 16: Transition dynamics to a decrease in net assets of the central bank at different levels of

duration of the net assets
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Fig 17: Response of inflation at the initial level of central bank balance

sheet size and net asset duration.
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Fig 18: Response of output at the initial level of central bank balance

sheet size and net asset duration.
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Fig 19: Response of the real interest rate gap at the initial level of

central bank balance sheet size and net asset duration.
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Fig 20: Change in output with an increased central bank balance sheet

size and initial level of net asset duration.
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Fig 21: Change in inflation with an increased central bank balance

sheet size and initial level of net asset duration.
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Fig 22: Change in real interest rate with an increased central bank

balance sheet size and initial level of net asset duration.

Fig 23: Decrease in transfers to treasury from reneging on optimal policy at different levels of sizes

of the central bank balance sheet
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Fig 24: Change in output with an initial size of the central bank

balance sheet size and increased net asset duration.
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Fig 25: Change in inflation with an initial size of the central bank

balance sheet size and increased net asset duration.
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Fig 26: Change in the real interest rate with an initial size of the

central bank balance sheet size and increased net asset duration.
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Fig 27: Transition dynamics to an increase in debt outstanding at different initial levels of

duration of debt in a model with optimal time-varying duration of debt

Table 1: Calibration/estimation of model parameters for the consolidated government model

Parameter Value

β 0.99

σ 0.3202

κ 0.0089

ε 8

λT 0.17593
bS
T

7.2

reL 0.021

µ 0.89

bL 0.30

Table 2: Calibration/estimation of model parameters for the independent central bank model

Parameter Value

β 0.99

σ 0.308

κ 0.008

ε 8

λV 1.27× 10−6

Ql
V

111.47

reL 0.035

µ 0.85

bN,CBL −0.15
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8 Appendix

8.1 Model

8.1.1 The perpetuity nominal bond and the flow budget constraint

Following Woodford (2001), the perpetuity issued in period t pays ρj dollars j + 1 periods later, for each j ≥ 0 and

some decay factor 0 ≤ ρ < β−1. The implied steady-state duration of this bond is then (1− βρ)−1.

Let the price of a newly issued bond in period t be St (ρ) . Given the existence of the unique stochastic discount

factor Qt,t+j , we can write this price as

St(ρ) = Et

∞∑

j=1

Qt,t+jρ
j−1

.

Now consider the period t+ 1 price of such a bond that was issued in period t. We can then write the price SOt+1 (ρ)

S
O
t+1 (ρ) = Et+1

∞∑

j=2

Qt+1,t+jρ
j−1

.

Note first that

S
O
t+1 (ρ) = ρSt+1(ρ) (41)

since

St+1(ρ) = Et+1

∞∑

j=2

Qt+1,t+jρ
j−2

.

This is highly convenient since it implies that one needs to keep track, at each point in time, of the equilibrium price

of only one type of bond.

Next, we derive an arbitrage condition between this perpetuity and a one-period bond. By simple expansion of

the infinite sums above and manipulation of the terms, one gets

St(ρ) = [EtQt,t+1] + Et

[
Qt,t+1S

O
t+1 (ρ)

]
.

Since

EtQt,t+1 =
1

1 + it

we get

St(ρ) =
1

1 + it
+ Et

[
Qt,t+1S

O
t+1 (ρ)

]
.

Substituting further for SOt+1 (ρ) = ρSt+1(ρ), we then derive

St(ρ) =
1

1 + it
+ ρEt [Qt,t+1St+1(ρ)] . (42)

Finally, consider the flow budget constraint of the government

B
S
t + St(ρ)Bt = (1 + it−1)B

S
t−1 +

(
ρ
0 + S

O
t (ρ)

)
Bt−1 + Pt (Ft − Tt) .

This can be simplified using SOt+1 (ρ) = ρSt+1(ρ) to

B
S
t + St(ρ)Bt = (1 + it−1)B

S
t−1 + (1 + ρSt(ρ))Bt−1 + Pt (Ft − Tt) .

This is the form in which we write down the flow budget constraint of the household and the government in the main

text.
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8.1.2 Functional forms

We make the following functional form assumptions on preferences and technology

u (C, ξ) = ξC̄
1
σ
C1− 1

σ

1− 1

σ

v (h(i), ξ) = ξλ
h(i)1+φ

1 + φ

g (G, ξ) = ξḠ
1
σ
G1− 1

σ

1− 1

σ

y(i) = h(i)κ

d(Π) = d1 (Π− 1)
2

S
(
T̄
)
= s1 (T − T )2

where we only consider a discount factor shock ξ. Note that ξ = 1 in steady-state and that in steady state, we scale

hours such that Y = 1 as well. This implies that we can derive

ṽ (Y, ξ) =
1

1 + φ
λξY

1+φ
κ .

8.2 Efficient equilibrium

As benchmark, we first derive the efficient allocation.

Using Gt = Ft − s(Tt − T ) = F − s(Tt − T ), the social planner’s problem can be written as

maxu (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt)

st

Yt = Ct + F.

Formulate the Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt)

+ φ1t (Yt − Ct − F )

FOCs (where all the derivatives are to be equated to zero)

∂Lt

∂Yt
= −ṽY + φ1t

∂Lt

∂Ct
= uC + φ1t [−1]

∂Lt

∂Tt
= gG

(
−s′(Tt − T )

)

Eliminating the Lagrange multiplier gives

uC = ṽY

gG
(
−s′(Tt − T )

)
= 0.

Note that we make the following functional form assumptions on the tax collection cost

s(0) = 0; s′(0) = 0.

Thus, when taxes are at steady state, that is, Tt = T, then s(Tt − T ) = s′(Tt − T ) = 0. But note that we will allow

for s
′′

(0) > 0.
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Efficient allocation thus requires

uC = ṽY

Tt = T.

In steady state, without aggregate shocks, we have

Y = C + F

uC = ṽY

Tt = T.

8.3 Non-linear markov equilibrium

8.3.1 Optimal policy under discretion

The policy problem can be written as

J (bt−1, ξt) = max [U (Λt, ξt) + βEtJ (bt, ξt+1)]

st

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π
−1
t + (F − Tt) .

1 + it =
uC (Ct, ξt)

βfet

it ≥ 0

St(ρ) =
1

uC (Ct, ξt)
βg

e
t

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt)Πt = βh
e
t

Yt = Ct + F + d (Πt)

f
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1

]
= f̄

e (bt, ξt)

g
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρSt+1(ρ))
]
= ḡ

e (bt, ξt)

h
e
t = Et

[
uC (Ct+1, ξt+1) d

′ (Πt+1)Πt+1
]
= h̄

e (bt, ξt)

Formulate the period Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt) + βEtJ (bt, ξt+1)

+ φ1t
(
St(ρ)bt − (1 + ρSt(ρ)) bt−1Π

−1
t − (F − Tt)

)

+ φ2t

(
βf

e
t −

uC (Ct, ξt)

1 + it

)

+ φ3t (βg
e
t − uC (Ct, ξt)St(ρ))

+ φ4t

(
βh

e
t − εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
− uC (Ct, ξt) d

′ (Πt)Πt

)

+ φ5t (Yt − Ct − F − d (Πt))

+ ψ1t
(
f
e
t − f̄

e (bt, ξt)
)

+ ψ2t (g
e
t − ḡ

e (bt, ξt))

+ ψ3t
(
h
e
t − h̄

e (bt, ξt)
)

+ γ1t (it − 0)

48



First-order conditions (where all the derivatives should be equated to zero)

∂Ls

∂Πt
= φ1t

[
(1 + ρSt(ρ)) bt−1Π

−2
t

]
+ φ4t

[
−uCd

′′

Πt − uCd
′
]
+ φ5t

[
−d′

]

∂Ls

∂Yt
= −ṽY + φ4t

[
−ε

(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ5t

∂Ls

∂it
= φ2t

[
uC (1 + it)

−2
]
+ γ1t

∂Ls

∂St
= φ1t

[
bt − ρbt−1Π

−1
t

]
+ φ3t [−uC ]

∂Ls

∂Ct
= uC + φ2t

[
−uCC (1 + it)

−1
]
+ φ3t [−uCCSt(ρ)] + φ4t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd

′Πt

]
+ φ5t [−1]

∂Ls

∂Tt
= gG

(
−s′(Tt − T )

)
+ φ1t

∂Ls

∂bt
= βEtJb (bt, ξt+1) + φ1t [St(ρ)] + ψ1t

[
−f̄eb

]
+ ψ2t [−ḡ

e
b ] + ψ3t

[
−h̄eb

]

∂Ls

∂fet
= βφ2t + ψ1t

∂Ls

∂get
= βφ3t + ψ2t

∂Ls

∂het
= βφ4t + ψ3t

The complementary slackness conditions are

γ1t ≥ 0, it ≥ 0, γ1tit = 0

While the envelope condition is

Jb (bt−1, ξt) = φ1t
[
− (1 + ρSt(ρ))Π

−1
t

]

This also implies that

βEtJb (bt, ξt+1) = βEtφ1t+1
[
− (1 + ρSt+1(ρ))Π

−1

t+1

]

8.3.2 Steady-state

A Markov-perfect steady-state is non-trivial to characterize because generally, we need to take derivatives of an

unknown function, as is clear from the FOCs. Here, we will rely on the fact that given an appropriate production

subsidy, the Markov-perfect steady-state will be the same as the efficient steady-state derived above.

First, note that this requires no resource loss from price-adjustment costs, which in turn requires

d (Π) = 0

and thereby ensures

Y = C + F

This means that we need

Π = 1.

Also, this implies

d
′ (Π) = 0.

Next, note from the Phillips curve that this means, we need

ε− 1

ε
(1 + s)uC − ṽy = 0.
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Now, since the efficient steady-state has uC = ṽY , the production subsidy then has to satisfy

ε− 1

ε
(1 + s) = 1.

We will be looking at a steady-state with positive interest rates

1 + i =
1

β

which means that

γ1 = 0

and that from the FOC wrt it we have

φ2 = 0.

Also, given that taxes are at steady-state, gG (−s
′(Tt − T )) = 0, from the FOC wrt Tt

φ1 = 0.

Given this, in turn, we have from the FOC wrt St

φ3 = 0.

Then, given that d′ = 0 in steady-state and d′′ is not, and since φ1 = 0, it gives from the FOC wrt to Πt

φ4 = 0.

Note that this is highly convenient since these Lagrange multipliers being zero implies

ψ1 = ψ2 = ψ3 = 0.

Thus, we do not need to worry about the derivatives of the unknown functions.

This proposed steady-state is consistent with other FOCs. For example, the FOC wrt Yt is now given by

φ5 = ṽY

and that the FOC wrt Ct is given by

uC = φ5

which implies

ṽY = uC .

Finally, FOC wrt bt implies

βJb = βφ1
[
− (1 + ρS(ρ))Π−1

]
= 0

which is also consistent with the conjectured guess.

Finally, the guess of the steady-state is also consistent with the other model equilibrium conditions, with S(ρ)

given by

S(ρ) = β [(1 + ρS(ρ))]

that is

S(ρ) =
β

1− ρβ
.

Then b and F are linked by

S(ρ)b = (1 + ρS(ρ)) b+ (F − T )

that is

T = F +
1− β

1− ρβ
b.
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8.3.3 First-order approximation

We now take a log-linear approximation of the Markov perfect FOCs and the private sector equilibrium conditions

around the steady-state above. Also, lets normalize the scale of the economy (with appropriate scaling of hours) so

that Ȳ = 1. This implies C̄ = 1− F. Also the shock ξt takes a value of 1 in steady-state.

Private sector equilibrium conditions We first start with the private sector equilibrium conditions.

We denote variables that are in log-deviations from their respective steady-states by hats, except for ı̂t.We denote

variables in steady-state by bars.

First,

Yt = Ct + F + d (Πt)

gives

Ŷt = C̄Ĉt

Second,

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt)Πt = βEt
[
uC (Ct+1, ξt+1) d

′ (Πt+1)Πt+1
]

gives

ūCd
′′
π̂t + εūCCC̄Ĉt − εv̄yyŶt−εv̄yξ ξ̂t + εūCξ ξ̂t = βūCd

′′
Etπ̂t+1

which can be simplified by making use of the log-linearized resource constraint above to yield

ūCd
′′
π̂t + ε (ūCC − v̄yy) Ŷt = βūCd

′′
Etπ̂t+1

π̂t = βEtπ̂t+1 +
ε (v̄yy − ūCC)

ūCd′′
Ŷt.

Third,

1 + it =
uC (Ct, ξt)

βEt
[
uC (Ct+1, ξt+1)Π

−1

t+1

]

gives

ūCCC̄Ĉt + ūCξ ξ̂t = ūC ı̂t + ūCCEtC̄Ĉt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

which can be simplified by making use of the log-linearized resource constraint above to yield

ūCC Ŷt + ūCξ ξ̂t = ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

and

Ŷt = EtŶt+1 +
ūC

ūCC
[̂ıt − Etπ̂t+1] +

ūCξ

ūCC

[
Etξ̂t+1 − ξ̂t

]

Note here that this implies that the efficient rate of interest is given by

r
e
t = −

ūCξ

ūC

[
Etξ̂t+1 − ξ̂t

]
.

Fourth,

St(ρ) =
1

uC (Ct, ξt)
βEt

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρSt+1(ρ))
]

gives

S̄ūCCC̄Ĉt+S̄ūCξ ξ̂t+ūC S̄Ŝt = β
(
1 + ρS̄

)
ūCCEtC̄Ĉt+1+β

(
1 + ρS̄

)
ūCξEtξ̂t+1−β

(
1 + ρS̄

)
ūCEtπ̂t+1+βρS̄ūCEtŜt+1

which can be simplifies by making use of the log-linearized resource constraint above to yield

S̄ūCC Ŷt+ S̄ūCξ ξ̂t+ ūC S̄Ŝt = β
(
1 + ρS̄

)
ūCCEtŶt+1+β

(
1 + ρS̄

)
ūCξEtξ̂t+1−β

(
1 + ρS̄

)
ūCEtπ̂t+1+βρS̄ūCEtŜt+1.
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Note here that by using the log-linearized Euler equation above, one can further simplify as

S̄
[
ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

]
+ ūC S̄Ŝt

= β
(
1 + ρS̄

)
ūCCEtŶt+1 + β

(
1 + ρS̄

)
ūCξEtξ̂t+1 − β

(
1 + ρS̄

)
ūCEtπ̂t+1 + βρS̄ūCEtŜt+1

or

[
ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

]
+ ūC Ŝt

=
β
(
1 + ρS̄

)

S̄
ūCCEtŶt+1 +

β
(
1 + ρS̄

)

S̄
ūCξEtξ̂t+1 −

β
(
1 + ρS̄

)

S̄
ūCEtπ̂t+1 + βρūCEtŜt+1.

Moreover, since
β
(
1 + ρS̄

)

S̄
= 1

we have finally as the asset-pricing condition

ı̂t + Ŝt = βρEtŜt+1.

Fifth,

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π
−1
t + (F − Tt)

gives

b̂t + Ŝt = ρŜt +

(
1 + ρS̄

)

S̄
b̂t −

(
1 + ρS̄

)

S̄
π̂t −

T̄

S̄b̄
T̂t

which is simplified further as

b̂t = β
−1
b̂t − β

−1
π̂t − (1− ρ) Ŝt −

T̄

S̄b̄
T̂t.

Then, finally, the expectation functions are given by

f̂
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1

]
= ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūC π̂t+1

ĝ
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρSt+1(ρ))
]
=
(
1 + ρS̄

)
ūCCEtŶt+1+

(
1 + ρS̄

)
ūCξEtξ̂t+1−

(
1 + ρS̄

)
ūCEtπ̂t+1+ρS̄ūCEtŜt+1

ĥ
e
t = Et

[
uC (Ct+1, ξt+1) d

′ (Πt+1)Πt+1
]
= ūCd

′′
Etπ̂t+1

Markov-perfect FOCs Here, note that since all the Lagrange multipliers except one are zero in steady-state,

what we mean by hats will in fact only be deviations from steady-state for all the Lagrange multipliers (as opposed

to log-deviations).

First,

φ1t
[
(1 + ρSt(ρ)) bt−1Π

−2
t

]
+ φ4t

[
−uCd

′′

Πt − uCd
′
]
+ φ5t

[
−d′

]
= 0

gives
(
1 + ρS̄

)
b̄φ̂1t − ūCd

′′

φ̂4t − φ̄5d
′′
π̂t = 0

and since φ̄5 = ṽy = ūC (
1 + ρS̄

)
b̄φ̂1t − ūCd

′′

φ̂4t − ūCd
′′
π̂t = 0.

Second,

−ṽY + φ4t

[
−ε

(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ5t = 0

gives

−v̄Y Y Ȳ Ŷt +
[
εȲ v̄yy

]
φ̂4t + φ̂5t = 0.

Third,

φ2t
[
uC (1 + it)

−2
]
+ γ1t = 0
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gives

ūCβ
2
φ̂2t + γ̂1t = 0.

Fourth,

φ1t
[
bt − ρbt−1Π

−1
t

]
+ φ3t [−uC ] = 0

gives
[
(1− ρ) b̄

]
φ̂1t − ūC φ̂3t = 0.

Fifth,

uC + φ2t
[
−uCC (1 + it)

−1
]
+ φ3t [−uCCSt(ρ)] + φ4t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd

′Πt

]
+ φ5t [−1] = 0

gives

Ŷt +
ūCξ

ūCC
ξ̂t − βφ̂2t − S̄φ̂3t − εφ̂4t −

1

ūCC
φ̂5t = 0.

Sixth,

gG
(
−s′(Tt − T̄ )

)
+ φ1t = 0

gives

−ḡGs
′′

T̄ T̂t + φ̂1t = 0.

Seventh (after some replacements),

βEtφ1t+1
[
− (1 + ρSt+1(ρ))Π

−1

t+1

]
+ φ1t [St(ρ)] + βφ2t

[
f̄
e
b

]
+ βφ3t [ḡ

e
b ] + βφ4t

[
h̄
e
b

]
= 0

gives

−S̄Etφ̂1t+1 + S̄φ̂1t + βf̄bφ̂2t + βḡbφ̂3t + βh̄bφ̂4t = 0.

8.4 Linear-quadratic approach

8.4.1 Linear approximation of equilibrium conditions

We approximate around an efficient non-stochastic steady-state where Π = 1. For simplicity, from here on we will

assume that the only shock that hits the economy is a discount factor shock given by ψ. Standard manipulations

that are prevalent in the literature, for example in Woodford (2003), and as shown above in the Markov perfect

equilibrium, give (22) and (23) where σ = σ̃ C
Y
and k = ε

(σ−1+φ)
d
′′ . Here we again detail the derivations of (24) and

(25). Given

St(ρ) =
1

uC (Ct, ξt)
βEt

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρSt+1(ρ))
]
,

and

1 + it =
uC (Ct, ξt)

βEt
[
uC (Ct+1, ξt+1)Π

−1

t+1

]

and the functional form assumptions above together with in steady state 1 + i = β−1, log-linearization gives imme-

diately

Ŝt = −ı̂t + ρβEtŜt+1.

Next, given

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π
−1
t + (Ft − Tt)

and that we assume Ft = F and have from steady state S = β

1−ρβ
, T = F+ 1−β

1−ρβ
b, log-linearization gives immediately

b̂t = β
−1
b̂t−1 − β

−1
πt − (1− ρ)Ŝt − ψT̂t.
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Note that also the following relationship holds in steady state F = G. We finally derive an expression for ret , the

efficient rate of interest

r
e
t = σ̃

−1 (ψt − Etψt+1) .

8.4.2 Quadratic approximation of household utility

For household utility, we need to approximate the following three components

u (Yt − F − d(Πt), ξt) ; g (F − S(Tt − T ), ξt) ; v (Yt, ξt) .

Standard manipulations that are prevalent in the literature, for example in Woodford (2003), give as a second-order

approximation to household utility

1

2

−σ
(
T̂ 2t
(
F − Ȳ

)
s′′
(
T̄
)
+ Fd′′(1)Π̂2t

)
+ 2σŶt

(
−Ȳ + F ξ̂t + F

)
+ Ŷ 2

t

σ
(
F − Ȳ

) +

1

2
Ȳ

(
d′′(1)Π̂2t
F − Ȳ

+ ξ̂t

(
2σ

σ − 1
−

2Ŷt

F − Ȳ

)

+
2σ

σ − 1

)

−
1

2
2λ
(
ξ̂t + 1

)
ŶtȲ

φ −
1

2

2λ
(
ξ̂t + 1

)
Ȳ φ+1

φ+ 1
−
1

2
λφŶ

2
t Ȳ

φ−1 + tip

which is in turn given as

1

2

(
Ŷ
2
t

(
1

Fσ − σȲ
− λφȲ

φ−1

)
+ T̂

2
t

(
−s′′

(
T̄
))
− 2

(
ξ̂t + 1

)
Ŷt

(
λȲ

φ − 1
)
− d

′′(1)Π̂2t

)
+ tip.

Now lets multiply everything by 1

φ+σ̃−1
and consider efficient equilibrium in steady-state (uC = ṽY ), together with

the scaling that λȲ φ = 1 and Ȳ = C̄ + F = 1, to get

−
σ̃T̂ 2t s

′′
(
T̄
)

2 (φσ̃ + 1)
−
σ̃d′′(1)Π̂2t
2 (φσ̃ + 1)

−
Ŷ 2
t

2

So, finally, we get as approximation

−
[
λππ

2
t + Ŷ

2
t + λT T̂

2
t

]

where

λT =
s′′
(
T̄
)

φ+ σ̃−1

λπ =
d′′(1)

(φ+ σ̃−1)
=
ε

κ
.

8.4.3 Markov-perfect equilibrium at positive interest rates

Given the Lagrangian where the expectation functions are substituted and the shocks are suppressed

Lt =
1

2
(λππ

2
t + Ŷ

2
t + λT T̂

2
t ) + βEtV (bt, r

e
t+1) + φ1t[Ŷt − Ybbt + σı̂t − σπbbt − σr

e
t ]

+ φ2t[πt − κŶt − βπbbt] + φ3t[bt − β
−1
bt−1 + β

−1
πt + (1− ρ)Ŝt + ψT̂t] + φ4t[Ŝt + ı̂t − ρβSbbt]

the first-order necessary conditions are given by

∂L

∂πt
= λππt + φ2t + β

−1
φ3t = 0

∂L

∂Yt
= Yt + φ1t − κφ2t = 0
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∂L

∂Tt
= λTTt + ψφ3t = 0

∂L

∂it
= σφ1t + φ4t = 0

∂L

∂St
= φ3t(1− ρ) + φ4t = 0

∂L

∂bt
= βEtVb(bt, r

e
t+1)− (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0

while the envelope condition is given by

Vb(bt−1, r
e
t ) = −β

−1
φ3t

which implies

EtVb(bt, r
e
t+1) = −β

−1
Etφ3t+1.

We can then combine the envelope condition with the last FOC to yield

−Etφ3t+1 − (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0.

To summarize, we have

λππt + φ2t + β
−1
φ3t = 0

Yt + φ1t − κφ2t = 0

λTTt + ψφ3t = 0

σφ1t + φ4.t = 0

φ3t(1− ρ) + φ4t = 0

−Etφ3t+1 − (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1 − r
e
t )

πt = κŶt + βEtπt+1

bt = β
−1
bt−1 − β

−1
πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβEtŜt+1

which can be simplified to get

λππt + κ
−1
Yt = [κ

−1 (1− ρ)σ−1 + β
−1]

bS

T
λT T̂t

[1− βπbκ
−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)]T̂t = − (ψ)λ

−1

T βπbκ
−1
Yt + EtT̂t+1

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1 − r
e
t )

πt = κŶt + βEtπt+1

bt = β
−1
bt−1 − β

−1
πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβEtŜt+1.

The final step is then to match coefficients after replacing the conjectured solutions

λππbbt−1 + κ
−1 (Ybbt−1) = [κ

−1(1− ρ)σ−1 + β
−1]

bS

T
λT (Tbbt−1)

[1− βπbκ
−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)] [Tbbt−1] = − (ψ)λ

−1

T βπbκ
−1 [Ybbt−1] + [Tb (bbbt−1)]

Ybbt−1 = Yb [bbbt−1]− σ((ibbt−1)− [πb [bbbt−1]])
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πbbt−1 = κ [Ybbt−1] + βπb [bbbt−1]

bbbt−1 = β
−1
bt−1 − β

−1 [πbbt−1]− (1− ρ) [Sbbt−1]− ψ [Tbbt−1]

Sbbt−1 = − (ibbt−1) + ρβSb [bbbt−1]

which in turn can be simplified to get

λππb + κ
−1
Yb = [κ

−1(1− ρ)σ−1 + β
−1]

bS

T
λTTb (43)

[(1− ρ)−1 − βπbκ
−1
σ
−1 − (Yb + σπb)σ

−1 + ρβSb] (1− ρ)Tb = − (ψ)λ
−1

T βπbκ
−1
Yb + Tbbb (44)

Yb = Ybbb − σ(ib − πbbb) (45)

πb = κYb + βπbbb (46)

bb = β
−1 − β

−1
πb − (1− ρ)Sb − ψTb (47)

Sb = −ib + ρβSbbb. (48)

We now show some properties of πb analytically. First, note that we will be restricting to stationary solutions,

that is one where | bb |< 1. Manipulations of (43)-(48) above lead to the following closed-form expression for πb

πb =
(1− βbb)

β
[
T
lV
χ [λπ + κ−1κ−1 (1− βbb)] + [(1− ρ)σ−1κ−1 (1− bb) + β−1] (1− βbb) (1− ρβbb)

−1
]

where χ =

[
[κ−1σ−1(1− ρ) + β

−1]
bS

T
λT

]
−1

.

Since | bb |< 1, it is clear that πb > 0 for all ρ < 1. What happens whenρ > 1? Numerically, we have found that often

πb > 0 still, but sometimes in fact it can hit zero (and then actually go negative if ρ is increased further). It is in

fact possible to pin-down analytically when πb = 0. Note that from (46), if πb = 0, then Yb = 0. This then implies

that for this to be supported as a solution for all possible values of Tb, from (43), it must be the case that

[κ−1(1− ρ)σ−1 + β
−1] = 0

which in turn implies that

ρ = 1 + β
−1
σκ.

In this knife-edge case, note that one needs ρ > 1. Moreover, since the upper bound on ρ is β−1, one needs to ensure

that

1 + β
−1
σκ < β

−1 or σκ < 1− β.

This is a fairly restrictive parameterization (not fulfilled in our baseline, for example). Still, it is instructive to note

that in this case of when πb does reach 0, then it is indeed possible to show analytically that πb declines as duration

is increased while comparing ρ = 0 with ρ = 1 + β−1σκ or ρ = 1 with ρ = 1 + β−1σκ.

8.5 Equivalence of the two approaches

We now show the equivalence of the linearized dynamic systems for non-linear and linear-quadratic approaches.

Consider the system of equations describing private sector equilibrium and optimal government policy

Ŷt = EtŶt+1 +
ūC

ūCC
[̂ıt − Etπ̂t+1 − r

e
t ]

π̂t =
ε (v̄yy − ūCC)

ūCd′′
Ŷt + βEtπ̂t+1.
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ı̂t + Ŝt = βρEtŜt+1.

b̂t = β
−1
b̂t − β

−1
π̂t − (1− ρ) Ŝt −

T̄

S̄b̄
T̂t.

(
1 + ρS̄

)
b̄φ̂1t − ūCd

′′

φ̂4t − φ̄5d
′′
π̂t = 0

−v̄Y Y Y Ŷt +
[
εȲ v̄yy

]
φ̂4t + φ̂5t = 0

ūCβ
2
φ̂2t + γ̂1t = 0

[
(1− ρ) b̄

]
φ̂1t − ūC φ̂3t = 0.

Ŷt +
ūCξ

ūCC
ξ̂t − βφ̂2t − S̄φ̂3t − εφ̂4t −

1

ūCC
φ̂5t = 0.

−ḡGs
′′

T̄ T̂t + φ̂1t = 0.

−S̄Etφ̂1t+1 + S̄φ̂1t + βf̄bφ̂2t + βḡbφ̂3t + βh̄bφ̂4t = 0.

Under additional functional assumptions outlined in previous sections we get

v̄Y Y = φY
−1
= φ

ūCC = −σ
−1
C̄
−1 = −σ̃−1

ūCξ = 1

ūC = 1

ḡG = 1

φ̄5 = 1

Ȳ = 1

The first four equations are equivalent to their counterparts in the LQ-approach once one use the functional form

assumptions to get
ūC

ūCC
= −σ̃

and introduce new notation
ε (v̄yy − ūCC)

ūCd′′
= κ.

The latter relation implies
ε
(
φ+ σ̃−1

)

κ
= d

′′
.

Let us guess solutions for all variables for the case when the ZLB is slack as a linear function of b̂t−1 and r̂et .
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Then the expectations will take form

f̂
e
t = ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1 = f̂

e
b b̄b̂t−1 + f̂

e
r r̂

e
t

ĝ
e
t =

(
1 + ρS̄

)
ūCCEtŶt+1 +

(
1 + ρS̄

)
ūCξEtξ̂t+1 −

(
1 + ρS̄

)
ūCEtπ̂t+1 + ρS̄ūCEtŜt+1 = ĝ

e
b b̄b̂t−1 + ĝ

e
r r̂

e
t

ĥ
e
t = ūCd

′′
Etπ̂t+1 = ĥ

e
b b̄b̂t−1 + ĥ

e
r r̂

e
t

where

f̂
e
b = −b̄

−1
(
σ̃
−1
Yb + πb

)

ĝ
e
b = −σ̃

−1
b̄
−1
(
1 + ρS̄

)
Yb −

(
1 + ρS̄

)
b̄
−1
πb + ρS̄Sbb̄

−1

ĥ
e
b =

ε
(
φ+ σ̃−1

)

κ
πbb̄

−1

Also under the assumption about the process ξ̂t we get

Etξ̂t+1 = µξ̂t

and

r̂
e
t = −

ūCξ

ūC

[
µξ̂t − ξ̂t

]
= ξ̂t(1− µ).

When the economy is out of ZLB r̂et = 0.

Now we can find explicit representation for the Lagrange multipliers

φ̂1t = s
′′

T̄ T̂t.

φ̂2t = 0

φ̂3t = [(1− ρ)] s
′′

T̄ T̂t.

φ̂4t =
κ

ε (φ+ σ̃−1)

(
1 + ρS̄

)
b̄s

′′

T̄ T̂t − π̂t

φ̂5t = φŶt − φ
κ

(φ+ σ̃−1)

(
1 + ρS̄

)
s
′′

T̄ T̂t + εφπ̂t

So the last two equations take the form

επ̂t = −Ŷt +
1

(φ+ σ̃−1)

[
σ̃
−1
S̄ (1− ρ) + κ

(
1 + ρS̄

)]
b̄s

′′

T̄ T̂t.

S̄s
′′

T̄ T̂t +
(
ρβSb − σ̃

−1
Yb − πb

)
b̄
−1 (1− ρ) S̄b̄s

′′

T̄ T̂t + b̄
−1
πbS̄b̄s

′′

T̄ T̂t − β
ε
(
φ+ σ̃−1

)

κ
πbb̄

−1
π̂t = s

′′

T̄ S̄EtT̂t+1.

which after straightforward manipulations become

ε

κ
π̂t + Ŷtκ

−1 =
[
σ̃
−1 (1− ρ)κ−1 + β

−1
] b̄S̄
T̄

T̄ 2s
′′

(φ+ σ̃−1)
T̂t.

(
1 +

(
ρβSb − σ̃

−1
Yb − πb

)
(1− ρ) + πb

) S̄b̄
T̄

s
′′

T̄ 2

(φ+ σ̃−1)
T̂t − β

ε

κ
πbπ̂t =

s
′′

T̄ 2

(φ+ σ̃−1)

b̄S̄

T̄
EtT̂t+1.

These two equations are equivalent for the last two equations from the dynamic system obtained in LQ—approach

once we use the derived weights from the quadratic approximation of the loss function

λT =
s
′′

T̄ 2

(φ+ σ̃−1)
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λπ = κ
−1
ε.

8.6 Details of the solution at positive interest rates

Provided that the expectation functions are differentiable, the solution of the model is of the form

πt = πbb̂t−1 + πrr
e
t , Ŷt = Ybb̂t−1 + Yrr

e
t , Ŝt = Sbb̂t−1 + Srr

e
t , (49)

ı̂t = ibb̂t−1 + irr
e
t , T̂t = Tbb̂t−1 + Trr

e
t , and b̂t = bbb̂t−1 + brr

e
t

where πb, Yb, Sb, ib, bb, Tb, πr, Yr, Sr, ir, br, and Tr are unknown coefficients to be determined. We make the

assumption that the exogenous process ret satisfies Etr
e
t+1 = ρrr

e
t where 0 < ρr < 1. Then (49) implies that the

expectations are given by

Etπt+1 = πbb̂t + πrρrr
e
t , EtŶt+1 = Ybb̂t + Yrρrr

e
t , and EtŜt+1 = Sbb̂t + Srρrr

e
t . (50)

We can then formulate the Lagrangian of the government problem. We substitute out for the expectation function

using (50) and suppress the shock for simplicity

Lt =
1

2
(λππ

2
t + Ŷ

2
t + λT T̂

2
t ) + βEtV (b̂t, r

e
t+1)

+ φ1t[Ŷt − Ybb̂t + σı̂t − σπbb̂t] + φ2t[πt − κŶt − βπbb̂t]

+ φ3t[b̂t − β
−1
b̂t−1 + β

−1
πt + (1− ρ)Ŝt + ψT̂t] + φ4t[Ŝt + ı̂t − ρβSbb̂t].

For now, we are not analyzing the effects of the shock, and hence not carrying around πr, Yr, Sr, ir, br, and Tr since

our key area of interest at this state is not the effect of the shock at positive interest rates. Instead, we will start

focusing on the shock once the zero bound becomes binding.

The associated first order necessary conditions of the Lagrangian problem above and the envelope condition of

the minimization problem of the government above are provided in the appendix. Our first substantiative result is

that the equilibrium conditions can be simplified, in particular by eliminating the Lagrange multipliers φ1t − φ4t, to

get

λππt + κ
−1
Ŷt = [κ

−1 (1− ρ)σ−1 + β
−1]

1

ψ
λT T̂t (51)

[1− βπbκ
−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)]T̂t = − (ψ)λ

−1

T βπbκ
−1
Ŷt + EtT̂t+1 (52)

which along with (22)-(25) define the equilibrium in the approximated economy. The final step to computing the

solution is then to plug in the conjectured solution and to match coefficients on various variables in (22)-(25), (51),

and (52), along with the requirement that expectation are rational, to determine πb, Yb, Sb, ib, bb, and Tb. The details

of this step are in the appendix.

The most important relationships emerging from our analysis are captured by (51) and (52). (51) is the so

called “targeting rule” of our model. That represents the equilibrium (static) relationship among the three target

variables πt, Ŷt, and T̂t that emerges from the optimization problem of the government. (51) thus captures how

target variables are related in equilibrium as governed both by the weights they are assigned in the loss function

(λπ and λT ) as well as the trade-offs among them as given by the private sector equilibrium conditions (κ−1 and

[κ−1 (1− ρ)σ−1 + β−1] 1
ψ
). Note in particular that κ−1 represents the trade-off between πt and Ŷt as given by (23)

while [κ−1 (1− ρ)σ−1+β−1] 1
ψ
represents the trade-off between πt and Ŷt vs. T̂t as given by the combination of (22),

(23), and (24).

(52) is another optimality condition characterizing the Markov-perfect equilibrium and represents the “tax-

smoothing objective” of the government. In contrast to similar expressions following the work of Barro (1979),

which would lead to taxes being a martingale, output appears in (52) because of sticky-prices, which makes output

endogenous. Finally, because of the dynamic nature of (52), as opposed to (51), the unknown coefficients that are

critical for expectations of variables, πb, Yb, and Sb, appear in (52). As we shall see — and this is again in contrast to
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the classic tax smoothing result in which debt is a random walk — the government will in general have an incentive

to pay down public debt if it is above steady-state due to strategic reasons.

8.6.1 Polar cases on price rigidities

To clarify what is going on in the model, we first find it helpful to consider two special cases.

a) Fully flexible prices When prices are fully flexible, then as is well-known, monetary policy cannot control

the (ex-ante) real interest rate r̂t. Then, the only way monetary policy can affect the economy is through surprise

inflation as debt is nominal. In fact there is a well-known literature that addresses the issue of how the duration of

nominal debt in a flexible price environment affects allocations under time consistent optimal monetary policy. For

example, Calvo and Guidotti (1990 and 1992) address optimal maturity of nominal government debt in a flexible

price environment while Sims (2013) explores how the response of inflation to fiscal shocks depends on the maturity of

government debt under optimal monetary policy. We conduct a complementary exercise here and want to characterize

how inflation incentives depend on the duration of debt under optimal monetary and fiscal policy under discretion.

Thus, we are interested in how πb depends on duration of debt.

For this exercise, we can think of this special case of fully flexible prices as κ → ∞. Note however, that from

the two optimality conditions (51) and (52), while under flexible prices Tb = 0, there is indeterminacy in terms of

inflation and nominal interest rate dynamics.44 This is a well-known result in monetary economics under discretion

in a flexible price environment, and comes about because the government cannot affect output and taxes can be put

to zero with various combinations of inflation and interest rate choices. To show our result on the role of the duration

of debt, we follow the literature such as Calvo and Guidotti (1990 and 1992) and Sims (2013) and include a ( very

small) aggregate social cost of inflation that is independent of the level of price stickiness. Then, the objective of the

government under flexible prices will be given by

Ut = −
[
λ
′

ππ
2
t + λT T̂

2
t

]

where λ
′

π parameterizes the cost of inflation that is independent of sticky prices. Using λ
′

π = 0.001 and the rest of

the parameter values from Table 1, Fig A1 shows how πb depends on duration of debt (quarters). We see that with

shorter duration, there is more of an incentive to use current inflation. The intuition for this result is that from (24),

we see that everything else the same, when ρ (and thereby, duration) decreases, then there will be a greater period by

period incentive to increase Ŝt, that is, keep nominal interest rates low to manage the debt burden. This, however,

will increase current inflation further in equilibrium according to our result. As a consequence — and perhaps a little

counterintuitively — equilibrium nominal interest rate will generally increase as well with lower duration since the

real rate is exogenously given under flexible prices. In particular, observe that ı̂t = Etπt+1 (since Ŷt = 0 and there

44Note that λπ =
ε
k
.
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are no shocks) and hence it is increasing one-to-one with expected inflation.
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b

Fig A1: Inflation response coefficients at different duration of debt under flexible prices

b) Fully rigid prices Next we can consider the other extreme case: that of fully rigid prices. In this case,

inflation is zero in equilibrium and hence πb = 0. Then, one can directly consider the effects on the ex-ante real

interest rate by analyzing the effect on the nominal interest rate since rb = ib − πbbb = ib. Thus, we are interested

in how ib depends on the duration of debt. Using the parameters from Table 1, Fig A2 shows how ib depends on

duration of debt (quarters). We see that with shorter duration, there is more of an incentive to keep the nominal

interest rate lower. The intuition for this result is again that from (24), when ρ (and thereby, duration) decreases,

then there will be more of an incentive to increase Ŝt, that is keep interest rates low, to manage the debt burden.
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Fig A2: Nominal interest rate response coefficients at different duration of debt under

rigid prices

We now move to discussing in detail properties of the solution for the partially rigid price cases that underlies

our baseline calibration.

8.6.2 Real interest rate incentives and duration of outstanding debt

How does the duration of debt affect the real interest rate incentives of the central bank for the partially rigid cases

that underlies our baseline calibration? The effect on the real interest rate of lower duration is at the heart of the

matter because what influences output is eventually the real interest rate and the aim in a zero lower bound situation

is precisely to be able to decrease the short-term real interest rate (today and in future) even when the current

short-term nominal interest rate is stuck at zero. That is, we are interested in the properties of

r̂t = ı̂t − Etπt+1 = (ib − πbbb) b̂t−1 = rbb̂t−1

where r̂t is the short-term real interest rate. This is important because in a liquidity trap situation, as is well-known,

decreasing future real interest rate is key to mitigating negative effects on output, and so, if rb depends negatively

on duration, then we are able to provide a theoretical rationale for quantitative easing actions by the government.

Having established the results in the two special cases above, we now move on to the main mechanism in our

paper in the intermediate and quantitatively relevant case of partially rigid prices. Fig A3 shows how rb depends

on duration of debt (quarters). When the duration of debt in the hands of the public is shorter, it unambiguously

provides an incentive to the government to keep the short-term real interest rate lower in future. The intuition again

is that by doing so, it reduces the cost of rolling over the debt period by period. That is, if the debt is short-term,

then current real short rates will more directly affect the cost of rolling the debt over period by period, while the

cost of rolling over long-term debt is not affected in the same way period by period.
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Fig A3: Real interest rate response coefficients at different duration of debt

8.6.3 Inflation incentives and duration of outstanding debt

While the dependence of real interest rate incentive of the government on the duration of debt is the main mechanism

of our paper, given the attention inflation incentives receive in the literature, we now study how πb varies with the

duration of outstanding government debt?45 Moreover, it helps us emphasize a point that just focusing on inflation

incentives might not be sufficient to understand the nature of optimal monetary and fiscal policy in a liquidity trap

situation.

While an analytical expression for πb is available in the appendix and it is possible to show that πb > 0 for

all ρ < 1, a full analytical characterization of the comparative statics with respect to the duration of debt is not

available and so we rely on numerical results. Fig A4 below shows how πb depends on duration of debt (quarters) at

different levels of κ. As expected, πb is positive at all durations in the figure.
46 More importantly, note that that at

our baseline parameterization of κ = 0.02, πb does decrease with duration over a wide range of maturity.
47 At the

same time, however, there is a hump-shaped behavior, with πb increasing when duration is increased at very short

durations.

45For some recent discussion and analysis of how inflation dynamics in sticky-price models could depend on duration
of government debt, see Sims (2011).
46Again, it is possible to show analytically that for all ρ < 1, πb > 0. In a very similar model but one with no

steady-state debt, Eggertsson (2006) proved that πb > 0 for ρ = 0 (that is, for one period debt).
47Some limited analytical results on the properties of πb with respect to ρ are available in the appendix. For

example, it can be shown that πb is positive for all ρ < 1 and that when ρ = 1+ β
−1σκ (and thus, ρ > 1), πb = 0. In

this sense, for a specific case, one can show that πb is declining in ρ by comparing some extreme cases (such as
ρ = 0 with ρ = 1+ β−1σκ). Please see the appendix for details. Note also here that the upper bound on ρ is β−1. So
this case of πb = 0 is not necessarily always reached.
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Fig A4: Inflation response coefficients at different duration of debt

What drives this result? First, note from (24) that everything else the same, when ρ (and thereby, duration)

decreases, then there will be an incentive to decrease Ŝt, that is keep interest rates low to manage the debt burden.

This will then increase inflation in equilibrium. At the same time however, the government’s incentives on inflation

are not fully/only captured by this reasoning. This is because what ultimately matters for the cost of debt is the

real interest rate, which because of sticky prices, is endogenous and under the control of the central bank, and which

we have seen before robustly depends negatively on the duration of debt. Therefore, to understand the overall effect

on the government’s inflation incentives, it is critical to analyze the targeting rule, as discussed above and given by

(51). Here, the term [κ−1 (1− ρ)σ−1 + β−1] plays a key role as it captures the trade-off between πt and Ŷt vs. T̂t

. Note first that β−1 here simply captures the role of surprise inflation in reducing the debt burden as government

debt is nominal. This term would be present even when prices are completely flexible. The term κ−1 (1− ρ)σ−1

however, appears because of sticky prices. This reflects how the real interest rate is affected by manipulation of the

nominal interest rate and how it in turn affects output.

Thus, in situations where either κ−1, σ−1, or (1− ρ) is high, this term can dominate and it can be the case that

decreasing the duration (or decreasing ρ) actually leads to a lower πb. This means, for example, that when κ
−1 is

low (or when prices are more flexible), the hump-shaped behavior of πb gets restricted to very short maturities only

as the channel coming from sticky-prices is not that influential. We in fact showed this above in the case of fully

flexible prices, where inflation response depends negatively throughout on duration of debt.

8.6.4 Debt dynamics and duration of outstanding debt

While the primary focus so far is on properties of rb as it determines the real interest rate incentives of the central bank,

it is also interesting to consider the properties of bb, the parameter governing the persistence of government debt. This

exercise is interesting in its own right, but more importantly, it is also worth exploring because as explained before,

what is critical is the behavior of the real interest rate, and that gets affected by bb as Etπt+1 = πbb̂t = πbbbb̂t−1.

Unlike for πb, it is not possible to show a tractable analytical solution (or any property) for bb as it is generally a

root of a fourth-order polynomial equation. We thus rely fully on numerical solutions.

Fig. A5 shows how bb depends on duration of debt. It is clear that the persistence of debt increases monotonically
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as the duration increases.48 In fact, for a high enough duration, debt dynamics approach that of a random walk

(bb = 1), as in the analysis of Barro (1979). The persistence of debt increases with duration mainly because the

response of the short-term real interest rate decreases, as we discussed above. Some of this effect is reflected in

the response of inflation decreasing as also discussed above. Thus, the existence of long-term nominal debt has an

important impact on the dynamics of debt under optimal policy under discretion.
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Fig A5: Debt response coefficients at different duration of debt

8.7 Computation at ZLB

In our experiment the debt is kept fixed at the zero lower bound at bL . Moreover, at the zero lower bound,

ı̂t = 1− β
−1. Given the specific assumptions on the two-state Markov shock process, the equilibrium is described by

the system of equations

Ŷt = −σ
(
−πb(1− µ)b̂t − r

e
t − µπL + ı̂t

)
+ (1− µ)b̂tYb + µYL,

π̂t = β
(
πb(1− µ)b̂t + µπL

)
+ κYt,

ı̂t = 1− β
−1
,

b̂t = bL,

Ŝt = −ı̂t + ρβ ((1− µ)SbbL + µSL) .

48There is thus, no hump-shaped pattern, unlike for inflation. The reason is that what matters directly for
persistence of debt is the real interest rate and there is no hump-shaped pattern there as we show later. Note also
that for one-period debt, often bb is negative (even here, recall that πb is still positive). A negative bb is not very
interesting empirically as it implies oscillatory behavior of debt.
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where variables with a b subscript denote the solution we compute at positive interest rates while variables with a L

subscript denote values at the ZLB. The solution to this system is

Ŷt = YL =
βπb(µ− 1)bL

κ
−
(1− βµ)

(
βπb(1− µ)2bL − κ (bL (πb(µ− 1)σ + (µ− 1)Yb)− σret + σiL)

)

κ(κµσ − (1− µ)(1− βµ))
,

π̂t = πL =−
βπb(1− µ)2bL − κ (bL (πb(µ− 1)σ + (µ− 1)Yb)− σret + σiL)

κµσ − (1− µ)(1− βµ)
,

ı̂t = iL =1− β
−1
, b̂t = bL,

Ŝt = SL =
ρβ(1− µ)SbbL − ı̂t

1− ρβµ

where the solution for variables with a b subscript has already been provided above.

8.8 Non-linear Markov equilibrium of extended model

We now consider a model where the duration of government debt is time-varying and chosen optimally by the

government.

The policy problem can be written as

J (bt−1, ρt−1, ξt) = max [U (Λt, ξt) + βEtJ (bt, ρt, ξt+1)]

st

St(ρt)bt = (1 + ρt−1Wt(ρt−1)) bt−1Π
−1
t + (F − Tt) .

1 + it =
uC (Ct, ξt)

βfet

it ≥ 0

St(ρt) =
1

uC (Ct, ξt)
βg

e
t

Wt(ρt−1) =
1

uC (Ct, ξt)
βj

e
t

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt)Πt = βh
e
t

Yt = Ct + F + d (Πt)

f
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1

]
= f̄

e (bt, ρt, ξt)

g
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρtSt+1(ρt))
]
= ḡ

e (bt, ρt, ξt)

h
e
t = Et

[
uC (Ct+1, ξt+1) d

′ (Πt+1)Πt+1
]
= h̄

e (bt, ρt, ξt)

j
e
t = Et

[
uC (Ct+1, ξt+1)Π

−1

t+1 (1 + ρt−1Wt+1(ρt−1))
]
= j̄

e (bt, ρt, ξt)
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Formulate the period Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt) + βEtJ (bt, ρt, ξt+1)

+ φ1t
(
St(ρt)bt − (1 + ρt−1Wt(ρt−1)) bt−1Π

−1
t − (F − Tt)

)

+ φ2t

(
βf

e
t −

uC (Ct, ξt)

1 + it

)

+ φ3t (βg
e
t − uC (Ct, ξt)St(ρt))

+ φ4t (βj
e
t − uC (Ct, ξt)Wt(ρt−1))

+ φ5t

(
βh

e
t − εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
− uC (Ct, ξt) d

′ (Πt)Πt

)

+ φ6t (Yt − Ct − F − d (Πt))

+ ψ1t
(
f
e
t − f̄

e (bt, ρt, ξt)
)

+ ψ2t (g
e
t − ḡ

e (bt, ρt, ξt))

+ ψ3t
(
h
e
t − h̄

e (bt, ρt, ξt)
)

+ ψ4t (j
e
t − j̄

e (bt, ρt, ξt))

+ γ1t (it − 0)

First-order conditions (where all the derivatives should be equated to zero)

∂Ls

∂Πt
= φ1t

[
(1 + ρt−1Wt(ρt−1)) bt−1Π

−2
t

]
+ φ5t

[
−uCd

′′

Πt − uCd
′
]
+ φ6t

[
−d′

]

∂Ls

∂Yt
= −ṽY + φ5t

[
−ε

(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ6t

∂Ls

∂it
= φ2t

[
uC (1 + it)

−2
]
+ γ1t

∂Ls

∂St
= φ1t [bt] + φ3t [−uC ]

∂Ls

∂Wt

= φ1t
[
ρt−1bt−1Π

−1
t

]
+ φ4t [−uC ]

∂Ls

∂Ct
= uC + φ2t

[
−uCC (1 + it)

−1
]
+ φ3t [−uCCSt(ρt)] + φ4t [−uCCWt(ρt−1)] + φ5t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd

′Πt

]
+ φ6t [−1]

∂Ls

∂Tt
= gG

(
−s′(Tt − T )

)
+ φ1t

∂Ls

∂bt
= βEtJb (bt, ρt, ξt+1) + φ1t [St(ρt)] + ψ1t

[
−f̄eb

]
+ ψ2t [−ḡ

e
b ] + ψ3t

[
−h̄eb

]
+ ψ4t (−j̄

e
b )

∂Ls

∂ρt
= βEtJρ (bt, ρt, ξt+1)

∂Ls

∂fet
= βφ2t + ψ1t

∂Ls

∂get
= βφ3t + ψ2t

∂Ls

∂jet
= βφ4t + ψ4t

∂Ls

∂het
= βφ5t + ψ3t

The complementary slackness conditions are

γ1t ≥ 0, it ≥ 0, γ1tit = 0
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While the envelope conditions are

Jb (bt−1, ρt−1, ξt) = φ1t
[
− (1 + ρt−1Wt(ρt−1))Π

−1
t

]

Jρ (bt−1, ρt−1, ξt) = φ1t
[
−Wt(ρt−1)bt−1Π

−1
t

]
.
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