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Abstract We introduce the time consistency concept that is inspired by
the so-called “principle of optimality” of dynamic programming and demon-
strate − via an example − that the conditional value-at-risk (CVaR) need
not be time consistent in a multi-stage case. Then, we give the formulation
of the target-percentile risk measure which is time consistent and hence
more suitable in the multi-stage investment context. Finally, we also gener-
alize the value-at-risk (VaR) and CVaR to multi-stage risk measures based
on the theory and structure of the target-percentile risk measure.
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1 Introduction

Since Markowitz’s seminal work [10] on financial risk, the variance (or,
equivalently, standard deviation) of a random return/loss has been fre-
quently used as a measure of risk. However, this measure has also been
criticized (see, e.g. [15]), because the standard deviation does not adequately
account for the phenomenon of “fat tails” in loss distributions and, more-
over, it equally penalizes “ups” and “downs”. Consequently, nowadays, the
so-called “value-at-risk” (VaR) has become a commonly used measure of
risk. The latter measures risk as the maximum loss that might be incurred
with respect to a given, and fixed, confidence level.

Nonetheless, even value-at-risk is known to have certain drawbacks such
as lack of convexity, monotonicity, as well as of reasonable continuity prop-
erties. To address these issues, Rockafellar and Urysaev [13–15] proposed
another risk measure “conditional value-at-risk” (CVaR). The latter sat-
isfies four axioms that are deemed desirable, namely, translation invari-
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ance, subadditivity, positive homogeneity, and monotonicity and leads to a
tractable form of a portfolio optimization problem. That is, the problem of
minimizing CVaR, with respect to portfolio allocation variables, is a convex
programming problem.

It is, perhaps, important to note that all of the above measures of risk are
based on certain characteristics of the distribution of a random loss under
a fixed, and static (single-stage), portfolio allocation. However, nowadays,
most investors are making portfolio decisions dynamically (over time); usu-
ally at discrete times (e.g., once a day or once a week). Hence, a natural
question that arises is: What measure of risk is most appropriate for a dy-
namic portfolio allocation problem?

Clearly, for a dynamic multi-stage problem, an investor wants to make a
sequence of portfolio allocation decisions − one at each stage − so that his
or her risk is at an appropriate level not only when considering the entire
time horizon, but also at intermediate stages as the process evolves. This
concept is what has led us to define the notion of time consistency of a
dynamic portfolio, with respect to a measure of risk.

We believe that time consistency is an important property when we con-
sider multi-stage investment problems. In this paper, we propose a definition
of time consistency that is inspired by the “principle of optimality” of dy-
namic programming (see, e.g. [2]). We believe that this is the most natural
definition.

However, we shall show that − with respect to most of the commonly
used measures of risk (e.g., VaR or CVaR) − there may not exist time
consistent optimal dynamic portfolios. In our opinion, this calls into question
the appropriateness of these risk measures in multi-stage setting.

To address the problem, we propose an alternative measure of risk which
ensures that there always exist time-consistent optimal portfolios. We also
demonstrate that the conventional measures of risk, such as VaR or CVaR,
can still be used in conjunction with the new, time consistent, measure.

The structure of the paper is as follows. In Section 2, we first define
precisely the time consistency concept and demonstrate − via an example
− that CVaR need not be time consistent in a multi-stage case. In Section 3,
we give the formulation of the target-percentile risk measure which is time
consistent and hence more suitable in the multi-stage investment context.
We also generalize VaR and CVaR to multi-stage risk measures based on
the theory and structure in previous section in Section 4.

2 Time consistency problem & counter examples

2.1 Time consistent risk measures

We begin with an intuitive description of the time consistency concept.
Time consistency of a risk measure means that if a decision-maker uses

a risk measure minimizing policy for the n−stage problem, then the com-
ponent of that multi-stage policy from the tth−stage to the end should be a
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risk measure minimizing policy in the remaining (n− t+1)−stage problem,
for every t = 1, 2, · · · , n. In common sense terms, a decision maker needs
to be constantly concerned about optimizing his or her decisions for the
remaining portion of the time horizon. That is, current optimal decisions
must look to the future, rather than the past.

We shall now make the above concept more precise.
Consider an n−stage portfolio optimization planning problem. Let a

decision rule at time/stage t be denoted by the column vector πt whose
entries represent the fractions of the total portfolio allocated to individual
stocks. It is assumed that πT

t · e = 1, where e is the column vector of all
ones of the dimension equal to the number m of available stocks. That is,
we are assuming that all the resources are invested in these m stocks at
each time t. A policy π will be defined as a sequence of decision rules, that
is, π = (π1, · · · , πn).

Let the return/reward at stage t be denoted by the random variable
rt whose probability distribution function depends on the policy π. Let
Rt := g(r1, · · · , rt), t = 1, · · · , n be the aggregated return1 for the t−stage
process. For all t = 1, · · · , n, let Zπ

t = Zt(π1, · · · , πt) be the risk measure
of t−stage value corresponding to the decision rules π1, · · · , πt and with
respect to g.

We shall say that the risk measure Z is time-consistent with respect to
g if two conditions are satisfied:

TC1 If the decision rule π∗t at each stage t, t = 1, · · · , n is chosen by

π∗t ∈ Argminπt
Zn−t+1(πt, π

∗
t+1, · · · , π∗n), ∀t = 1, · · · , n; (1)

then the policy (π∗1 , · · · , π∗n) will be the optimal policy in the problem

min
π

Zn(π). (2)

TC2 If the policy

π∗ = (π∗1 , · · · , π∗n) ∈ Argminπ Zn(π), (3)

satisfies

(π∗t , · · · , π∗n) ∈ Argminπt,···,πn
Zn−t+1(πt, · · · , πn), ∀t = 2, · · · , n. (4)

Remark 1 Clearly, TC1 ensures that a policy assembled from risk measure
minimizing decision rules, as time evolves, is a risk measure minimizing
policy over the entire horizon. On the other hand, TC2 ensures that “sub-
policies” of an optimal policy π∗, over the remaining (shorter than n) time
horizons, are also risk minimizing policies in the corresponding (shorter)
sub-problems.

The above definition is inspired by the so-called “principle of optimality”
of dynamic programming (see [2]).

1 In many applications aggregation may simply refer to a summation, however,
multiplicative aggregation of compounded interests is also very natural.
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2.2 VaR and CVaR need not be time consistent

Here we will take a simple portfolio problem as an example.
As above, we assume that there are m stocks in the market. The investor

will invest in these stocks, at the beginning of every time period t, t =
1, · · · , n. The initial capital is given and there is no loss of generality in
assuming it to be $1.

For t = 1, · · · , n, let Yt = (Yt1, Yt2, · · · , Ytm)T be the random percent-
age return vector of the m stocks under consideration by the investor. For
notational convenience, we assume that Ytk, t = 1, · · · , n, k = 1, · · · ,m
are all continuous random variables. Now, define the m × n matrix Y
to be the matrix whose columns are the percentage return vectors Yt =
(Yt1, Yt2, · · · , Ytm)T , for every t.

Further, note that a policy π as defined in the previous section can also
be regarded as an m×n matrix whose columns are the decision rules πt for
t = 1, · · · , n.

Of course, if the initial capital were $1 and an investment policy π were
used, then the total random return after n years will be simply:

Rn(π, Y ) := Πn
t=1(1 + πT

t Yt).

A simple logarithmic transformation converts the above multiplicative re-
turn to a more convenient additive one. Clearly, investors are most con-
cerned about the initial capital going down and this corresponds to Rn(π, Y )
being strictly less than 1 which − after taking a logarithm − becomes neg-
ative. Consequently, it is natural to define the total random loss resulting
from policy π as

Ln(π, Y ) := − log(Rn(π, Y )) = − log Πn
t=1(1+πT

t Yt) = −
n∑

t=1

log(1+πT
t Yt).

Since − log(·) is a convex function, it is easy to check that the total loss
function Ln(π, Y ) is also a convex function of the policy π. Hence, following
standard arguments (see, e.g. Rockafellar et.al in [13]) we can define VaR
and CVaR; we simply substitute Ln(π, Y ) in place of f(x, y) in page 23 of
[13]. That is, we have the following definitions.

Definition 1 The n−stage value-at-risk, denoted by α-VaR and associated
with the total loss Ln(π, Y ) is defined by:

ζπ
n,α = ζn,α(π) := min{ζ|PY (Ln(π, Y ) ≤ ζ) ≥ α}.

Definition 2 2 The n−stage conditional value-at-risk, denoted by α-CVaR
and associated with the total loss Ln(π, Y ) is defined by:

φπ
n,α = φn,α(π) := E[Ln(π, Y )|Ln(π, Y ) ≥ ζn,α(π)],

2 This definition is analogous to that in [13] since we assume Ytk, t =
1, · · · , n, k = 1, · · · , m are all continuous random variables.
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where E(·) denotes the mathematical expectation.
For fixed α, if we choose Zn(π) = ζn,α(π), then we use VaR as our

measure of risk; otherwise we choose Zn(π) = φn,α(π), then we use CVaR
as our measure of risk. In what follows, we will show that both of VaR and
CVaR need not to be time consistent in multi-stage setting.

From Theorem 1 in [13], we know that φn,α(π) is a convex function of
π and can be calculated as

φn,α(π) = min
ζ

Fn,α(π, ζ),

where Fn,α(π, ζ) = ζ + 1
1−αEY {[Ln(π, Y )− ζ]+}.

Hence it is not surprising that by an argument analogous to that pre-
sented in [13,14] we can derive the following algorithm to minimize the
n−stage CVaR φn,α(π) by choosing appropriate decision rule at each stage.

For each stage t, we assume the distribution of the random return Yt is
known and given by p(y). Hence, we can generate (vector-valued) samples
yk

t , k = 1, · · · , q for each t from the distribution p(y). Thus we obtain a
corresponding approximation F̃n,α(π, ζ) for Fn,α(π, ζ) as follows:

F̃n,α(π, ζ) = ζ +
1

q(1− α)

q∑
k=1

[−
n∑

t=1

log(1 + πT
t yk

t )− ζ]+.

Based on this, we have the following optimization algorithm for deriving an
optimal policy (investment portfolio) in the n−stage problem:

min ζ + 1
q(1−α)

∑q
k=1 uk

s.t.
πtj ≥ 0, t = 1, · · · , n, j = 1, · · · ,m;

∑m
j=1 πtj = 1, t = 1, · · · , n;

uk ≥ 0, uk +
∑n

t=1 log(1 + πT
t yk

t ) + ζ ≥ 0, k = 1, · · · , q.

(5)

Next, we want to calculate the optimal VaR, CVaR and corresponding
optimal portfolios for some given stocks, time periods and distributions.

In this simple example (based on an example given in [13]), we set m = 3
and n = 2, so that we have three stocks and we invest in them, each year,
for three consecutive years. Further, we set α = 0.99 and want to choose an
optimal portfolio at the beginning of each year so that the 0.99-CVaR of the
total random loss Lt, for (t = 1, 2) is as small as possible. Finally, we assume
that the distribution p(y) of the return is the multi-normal distribution
N(µ,Σ) with the mean vector µ and the variance-covariance matrix Σ. In
our example, the numerical values of the latter are given in Tables 1 and 2.

After generating 100 samples − for each of the 2 stages − from the multi-
normal distribution N(µ,Σ) we are able to solve the mathematical program
(5) to obtain an optimal portfolio and a corresponding value of 0.99-CVaR.
This was done with n set to 1 and 2, respectively. Here, our measure of risk
is Zt(π) = φt,α(π) for t = 1, 2 and α = 0.99. We used Lingo 8.0 to obtain
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Table 1 Portfolio mean return µ

Instrument Mean return

Option 1 0.0101110
Option 2 0.0043532
Option 3 0.0137058

Table 2 Portfolio variance-covariance matrix Σ

Option 1 Option 2 Option 3

Option 1 0.00324625 0.00022983 0.00420395
Option 2 0.00022983 0.00049937 0.00019247
Option 3 0.00420395 0.00019247 0.00764097

the following numerical results and checked if this Zt(π) satisfied TC1 and
TC2.

An optimal policy for the 1-stage problem (set t = 2 in Eq.(1)) with
respect to the samples, yk

2 , k = 1, · · · , q is π∗ = π∗2 , where,

π∗2 = (0.101, 0.829, 0.070)T .

An optimal policy for the 2-stage problem (n = 2) is π̂ = (π̂1, π̂2), where,

π̂1 = (0.000, 1.000, 0.000)T , π̂2 = (0.000, 0.994, 0.006)T .

However, setting t = 1 in Eq.(1), by direct calculation, it can be checked
that if we fix π2 = π∗2 in (5) and minimize its objective with respect to π1

only then we obtain π∗1 = (0.154, 0.846, 0.000).
Unfortunately, it is easy to check that,

φ2,α(π∗1 , π∗2) = 0.0394 > 0.0374 = φ2,α(π̂1, π̂2),

which contradicts (TC1).
Conversely we verify that with respect to the samples, yk

2 , k = 1, · · · , q

φ1,α(π̂2) = 0.0547 > 0.0312 = φ1,α(π∗2),

so, π̂2 is not the optimal solution for φ1,α(π), that is Eq.(4) doesn’t hold
when t = 2 and this contradicts (TC2).

The above calculation shows that the policy chosen from optimal action
for each stage is not optimal for the total horizon. That means conditional
value-at-risk is not a time consistent risk measure.

Corollary 9 in [14] shows that for suitably chosen probability threshold
α and sample size, value-at-risk and conditional value-at-risk coincide. In
our example, α = 0.99 and sample size equal to 100 were chosen so as to
satisfy the conditions of that corollary. Thus the above example also shows
that value-at-risk ζn,α(π) is not a time consistent risk measure.
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3 Time consistent target percentile risk measures

We shall propose a new risk measure that is not only time-consistent in
the multi-stage case but will also consider the decision-maker’s target. We
will use Markov decision processes with probability criteria (e.g., see [3] and
[17]) to model such a risk measure.

3.1 Model description

We consider the following discrete-time and stationary Markov decision pro-
cess:

Γ = (S, A,R, P, β), (6)

where the state space S is countable, the action space A(i) in each state i
is finite and the overall action space A = ∪i∈SA(i) is countable. The return
set R is a bounded countable subset of R = (−∞,+∞). For each t from
1, · · ·, let it, at and rt denote the state of the system, the action taken by
the decision maker, and the return received at stage t, respectively. The
stationary, single-stage, conditional transition probabilities are defined by

pa
ijr := P (it+1 = j, rt = r|it = i, at = a), i, j ∈ S, a ∈ A(i), r ∈ R,n ≥ 1.

(7)∑
j∈S,r∈R

pa
ijr = 1, i ∈ S, a ∈ A(i). (8)

We shall also assume that future costs are discounted by the discount factor
β ∈ (0, 1].

In our formulation, when making a decision and taking an action at
each stage, the decision maker considers not only the state of the original
system but also his target. Effectively, this means that a new hybrid state
(i, x) ∈ S × R is introduced. Hence we expand MDP Γ by enlarging the
state space. We refer to (i, x) as the hybrid state of the decision maker to
distinguish it from the system’s state i, where x is the target value. Note
that if the initial state of the decision maker is (i, x) and an action a is
taken according to (7), the decision-maker’s new hybrid state transits from
(i, x) to (j, (x− r)/β) with probability pa

ijr.
Thus, if we denote E as the extended (hybrid) state space, then the

extended MDP Γ̃ has the following structure:

Γ̃ = (E,A, R, P, β), (9)

where the state space E = S × R, the action space A = ∪(i,x)∈EA(i, x) =
∪i∈SA(i). Note that A(i, x) = A(i), (i, x) ∈ E, the extended transition prob-
abilities are simply P : P (et+1 = (j, x−r

β )|et = (i, x), at = a) = pa
ijr, i, j ∈

S, a ∈ A(i), r ∈ R, x ∈ R. The return set R and the discount factor β are
the same as in MDP Γ .
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Since in the model (9), the target is important when making decisions
we must define policies which depend both on the system’s state and the
target, that is on the hybrid state.

Let Πm, Πd
m, Πs, Πd

s denote the set of all Markov policies, all determin-
istic Markov policies, all stationary policies and all deterministic stationary
policies in Γ̃ defined in the usual way (e.g., see [11]).

Definition 3 A policy π = {πt, t = 1, 2, · · ·} ∈ Π is said to be a TI-policy
if the policy π is independent of all targets xt (t ≥ 1). Let Π0 denote the set
of all TI-policies.

Note that a transition law P and a policy π determine the conditional
probability measure Pπ on the space of all possible histories of the process.
Let Rπ

n denote the random variable that is the sum of discounted returns
generated by policy π for the n-stage finite horizon problem. That is, Rπ

n =∑n
t=1 βt−1rt, for n ≥ 1. To simplify the notation, we will use Rn instead of

Rπ
n when the choice of the policy is clear in the context.

Note that for any π ∈ Π, the functions

Fπ
n (i, x) = Pπ(Rπ

n ≤ x|e1 = (i, x)), (i, x) ∈ E,n ≥ 1,

are the objective functions that the decision maker wishes to minimize if he
or she is interested in achieving the minimal risk of not attaining the target
x in the return. Consequently, Fπ

n (i, x) is called the objective function
generated by π.

Definition 4 The following functions F ∗
n(i, x) = infπ∈Π{Fπ

n (i, x)}, (i, x) ∈
E,n ≥ 1 are called the optimal value functions.

Definition 5 If the policy π∗ ∈ Π is such that Fπ∗

n (i, x) = F ∗
n(i, x),∀ (i, x) ∈

E,n ≥ 1, then π∗ is called an n-stage optimal policy.

Remark 2 It can be checked that with the above definitions, π∗ is an n-stage
optimal policy if and only if π∗ is the policy that minimizes the probability
that the cumulative discounted return at the stage n does not exceed x.

3.2 Fπ
n (i, x) is time consistent

In this section, we invoke the results in Section 3 in Wu and Lin [17], to
demonstrate that Fπ

n (i, x) is a time consistent risk measure. Since, many
steps in our argument depend on the proofs in [17], we omit the technical
details and, instead, refer the reader to [17].

In fact, for fixed (i, x) ∈ E, we let Zn(π) = Zπ
n = Fπ

n (i, x). We select
δt, t = 1, · · · , n from Theorem 2 in [17] and denote the decision rules π∗t in
the policy π∗ = (π∗1 , π∗2 , · · · , π∗n) by π∗t = δn−t+1, t = 1, · · · , n. Then from
the definition of A∗

t (e) we know for t = 1, · · · , n

π∗t = δn−t+1 ∈ ArgminδF
δ1,···,δn−t,δ
n−t+1 = ArgminδZn−t+1(δ, π∗t+1, · · · , π∗n),
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and Theorem 2 in [17] concludes that

π∗ = (π∗1 , π∗2 , · · · , π∗n) = (δn, δn−1, · · · , δ1)

is n-stage optimal. Clearly, Fπ
n follows TC1.

On the other hand, for

π∗ = (π∗1 , · · · , π∗n) ∈ Argminπ Fπ
n (i, x) = Argminπ Zn(π),

Theorem 3 in [17] shows that

(π∗2 , · · · , π∗n) ∈ Argmin1π(i,x,a)F
1π(i,x,a)

n−1 = Argminπ2,···,πn
Zn−1(π2, · · · , πn),

that means Eq.(4) holds when t = 2 , if we substitute n by n−1 in Theorem 3
in [17], we will know that Eq.(4) holds when t = 3, continuing to do this, we
can see that Eq.(4) holds for all t = 2, · · · , n. This means that Zn(π) = Fπ

n

also satisfies TC2.

3.3 Complete Stochastic Order Optimization

Here, we consider the following discrete time and stationary Markov decision
process,

Γ 0 = (S, A, p, R).

The state space S and the action space A =
⋃

i∈S A(i) are both countable
and for each i ∈ S, the set of admissible actions A(i) when the system
is in state i is finite. The stationary conditional transition probabilities
p = (pa

ij ; i, j ∈ S, a ∈ A(i)) will satisfy (i) pa
ij ≥ 0, ∀i, j ∈ S, a ∈ A(i), and

(ii)
∑

j∈S pa
ij = 1, ∀i, j ∈ S, a ∈ A(i). Finally, we have the return function

r = r(i, a, j), i, j ∈ S, a ∈ A(i) that is bounded.
After letting in, an and rn denote by the system’s state, the action taken

by the decision maker and the return the decision maker will receive at the
stage n respectively, the system will evolve as follows, starting from the
state in = i ∈ S and following an action an = a ∈ A(i), the system
transits to the next state in+1 = j ∈ S with probability pa

ij and receives a
return rn = r(i, a, j). The set of all possible returns is denoted by R and
is bounded. It is obvious that the return here is a degenerate distribution
which is a special case of the model discussed in Section 2 in [17].

Similarly to Section 2 in [17] we can define histories and policies that will
now depend on the system’s state and the action only but will not depend
on the target. Hence the present model closely resembles the classical MDP
model. However, we are still interested in minimizing the probability that
the total return does not exceed a target x at some fixed stage.

For a given policy π ∈ Π0, the n−stage total discounted return is defined
by Rπ

n =
∑n

t=1 βn−1rt. Based on above MDP structure, we have following
definitions,
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Definition 6 The objective function and optimal value function for the
Complete Stochastic Order Optimization problem are as follows,

V π
n (i, x) := Pπ(Rπ

n ≤ x|i1 = i),∀i ∈ S, x ∈ R, π ∈ Π0, n ≥ 1; (10)

V ∗
n (i, x) := inf

π∈Π0
{V π

n (i, x)}, i ∈ S, x ∈ R, n ≥ 1. (11)

Remark 3 Note that the difference between the process Γ1 introduced in
Section 2 in [17] and the current process Γ 0 is that we do not include the
target x as part of the description of the state. So, recalling that Π0 is the
set of policies that are independent of the target x, if we select π ∈ Π0,
V π

n (i, x) becomes simply a probability distribution function of x. In the
next section, we can use this distribution function to define the concepts of
multi-stage value-at-risk and conditional value-at-risk.

Definition 7 A policy π∗ ∈ Π0 will be called an n−stage optimal policy, if,

V π∗

n (i, x) = V ∗
n (i, x), ∀i ∈ S, x ∈ R.

At first sight, it may seem very difficult to establish the existence of
such an n stage optimal policy. However with the help of Section 3 in [17]
a number of results can be easily derived.

It is easy to see that, for any π ∈ Π0,

Fπ
n (i, x) = V π

n (i, x), ∀i ∈ S, x ∈ R, n ≥ 1. (12)

The following lemma illustrates the relationship between Fπ
n (i, x) and

V π
n (i, x) for a general policy π and the fact that there is no loss of generality

in restricting attention to policies in Π0.

Lemma 1 Let x ∈ R be given, then for each π ∈ Π, there exists a policy
σ(x) ∈ Π0 such that

Pσ(x)(·|i) = Pπ(·|i, x), ∀i ∈ S.

Hence, we have

Fσ
n (i, x) = Fπ

n (i, x), ∀i ∈ S, n ≥ 1,

and
inf

π∈Π
{Fπ

n (i, x)} = inf
π∈Π0

{Fπ
n (i, x)}, ∀i ∈ S, x ∈ R, n ≥ 1.

Proof. Since x is fixed we can construct a policy σ ∈ Π0 that “imitates”
the policy π. In particular, for k = 1, 2, · · ·, define

σ1(·|i1) = π1(·|i1, x), ∀i1 ∈ S,
σk(·|i1, a1, i2, a2, · · · , ik−1, ak−1, ik)

= πk(·|i1, x, a1, i2, x2, a2, · · · , ik−1, xk−1, ak−1, ik, xk),
where x2 = (x− r(i1, a1, i2))/β,

x3 = (x2 − r(i2, a2, i3))/β, · · · , xk = (xk−1 − r(ik−1, ak−1, ik))/β,
∀il ∈ S, al ∈ A(il), l = 1, · · · , k − 1, ik ∈ S, k ≥ 2.
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So σ = (σn, n ≥ 1) ∈ Π0. Obviously, starting from the initial state (i, x) in
Γ̃ and using policy π is equivalent to using the imitating policy σ in Γ 0,
since they have same decision rules. That is, Pσ(x)(·|i) = Pπ(·|i, x), ∀i ∈ S,
and Fσ

n (i, x) = Fπ
n (i, x), ∀i ∈ S, n ≥ 1. 2

It easily follows from Lemma 1 that,

F ∗
n(i, x) = V ∗

n (i, x), ∀i ∈ S, x ∈ R, n ≥ 1. (13)

which can explain the property that the optimal value function F ∗
n(i, x) is

a distribution function of some random variable X taking values x.
The following theorem illustrates the existence of an optimal policy.

Theorem 1 For a given target x and any n ≥ 1, there exists π ∈ Π0 such
that,

V π
n (i, x) = V ∗

n (i, x), ∀i ∈ S.

Proof. This follows from Theorem 1 in [17] and Lemma 1.
For notational convenience, we will still use A∗

n(i, x), A∗
n(i) to denote

the optimal action sets but will use the optimal value function V ∗
n (i, x) in

Γ 0 instead of using the optimal value function F ∗
n(i, x) in Γ1 in [17]. The

structure of optimal policies is described by the next theorem.

Theorem 2 1. A policy π = (πk, k ≥ 1) ∈ Π0 is an optimal policy for
the n−stage problem if and only if π1(A∗

n(i)|i) = 1,∀i ∈ S, and when
π1(a|i)pa

ij > 0, we have V π̄(i,a)

n−1 (j, x) = V ∗
n−1(j, x),∀x ∈ R.

2. If A∗
k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n, then there exists an n−stage optimal

policy. In fact let fk(i) ∈ A∗
k(i),∀i ∈ S, k = 1, · · · , n, π = (πk, k ≥ 1) ∈

Π0, if πk = fn−k+1, k = 1, · · · , n, namely π(n) = (fn, fn−1, · · · , f1), then
π is an n− stage optimal policy.
Proof. The following, typical, recursive equations of dynamic program-

ming can now be derived directly from definitions.

1. For all π = (πk, k ≥ 1) ∈ Π0, we have

V π
0 (i, x) = I[0,+∞)(x), ∀i ∈ S, x ∈ R,

V π
n (i, x) =

∑
a∈A(i)

π1(a|i)
∑
j∈S

pa
ijV

π̄(i,a)

n−1 (j, (x− r(i, a, j))/β),

∀i ∈ S, x ∈ R, n ≥ 1,

(14)

2. The optimal value functions will satisfy the following,

V ∗
0 (i, x) = I[0,+∞)(x), ∀i ∈ S, x ∈ R,

V ∗
n (i, x) = min

a∈A(i)

{∑
j∈S

pa
ijV

∗
n−1(j, (x− r(i, a, j))/β)

}
,

∀i ∈ S, x ∈ R, n ≥ 1.

(15)

The result now follows from the above equations, Theorem 3, Theorem
4 in [17] and equations (12) and (13).
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4 Multi-stage VaR and CVaR

Even though in the preceding section we had implied that, multi-stage prob-
lems, the target-percentile risk measure Zn(π) = Fπ

n is preferable to either
VaR or CVaR, we recognize that the latter are so well-established that deci-
sion makers may wish to compute them even while using an optimal policy
constructed as in Section 3 in [17]. The purpose of this section is to demon-
strate that this is still possible but with respect to probability distributions
induced by the above policy.

Continuing from Section 3.3, we consider the MDP model Γ 0 and define
the concepts of value-at-risk and conditional value-at-risk in this multi-stage
context.

Definition 8 For a given policy π ∈ Π0, initial state i ∈ S and the prob-
ability threshold α ∈ [0, 1], the value-at-risk (ζπ

n,α(i)) for the n-stage return
Rπ

n is denoted by:

ζπ
n,α(i) := − sup{ζ|V π

n (i, ζ) ≤ α},∀i ∈ S, π ∈ Π0, α ∈ [0, 1], n ≥ 1. (16)

Remark 4 The definition here is equivalent to ζπ,α
n (i) = − inf{ζ|V π

n (i, ζ) ≥
α} when Rπ

n has a continuous distribution. However, if Rπ
n is a discrete

r.v., then we always have ζπ,α
n (i) ≤ ζπ

n,α(i), so from an optimization point
of view, minimizing the latter will force the former to be small as well. In
following multi-stage setting, we shall always use Definition 8.

The above definition can, perhaps, be explained as follows. Starting
from an initial state i and continuing to use the policy π for n−stages,
the decision-maker wants to minimize the loss associated with the best of
the 100α% worst cases of the n−stage total return Rπ

n, namely, ζπ
n,α(i).

Consequently, we have following definitions.

Definition 9 The optimal value functions are defined as follows,

ζ∗n,α(i) := inf
π∈Π0

{ζπ
n,α(i)},∀i ∈ S, α ∈ [0, 1], n ≥ 1. (17)

Definition 10 1. A policy πα ∈ Π0 is said to be an α−optimal policy
for n−stage value-at-risk (ζπ

n,α(i)) if,

ζπα

n,α(i) = ζ∗n,α(i),∀i ∈ S, n ≥ 1. (18)

2. A policy π∗ ∈ Π0 will be optimal for n−stage value-at-risk (ζπ
n,α(i)) if,

ζπ∗

n,α(i) = ζ∗n,α(i),∀i ∈ S, α ∈ [0, 1], n ≥ 1. (19)

We shall show that, with the help of our target percentile formulation of
Section 3, the optimization problem implied by (17) is tractable. In partic-
ular, we exploit the fact that, by equation (13), the optimal value function
V ∗

n (i, x) is a probability distribution function. Hence it is possible to define
α-VaR, denoted by x∗n,α(i), with respect to that particular distribution.
Namely,

x∗n,α(i) := − sup{x|V ∗
n (i, x) ≤ α}, i ∈ S, α ∈ [0, 1], n ≥ 1. (20)
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4.1 Existence of Multi-stage VaR

The following Theorem 3 explains the relationship between x∗n,α(i) and the
optimal value-at-risk ζ∗n,α(i).

Theorem 3 For all i ∈ S, α ∈ [0, 1], and n ≥ 1, we have

x∗n,α(i) = ζ∗n,α(i) = inf
π

ζπ
n,α(i),

and there exists an α−optimal policy π̂α ∈ Π0 such that

ζ π̂α
n,α(i) = ζ∗n,α(i).

Proof. According to the definition of V ∗
n (i, x), we have,

V ∗
n (i, x) ≤ V π

n (i, x),∀i ∈ S, x ∈ R, π ∈ Π0,

so for any α ∈ [0, 1],

{x|V π
n (i, x) ≤ α} ⊂ {x|V ∗

n (i, x) ≤ α}.

Now, from the definition of a set supremum function, we have

−ζπ
n,α(i) = sup{x|V π

n (i, x) ≤ α} ≤ sup{x|V ∗
n (i, x) ≤ α} = −x∗n,α(i).

From the above, we have, ∀π ∈ Π0,

x∗n,α(i) ≤ ζπ
n,α(i). (21)

Now, to prove that x∗n,α(i) is exactly the infimum of ζπ
n,α(i) over all

π ∈ Π0, it suffices to prove that, ∀ ε > 0, ∃ π ∈ Π0 such that x∗n,α(i) >
ζπ
n,α(i)− ε.

Suppose, by contradiction, that the above statement is false. Hence,
there must exist ε > 0, such that ∀ π ∈ Π0, we have

x∗n,α(i) ≤ ζπ
n,α(i)− ε. (22)

By the definition of x∗n,α(i) and the property of the set function sup, we have
that - for this ε - there exists xε ∈ {x|V ∗

n (i, x) ≤ α} such that −x∗n,α(i) <
xε + ε, namely

x∗n,α(i) > −xε − ε. (23)

After combing inequalities (22) and (23), we see that −xε − ε < x∗n,α(i) ≤
ζπ
n,α(i)− ε, which implies that ∀ π ∈ Π0

−ζπ
n,α(i) < xε. (24)

From Theorem 1 we know that for the above xε, there exists a π∗ε ∈ Π0

such that,
V

π∗ε
n (i, xε) = V ∗

n (i, xε) ≤ α,
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so

xε ∈ {x|V
π∗ε
n (i, x) ≤ α}.

Using Definition 8, we now obtain

−ζ
π∗ε
n,α(i) ≥ xε,

which contradicts the inequality (24) that must hold for π∗ε as well.
Now to prove the existence of the required α−optimal policy we shall use

−x∗n,α(i) as the decision-maker’s target in Theorem 1. From that theorem
we know that there exists a policy π̂α ∈ Π0 such that

V π̂α
n (i,−x∗n,α(i)) = V ∗

n (i,−x∗n,α(i)) ≤ α, ∀i ∈ S, α ∈ [0, 1].

Also, it follows from the definition that

ζ π̂α
n,α(i) = − sup{x|V π̂α

n (i, x) ≤ α},

so we have

−ζ π̂α
n,α(i) ≥ −x∗n,α(i) = −ζ∗n,α(i),

and

ζ π̂α
n,α(i) ≤ ζ∗n,α(i).

But according to the definition of ζ∗n,α(i) a strict inequality is impossible in
the above, and hence

ζ π̂α
n,α(i) = ζ∗n,α(i),

which shows that π̂α is an α−optimal policy. 2

The preceding theorem demonstrated that an α−optimal policy always
exists. This may not be the case for an optimal policy, that is, a policy
which is α−optimal for every α between 0 and 1. The following theorem
which provides a sufficient condition for the existence of such a “uniformly
optimal” policy now follows almost immediately.

Theorem 4 If A∗
k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n, then there exists an n−stage

optimal policy π̂ ∈ Π0 such that

ζ π̂
k,α(i) = ζ∗k,α(i), ∀k, α.

In fact, if fk(i) ∈ A∗
k(i),∀i ∈ S, k = 1, · · · , n, π̂ = (π̂k, k ≥ 1) ∈ Π0, and we

define π̂k := fn−k+1, k = 1, · · · , n, namely π̂(n) := (fn, fn−1, · · · , f1), then
π̂(n) is an n− stage optimal policy that is time consistent.

Proof. Based on the above selection procedure for the policy π̂(n), the
result follows from part 2 of Theorem 2 and the argument in the proof of
Theorem 3. 2
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4.2 Computation of Multi-stage VaR

Assume the (S, A, p, R) components of the Markov Decision Process Γ 0 are
known. We shall outline a procedure to calculate the optimal multi-stage
value-at-risk and a corresponding α-optimal, or n-stage optimal policy.

1. Use dynamic programming to calculate the optimal value functions V ∗
n (i, x)

and optimal action sets A∗
k(i, x), k = 1, · · · , n for all i ∈ S and x ∈ R.

Note that, in practice, this needs to be done numerically on a suitable
grid of x values (e.g., see Wu and Lin [17]).

2. For a given probability threshold α ∈ [0, 1], calculate the value-at-risk
x∗n,α(i) that corresponds to the optimal value function V ∗

n (i, x), that is,

x∗n,α(i) := − sup{x|V ∗
n (i, x) ≤ α}, i ∈ S, n ≥ 1.

Note that the optimal value-at-risk ζ∗n,α(i) = x∗n,α(i).
3. If there exists k ∈ {1, · · · , n} such that A∗

k(i) = ∅,∀i ∈ S, use −ζ∗n,α(i)
as a target to find a corresponding optimal action f∗k (i, x) ∈ A∗

k(i, x), at
each stage k = 1, · · · , n. Now, the policy (f∗n(i1, x1), f∗n−1(i2, x2), · · · ,
f∗1 (in, xn)), where i1 = i, x1 = ζ∗n,α(i) is an α−optimal policy for the
value-at-risk ζ∗n,α(i).

4. If A∗
k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n, following Theorem 4, set π̂(n) :=

(fn, fn−1, · · · , f1) where fk(i) ∈ A∗
k(i),∀i ∈ S, k = 1, · · · , n. The policy

π̂(n) so constructed is n−stage optimal and time consistent.

4.3 Multi-stage Conditional VaR

Next, we will consider the multi-stage conditional value-at-risk (CVaR) in
above framework.

Definition 11 For a given policy π ∈ Π0, α ∈ [0, 1] and the initial state i,
the n−stage conditional value-at-risk, α-CVaR, can be defined as:

φπ
n,α(i) = −[mean of the α− tail distribution of Rπ

n].

In the above, the distribution in question is defined by

V π
n,α(i, ζ) =

{
1, ζ ≥ −ζπ

n,α(i);
V π

n (i,ζ)
α , ζ < −ζπ

n,α(i).

The φπ
n,α(i) defined above is the mean loss in the 100α% worst cases of

the n−stage total return Rπ
n when the system starts from i and is controlled

by the policy π up to nth stage. We can now prove a proposition connecting
φπ

n,α(i) with ζπ
n,α(i).
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Proposition 1 For a given policy π ∈ Π0, the α-CVaR can be expressed
by:

φπ
n,α(i) =

1
α

∫ α

0

ζπ
n,p(i)dp. (25)

Proof. Following the definition of φπ
n,α(i), we know that,

φπ
n,α(i) = −

[
1
α

∫ −ζπ
n,α(i)

−∞ ζdV π
n (i, ζ) + (−ζπ

n,α(i))×
(

α−V π
n (i,−ζπ

n,α(i))

α

)]
=

− [I + II] ,
(26)

since V π
n (i, ζ) is a distribution function of ζ. Now, we can change vari-

able to let p := V π
n (i, ζ) ∈ [0, 1], then the ζ corresponding to p will be

sup{ζ|V π
n (i, ζ) ≤ p} = −ζπ

n,p(i), and we know that p will range from 0 to
V π

n (i,−ζπ
n,α(i)) when ζ ranges from −∞ to −ζπ

n,α(i). Hence, I in Eq. (26)
will be given by

I =
1
α

∫ V π
n (i,−ζπ

n,α(i))

0

(−ζπ
n,p(i))dp.

We now have to consider the following two cases.

1. If V π
n (i,−ζπ

n,α(i)) = α, then it is easy to see II in Eq.(26) is equal to 0,
so

φπ
n,α(i) = −I = − 1

α

∫ α

0

(−ζπ
n,p(i))dp =

1
α

∫ α

0

ζπ
n,p(i)dp,

which shows Eq.(25) holds.
2. If V π

n (i,−ζπ
n,α(i)) < α, then it follows from the definition of value-at-risk

that

−ζπ
n,p(i) = −ζπ

n,α(i),∀p ∈ [V π
n (i,−ζπ

n,α(i)), α], n ≥ 1, i ∈ S.

Indeed, for p ≤ α we know that−ζπ
n,p(i) ≤ −ζπ

n,α(i). However,−ζπ
n,α(i) ∈

{ζ|V π
n (i, ζ) ≤ p}, which forces the equality −ζπ

n,p(i) = −ζπ
n,α(i). Hence

we can rewrite II in Eq (26) as follows,

II = (−ζπ
n,α(i))×

(
α− V π

n (i,−ζπ
n,α(i))

α

)
=

1
α

∫ α

V π
n (i,−ζπ

n,α(i))

(−ζπ
n,p(i))dp.

Now the conditional value-at-risk becomes

φπ
n,α(i) = − [I + II]

= −
[

1
α

∫ V π
n (i,−ζπ

n,α(i))

0
(−ζπ

n,p(i))dp + 1
α

∫ α

V π
n (i,−ζπ

n,α(i))
(−ζπ

n,p(i))dp
]

= − 1
α

∫ α

0
(−ζπ

n,p(i))dp = 1
α

∫ α

0
ζπ
n,p(i)dp,

which shows that Eq.(25) also holds in this case. 2
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Remark 5 To understand this formulation we note that (−ζπ
n,p(i)) is exactly

a quantile, namely the total return Rπ
n value corresponding to the probabil-

ity level p. So 1/α times the integral from 0 to α is just the average of all
possible returns in this range. The minus sign commutes returns into losses.

Similarly we can define α−CVaR, namely y∗n,α(i), in terms of α−VaR
x∗n,α(i) based on the optimal value function V ∗

n (i, x). That is

y∗n,α(i) =
1
α

∫ α

0

x∗n,p(i)dp.

Ideally, we would like to prove that the infimum of φπ
n,α(i) coincides with

y∗n,α(i). Unfortunately, we are able to do so only under the strong conditions
of the following theorem.

Theorem 5 If A∗
k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n, then for all i ∈ S, α ∈ [0, 1],

and n ≥ 1, we have

y∗n,α(i) = φ∗n,α(i) := inf
π∈Π0

φπ
n,α(i),

and there exists a policy π̂ ∈ Π0 such that

φπ̂
n,α(i) = φ∗n,α(i),

that is time-consistent.
Proof. We know that ∀π ∈ Π0 we have,

ζ∗n,p(i) ≤ ζπ
n,p(i),∀i ∈ S, n ∈ R, p ∈ [0, 1].

Thus ∫ α

0

ζ∗n,p(i)dp ≤
∫ α

0

ζπ
n,p(i)dp,∀i ∈ S, n ≥ 1, α ∈ [0, 1].

Since A∗
k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n, according to the definition of ζ∗n,p(i)

and Theorem 4, we have, ∀ε > 0, n ≥ 1 there exists π ∈ Π0 (we can choose
π = π̂ here) such that

ζπ
n,p(i) ≤ ζ∗n,p(i) + ε/α,∀i ∈ S, p ∈ [0, 1].

After integrating both sides of the above inequality, we have:∫ α

0

ζπ
n,p(i)dp ≤

∫ α

0

ζ∗n,p(i)dp + ε,∀i ∈ S, α ∈ [0, 1].

Now, we obtain:

inf
π∈Π0

∫ α

0

ζπ
n,p(i)dp =

∫ α

0

ζ∗n,p(i)dp =
∫ α

0

(
inf

π∈Π0
ζπ
n,p(i)

)
dp,∀i ∈ S, n ≥ 1, α ∈ [0, 1].

Hence,

φ∗n,α(i) = inf
π∈Π0

φπ
n,α(i) = inf

π∈Π0

1
α

∫ α

0

ζπ
n,p(i)dp =

1
α

∫ α

0

(
inf

π∈Π0
ζπ
n,p(i)

)
dp =
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1
α

∫ α

0

(
ζ π̂
n,p(i)

)
dp =

1
α

∫ α

0

x∗n,p(i)dp = y∗n,α(i),

where the second equality follows from Proposition 1 and the fourth equality
follows from the condition A∗

k(i) 6= ∅,∀i ∈ S, k = 1, · · · , n and Theorem 4.
The policy π̂ here is now constructed in the same way as in Theorem 4. So,
π̂ is the optimal policy for conditional value-at-risk φπ

n,α. That is,

φπ̂
n,α(i) = inf

π∈Π0
φπ

n,α(i).

The time-consistency part follows from Theorem 4 immediately. 2

The procedure to calculate the optimal multi-stage conditional value-at-
risk is analogous to the procedure in Section 4.2 for the value-at-risk.

5 Conclusion

We introduced a, possibly novel, time consistency property of measures of
risk that is applicable to multi-stage investment problems. This property is
inspired by the “principle of optimality” of dynamic programming.

We showed (see Section 2) that - with respect to the most of the com-
monly used measures of risk (e.g., VaR or CVaR) - there need not exist time
consistent optimal dynamic portfolios.

To address the above problem, we proposed an alternative target per-
centile risk measure for which there always exist time-consistent optimal
portfolios (see Section 3.2).

We also demonstrated that the conventional measures of risk, such as
VaR or CVaR, can still be used in conjunction with the new, time consistent,
measure (see Section 4).
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