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Motivation

• There are at least two examples in portfolio management that are

time inconsistent:

– Maximizing utility of intertemporal consumption, life insurance

and final wealth assuming a non-exponential discount rate.

– Mean-variance utility.

• It means that the agents may have an incentive to deviate from

their decisions that were optimal in the past.

• It is not often the case that management decisions are irreversible;

there will usually be many opportunities to reverse a decision which,

as times goes by, seems ill-advised.
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Introduction

• we consider the optimal life insurance purchase, consumption and

portfolio management strategies for a wage earner subject to

mortality risk.

• the wage earner receives income continuously at some rate, but this

is terminated by the wage earner’s death or retirement whichever

happens first.

• the wage earner needs to buy life insurance to protect his/her family

from his/her premature death.

• aside from consumption and life insurance purchase, the wage earner

has also the opportunity to invest in the capital market.
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Literature Review (Selected)

• Yaari (1965) provided the key idea for research on life insurance,

consumption and/or portfolio decisions under an uncertain lifetime.

• Richard (1975) used dynamic programming approach for a life-cycle

life insurance and consumption/investment problem with uncertain

life time.

• Pliska and Ye (2007) studied optimal life insurance and consumption

for an income earner whose lifetime is random and unbounded.

• Ye (2007) considered optimal life insurance, consumption and

portfolio choice problem under uncertain lifetime.

• Huang et al. (2008) investigated optimal life insurance, consumption

and portfolio choice problem under uncertain lifetime with stochastic

income process.
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Maximizing utility of intertemporal consumption, life
insurance and final wealth

• We work in a Black and Scholes world, with riskless rate r :

dS(t) = S(t) [↵ dt+ � dW (t)] , 0  t  1,

• Consider a self-financing portfolio. The total wealth value is X, the

amount invested in the stock is ⇣, the life insurance is p and the

consumption rate is c. Then with µ = ↵� r :

dX

⇣,c,p

(t) = rX

⇣,c,p

(t)dt� c(t)dt� p(t)dt+ i(t)dt+ ⇣(t)(↵ dt+ �dW (t)).

• T is a benchmark deterministic horizon ( e.g. retirement time).

• the stopping time ⌧ is lifetime; it has density g(t), CDF G(t) and
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hazard function �(t) =

g(t)
1�G(t) .

• The investor at time t 2 [0, T ] uses the criterion:

J(t, x, ⇣, c, p) , E
 Z

T^⌧

t

h(s� t)U

�

(c(s)) ds+ nh(T � t)U

�

(X

⇣,c,p

(T ))1{⌧>T |⌧>t}

+ m(⌧ � t)

ˆ

h(⌧ � t)U

�

(Z

⇣,c,p

(⌧))1{⌧T |⌧>t}

����X
⇣,c,p

(t) = x

�
,

– U

�

(c) = � 1
�

c

� , � < 1

– n > 0 is a constant.

– m (t) > 0 is a continuous function.

– h and ˆ

h are discount functions. .

– Z(t) = ⌘(t)X(t) + l(t)p(t), where ⌘ (t) and l (t) are prescribed

deterministic and continuous functions.
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• The risk criterion functional J can be written

J(t, x, ⇣, c, p) = E
 Z

T

t

Q(s, t)U

�

(c(s)) ds

+

Z
T

t

q(s, t)U

�

(Z

t,x

(s)) ds+ nQ(T, t)U

�

(X

t,x

(T ))

�
,

where

q(s, t) , ¯

h(s� t)�(s) exp{�
Z

s

t

�(z) dz}, ¯

h(t) , m(t)

ˆ

h(t)

Q(s, t) , h(s� t) exp{�
Z

s

t

�(z) dz}
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Examples

J(t, x, ⇣, c, p) = E
 Z

T

t

Q(s, t)U

�

(c(s)) ds

+

Z
T

t

q(s, t)U

�

(Z

t,x

(s)) ds+ nQ(T, t)U

�

(X

t,x

(T ))

�
,

• h(t) =

ˆ

h(t) = exp (�⇢t), m(t) = n = 1.

• h(t) = exp (�⇢t) and ˆ

h(t) 6= h(t).

• h(t) = (1 + at)

� b
a (hyperbolic discounting).

• h(t) =

ˆ

h(t) = exp (�⇢t), m(t) = nonconstant.

The last three cases have strong empirical support, but they do not fall

within the classical framework. Indeed, they give rise to time

inconsistency on the part of the investor, so that there is no

implementable optimal portfolio.
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Time-inconsitency for dummies

Consider an individual who wants to start running:

• If he starts today, he will su↵er -1 today (pain), but gain +2

tomorrow (health).

• He has a non-constant discount rate: a stream u

t

is valued today

(t = 0) at

u0 +
1

2

1X

t=1

⇢

t

u

t

for some ⇢ 2 (

1

2

, 1)

• Starting today yields a utility of �1 + ⇢ < 0.

• Starting tomorrow yields a utility of ⇢(�1+2⇢)
2 > 0.

• So he decides today to start tomorrow. Unfortunately, when

tomorrow comes, it becomes today, and he decides again to start

the next day.
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Time-inconsistency for mathematicians, financiers and
economists

Assume for simplicity ⌘(t) = �(t) = m(t) = n = 1, l(t) = l; then

J(t, x, ⇣, c, p) = E
Z

T

t

h(s� t)U

�

(c(s)) ds+

Z
T

t

h(s� t)U

�

(Z

t,x

(s)) ds+h(T � t)U

�

(X

t,x

(T ))

�
.

• The HJB equation written for the investor at time t is

@V

@s

(t, s, x) + sup

⇣,c


(r + µ⇣ � c)x

@V

@x

(t, s, x) +

1

2

�

2
⇣

2
x

2 @
2
V

@x

2
(t, s, x)

+

h

0
(s� t)

h(s� t)

V (t, s, x)+U

�

(xc)+U

�

(x+lp)

�
= 0, V (t, T, x) = U

�

(x)

which obviously depends on t (so every t�day the investor changes

his criterion of optimality).
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Time-inconsitency Literature Review (Selected)

• Dynamic inconsistent behavior was first formalized analytically by

Stortz.

• Further work by Pollak, Peleg and Yaari, Goldmann on this issue

advocates that the policies to be followed should be the output of

an intra-personal game.

• This idea is implemented by Laibson who considers a discrete time

consumption-investment economy without uncertainty.

• Krusell and Smith consider a discrete non-stochastic Ramsey

paradigm with hyperbolic discounting.

• Ekeland and Lazrak looked at the Ramsey problem of economic

growth with non-exponential discounting in continuous time.
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Markov Strategies

• A Markov strategy is a pair (F1(t, x), F2(t, x), F3(t, x)) of smooth

functions.

• Investment, consumption and insurance are given by:

⇣(t) = F1(t,X(t)), c(t) = F2(t,X(t)), p(t) = F3(t,X(t)).

and the wealth is given by (SDE):

dX(s) = [i(s)+rX(s)+µF1(s,X(s))�F2(s,X(s))�F3(s,X(s))]ds+�F1(s,X(s))dW (s).

• Moreover

J(t, x, F1, F2, F3) = J(t, x, ⇣, c, p).
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Equilibrium Strategies

• We say that (F1, F2, F3) is an equilibrium strategy if at any time t,

the investor finds that he has no incentive to change it during the

infinitesimal period [t, t+ ✏].

• Definition: (F1, F2, F3) is an equilibrium strategy if at any time t,

for every ⇣ and c :

lim

✏#0

J(t, x, F1, F2, F3)� J(t, x, ⇣

✏

, c

✏

, p

✏

)

✏

� 0,

where the process {⇣
✏

(s), c

✏

(s), p

✏

}
s2[0,T ] is defined by:
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[⇣

✏

(s), c

✏

(s), p

✏

(s)] =

8
>><

>>:

[F1(s,X(s)), F2(s,X(s)), F3(s,X(s)))] 0  s  t

[⇣(s), c(s), p(s)] t  s  t+ ✏

[F1(s,X(s)), F2(s,X(s)), F3(s,X(s)))] t+ ✏  s  T

and the equilibrium wealth process is given by the SDE:

dX(s) = [i(s)+rX(s)+µF1(s,X(s))�F2(s,X(s))�F3(s,X(s))]ds+�F1(s,X(s))dW (s).
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Main Result

• Theorem An equilibrium strategy is given by

F1(t, x) = �
µ

@v

@x

(t, x)

�

2 @

2
v

@x

2 (t, x)

, F2(t, x) =

✓
@v

@x

(t, x)

◆ 1
��1

,

F3(t, x) =
1

l(t)

"✓
1

m

@v

@x

(t, x)

◆ 1
��1

� ⌘(t)x

#
,

where m , m(0), and v is the value function and it satisfies the

integral equation

v(t, x) = J(t, x, F1, F2, F3).

• Sketch of The Proof
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– In a first step the integral equation v(t, x) = J(t, x, F1, F2, F3) is

transformed into a PDE with non-local term

@v

@t

(t, x) +

✓
rx+ µF1(t, x)� F2(t, x)� F3(t, x) + i(t)

◆
@v

@x

(t, x)+

�

2
F

2
1 (t, x)

2

@

2
v

@x

2
(t, x) + U

�

(F2(t, x)) +mU

�

(x+ l(t)F3(t, x)) =

E
 Z

T

t

@Q

@t

(s, t)U

�

(F2(s,
¯

X

t,x

(s))) ds+

Z
T

t

@q

@t

(s, t)U

�

(

¯

Z

t,x

(s)) ds+ n

@Q

@t

(T, t)U

�

(

¯

X

t,x

(T ))

�

– In a second step (assuming concavity of v(t, x) in x) the PDE

with nonlocal term can be expressed as



Time Consistent Portfolio Management 16

@v

@t

(t, x) + sup

⇣,c,p

✓
r + µ⇣ � c� p+ i(t)

◆
@v

@x

(t, x)+

1

2

�

2
⇣

2 @
2
v

@x

2
(t, x) + U

�

(c) +mU

�

(⌘(t)x+ l(t)p)

�
=

E
 Z

T

t

@Q

@t

(s, t)U

�

(F2(s,
¯

X

t,x

(s))) ds+

Z
T

t

@q

@t

(s, t)U

�

(

¯

Z

t,x

(s)) ds+ n

@Q

@t

(T, t)U

�

(

¯

X

t,x

(T ))

�

– In a third step we show that

lim

✏#0

J(t, x,

¯

⇣, c̄, p̄)� J(t, x, ⇣

✏

, c

✏

, p

✏

)

✏

=


@v

@t

(t, x) +

✓
rx+ µF1(t, x)� F2(t, x)� F3(t, x) + i(t)

◆
@v

@x

(t, x)+
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�

2
F

2
1 (t, x)

2

@

2
v

@x

2
(t, x) +U

�

(F2(t, x))) +mU

�

(x+ l(t)F3(t, x))

�
�


@v

@t

(t, x) +

✓
r + µ⇣(t)� c(t)� p(t) + i(t))

◆
@v

@x

(t, x)+

1

2

�

2
⇣

2
(t)

@

2
v

@x

2
(t, x) + U(c(t)) +mU

�

(x+ l(t)p(t))

�
=

@v

@t

(t, x) + sup

⇣,c,p

✓
r + µ⇣ � c� p+ i(t)

◆
@v

@x

(t, x)+

1

2

�

2
⇣

2 @
2
v

@x

2
(t, x) + U

�

(c) +mU

�

(⌘(t)x+ l(t)p)

�
�

@v

@t

(t, x) +

✓
r + µ⇣(t)� c(t)� p(t) + i(t))

◆
@v

@x

(t, x)+

1

2

�

2
⇣

2
(t)

@

2
v

@x

2
(t, x) + U(c(t)) +mU

�

(x+ l(t)p(t))

�
� 0.
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Ansatz
• Search for v of the form

v(t, x) = a(t)U

�

(x+ b(t)),

where the functions a(t), b(t) are to be found. Then

F1(t, x) =

µ(x+ b(t))

�

2
(1� �)

, F2(t, x) = [a(t)]

1
��1

(x+ b(t)),

F3(t, x) =

1

l(t)


([

a(t)

m

]

1
��1 � ⌘(t))x+ [

a(t)

m

]

1
��1

b(t))

�
.

• the integral equation v(t, x) = J(t, x, F1, F2, F3) leads to

b(s) =

Z
T

s

i(u)e

�
R s
u(r+

⌘(u)
l(u) ) du

ds,

• in the literature b(t) is known as time-t value of human capital.
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a(t)=

Z
T

t

[Q(s, t)+q(s, t)](a(s))

�
��1

e

K(s�t)+

 
R s
t

�⌘(z)
l(z) ��(a(z))

1
��1

 
1+ 1

m
1

��1 l(z)

!
dz

!

ds

+nQ(T, t)e

K(T�t)+

 
R T
t

�⌘(z)
l(z) ��(a(z))

1
��1

 
1+ 1

m
1

��1 l(z)

!
dz

!

, a(T ) = n.

• This ODE (with nonlocal term) is shown to have a unique solution.

Moreover we solve it numerically.
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Logarithmic utility

• Take U

�

(x) = lnx (corresponding to � = 0). In this case we get

closed form solution

a(t) =

Z
T

t

[Q(s, t) + q(s, t)] ds+ nQ(T, t),

F1(t, x) =

µ(x+ b(t))

�

2
, F2(t, x) = [a(t)]

�1
(x+ b(t)),

F3(t, x) =

1

l(t)


([

a(t)

m

]

�1 � ⌘(t))x+ [

a(t)

m

]

�1
b(t))

�
.
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The case of exponential discounting

• In this case the integral equation v(t, x) = J(t, x, F1, F2, F3)

becomes the classical HJB

�(�(t)+⇢)v(t, x)+

@v

@t

(t, x)+

✓
rx+µF1(t, x)�F2(t, x)�F3(t, x)+i(t)

◆
@v

@x

(t, x)+

�

2
F

2
1 (t, x)

2

@

2
v

@x

2
(t, x)+U

�

(F2(t, x))+mU

�

(⌘(t)x+l(t)F3(t, x)) = 0.

• Therefore in this case equilibrium strategy coincides with optimal

strategy.
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Time varying Pareto weight versus constant Pareto
weight

• We want to study the e↵ect of a time varying Pareto weight on the

equilibrium strategies

• Let T = 4, r = 0.05, µ = 0.07, � = 0.2, p = �1, N = 1000, ⇢ =

0.8, �(t) =

1
200 +

9
8000 t, l(t) =

1
�(t) , ⌘(t) = 1.

• The discount function is exponential h(t) = ˆ

h(t) = exp(�⇢t) with

⇢ = 0.8. The Pareto weight is m(t) = log(

T+✏�t

✏

) with ✏ = 10

�15
.
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(a) F2(t, x) with m constant (b) F2(t, x) with m variable

(c) F3(t, x) with m constant (d) F3(t, x) with m variable
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(e) di↵erence in F3(t, x) for constant

and variable m

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Difference of Insurance between variable and constant Pareto Weights

(f) section of (e) with x constant
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Merton Problem with hyperbolic discounting

• We shut o↵ some paramters; m(t) = i(t) = 0, and lifetime is

deterministic T.

• We consider one stock following a geometric Brownian motion with

drift ↵ = 0.12, volatility � = 0.2, interest rate r = 0.05, and the

horizon T = 4.

• Let the discount function h(x) = (1 + k

j

x)

� b
kj be one of the three

choices of hyperbolic discount: case 1. k1 = 5; case 2. k2 = 10; case

3. k3 = 15; and b is chosen such that h(1) = 0.3.
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0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4
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Discount functions

 

 

k1

k2

k3

• Let us graph equilibrium consumption rates
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The Household consumption Problem

• two members of a family with consumption (denoted c1(t), and

c2(t) ) up to some time horizon T (deterministic).

• The expected utility functional is

J(t, x, ⇣, c1, c2) = E
Z

T

t

h1(s� t)U

�

(c1(s)) ds

+

Z
T

t

m(s� t) h2(s� t)U

�

(c2(s)) ds+h1(T � t)U

�

(X

⇣,c1,c2
(T ))

�
,

• We assume that the function m(·) is decreasing with m(0) ' 1,

and m(T ) ' 0.

• This capture the situation when one member plans for short time

and the other plans for long time.
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A Regime Switching Model

• The price process of the bank account and risky asset

dB(t) = r(t, J(t))B(t)dt,

dS(t) = S(t) [↵(t, J(t)) dt+ �(t, J(t)) dW (t)] , 0  t  1,

• r(t, i),↵(t, i),�(t, i) : i 2 S, are deterministic.

µ(t, i) , ↵(t, i)� r(t, i)

stands for the stock excess return.

• the discount rate is ⇢
J(t) (it switches between two values)

⇥(t, x, i,⇡, c) , Ex,i

t

"Z
T

t

e

�⇢i(s�t)
U(c(s)) ds+ e

�⇢i(T�t)
U(X

u

(T ))

#
.
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Let F = (F1, F2) : [0, T ]⇥+ ⇥S ! + ⇥ S be a map such that for

any t, x > 0 and i 2 S

lim inf

✏#0

⇥(t, x, i, F1, F2)�⇥(t, x, i,⇡

✏

, c

✏

)

✏

� 0,

where

⇥(t, x, i, F1, F2) , ⇥(t, x, i, ⇡̄, c̄),

⇡̄(s) , F1(s,
¯

X(s), J(s)), c̄(s) , F2(s,
¯

X(s), J(s)).

• The Value Function

v(t, x, i) , Ex,i

t

"Z
T

t

e

�⇢i(s�t)
U(F2(s,

¯

X(s), J(s))) ds+ e

�⇢i(T�t)
U(

¯

X(T ))

#
.

d

¯

X(s) = [r(s, J(s))

¯

X(s) + µ(s, J(s))F1(s,
¯

X(s), J(s))� F2(s,
¯

X(s), J(s))]ds

+ �(s, J(s))F1(s,
¯

X(s))dW (s).
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F1(t, x, i) , �
µ(t, i)

@v

@x

(t, x, i)

�

2
(t, i)

@

2
v

@x

2 (t, x, i)

, F2(t, x, i) , I

✓
@v

@x

(t, x, i)

◆
, t 2 [0, T ].

• CRRA Preferences U(x) = U

�

(x) =

x

�

�

.

v(t, x, i) = g(t, i)

x

�

�

, x � 0

F1(t, x, i) =
µ(t, i)x

�

2
(t, i)(1� �)

F2(t, x, i) = g

1
��1

(t, i)x

• Here g(t, i), ḡ(t, i), i 2 S : solve

@g

@t

(t, i)+[�r(t, i)+

µ

2
(t, i)�

2�

2
(t, i)(1� �)

�⇢

i

]g(t, i)+�

ii

g(t, i)+(1��)g

�
��1

(t, i) = ��

ij

ḡ(t, j)

@ḡ

@t

(t, i)+[�r(t, i)+

µ

2
(t, i)�

2�

2
(t, i)(1� �)

�⇢

j

]ḡ(t, i)+�

ii

ḡ(t, i)+(1��)g

1
��1

(t, i)ḡ(t, i) = ��

ij

g(t, j)
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with g(T, i) = ḡ(T, i) = 1, i 2 S.

• There are three important trading strategies:

• the subgame perfect strategy {⇡̄(s), c̄(s)}
s2[0,T ]

⇡̄(s) =

µ(s, J(s))

¯

X(s)

�

2
(s, J(s))(1� �)

, c̄(s) = g

1
��1

(s, J(s))

¯

X(s),

• two pre-commitment strategies corresponding to the two discount

rates ⇢0, ⇢1 which are optimal at time 0, but fail to remain optimal

afterwards

⇡̂

k

(s) =

µ(s, J(s))

ˆ

X

k

(s)

�

2
(s, J(s))(1� �)

, ĉ

k

(s) = ĝ

1
��1

k

(s, J(s))

ˆ

X

k

(s), k = 1, 2;

here ĝ

k

(t, i), i, j 2 S, k = 1, 2 solve:

@ĝ1

@t

(t, i)+[�r(t, i)+

µ

2
(t, i)�

2�

2
(t, i)(1� �)

�⇢0]ĝ1(t, i)+�

ii

ĝ1(t, i)+(1��)ĝ

�
��1

1 (t, i) = ��

ij

ĝ1(t, j)
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@ĝ2

@t

(t, i)+[�r(t, i)+

µ

2
(t, i)�

2�

2
(t, i)(1� �)

�⇢1]ĝ2(t, i)+�

ii

ĝ2(t, i)+(1��)ĝ

�
��1

2 (t, i) = ��

ij

ĝ2(t, j)

with ĝ1(T, i) = ĝ1(T, i), i 2 S.

• a naive strategy that switches in between the two pre-commitment

strategies.

• Numerics. We plot the subgame perfect and pre-commitment

consumption rates denoted by

¯

C(t, J(t)) , F2(t,
¯

X(t), J(t))

¯

X(t)

= g

1
��1

(t, J(t)),

ˆ

C

k

(t, J(t)) , ĉ

k

(t)

ˆ

X

k

(t)

= ĝ

1
��1

k

(t, J(t)), k = 1, 2.

• Subgame perfect and pre-commitment consumption rates for

µ0 = 0.1, µ1 = 0.1,�0 = 0.2,�1 = 0.2, r0 = 0.05, r1 = 0.05; the

discount rates ⇢0 = 0.3, ⇢1 = 0.06.
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Ĉ 2(t , 0)
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• Subgame perfect and pre-commitment consumption rates for

µ0 = 0.1, µ1 = 0.1,�0 = 0.2,�1 = 0.2, r0 = 0.01, r1 = 0.09; the
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discount rates ⇢0 = 0.07, ⇢1 = 0.06.
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Ĉ 2(t , 0)

Ĉ 2(t , 1)



Time Consistent Portfolio Management 42

Thank You!

The End!
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