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Abstract

We introduce the time-constrained maximal covering routing problem (TCMCRP),

as a generalization of the covering salesman problem. In this problem, we are given

a central depot, a set of facilities and several customers which are located within a

pre-determined coverage distance of available facilities. Each facility can supply the

demand of some customers which are within its coverage radius. Starting from the

depot, the goal is to maximize the total number of covered customers, by constructing

a set of p length constraint Hamiltonian cycles. We have proposed a mixed integer

linear programming model and three heuristic algorithms, namely iterated local search

(ILS), tabu search (TS) and variable neighborhood search (VNS), to solve the problem.

Extensive computational tests on this problem and some of its variants clearly indicate

the effectiveness of the developed solution methods.

Keywords Covering salesman problem · Transportation · Covering · Mixed integer

linear programming · Heuristics

1 Introduction and literature review

Despite remarkable advances in healthcare services, we are still witnessing the emer-

gence and spreading of several new diseases around the world. According to the World

Health Organization reports, the most prevalent diseases in 2017 were avian influenza,

coronavirus and yellow fever, which have not yet been controlled and eradicated after

more than a year (http://www.who.int/csr/don/archive/year/2018/en/). Several other

reports in recent years (https://ecdc.europa.eu/en/threats-and-outbreaks; https://www.

cdc.gov/outbreaks/index.html) indicate that locating the delivery healthcare teams and

field hospitals in the potential areas must be in a way that the maximum number of
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patients receive medical treatments in the shortest possible time in order to prevent the

outbreaks of disease. Therefore, the problems in which researchers are seeking opti-

mal methods to reduce the traveling time or distance as well as increase the number

of satisfied customers are considered as effective ways to deal with the spreading of

epidemics. For this reason, in this paper, we discuss a problem which simultaneously

increases the number of the covered customers and decreases the length of the traveling

distance. Indeed, we have combined the routing and the covering problems in order to

benefit from the characteristics of both problems. Several combinatorial optimization

problems, in the field of routing and covering, are proposed and developed. In particu-

lar, we can refer to the vehicle routing, the maximal covering and the traveling salesman

problems. In the following, the mentioned problems and their variations are discussed

first and then we outline the proposed problem, its characteristics and applications.

The vehicle routing problem (VRP) is a combinatorial problem, seeking to visit

a number of customers by utilizing a set of vehicles which are located at a central

depot (Dantzig and Ramser 1959). Most popular variants of this problem are the VRP

with time windows (VRPTW), the capacitated VRP (CVRP) and the multi-depot VRP

(MDVRP). In the VRPTW, each customer must be visited within a certain time interval.

The problem has several applications including the meal delivery, the waste collection

and the school bus routing problems (Jabali et al. 2015; Bae and Moon 2016; Buhrkal

et al. 2012; Hiermann et al. 2016). The vehicles are capacitated in the CVRP, and sev-

eral applications, namely road transportation and network routing problems, have been

introduced for this problem (Faulin et al. 2011; Sörensen and Schittekat 2013; Hossein-

abadi et al. 2017). The MDVRP uses multiple depots instead of one depot to construct

the routes. Delivery of food and drugs, chemical and oil products is some applications

of the MDVRP (Wasner and Zäpfel 2004; Kergosien et al. 2013; Lalla-Ruiz et al. 2016).

For further studies, readers can refer to Toth and Vigo (2001) and Golden et al. (2008).

The maximal covering problem (MCP) was introduced by Church and Velle (1974).

The goal of the MCP is to maximize the amount of demand that can be covered by

a limited number of facilities within a specified distance or time. Generally, in the

MCP we are given several customers and facilities; each facility can respond some

customers’ demand which is located within its pre-determined distance. The goal is

maximizing the number of covered customers by using a limited number of facilities.

In Pirkul and Schilling (1991) the capacitated MCP was introduced in which each

facility has a limited capacity.

The covering salesman problem (CSP) is an extension of the traveling salesman

problem (TSP) which is seeking construction of a minimum length tour over a subset

of n nodes such that each unvisited node is within a pre-determined covering distance

of at least one of the visited nodes. Routing of rural healthcare delivery teams, locating

aircraft for overnight delivery systems and locating mail boxes are some applications of

the CSP (Current and Schilling 1989). Gendreau et al. (1997) introduced the covering

tour problem in which the vertices are composed of three sets including a set of vertices

that must be visited (S1), a set of vertices that can be visited (S2), and a set of vertices

that must be covered (S3) by visited ones. The purpose is to find a minimum length

cycle over the vertices of S1 and a subset of those belonging to S2 in order to cover all

the vertices of S3. One of the applications is locating the post boxes among potential

sites in a way that all of the users located in a reasonable distance from boxes are
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covered and the cost of collection tour over all selected boxes is minimized. In Golden

et al. (2012) the authors provided a generalized version of the CSP. The objective

is to find a minimum cost route over a subset of vertices such that every unrouted

vertex has to be covered at least k times by those vertices that are visited on the

tour. As an application, in routing of rural healthcare delivery teams, in each day, a

limited number of people could be served by the team; therefore, some points need to

be visited more than once. Another related paper is Current and Schilling (1994) in

which two bi-objective problems known as the median tour problem (MTP) and the

maximal covering tour problem (MCTP) are introduced. In each problem, the vehicle

must visit only p (out of n) nodes on the network. Furthermore, minimization of the

total tour length is considered as one of the objectives of both problems. The second

objective is maximizing the access of the tours to the nodes that are not directly

on the tour. This objective in the MTP is realized by minimizing the total distance

traveled from nodes that are not on the tour to the nearest stop on the tour, while in the

MCTP it is achieved by minimizing the demand of nodes which are not covered by the

stops on the tour. These two problems have numerous real-world applications such as

rural healthcare delivery, designing of distributed computer networks and design of

hierarchical transportation networks (Current and Schilling 1994).

The other related problem is the orienteering problem (OP) which is also known

as the maximum collection problem and was first introduced in Tsiligirides (1984).

This problem is a development of the TSP and also known as the selective TSP. Here,

each vertex has an associated profit and instead of visiting all of the vertices, a subset

of vertices with the maximum profit is visited, while the tour length is not allowed to

exceed from a specified threshold (Laport and Martello 1990). The team orienteering

problem (TOP) is an extension of the previous problem and consists of determining

m length constraint circuits. This problem has been proposed in Butt and Cavalier

(1994) with the name multiple tour maximum collection problem (MTMCP). Several

variations of the TOP are presented in the literature including TOP with time windows

(Vansteenwegen et al. 2009; Gunawan et al. 2015; Souffriau et al. 2013) and the

capacitated orienteering problem in which vehicles have limited capacities (Archetti

et al. 2010; Aras et al. 2011; Zachariadis and Kiranoudis 2011; Bock and Sanità 2015).

For a comprehensive survey of OP and TOP, the reader is referred to Vansteenwegen

et al. (2011) and Gunawan et al. (2016).

In another relevant problem which is referred to as the ring star problem, the goal

is to minimize the length of a cycle which is constructed over a subset of vertices,

as well as to minimize the allocation cost which is imposed to the problem by the

remaining vertices that are not located in the cycle and served by the closest vertex

in the cycle. This problem is an extension of the location allocation problem and has

been introduced firstly by Lee et al. (1996) and developed and solved in Labbé et al.

(2004, Baldacci et al. (2007), and Sundar and Rathinam (2017).

In this paper, we present the time-constrained maximal covering routing problem

(TCMCRP) which is a generalization of the time-constrained maximal covering sales-

man problem (TCMCSP) (Naji-Azimi and Salari 2014). In this paper, we develop the

TCMCSP by considering multiple vehicles instead of just a single vehicle due to the

fact that in real world, we have to deal with the problems with several vehicles. In the

TCMCRP, we are given a set of vertices including a central depot, a set of customers
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Fig. 1 An illustrative example of the TCMCRP

and a set of facilities. Each facility can supply the demand of some customers within its

pre-specified coverage distance. The goal is maximizing the total number of covered

customers by constructing a limited number of length constraint Hamiltonian cycles

over a subset of facilities.

Since the TCMCRP is the combination of the CSP and the TOP, it can be applied

to all applications already proposed for these two problems. For example, in rural

healthcare delivery system, teams should travel to numerous areas in a limited time to

provide general care services like vaccination, emergency services or such activities

for prevention of epidemics. Having a limited amount of resources, the teams have

to select some areas for visiting in order to maximize the number of individuals that

will be covered. Another application is discussed when natural or human disasters

like earthquakes, wars or typhoons occur. In these situations, the problem includes

the assignment of some locations for establishing field hospitals among the potential

areas. The locations should be chosen in a way that the number of injured people who

can receive emergency assistance is maximized and the traveled distance from main

centers to these locations is minimized. In above examples, maximizing the covered

demand subject to the availability of limited resources is the main issue which is the

basic characteristic of the TCMCRP model.

An illustrative example is shown in Fig. 1. In this figure, we are given 41 nodes

including 10 facilities, 30 customers and a central depot. In this example, 6 facilities

are visited by two available vehicles and totally 22 customers have been covered.

The remainder of this paper is organized as follows: Formal description of the

problem is provided in Sect. 2. Section 3 describes the characteristics of the heuristic

algorithms. Computational results are presented in Sect. 4, followed by conclusions

which are reported in Sect. 5.

2 Problem formulation

In this section we develop a flow-based model to formulate the proposed TCMCRP.

Flow-based models have been developed in different articles (Dell’Amico et al.
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2006; Montané and Galvao 2006). In our developed model, the sub-tour elimination

constraints are a generalization of those proposed in Karaoglan et al. (2009) and

Kara (2011) for the single-vehicle version of the problem. In particular, the proposed

model is a generalization of the already proposed model in Naji-Azimi and Salari

(2014) for the TCMCSP.

This TCMCRP is defined on a directed graph G � (V , A) where V � {0}∪T ∪W

is the set of vertices. {0} represents the central depot at which a set of p homogeneous

vehicles P �{1, 2,…, p} are located. W is the set of customers, and T is the set of

facilities. A � {(i , j)|i , j ∈ T ∪{0}} is the arc set where each arc is associated with a

weight ti j (travel distance or time). The maximum travel length of each vehicle k ∈ P

cannot exceed the given limit Lk .

Covering matrix D �
[

di j

]

is given in which duv � 1 when customer u is located

within a pre-specified coverage radius of facility v; otherwise, duv � 0.

The set of variables are defined as follows:

xi jk

�

{

1 if arc (i , j) is traveled by vehicle k, ∀i , j ∈ {0} ∪ T , k ∈ p,

0 otherwise.

Zi jk

�

⎧

⎨

⎩

1 if customer i assigned to facility j

which is visited by vehicle k, ∀i ∈ W , j ∈ T , k ∈ p,

0 otherwise.

Yi jk

�

⎧

⎨

⎩

1 if facility j

is visited by vehicle k, ∀ j ∈ T , k ∈ p,

0 otherwise.

fi jk : the total traveled distance from depot to node

j ∈ T ∪ {0} when traversing arc(i , j) by vehicle k.

Maximize
∑

i∈W

∑

j∈T

∑

k∈P

di j zi jk (1)

s.t .

∑

i∈T ∪{0}

∑

j∈T ∪{0}

ti j xi jk ≤ Lk ∀k ∈ P , (2)

∑

i∈T ∪{0}

xi jk �
∑

i∈T ∪{0}

x j ik � y jk ∀ j ∈ T , ∀k ∈ P , (3)

∑

j∈T ∪{0}

x j0k � 1 ∀k ∈ P , (4)
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∑

j∈T ∪{0}

x0 jk � 1 ∀k ∈ P , (5)

zi jk ≤ y jk ∀i ∈ W , ∀ j ∈ T , k ∈ P , (6)
∑

k∈P

∑

j∈T

zi jk ≤ 1 ∀i ∈ W , (7)

∑

k∈P

y jk ≤ 1 ∀ j ∈ T , (8)

∑

j∈(T \{i})∪{0}

fi jk −
∑

j∈(T \{i})∪{0}

f j ik �
∑

j∈T ∪{0}

ti j xi jk ∀i ∈ T , ∀k ∈ P , (9)

f0ik � t0i x0ik ∀i ∈ T , ∀k ∈ P , (10)

fi0k ≤ Lk xi0k ∀i ∈ T , ∀k ∈ P , (11)

fi jk ≤
(

Lk − t j0

)

xi jk ∀(i , j) ∈ A& j �� 0, ∀k ∈ P , (12)

fi jk ≥
(

t0i + ti j

)

xi jk ∀(i , j) ∈ A&i �� 0, ∀k ∈ P , (13)

xi jk + x j ik ≤ 1 ∀i , j ∈ T , ∀k ∈ P , (14)

xi jk ≤ y jk ∀i , j ∈ T , ∀k ∈ P , (15)

fi jk ≥ 0 ∀(i , j) ∈ A, ∀k ∈ P , (16)

xi jk ∈ {0, 1} ∀i , j ∈ T ∪ {0}, ∀k ∈ P , (17)

y jk ∈ {0, 1} ∀ j ∈ T , ∀k ∈ P , (18)

zi jk ∈ {0, 1} ∀i ∈ W , j ∈ T , ∀k ∈ P. (19)

The objective function (1) maximizes the total number of covered customers. Con-

straint (2) is to limit the maximum travel time of each vehicle k ∈ P . Constraint (3)

implies the connectivity of each route. Constraint sets (4) and (5) assure that all of the

routes originate from and terminate at the central depot. Constraint (6) shows that cus-

tomer i can only be assigned to facility j visited by vehicle k, if y jk � 1. By Constraint

(7), each customer can be assigned to at most one facility. Constraint (8) indicates that

each facility can be visited at most by one vehicle. Constraint sets (9)–(13) prohibit

sub-tours which are adopted from (Kara 2011). Constraint (9) is the flow conservation

constraint. By using this set of constraints, the total distance traveled from the central

depot to node j ∈ T ∪ {0} minus the distance traveled from central depot to node

i ∈ T , when traveling (i, j) by vehicle k, is equal to the distance from node i to node

j. Constraints (10)–(15) are valid inequalities. In particular, Constraint (10) indicates

that the total distance from node i ∈ T to the central depot, when traversing arc (0, i)

by vehicle k ∈ P , is equal to the distance between them. Constraint (11) stipulates that

the distance from the central depot to the facility i ∈ T which is traveled by vehicle

k ∈ P cannot exceed Lk . Constraint (12) sets upper bound on fi jk which guarantees

the maximum distance traveled to j must not exceed Lk minus the shortest distance

that the vehicle k can travel from j to the depot. Constraint (13) sets lower bound on

fi jk which shows that the distance traveled to j must be at least equal to the sum of

the distance from the depot to i and the distance between i and j. Constraint (14) does

not allow sub-tours with only two facilities. Constraint (15) represents that vehicle k
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must visit facility j when there is an arc entering to j. Finally, Constraints (16)–(19)

specify the type of decision variables.

3 Solutionmethods

Due to the nature of the problem which makes it NP-hard and because of the applica-

tions in emergency situations, it is important to reach qualified solutions in a reasonable

computing time. Exact solvers such as CPLEX could not reach optimal solution in

a short time, especially for large size instances. Therefore, three heuristic methods,

namely ILS, TS and VNS algorithms, are proposed for solving the introduced prob-

lem. In addition, we have developed different procedures which are used to generate

initial solutions. In the following subsections, the proposed procedures for the initial-

ization phase, the local search procedures which are used in the structure of the three

metaheuristic algorithms and the properties of the ILS, TS and VNS are described,

respectively.

3.1 Initialization procedure

In this section, we develop two procedures, namely “Sequential” and “Parallel” algo-

rithms, to generate initial solution. In particular, the Sequential algorithm constructs

one route at a time, while the Parallel one builds several routes at the same time

(Solomon 1987; Potvin and Rousseau 1993; Pisinger and Ropke 2007). In the follow-

ing, we introduce the characteristics of these algorithms.

3.1.1 Sequential algorithm

In this method, before constructing the routes, facilities are sorted in a descending

order of their corresponding scores that will be defined later in this section. Starting

from the central depot, the algorithm constructs the first route by visiting the first

facility from the ordered set. Upon this step, the corresponding score of each facility

is updated and the algorithm selects the next facility to be inserted into its best feasible

position of the working route. Essentially, the best position is the place having the

minimum extra insertion cost which is imposed to the solution by visiting the new

facility. The algorithm keeps adding facilities to the route until it is not possible to

visit a new facility because of the route’s length threshold. After completing the first

route, the procedure is continued by constructing a new route and the whole procedure

stops whenever we have constructed p routes or covered the demand of all customers.

Associated scores for preference of facilities are calculated by using two methods.

In the first method, score S
j
1 of each facility j is equal to the number of uncovered

customers within its coverage distance. In the second method, score S
j
2 is computed

by applying the following relation.

S
j
2 � S

j
1

/

d j
∀ j ∈ F (20)
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In this equation, d j indicates the distance imposed to the solution by inserting

facility j into its best position on the tour and F is the set of unrouted facilities. It is

worth mentioning that for the first facility, the value of d j corresponds to its distance

from the depot.

3.1.2 Parallel algorithms

In this section, we introduce two types of algorithms, namely “Parallel I” and “Parallel

II.” In Parallel I algorithm, facilities are sorted by utilizing one of the methods proposed

in Sect. 3.1.1. At the first step, the algorithm selects the p first facilities from ordered set

and p routes are constructed at the same time. At each step, the corresponding scores

of the remaining facilities are updated and a facility is selected from the ordered set

and assigned to the best feasible position generating the minimum extra insertion cost.

In Parallel II algorithm, at the first step, the algorithm selects the p facilities located

as far as possible from each other. Following this step, p routes are generated by

connecting each facility to the central depot. Routing of the remaining facilities is the

same as Parallel I algorithm.

3.2 Local search procedures

In this section, we provide the details of the local search procedures which are used

within the structure of the heuristic algorithms. In particular, four procedures have

been developed, for which the details are provided in the following.

3.2.1 Swap

Two types of swap move including intra-route and inter-route are used. The goal of the

intra-route swap, called “Swap I,” is to minimize the length of the each route k, i.e.,
∑

i∈Sk∪{0}

∑

j∈Sk∪{0}

ti j xi jk . In this definition, Sk is the subset of facilities visited by vehicle

k ∈ P . To accelerate the search process, swapping facility j ∈ Sk with other facilities

is considered only for those facilities located within a pre-determined neighborhood

radius of j. Neighborhood radius (R) is achieved by applying Eq. (21).

R � θ ∗

∑

i∈T ∪{0}

∑

j∈T ∪{0} ti j

((|T | + 1) ∗ (|T | + 2))
/

2

(21)

In the above equation, θ is an input parameter taken from [0, 1] for which the

corresponding value will be set in Sect. 4.4.

The goal of the second type of swap, called “Swap II,” is to minimize the total

length of the routes, i.e.,
∑

k∈P

∑

i∈Sk∪{0}

∑

j∈Sk∪{0}

ti j xi jk , by considering the replacement

of each facility j ∈ Sk with all of the other visited facilities within its neighborhood

radius.
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3.2.2 Insertion

This move is seeking the maximization of the objective function value, i.e.,
∑

i∈W

∑

j∈T

∑

k∈P

di j zi jk , by visiting a set of facilities from F which can cover at least

one uncovered customer. For these facilities, the best insertion position is specified

and the facility with the largest value of S
j
2 (see, Eq. 20) is added to its best feasible

location. By inserting the first facility, the set F and the value of the objective function

are updated. This procedure continues until the possibility of inserting all members of

F is examined.

3.2.3 Deletion

Since some facilities cover common customers, by deleting a routed facility, all of its

covered customers may be served by other routed facilities. So, by removing a routed

facility, without any changes in the objective function value, i.e.,
∑

i∈W

∑

j∈T

∑

k∈P

di j zi jk ,

the length of the routes may be decreased. Therefore, the possibility to insert other

facilities may increase and the objective function will increase as well. This move is

done for all the routed facilities, and the facility with the most reduction in the total

length of the routes is selected.

3.2.4 Extraction–Insertion

This procedure includes two types. In the first one “Extraction–Insertion I,” the goal

is to decrease the tour’s length by repositioning the routed facilities. In particular, a

facility is extracted from its location and reinserted to the place on the same route with

the minimum reinsertion cost. Applying this procedure is tested for all of the routed

facilities, and a facility with the most reduction cost is selected.

In the second type of this procedure “Extraction–Insertion II,” the goal is to increase

the value of the objective function, or in the case that the objective value could not be

improved anymore, it is to decrease the tours’ length without reduction in the objective

value. In particular, it is done by removing routed facilities from their locations and

adding unrouted facilities into the best position on the available routes. Starting from

the first constructed route, the first visited facility is extracted from its location and a set

of unrouted facilities which covers at least one of the uncovered customers is inserted

into the solution. At each step, the added facility is the one having the minimum

insertion cost. If this substitution leads to an improvement in the objective function

or it can decrease the total length without any reduction in the objective function, the

corresponding move is saved. Applying this procedure is checked for the rest of the

routed facilities. Finally, the substitution with the best improvement is selected for

executing the procedure.

3.3 Iterated local search

In this section, we describe the ILS procedure which is used to solve the proposed prob-

lem (Algorithm 1). The ILS is a metaheuristic algorithm that combines local search
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and perturbation procedures to search the feasible region more efficiently (Lourenço

et al. 2003). In particular, this algorithm has been successfully applied to solve similar

problems such as TOP (Vansteenwegen et al. 2009; Gunawan et al. 2015; Zachariadis

and Kiranoudis 2011). For this reason, we use the ILS as one of the proposed methods

for solving our problem. In this algorithm, a solution is created by following one of the

proposed procedures in Sect. 3.1. The algorithm is composed of two loops. The inner

loop is to improve the solution’s cost by applying local search procedures. Essentially,

at each iteration, a local search procedure is selected by using the roulette wheel tech-

nique (see Sect. 3.3.1). Before entering the outer loop, as long as the solution can be

improved, the LS algorithm is applied. The pseudocode of the LS procedure is depicted

in Algorithm 2. In fact, we tested several orders of the moves and the current order

is the best combination. In this combination, at first we utilize the swap procedures

followed by the extraction–insertion procedures. The reason of using the deletion and

insertion procedures is that they can further improve the solutions obtained by applying

the two mentioned procedures (i.e., swap and extraction–insertion), and this is why we

call them after each execution of the swap and extraction–insertion procedures. The

whole procedure is iterated for “i ter1” iterations. In addition, during the execution of

the outer loop, the goal is to escape from local optima by utilizing the perturbation

procedure. The outer loop is repeated “i ter0” iterations. The corresponding values for

i ter0 and i ter1 will be set in Sect. 4.4.
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3.3.1 Roulette wheel

In each iteration of the ILS algorithm, one of the local search procedures is selected

based on roulette wheel (see line 11 in Algorithm 1). In this method, in the first iteration

the possibility of choosing a move is equal to 1
n

where n is the total number of moves.

The possibility of selecting different procedures in later iterations is proportional to

the effectiveness of the procedures in the previous iterations. Essentially, if the best

solution is improved by applying a specific procedure, the possibility of selecting the

corresponding procedure is increased in the subsequent iteration.

3.3.2 Perturbation phase

To escape from local optima, after every “iter1” iterations of the inner loop, the per-

turbation procedure is applied on the best found solution (see line 31 in Algorithm

1). In this procedure at first, ρ percent of the visited facilities are selected, randomly,

and removed from their corresponding routes and added to the set F (set of unrouted

facilities). Each time a facility is removed from the route, the assignment of customers

is updated. In the second step, a facility is selected from F, randomly, and is added

into its best feasible insertion position. The preliminary results show in case that we

use the same set of customers in the structure of the perturbed solution, there will be

a high probability to get stuck in a local optima solution by applying the local search

procedure. In fact, by inserting the facilities randomly, we try to escape from local

optima and expand the search space. After inserting the facility, the objective function

and the subset F are updated. This step is iterated as long as we are not able to insert

a new facility.
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3.4 TS algorithm

TS is a metaheuristic algorithm introduced by Glover (1989). To escape from local

optimum solution, this algorithm always moves to the best neighbor solution, even if

the corresponding neighbor solution does not lead to an improvement in the cost of

the current solution.

The proposed TS algorithm starts from the best solution obtained by utilizing the

LS procedure (see Algorithm 2) and in each iteration selects a local search procedure

by using the roulette wheel technique to explore the current solution’s neighborhoods.

For each selected neighborhood, the “best neighbor” with the most improvement

in the cost is selected. If the implemented move is not tabu, it is selected as the

new incumbent solution. Otherwise, the move is applied only if it has improved

the best solution that has been found. In addition, we execute the diversification

phase after “iter4” iterations without any improvements in the cost of the best solu-

tion. Finally, the intensification phase is applied after each improvement of the best

solution which is discussed in Sect. 3.4.1. The pseudocode of the TS algorithm is

provided in Algorithm 3 for which the details are given in the following subsec-

tions.

3.4.1 Short-termmemory

Upon applying each procedure, the attributes of the obtained solution must be consid-

ered as tabu in order to prevent choosing them for a specified number of iterations. In

this paper, we have two types of tabu list as the short memory. In the first tabu list, the

attributes of the swap I and the swap II are stored, while the second list contains the

attributes of the Extraction–Insertion I and the Extraction–Insertion II. Attributes of

the first tabu list are stored as (i,j) which indicates swapping facilities i and j are for-

bidden for a fixed number of iterations. Attributes of the second list are the indices of

the facilities extracted from or inserted to one of the routes through the corresponding

extraction–insertion procedure. So, if the facility has inserted (extracted), it will not

be extracted (inserted) for the following τ iterations.
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3.4.2 Long-termmemory

Long-term memory is based on the frequency of edges which appear in different

solutions. During search process, whenever we have an improvement in the cost of

the best solution, the corresponding edges of the improved solution are kept in long-

term memory to be used in the diversification phase. In particular, diversification is
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implemented after “iter4” iterations without any improvements. In this phase, the

objective function of solution s, i.e., f (s), is decreased by imposing a penalty which

is proportional to the frequency of edges in s. To do so, a new objective function is

calculated based on Eq. (22). In this equation, f (s) is the number of covered customers

by visited facilities, i.e.,
∑

i∈W

∑

j∈T

∑

k∈P di j zi jk .

g(s) � f (s) ∗
(

1 − ri j
/

σ

)

(22)

In addition, ri j is the number of improved solutions that contain edge (i, j) and σ

denotes the total number of improved solutions. In the diversification phase, selection

of the local search procedures is based on the roulette wheel technique and evaluation

criterion for selecting neighborhoods is g(s) instead of f (s). In particular, by using

g(s), solutions consisting of edges with less frequencies during the search history

will have a lower penalty. Diversification is iterated for “iter5” iterations, and in each

iteration, the neighborhood which has the best value of g(s) is selected. Finally, in

each iteration of the TS, if the selected move improves the best solution, local search

phase is applied as the intensification strategy.

3.5 VNS algorithm

Proposed by Mladenović and Hansen (1997), the VNS is a metaheuristic algorithm

that explicitly applies a strategy based on dynamically changing the neighborhood

structures. The general framework of the VNS algorithm for the introduced problem

is given in Algorithm 4. The algorithm starts to construct an initial solution (Cur-

rentSolution) by applying the initialization procedure (see Sect. 3.1). It then improves

upon this initial solution by applying the LS procedure. The improvement of the

solution continues in a loop until the termination criterion is met. The loop con-

tains the perturbation procedure and the LS procedures. If a solution is improved by

applying the perturbation and local search procedures it will be accepted as the incum-

bent solution. At each iteration of the VNS algorithm, we apply the perturbation

procedure in order to dynamically expand the neighborhood structure. In particu-

lar, the algorithm generates a solution which is in the neighborhood size ρ of the

CurrentSolution, i.e., Perturbation(Current Solution, ρ). In this definition, ρ is the

percentage of customers which is extracted by utilizing the perturbation procedure

(see Sect. 3.3.2).

4 Computational results

The proposed algorithms have been coded in Visual C++ 2010, and the mathematical

model has been solved by using ILOG CPLEX 12.3. All tests have been performed on

a PC Intel Core i7 2.93 GHz processor and 3.49 GB of RAM. This section contains

detailed computational results of running CPLEX, TS, ILS and VNS on the modified

samples.
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4.1 Data generation

Several instances have been generated to evaluate the effectiveness of the proposed

algorithms. These samples are randomly generated and classified into three sets includ-

ing small, medium and large size data. In particular, we use the instances from the TSP

library having 52, 76, 100, 150, 200, 318, 417, 575, 657 and 724 nodes (Reinelt 1991).

In generated instances each facility can cover up to 5 nearest customers, randomly. By

using each instance, we have generated 3 new instances in which for each sample, 50,

60 and 70% of the nodes are considered as customers (|W |). Three different scenarios,

namely 2, 3 and 4, are considered for the number of vehicles (|P|). Finally, three values

are proposed for Lk as follows:

Lk �
α

|P|
× |T | ×

∑

i∈T ∪{0}

∑

j∈T ∪{0} ti j

((|T |) ∗ (|T | + 1))
/

2

(23)
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In this equation α ∈ {1, 0.9, 0.8}. As a result, totally we have 10×3×3×3 � 270

instances. The instances are divided into the three groups. In particular, the groups

with small and medium instances contain instances having up to 100 and 200 nodes,

respectively, while the other instances belong to the group with large instances.

4.2 CPLEX results

ILOG CPLEX has been used to run the mathematical model in Sect. 2. In particular, for

each instance 5 h of computing time is put on the maximum run-time of CPLEX and

the results are reported in Tables 1, 2 and 3. In these tables, number of nodes, number

of facilities, number of customers, number of vehicles and the maximum travel length

are provided in columns 2–6, respectively. The corresponding objective function is

provided in the column “Obj.” and the corresponding run-time of CPLEX (in seconds)

is given in the column labeled by “Time”. Finally, the optimality gap (in percentage)

is provided in the column “Gap”. Totally, 78 small instances (out of 81), 34 medium

instances (out of 54) and 32 large instances (out of 135) have been solved to optimality

within the given time limit. For those instances that CPLEX is not able to reach the

optimal solution, the average optimality gap is 2.28% for the small instances, while

this is 3.84% for the medium instances. In addition, the average computing time for

the small and medium size instances is 905.75 and 7803.84 s, respectively. As it is

shown in Table 3, CPLEX is able to reach the feasible solution only in 38 instances

(out of 135) of the large size data and it fails to reach a feasible solution for the other 97

instances. The average computing time for 38 instances for which CPLEX can achieve

a feasible solution is 1079.38 s. There are some instances for which the optimality gap

is a positive value, while CPLEX has not reached the time limit. In these instances, the

computer runs out of memory before finding the optimal solution and the best found

solution is reported in the corresponding position in Table 3.

According to the applications of this problem in critical situations and emergencies

and due to the fact that in real-world situations we may face the larger size problems,

we should use heuristic methods to accelerate obtaining high-quality solutions in a

reasonable computing time.

4.3 Analyzing the performance of the initialization algorithms

As discussed in Sect. 3.1, we have proposed three methods, namely Sequential, Parallel

I and Parallel II, for generating initial solutions. In addition, we developed two scoring

methods, i.e., S
j
1 and S

j
2 , for preference of facilities. Therefore, we have 6 different

scenarios to generate initial solutions.

Since CPLEX fails to reach a feasible solution for several large instances, we have

only used the results obtained by CPLEX for the small and medium size data in order

to analyze the performance of the initialization procedures. Results by utilizing each

of the 6 scenarios on small and medium instances are given in Table 4. In particular,

for each scenario the overall average gap for available instances, with respect to the

results obtained by CPLEX, is given in the “Avg. gap” row. Based on the results, the
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Table 4 Comparing the performance of different initialization procedures

Initial

solution type

Sequential

(S
j
1 )

Sequential

(S
j
2 )

Parallel I

(S
j
1 )

Parallel I

(S
j
2 )

Parallel II

(S
j
1 )

Parallel II

(S
j
2 )

Avg. gap 2.32 2.16 1.73 2.77 6.82 14.2

Avg. time 0.01 0.01 0.01 0.01 0.01 0.01

Parallel I algorithm with S
j
1 scoring method has the minimum average gap, while the

worst gap is obtained by Parallel II algorithm with S
j
2 scoring method. Finally, the row

labeled by “Avg. time” shows, on average, different methods need almost the same

computing time to achieve an initial solution.

4.4 Parameter tuning

The proposed heuristic algorithms contain a set of parameters to be tuned. For each

algorithm, Table 5 gives the assigned values for the involved parameters and the final

selected values. To set the values, we have chosen one-third of the small and medium

size problems as the set of benchmark instances to run the experiments. In particular,

all the combinations of the parameters are tested and the best combination leading to

the best average performance is selected for the corresponding algorithm. To analyze

the results, we have used Wilcoxon nonparametric test with 95% of confidence. This

test is presented in Wilcoxon (1945) and used instead of t test when the probability dis-

tribution of samples is unknown. For each algorithm, to select the best combination of

parameters we select the combinations having the best and worst overall performance

for the set of benchmark instances. Wilcoxon test shows that the difference between

the results of these two combinations is not statistically significant. As a result, for

each algorithm the combination having the minimum computing time is chosen to run

the final experiments.

4.5 ILS results for small andmedium instances

Each of the initialization procedures is used to run the ILS algorithm. Essentially, for

each of the initial solutions we run the ILS algorithm five times with five different

random seeds and the average and the best performance of the ILS algorithm are

provided in Table 6. In this table, for each initialization procedure, the “Avg. gap” row

gives the overall average gap of the CPLEX results with the solutions obtained by

utilizing the ILS algorithm on all the small and medium instances over the five runs.

In addition, the best gap over five different runs is given in the row labeled by “Best

gap”. Finally, the average computing time for all the small and medium instances

over the five different random seeds is given in the row represented by “Avg. time”.

According to the results, on average, all combinations have better performance with

respect to CPLEX. Considering the best performance of the algorithm, best methods

for generating initial solution are Sequential algorithm by using the S
j
2 as the scoring
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Table 5 Parameter tuning

Algorithm Parameter Tested values Chosen value

ILS i ter0 {110,120,130} 120

i ter1 {250,200} 200

θ {0.7,0.5} 0.7

TS i ter2 {110,120,130} 120

i ter3 {300,400} 400

i ter4 {20,30} 30

i ter5 {50,60} 60

τ {5,8,10} 8

θ {0.7,0.5} 0.7

VNS i ter6 {110,120,130} 120

i ter7 {30,40,50} 40

ρ1 {0.2,0.3,0.4} 0.3

ρmax {0.75,0.8,0.85} 0.8

γ {0.02,0.05} 0.02

θ {0.7,0.5} 0.7

Table 6 ILS results for small and medium instances of the TCMCRP

Initial

solution

type

Sequential

(S
j
1 )

Sequential

(S
j
2 )

Parallel I

(S
j
1 )

Parallel I

(S
j
2 )

Parallel II

(S
j
1 )

Parallel II

(S
j
2 )

Total

Avg. gap −0.42 −0.44 −0.43 −0.25 −0.43 −0.36 −0.46

Best gap −0.45 −0.46 −0.46 −0.28 −0.46 −0.42 −0.48

Avg. time 1.82 1.71 1.85 1.95 1.95 2.98 1.96

method, and Parallel I and Parallel II algorithms by using S
j
1 as the scoring method.

Finally, for each row of the table, the column labeled by “Total” gives the average of

values over the corresponding row.

4.6 VNS results for small andmedium instances

For small and medium instances, the results of applying the VNS algorithm are given in

Table 7. In particular, each row of this table reports the same information as that already

described for Table 6. Taking into account the average performance of the algorithm

over five runs, Parallel II algorithm and Sequential algorithm with S
j
1 as the scoring

method have the best performance. In addition, Sequential method with S
j
1 scoring

method, Parallel I with S
j
1 scoring method and Parallel II have the best performance,

when considering the best performance of the algorithm. Based on the results reported

in the last column (i.e., Total), on average, the ILS algorithm outperforms the VNS

algorithm.
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Table 7 VNS results for small and medium instances of the TCMCRP

Initial

solution

type

Sequential

(S
j
1 )

Sequential

(S
j
2 )

Parallel I

(S
j
1 )

Parallel I

(S
j
2 )

Parallel II

(S
j
1 )

Parallel II

(S
j
2 )

Total

Avg. gap −0.34 −0.31 −0.30 −0.13 −0.34 −0.34 −0.29

Best gap −0.41 −0.40 −0.41 −0.20 −0.41 −0.41 −0.41

Avg. time 0.13 0.13 0.13 0.12 0.13 0.13 0.13

Table 8 TS results for small and medium instances of the TCMCRP

Initial

solution

type

Sequential

(S
j
1 )

Sequential

(S
j
2 )

Parallel I

(S
j
1 )

Parallel I

(S
j
2 )

Parallel II

(S
j
1 )

Parallel II

(S
j
2 )

Total

Avg. gap −0.43 −0.44 −0.45 −0.25 −0.46 −0.46 −0.49

Best gap −0.46 −0.52 −0.46 −0.33 −0.52 −0.52 −0.52

Avg. time 2.09 1.75 1.90 1.88 1.87 1.80 2.12

4.7 TS results for small andmedium instances

In this section, we analyze the results obtained by the TS algorithm for small and

medium instances. According to the results reported in Table 8 and taking into account

the average performance of the algorithm over 5 independent runs, Parallel II algorithm

has the best performance. In addition, Sequential method with S
j
2 as the scoring method

and Parallel II are the best scenarios when considering the best performance of the

algorithm. Finally, comparing the results obtained by all three heuristic algorithms

indicates the superiority of the TS algorithm for the small and medium instances. In

particular, when considering the average performance of the algorithms, the overall

average gap is −0.49 for the TS algorithms, while this is −0.29 and −0.46 for the

VNS and ILS algorithms, respectively.

4.8 Comparing the performance of the heuristic algorithms for large instances

In this section we provide the results of the CPLEX and heuristic algorithms over

the set of large instances. In particular, according to the results reported in Tables 6,

7 and 8, for each of the heuristic algorithms the best scenario is chosen to run the

experiments.

Each heuristic algorithm is run five times, and the average results are reported.

The results show that for 38 instances in which CPLEX is able to reach a feasible

solution, the proposed TS algorithm can improve the result by 2.64%, while this is

1.66% and 1.94% for the VNS and ILS algorithms, respectively. In addition, there are

133 instances for which TS has obtained the best solution, while VNS and ILS have

achieved the best performance in 109 and 112 cases, respectively. Detailed results of

the heuristic algorithms over the large size instances are provided in Appendix 1.
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4.9 Computational results for the TCMCSP

As discussed in the definition of the problem, the TCMCSP is a special variant of our

proposed problem. So, we have adopted our TS algorithm to be applied for this prob-

lem. For generating initial solutions, we have used Parallel II algorithm with S
j
1 scoring

method. The results are reported in Table 9, in which columns labeled by |W | and Lk

have the same meaning as those already introduced in Table 1. Column labeled by

“Best Obj .E ” gives the best results achieved by the exact algorithm, proposed in Naji-

Azimi and Salari (2014). For each instance “Avg.Obj .H ” and “Best Obj .H ” give,

respectively, the best and the average performance of the proposed heuristic algorithm

in Naji-Azimi and Salari (2014) over 5 different runs. Columns “Avg.Obj .T ” and

“Best Obj .T ” give the average and the best results of the TS algorithm over five dif-

ferent runs, respectively. “BestGapT E ” column represents the gap between the best

performance of TS algorithm (i.e., column Best Obj .T ) and the results reported in

column “Best Obj .E ”. Finally, the column “BestGapT H ” shows the gap between

the best performance of our TS algorithm and the best performance of the heuristic

algorithm proposed in Naji-Azimi and Salari (2014). As it is given in the last row of

the table, on average, the TS algorithm improves the best known heuristic results in

Naji-Azimi and Salari (2014) by 0.15%.

Taking into account the best performance of the TS algorithm, the results show

that this algorithm is able to improve the solutions obtained by CPLEX by 1.27%.

Average running time for the TS is 1.66 s which is a great improvement in comparison

with 1680.24 s in CPLEX. We should mention that the average time of the proposed

heuristic algorithm in Naji-Azimi and Salari (2014) is 1.54 s.

4.10 Computational results for the TOP

As already reported in Sect. 1, the TCMCRP is a generalization of the TOP. For

this reason, in order to validate our proposed algorithm, we have modified the TS

algorithm to be used for the TOP instances. In particular, we use 212 benchmark

instances developed by Chao et al., which are divided into 4 datasets (Chao et al.

1996). In each dataset, the position and the profits of customers are the same for all

instances, while the number of vehicles varies between 2 and 4. In addition, the travel

limit is different for available instances.

We compare the performance of the TS with three heuristic algorithms, namely

MA, PSOiA and PSOMA, and the results are reported in Table 10. In particular, the

MA is a memetic algorithm proposed in (Bouly et al. 2010). PSOiA is a heuristic

algorithm that uses the particle swarm optimization (PSO) to solve the problem (Dang

et al. 2011). Finally, the PSOMA is a PSO-based memetic algorithm that combines

the PSO and the memetic algorithms (Dang et al. 2013).

For each algorithm tested on an instance, the algorithm is run 10 times. Following

this step, for each instance the best obtained solution (Zbest) by utilizing 4 different

algorithms is used to analyze the effectiveness of the proposed TS algorithm and the

results are reported in Table 10. In this table, for each instance set, the average gap
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Table 11 Efficiency of the local search procedures for the TCMCRP

Procedure

type

Swap I Swap II Extraction–Insertion I Extraction–Insertion II Insertion Deletion

Improvement

percentage

34.07 19.66 37.50 16.28 0.72 1.46

and the best gap of different heuristics with respect to Zbest are reported in rows “Avg.

gap” and “Best gap”, respectively.

The results show the efficiency of the TS algorithm. In particular, taking into account

the average performance of the TS algorithm the worst results have been achieved in

set p.4 for which the overall average gap with respect to the best solution is 0.57%.

Considering the best performance of the TS algorithm, the results show that in the worst

case the average gap is 0.27% for the set p.4. Detailed results of available algorithms

are provided in Appendix 2.

4.11 The usefulness of the proposed local search procedures

In order to evaluate the effectiveness of the local search procedures which have been

used in the structure of the proposed algorithms, we calculate the percentage of

improvement made by each procedure as follows. In this regard, we consider the

proportion of the iterations in which a specific procedure can improve the current

solution, to the total number of the iterations that the procedure had been called. The

obtained results are summarized in Table 11. As it can be concluded from this table,

all the presented procedures are useful and the most effective procedure is Extrac-

tion–Insertion I, which has been successful in 37.50% of its execution.

4.12 Parameter analysis

In this section, we do some tests to analyze the impact of the parameters on the behav-

ior of the TS algorithm. To do so, we fix all parameters and change one parameter at

a time. Essentially, ρ and i ter2 parameters have been selected. ρ is the percent of the

facilities which has been removed from the solution in perturbation phase parameter

(see Sect. 3.3.2). In our experiments ρ ∈ {0.6, 0.7, 0.8, 0.9} and the impact of this

parameter for the TCMCSP is given in Fig. 2. In this figure, the vertical column shows

the overall gap between the TS and the best solutions proposed for the TCMCSP

instances in Naji-Azimi and Salari (2014). In addition, Fig. 3 gives the same infor-

mation for the i ter2 parameter. We have selected five different scenarios, namely 90,

100, 110, 120 and 130, for running this test. Results show that the best result has been

achieved when i ter2 is equal to 120.

Figures 4 and 5 show the impact of i ter2 and ρ parameters over the 135 instances

of small and medium size for TCMCRP. Vertical axis shows the improvement in

CPLEX’ results by applying the TS algorithm. The i ter2 and ρ are set to 120 and 0.8,

respectively.
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Fig. 2 Analysis of parameter ρ

for the TCMCSP instances
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Fig. 3 Analysis of parameter

i ter2 for the TCMCSP instances

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

90 100 110 120 130

G
ap

 P
er

ce
n
ta

g
e

iter2

Fig. 4 Analysis of parameter

i ter2 for the TCMCRP

instances
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Fig. 6 Analysis of the relation

between α and the total

percentage of covered customers
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Fig. 7 Analysis of the relation

between the number of the

potential covered customers and

the total percentage of covered

customers
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4.13 Analysis of model’s parameters

In this section, we investigate the relation between Lk and the total percentage of

covered customers. In particular, by increasing the corresponding value of α which

concludes increasing Lk parameter, the percentage of covered customers increases as

well. According to Fig. 6, the decision maker is able to select the best value for α by

considering the number of customers whom he wants to cover.

Figure 7 shows the relation between the number of customers that can be covered

by each facility and the percentage of customers that are covered by routed facilities.

According to this figure, decision maker can determine the coverage radius of each

facility by considering the distance between facilities and customers.

5 Conclusion

In this paper, the time-constrained maximal covering routing problem (TCMCRP) has

been introduced, which is the combination of the covering salesman problem and the

team orienteering problem. In this problem, a central depot, a set of facilities and a set

of customers are given. The TCMCRP objective is to maximize the number of cus-

tomers covered by facilities which are visited by a set of length constraint vehicles. We

proposed a flow-based mathematical model to solve the model. Since the TCMCRP

is a NP-hard problem, exact model is not effective for real size instances and heuristic

algorithms including ILS, VNS and TS are presented for solving the problem. We

tested the performance of these algorithms on 270 instances having 52–724 nodes
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and dividing into small, medium and large size sets. The numerical results showed

that on average all the proposed algorithms outperform CPLEX especially in large

size instances. Regarding the performance of the heuristic algorithms, the tabu search

algorithm has the best performance in comparison with the other two algorithms. In

addition, to evaluate the effectiveness of the developed heuristic algorithms we have

adapted our algorithms to be used for the time-constrained maximal covering sales-

man problem and the team orienteering problem. The results indicate that developed

heuristic algorithms can achieve promising results for the similar problems. In partic-

ular, by applying the TS algorithm on the TCMCSP instances, the results show the

superiority of the TS with respect to the best results available in the literature. The

results also indicate that the TS algorithm performs efficiently when applying on the

TOP benchmark instances.

For the future research, we propose to develop a variation of the problem in which

we are given a threshold on the minimum percentage of customers that have to be

covered while minimizing the total travel time. This problem happens in a situation

that we have a limited amount of resources to be delivered to the customers within the

shortest possible time.
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