
Time Constraints in Workflow Systems

Johann Eder�, Euthimios Panagos, and Michael Rabinovich

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932
eder@acm.org, fthimios, mishag@research.att.com

Abstract. Time management is a critical component of workflow-based process
management. Important aspects of time management include planning of work-
flow process execution in time, estimating workflow execution duration, avoiding
deadline violations, and satisfying all external time constraints such as fixed-date
constraints and upper and lower bounds for time intervals between activities. In
this paper, we present a framework for computing activity deadlines so that the
overall process deadline is met and all external time constraints are satisfied.

1 Introduction

Dealing with time and time constraints is crucial in designing and managing business
processes. Consequently, time management should be part of the core management
functionality provided by workflow systems to control the lifecycle of processes. At
build-time, when workflow schemas are developed and defined, workflow modelers
need means to represent time-related aspects of business processes (activity durations,
time constraints between activities, etc.) and check their feasibility (i.e., timing con-
straints do not contradict each other). At run-time, when workflow instances are in-
stantiated and executed, process managers need pro-active mechanisms for receiving
notifications of possible time constraint violations. Workflow participants need infor-
mation about urgencies of the tasks assigned to them to manage their personal work
lists. If a time constraint is violated, the workflow system should be able to trigger ex-
ception handling to regain a consistent state of the workflow instance. Business process
re-engineers need information about the actual time consumption of workflow execu-
tions to improve business processes. Controllers and quality managers need information
about activity start times and execution durations.

At present, support for time management in workflow systems is limited to process
simulations (to identify process bottlenecks, analyze activity execution durations, etc.),
assignment of activity deadlines, and triggering of process-specific exception-handling
activities (called escalations) when deadlines are missed at run time [10, 8, 7, 18, 2, 3,
17]. Furthermore, few research activities about workflow and time management exist in
the literature. A comparison with these efforts is presented in Section 7.

Our contributions in this paper include the formulation of richer modeling primi-
tives for expressing time constraints, and the development of techniques for checking

� On leave from the University of Klagenfurt, Austria

katja
published in: M. Jarke, A. Oberweis (eds.): Advances Information Systems Engineering, 11th International Conference, CAISE`99, Springer Verlag, ISBN 1-85233-167-4, pp 165-280



satisfiability of time constraints at process build and instantiation time and enforcing
these constraints at run time. The proposed primitives include upper and lower bounds
for time intervals between workflow activities, and binding activity execution to certain
fixed dates (e.g., first day of the month). Our technique for processing time constraints
computes internal activity deadlines in a way that externally given deadlines are met
and no time constraints are violated.

In particular, at build time, we check whether for a given workflow schema there
exists an execution schedule that does not violate any time constraints. The result is
a timed activity graph that includes deadline ranges for each activity. At process in-
stantiation time, we modify the the timed activity graph to include the deadlines and
date characteristics given when the workflow is started. At run time, we dynamically
recompute the timed graph for the remaining activities to monitor satisfiability of the
remaining time constraints, given the activity completion times and execution paths
taken in the already-executed portion of a workflow instance.

The remainder of the paper is organized as follows. Section 2 describes our work-
flow model and discusses time constraints. Section 3 presents the workflow representa-
tion we assume in this paper. Section 4 presents the calculations that take place during
build time. Section 5 shows how these calculations are adjusted at process instantiation
to take into account actual date constraints. Section 6 covers run time issues. Section 7
offers a comparison with related work and, finally, Section 8 concludes our presentation.

2 Workflow Model and Time Constraints

A workflow is a collection of activities, agents, and dependencies between activities.
Activities correspond to individual steps in a business process. Agents are responsible
for the enactment of activities, and they may be software systems (e.g., database appli-
cation programs) or humans (e.g., customer representatives). Dependencies determine
the execution sequence of activities and the data flow between these activities. Conse-
quently, a workflow can be represented by a workflow graph, where nodes correspond
to activities and edges correspond to dependencies between activities.

Here, we assume that execution dependencies between activities form an acyclic di-
rected graph. We should note that we do not propose a new workflow model. Rather, we
describe a generic workflow representation for presenting our work. In particular, we
assume that workflows are well structured. A well-structured workflow consists of m
sequential activities, T� � � � Tm. Each activity Ti is either a primitive activity, which is
not decomposed any further, or a composite activity, which consists of ni parallel con-
ditional or unconditional sub-activities Ti

�� � � � � Ti
ni . Each sub-activity may be, again,

primitive or composite. Typically, well structured workflows are generated by workflow
languages that provide the usual control structures and adhere to a structured program-
ming style of workflow definitions (e.g., Panta Rhei [4]).

In addition, we assume that each activity has a duration assigned to it. For sim-
plicity, we assume that activity durations are deterministic. Time is expressed in some
basic time units, at build-time relative to the start of the workflow, at run-time in some
calendar-time. Some time constraints follow implicitly from control dependencies and
activity durations of a workflow schema. They arise from the fact that an activity can



only start when its predecessor activities have finished. We call such constraints the
structural time constraints since they reflect the control structure of the workflow.

In addition, explicit time constraints can be specified by workflow designers. These
constraints are derived from organizational rules, laws, commitments, and so on. Such
explicit constraints are either temporal relations between events or bindings of events to
certain sets of calendar dates. In workflow systems, events correspond to start and end
of activities. For temporal relationships between events, the following constraints exist:

Lower Bound Constraint: The duration between eventsA andB must be greater than
or equal to �. We write lbc�A�B� �� to express that � is a lower bound for the time-
interval between source event A and destination event B.

Upper Bound Constraint: The distance between eventsA andB must be smaller than
or equal to �. We write ubc�A�B� �� to express that � is an upper bound for the
time-interval between source event A and destination event B.

An example of lower-bound constraint includes a legal workflow with activities of
serving a warning and closing a business, with the requirement that a certain time period
passes between serving the warning and closing the business. Another example is that
the invitation for a meeting has to be mailed to the participants at least one week before
the meeting. Upper-bound constraints are even more common. The requirement that a
final patent filing is done within a certain time period after the preliminary filing, or time
limits for responses to business letters, or guaranteed reaction times after the report of
a hardware malfunction provide typical examples of upper-bound constraints.

To express constraints that bind events to sets of particular calendar dates, we first
need to provide an abstraction that generalizes a, typically infinite, set of dates such
as “every other Monday” or “every fifth workday of a month”. Examples of such con-
straints include: vacant positions are announced at the first Wednesday of each month;
loans above USD 1M are approved during scheduled meetings of the board of directors;
inventory checks have to be finished on December 31st.

Fixed-Date Type: A fixed-date (type) is a data type F with the following methods:
F�valid�D� returns true if the arbitrary date D is valid for F ; F�next�D� and
F�prev�D� return, respectively, the next and previous valid dates afterD; F�period
returns the maximum distance between valid dates; and F�dist�F �� returns the
maximum distance between valid dates of F and F �, (with F�period as default
value).

Fixed-Date Constraint: Event B can only occur on certain (fixed) dates. We write
fdc�B� T �, where T is a fixed-date, to express the fact that B can only occur on
dates which are valid for T .

In the remainder of the paper, we assume that at most one fixed-date constraint can
be associated with an activity.

3 Workflow Representation

Our techniques for time constraint management are based on the notion of the timed
activity graph. This graph is essentially the same as the workflow graph where each



Finish Time

Name

Activity Activity

Duration

Earliest Latest

Finish Time

Fig. 1. Activity node of a timed workflow graph

25

10

2827

5

8

8

135

1B

5 GF

E

DC

H20

3

2 1I

16

10

56

L

46

12

56

46

4338

4

34

K

45

4335

43

15

46

4

4

A

30

34

J

Fig. 2. Example timed workflow graph

activity node n is augmented with two values that represent termination time points for
activity executions1.

– n�E: the earliest point in time n can finish execution.
– n�L: the latest point in time n has to finish in order to meet the deadline of the

entire workflow.

Figure 1 shows the representation of an activity node in the timed workflow graph.
Without explicit time constraints, E and L values can be computed using the Critical
Path Method (CPM) [14], a well known project planning method that is frequently used
in project management software. CPM assumes that activity durations are deterministic.
We are aware that this assumption does not hold for many workflows, and that for these
workflows a technique dealing with a probability distribution of activity durations like
the Project Evaluation and Review Technique (PERT) [14] would be more appropri-
ate. However, we chose CPM because it allows us to present the concept more clearly
without the math involved with probability distributions.

Figure 2 shows the timed workflow graph we use in the rest of the paper. The in-
terpretation of E- and L-values is as follows. The earliest point in time for activity F

1 Since activity durations are assumed to be deterministic, we do not need to represent activity
start points. These time points can be computed by subtracting activity durations from activity
termination times.



to terminate is 10 time units after the start of the workflow. If F is finished 38 time
units after the start of the workflow, the duration of the entire workflow is not extended.
Activity L is the last activity of the workflow, and the earliest and latest completion
times are the same, 56. This also means that the entire workflow has a duration of 56
time units. The distance between the E-value and the L-value of an activity is called
its buffer time. In our example, activity F has a buffer of 28 time units. This buffer,
however, is not exclusively available to one activity, but it might be shared with other
activities. In our example, the buffer of F is shared with B, G, H , and I . If B uses
some buffer-time, then the buffer of F is reduced.

Computing the timed workflow graph delivers the duration of the entire workflow,
and deadlines for all activities such that the termination of the entire workflow is not de-
layed. Incorporating explicit time constraints into the timed activity graph is explained
in detail later. For simplicity, we only consider constraints for end events of activities.
Therefore, we will use a shortcut and say that an activity (meaning “the end event of
the activity”) participates in a constraint. The following additional properties are used
for representing workflow activities: n�d represents the activity duration; n�pos repre-
sents whether the activity n is a start, end, or internal node of the workflow; n�pred
represents the predecessors and n�succ the successor activities of n; n�deadline holds
the externally assigned deadline of n; n�tt the actual termination time of an activity
instance.

For an upper- or lowerbound-constraint c we represent the source activity with c�s,
the destination activity with c�d and the bound with c��. For a fixed-date constraint f ,
we write f�a for the activity on which f is posed and f�T for the fixed-date.

Since we assume well structured workflows, in the remainder of the paper we as-
sume that for all upper and lower bound constraints the source node is before the desti-
nation node according to the ordering implied by the workflow graph.

4 Build-Time Calculations

At build time, our goal is to check if the set of time constraints is satisfiable, i.e., that
it is possible to find a workflow execution that satisfies all timing constraints. We start
from the original workflow graph and construct a timed workflow graph such that an ex-
ecution exists that satisfies all constraints. Initially, all fixed-date constraints are trans-
formed into lower-bound constraints. Then, the E- and L-values of all activity nodes
in the timed graph are computed from activity durations and lower-bound constraints,
using a straightforward modification of the CPM method. Finally, upper-bound con-
straints are incorporated into the timed graph. The resulting timed graph has at least
two (possibly not distinct) valid executions. These executions are obtained if all activ-
ities complete at their E-values or all activities complete at their L-values. There may
be other valid combinations of activity completion times within �E�L� ranges. We say
that a timed graph satisfies a constraint if the executions in which all activities complete
at their E- or L-values are valid with respect to this constraint.



4.1 Fixed-Date Constraints

The conversion of fixed-date constraints into lower-bound constraints is done using
worst-case estimates. This is because at build time we do not have calendar value(s)
for the start of the workflow and, thus, we can only use information about the duration
between two valid time points for a fixed-date object. At process-instantiation time we
will have more information concerning the actual delays due to fixed-date constraints.

Consider a fixed-date constraint fdc�a� T �. Assume that activities start instanta-
neously after all their predecessors finish. In the worst case, activity a may finish at
T�period� a�d after its last predecessor activity finishes. Indeed, let t� and t� be valid
dates in T with the maximum time-interval between them. i.e., t�� t� � T�period, and
let b be the last predecessor activity to finish. The time-interval between end-events of
b and a is the longest if b finishes just after time t� � a�d, because then a cannot start
immediately (it would then not finish at valid date t�), and would have to wait until time
t��a�d before starting. In this case, the distance between b and a is � � �t�� t���a�d

= T�period�a�d, assuming b itself does not have a fixed-date constraint associated with
it. If b has a fixed-date constraint fdc�b� T ��, one can use similar reasoning to obtain
� � T�dist�T �� if a�d � T�dist�T �� and � � a�d� T�period otherwise.

To guarantee the satisfiability of all time constraints at build-time, without knowing
the start date of the process, the timed graph must allow the distance of at least � be-
tween a and all it’s predecessors, where � is computed for each predecessor as shown
above. Consequently, the fixed-date constraint fdc�a� T � is replaced by a lower-bound
constraint lbc�b� a� �� for every predecessor b of activity a.

4.2 Lower-Bound Constraints

The construction of the timed workflow graph that includes structural and lower-bound
constraints is presented below. We should note that due to the way we carry out the
computations, the activities in the resulting graph satisfy all lower-bound constraints.

Forward Calculations

for all activities a with a.pos = start
a.E := a.d

endfor
for all activities a with a.pos �� start

in a topological order
a.E := max(fb.E + b.d | b � a.predg,

fm.s.E + m.� | m = lbc(s,a,�)g)
endfor

Backward Calculations

for all activities a with a.pos = end
a.L := a.E

endfor
for all activities a with a.pos �� end

in a reverse topological order
a.L := min(fs.L - s.d| s � a.succg,

fm.d.L - m.� | m = lbc(a,d,�)g)
endfor



1

45402010

10 D

40

DCBA 2

b)

a)

CBA 2

10

252010

10 DCB

30 504035
d)

5

40

1A

1

452540202010 40

2

553025

5

5

70

2010

10 DCBA

25 40

5

c)
40

1

3035

2

55

Fig. 3. Incorporating upper-bound constraints

4.3 Upper-Bound Constraints

In the timed workflow graph constructed during the previous step, an upper-bound con-
straint ubc�s� d� �� is violated when either s�E � � � d�E or s�L � � � d�L. In this
case, we can use the buffer times of s and d to increase the E-value of s and decrease the
L-value of the d in an attempt to satisfy the constraint. However, buffer time availabil-
ity is a necessary but not sufficient condition for satisfying an upper-bound constraint.
For example, in the workflow graph shown in Figure 2, the upper-bound constraint
ubc�B�C� �� cannot be satisfied because the value of C�E is always increased by the
same amount as B�E.

A necessary condition for constraint ubc�s� d� �� to be satisfiable is that the distance
between s and d is less than �. The distance is the sum of the durations of the activities
on the longest path between s and d, and it can be computed by using the forward or
backward calculations presented in the previous section, with s the starting node and d
the ending node. We should note that for well structured workflows this distance does
not change when the deadline of the entire workflow is relaxed and, therefore, more
buffer becomes available for each activity. Consequently, extending the deadline of the
whole workflow does not help us in satisfying violated upper-bound constraints.

One can show that if there is a node n between s and d with less buffer than both
of them, then the buffer of s and the buffer of d can be reduced without influencing the
E-values or L-values of the other node by: min�buffer�s��buffer�n�� buffer�d��
buffer�n��. Instead of finding the “safe” value by which the buffer of one end-point of
the constraint can be reduced without affecting E and L values of the other end-point,
we follow a more constructive approach.



If an upper-bound constraint is violated, we set the E-value of the source node to
the value of d�E � �. If this value is greater than s�L, the upper-bound constraint is
violated. Otherwise, we recompute the E-values of the timed graph starting at s and
if the E-value of d does not change, the constraint is satisfied. In a similar way, we
decrease the L-value of the destination node by � and if this value is not less than d�E,
we recompute the L-values of all predecessors of d. If the L-value of s does not change,
the constraint is satisfied.

While the above can be used for individual upper-bound constraints, it is not enough
for handling multiple upper-bound constraints. Figure 3 shows an example that demon-
strates this problem. Figure 3a) shows the starting timed graph. Figure 3b) shows the
timed graph after the integration of ubc�B�D� ���. When ubc�A�C� ��� is integrated,
ubc�B�D� ��� is violated at the L-values, as shown in Figure 3c). Finally, Figure 3d)
shows the successful integration of both constraints.

We address this problem by checking whether an already incorporated upper-bound
constraint is violated when new upper-bound constraints are incorporated into the timed
graph. The following unoptimized algorithm summarizes this procedure. In this algo-
rithm, the re-computation of the timed graph involves the forward and backward com-
putations presented in the previous section.

repeat
error := false
for each m = ubc(s,d,�)

if m.s.E + m.� < m.d.E (* violation at E *)
if m.s.L > m.d.E - m.� (* slack at m.s *)

m.s.E := m.d.E - m.�
recompute timed graph
if m.d.E changes

error := true
endif

else
error := true

endif
endif
if m.s.L + m.� < m.d.L (* violation at L *)

if m.d.E < m.s.L + m.� (* slack at m.d *)
m.d.L := m.s.L + m.�
recompute timed graph
if m.s.L changes

error := true
endif

else
error := true

endif
endif

endfor
until error = true or nothing changed

This algorithm for the incorporation of upper-bound constraints has the following
properties:

1. Termination: The algorithm terminates.
At each loop there is at least one node x for which x.E is increased or x.L is
decreased by at least one unit. Since there is a finite number of nodes, and the E-
and L-values are bound, the algorithm must terminate.



2. Admissibility: A solution is found if there exists a timed graph satisfying all con-
straints.
For an upper-bound constraint m�s� d� ��, m�d�E � m�� is less than or equal to
m�s�E and m�s�L�m�� is greater than or equal to m�d�L for any timed graph sat-
isfying the constraints. Since we set m�s�E and m�d�L to these values and, more-
over, we know that the algorithm terminates, we can conclude that the algorithm
will compute a solution, if one exists.

3. Generality: The algorithm finds the most general solution, if one exists.
Let G and G� be timed graphs which differ only in the E- and L-values. We call G
more general than G�, if for every activity a the following condition holds: aG�E �

aG� �E and aG�L � aG� �L. Following the discussion of admissibility, it is easy to
see that the timed graph generated by the algorithm above is more general than any
other timed graph satisfying the constraints.

4. Complexity: The worst-case complexity of the algorithm is O�m � d � n�, where
m is the number of upper-bound constraints, d is the largest buffer, and n is the
number of activities.
We can give an upper bound for number of iterations of this algorithm as follows:
in each iteration there is at least one E-value increased or one L-value decreased at
least by one unit. If there are m upper-bound constraints, and d is the largest buffer,
then the number of iterations is m � d � � in the worst case. The recalculation is
linear with the number of nodes.

5 Calculations at Process Instantiation Time

At process instantiation time, an actual calendar is used in order to transform all time
information which was computed relative to the start of the workflow to absolute time
points. It is also possible at this procedure to set the a�deadline value for an activity a,
and increase or decrease the buffers computed at build time. Based on the calculations
performed at build time, a deadline for an activity a is valid if it is greater than or equal
to a�E. Fixed-date constraints are also resolved at process instantiation time, since they
rely on absolute time points. (We used worst case estimates for these constraints during
build time).

The computations that take place at process instantiation time are presented below,
assuming that the variable start corresponds to the start-time of the workflow instance.

Forward Calculations

for all activities a with a.pos = start
a.E := start + a.d

endfor
for all activities a with a.pos �� start

in a topological order
a.E := max(fb.E + b.d | b � a.predg,

fm.s + m.� | m = lbc(s,a,�)g)
if there exists dc = fdc(a,T)

a.E := dc.T.next(a.E)
endif

endfor



Backward Calculations

for all activities a with a.pos = end
if a.deadline < a.E

raise exception
else

a.L := a.deadline
endfor
for all activities a with a.pos �� end

in a reverse topological order
a.L := min(fs.L - s.d| s � a.succg,

fm.d - m.� | m = lbc(a,d,�)g)
if exists a.deadline and a.deadline < a.L

a.L := a.deadline
endif
if there exists dc = fdc(a,T)

a.L := dc.T.prev(a.L)
endif
if a.L < a.E

raise exception
endif

endfor

Incorporation of Upper-Bound Constraints: incorporate()

repeat
error := false
ok := true
for each m = ubc(s,d,�)

if m.s.E + m.� < m.d.E (* violation at E *)
m.s.E := m.d.E - m.�
ok := false
if there exists dc = fdc(m.s,T)

m.s.E := dc.T.next(m.s.E)
endif
if m.s.E > m.s.L

error := true
endif

endif
if m.s.L + m.� < m.d.L (* violation at L *)

m.d.L := m.s.L + m.�
ok := false
if there exists dc = fdc(m.d,T)

m.s.L := dc.T.prev(m.d.L)
endif
if m.d.E > m.d.L

error := true
endif

endif
endfor
if ok = false and error = false

error := recompute();
endif

until error = true or ok = true

Timed Graph Re-computation: recompute()

for all activities a in topological order
a.E := max(fb.E + b.d | b � a.predg,

fm.s + m.� | m = lbc(s,a,�)g, a.E)
if there exists dc = fdc(a,T)



a.E := dc.T.next(a.E)
endif
if a.L < a.E

return false
endif

endfor
for all activities a in reverse topological order

a.L := min(fs.L - s.d | s � a.succg,
fm.d - m.� | m = lbc(a,d,�)g, a.L)

if there exists dc = fdc(a,T)
a.L := dc.T.prev(a.L)

endif
if a.L < a.E

return false
endif

endfor
return true

There is a possibility of optimizing the re-computation procedure by starting at
the first node where an E-value was changed. However, there is additional overhead
associated with this. Finally, the algorithm for incorporating upper-bound constraints
into the timed graph has the same properties as the corresponding one presented in
Section 4.

6 Time Management at Run-Time

6.1 General computations

During the execution of a given workflow instance, we have to ensure that deadlines
are not missed and any time constraints attached to activities are not violated. In order
to achieve this, we may have to delay the execution of some of the activities that are
either sources of upper-bound constraints or destinations of lower-bound constraints.
Figure 4 shows a workflow segment having the upper-bound constraints ubc�C� I� ���
and ubc�G�H� 	�. In this example, if F ends at �� and C ends at �� and, thus, D will
end at 

 and H at 
�, G must not start before �� because the upper-bound constraint
will be violated.

Even when we can immediately start the execution of an activity that is the source
of some upper-bound constraint, it can be advantageous to delay its enactment so that
the remaining activities have more buffer. In the example of Figure 4, if C starts at 	,
it will finish at �� and the buffer for all other activities is reduced. In particular, E, H ,
and I will have no buffer available since they have to finish at their E-values to satisfy
the upper-bound constraints.

Selecting an optimal delay value for an activity is part of on-going work. Further-
more, existing work [11–13] can be used for distributing available buffer and slack
times to activities and avoid time exceptions – assign-deadline() corresponds
to this in the algorithm presented below. Buffer distribution addresses the distribution
of extra buffer time that results from the assignment of an overall workflow deadline
that is greater than the L-values of all activities with no successors. Slack distribution
addresses the distribution of slack time that becomes available when activities finish
before their L-values.



12

3

20

5 5

1 IB

C D

E

F G

H

5 13

20

25

8

1810 25

10

35

3328

33 2827 36

33

Fig. 4. Workflow segment with ubc�C� I� ��� and ubc�G�H� ��

The algorithm presented below assumes that activities finish within the interval de-
fined by their E- and L-values (this implies that the termination of an activity should be
delayed until, at least, its E-value. Allowing activities to finish before their E-values is
subject of on-going work). When activity a finishes in the interval �a�E� a�L�, we may
have to recompute the timed graph and re-incorporate upper-bound constraints before
modifying the L-values of the ready activities according to the buffer and slack dis-
tribution algorithm. In addition, the re-computation of the timed graph should use the
L-values of any active activities for computing E-values in order to avoid upper-bound
constraint violations.

if a.tt � a.L (* a.tt = actual termination time *)
a.L := a.tt
a.E := a.tt
done := false
if a is the source of a lower-bound constraint

recompute()
incorporate()
done := true

endif
for each b in a.succ that is ready for execution

if b is source of an upper-bound constraint
if done = false

recompute()
incorporate()

endif
b.L := assign-deadline(b)
recompute()
incorporate()
done := true

else
b.L := assign-deadline(b)
done := false

endif
launch b for execution

endfor
else

invoke escalation process, deadline was missed
endif



6.2 Schedules

The execution of a workflow instance according to the procedures above requires re-
computation of the timed graph after the completion of an activity that is the source
of a lower-bound constraint or has a successor that is the source of an upper-bound
constraint. We can avoid these re-computations by sacrificing some flexibility in the
timed graph. Recall that the timed graph specifies ranges for activity completion times
such that there exists a combination of activity completion times that satisfies all timing
constraints and in which each completion time is within the range of its activity. Run-
time re-computation was required because, once completion time for finished activities
has been observed, not all completion times within the ranges of the remaining activities
continue to be valid.

We define a schedule to be a (more restrictive) timed graph in which any combina-
tion of activity completion times within �E�L� ranges satisfies all timing constraints. In
other words, given a schedule, no violations of time constraints occur as long as each
activity a finishes at time within the interval �a�E� a�L�. Consequently, as long as ac-
tivities finish within their ranges, no timed graph re-computation is needed. Only when
an activity finishes outside its range must the schedule for the remaining activities be
recomputed.

It follows directly from the schedule definition that, for every upper-bound con-
straint ubc�s� d� ��, s�E � � � d�L and for every lower-bound constraint lbc�s� d� ��,
s�L� � � d�E; the reverse is also true, i.e., the timed graph that satisfies these proper-
ties is a schedule (compare this property with the two inequalities that are incorporated
into the timed graph in Section 4). From the way we compute E- and L-values for the
activities in a timed workflow graph, the E- and L-values already qualify as schedules.
Consequently, when every workflow activity finishes execution at its E-value, there is
no need to check for time constraint violations. The same is true when activities finish
execution at L-values.

The development of algorithms for computing schedules with various characteris-
tics is subject of ongoing research.

7 Related Work

The area of handling time-related issues and detecting potential problems at build, in-
stantiation, and run time has not received adequate attention in the workflow literature.
Existing workflow systems offer some limited abilities to handle time. For example,
they support the assignment of execution durations, and deadlines to business processes
and their activities, and they monitor whether deadlines are met.

In [9], an ontology of time is developed for identifying time structures in workflow
management systems. They propose the usage of an Event Condition Action (ECA)
model of an active database management system (DBMS) to represent time aspects
within a workflow environment. They also discuss special scheduling aspects and basic
time-failures. We used parts of their definitions as basis of our concept.

In [11–13], the authors propose to use static data (e.g., escalation costs), statistical
data (e.g., average activity execution time and probability of executing a conditional



activity), and run-time information (e.g., agent work-list length) to adjust activity dead-
lines and estimate the remaining execution time for workflow instances. However, this
work can be used only at run-time, and it does not address explicit time constraints.

[1] proposes the integration of workflow systems with project management tools
to provide the functionality necessary for time management. However, these project
management tools do not allow the modeling of explicit time constraints and, therefore,
have no means for their resolution.

In [15], the authors present an extension to the net-diagram technique PERT to com-
pute internal activity deadlines in the presence of sequential, alternative, and concurrent
executions of activities. Under this technique, business analysts provide estimates of
the best, worst, and median execution times for activities, and the �-distribution is used
to compute activity execution times as well as shortest and longest process execution
times. Having done that, time constraints are checked at build time and escalations
are monitored at run-time. Our work extends this work by providing a technique for
handling both structural and explicit time constraints at process build and instantiation
times, and enforcing these constraints at run-time.

In [6, 16], the notion of explicit time constraints is introduced. Nevertheless, this
work focused more on the formulation of time constraints in workflow definitions, the
enforcement of time constraints through monitoring of time constraints at run-time and
the escalation of time failures within workflow transactions [5]. Our work follows the
work described in [6, 16] and extends it with the incorporation of explicit time con-
straints into workflow schedules.

8 Conclusions

Dealing with time and time constraints is crucial in designing and managing business
processes.

In this paper, we proposed modeling primitives for expressing time constraints be-
tween activities and binding activity executions to certain fixed dates (e.g., first day of
the month). Time constraints between activities include lower- and upper-bound con-
straints. In addition, we presented techniques for checking satisfiability of time con-
straints at process build and process instantiation time, and enforcing these constraints
at run-time. These techniques compute internal activity deadlines in a way that exter-
nally assigned deadlines are met and all time constraints are satisfied. Thus the risk of
missing an external deadline is recognized early and steps to avoid a time failure can be
taken, or escalations are triggered earlier, when their costs are lower.

Our immediate work focuses on: (1) using the PERT-net technique for computing
internal deadlines to express deviations from the average execution duration of activ-
ities; (2) addressing conditionally and repetitive executed activities by providing exe-
cution probabilities to estimate average duration and variance for workflow executions;
(3) considering optional activities and pruning the workflow graph when such activities
should be eliminated to avoid time exceptions; and (4) addressing the different duration
values that could be used at build time: best, average, and worst case execution times
and turn-around times, which include the time an activity spends in the work-list and
the time between start and end of an activity.



References

1. C. Bussler. Workflow Instance Scheduling with Project Management Tools. In 9th Work-
shop on Database and Expert Systems Applications DEXA’98, Vienna, Austria, 1998. IEEE
Computer Society Press.

2. CSESystems. Benutzerhandbuch V 4.1 Workflow. CSE Systems, Computer & Software
Engineering GmbH, Klagenfurt, Austria, 1996.

3. CSE Systems Homepage. http://www.csesys.co.at/, February 1998.
4. J. Eder, H. Groiss, and W. Liebhart. The Workflow Management System Panta Rhei. In

A. Dogac et al., editor, Advances in Workflow Management Systems and Interoperability.
Springer, Istanbul, Turkey, August 1997.

5. J. Eder and W. Liebhart. Workflow Transactions. In P. Lawrence, editor, Workflow Handbook
1997. John Wiley, 1997.

6. Johann Eder, Heinz Pozewaunig, and Walter Liebhart. Timing issues in workflow manage-
ment systems. Technical report, Institut f”ur Informatik-Systeme, Universit”at Klagenfurt,
1997.

7. TeamWare Flow. Collaborative workflow system for the way people work. P.O. Box 780,
FIN-00101, Helsinki, Finland.

8. InConcert. Technical product overview. XSoft, a division of xerox. 3400 Hillview Avenue,
Palo Alto, CA 94304. http://www.xsoft.com.

9. Heinrich Jasper and Olaf Zukunft. Zeitaspekte bei der Modellierung und Ausführung
von Workflows. In S. Jablonski, H. Groiss, R. Kaschek, and W. Liebhart, editors,
Geschäftsprozeßmodellierung und Workflowsysteme, volume 2 of Proceedings Reihe der In-
formatik ’96, pages 109 – 119, Escherweg 2, 26121 Oldenburg, 1996.

10. F. Leymann and D. Roller. Business process management with flowmark. In Proceedings of
the 39th IEEE Computer Society International Conference, pages 230–233, San Francisco,
California, February 1994. http://www.software.ibm.com/workgroup.

11. E. Panagos and M. Rabinovich. Escalations in workflow management systems. In DART
Workshop, Rockville, Maryland, November 1996.

12. E. Panagos and M. Rabinovich. Predictive workflow management. In Proceedings of the 3rd
International Workshop on Next Generation Information Technologies and Systems, Neve
Ilan, ISRAEL, June 1997.

13. E. Panagos and M. Rabinovich. Reducing escalation-related costs in WFMSs. In A. Dogac
et al., editor, NATO Advanced Study Institue on Workflow Management Systems and Interop-
erability. Springer, Istanbul, Turkey, August 1997.

14. Susy Philipose. Operations Research - A Practical Approach. Tata McGraw-Hill, New Delhi,
New York, 1986.

15. H. Pozewaunig, J. Eder, and W. Liebhart. ePERT: Extending PERT for Workflow Manage-
ment Systems. In First EastEuropean Symposium on Advances in Database and Information
Systems ADBIS 9́7, St. Petersburg, Russia, Sept. 1997.

16. Heinz Pozewaunig. Behandlung von Zeit in Workflow-Managementsystemen - Model-
lierung und Integration. Master’s thesis, University of Klagenfurt, 1996.

17. SAP Walldorf, Germany. SAP Business Workflow c�Online-Help, 1997. Part of the SAP
System.

18. Ultimus. Workflow suite. Business workflow automation. 4915 Waters Edge Dr., Suite 135,
Raleigh, NC 27606. http://www.ultimus1.com.


