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Abstract. Our main objective is the modelling and simulation of complex production networks
originally introduced in [15, 16] with random breakdowns of individual processors. Similar to [10], the
breakdowns of processors are exponentially distributed. The resulting network model is of coupled
system of partial and ordinary differential equations with Markovian switching and its solution
is a stochastic process. We show our model to fit into the framework of piecewise deterministic
processes, which allows for a deterministic interpretation of dynamics between a multivariate two-
state process. We develop an efficient algorithm with an emphasis on accurately tracing stochastic
events. Numerical results are presented for three exemplary networks, including a comparison with
the long-chain model proposed in [10].
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1. Introduction. Tackling transportation and dynamic flows on networks by
partial differential equations is nowadays discussed in engineering areas like traffic
flow [6, 19, 21], gas networks [2, 3], water pipelines [26, 31] or supply chains [1, 5, 15,
20]. Those network problems have gained great attention in the last decade and are
recently used for optimization purposes, see [11, 17, 18, 25, 29, 30] for an overview.
However, the aforementioned models are normally deterministic and stochastic dy-
namics have not been studied yet extensively, with a few exceptions such as the work
of Degond and Ringhofer [10].

Analysing the dynamical behaviour of manufacturing systems is one important is-
sue in managing or planning supply chains. Generally, goods or parts pass through dif-
ferent stages of production according to customer demand and cost-efficiency. Mathe-
matical models are able to capture system-dependent attributes and predict the time
evolution of moving goods. The modelling basically allows for two unrelated ways:
either parts are tracked individually through the production process or, alternatively,
average quantities are used to calculate the total load. This leads to the established
class of discrete event simulations (see [1]) and continuous models, respectively. In
order to avoid the computational expensiveness of discrete event simulations, we focus
on dynamical models based on ordinary and partial differential equations. The latter
are capable to study large-scale production systems and furthermore admit a detailed
analytical treatment in the deterministic setting [7, 22].

In this paper, we are interested in the modelling and simulation of time-continuous
production networks with random breakdowns of processors. Starting from a purely
deterministic model that might incorporate simulation as well as optimisation pur-
poses [15, 16] we develop a stochastic framework describing the situation of unexpected
failures. The basic idea is that each processor has a finite maximal capacity which
is set to zero in case the processor is shut down. We suppose the total breakdown
of an individual processor is a critical point in the system and failure rates are used
to describe the frequency at which the processors in the network fail, cf. [10]. In
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our network model, the random breakdown of a processor is modelled by breaking
down its maximal capacity at exponentially distributed time points. We will see that
stochastic effects will affect the dynamic behaviour of the system significantly.

This modelling approach leads to a stochastic network model, where the solution
is a piecewise deterministic process (PDP). A PDP consists of a mixture of deter-
ministic descriptions and random jumps [8, 9]. The random jumps are given by a
multivariate state process, which models the current state of the processors. Hence,
the randomness appears only as point events, i.e., there is a sequence of random oc-
currences at random times when one of the processors is switching from operating
to in-operating state or the other way around, but there is no additional component
of uncertainty between these times. The underlying deterministic part is a network
model described by a coupled systems of deterministic partial differential equation
and ordinary differential equations (coupled PDE-ODE system). In contrast to time-
discrete network formulations, the queueing strategy is described by an ODE and
the physical production process of each processor in the network is modelled by a
hyperbolic PDE. Combining all ingredients of the stochastic system we get a coupled
PDE-ODE model with Markovian switching. These systems are quite different from
stochastic networks that are queueing-type Markov chains and usually discrete in time
and space [24, 34].

The simulation of time-continuous network models requires appropriate numeri-
cal methods which can handle the different time behaviour of the dynamics as well
as the random breakdowns of processors. We therefore introduce a modification of
the stochastic simulation algorithm which can be used to perform Monte-Carlo sim-
ulations of our network model for general topologies. In this way, we simulate the
production network many times and average over the sampled realisations to de-
termine several quantities. We are mainly interested in exception and deviation of
processors density, the queue loads and the network outflow versus time.

The structure of this paper is as follows: In Section 2 we start with a description of
the deterministic model, then we model the random breakdowns of single processors by
a stochastic jump process and add these processes to the network model. In Section 3
we derive a multivariate state process describing the system of processors based on the
single jump processes of each processor. Moreover, we point out that the stochastic
solution of our model is piecewise deterministic and the multivariate state process is
a random constant between switching points. This plays a decisive role, since we can
apply a stochastic simulation algorithm to compute sample realisations and scenarios.
The algorithm is based on two parts: (i) The sampling of the switching points and
the states of the multivariate state process, and (ii) The approximation of the PDE-
ODE part by deterministic numerics. Details of the sampling, the time and space
discretisation and the numerical methods are given in Section 4. With a numerical
simulation tool at hand, we perform Monte-Carlo simulations in Section 5. At first,
stochastic default is considered for a chain of processors and results are brought in
line with the model of Degond and Ringhofer ([10]). Secondly, control parameters for
a small-scale stochastic network are investigated. In the last example, our algorithm
is demonstrated on larger cascade networks.

2. Modelling of production networks with random breakdowns. We
start with an introduction to the deterministic model. In a second step, we model
the random breakdowns of the processors by a set of two-state processes with expo-
nentially distributed switching times between two states. Finally, we combine both
approaches and give a stochastic model of the network with random breakdowns of
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the processors.

2.1. The deterministic network model. Time-continuous deterministic net-
work models of serial networks have been introduced in [1], where the authors derived
a conservation law for the part density of processors. In [15, 16], this model has been
reformulated by installing queues in front of processors. This approach can be applied
to more complex network topologies and considers densities of the processors as well
as loads of the queues. We are now concerned with the latter approach, which is given
by the following description.

First, we set up a couple of notation. Let (V ,A) denote a directed graph consisting
of a set of arcs A and a set of vertices V and define N := |V|, M := |A|. For any fixed
vertex v ∈ V , the set of ingoing arcs is denoted by δ−v and the set of outgoing arcs by
δ+
v . In our network model, each arc represents a processor with its preceding queue

and each vertex is a distribution node between different processors. Each processor
e (e = 1, . . . , M) is identified with the real interval [ae, be], where be > ae, and its
length is ℓe = be − ae accordingly.

A vertex without predecessors act as a network inflow point. We collect all of
these vertices in Vin := {v ∈ V : |δ−v | = 0}. Their influx is externally given as an
inflow function of time denoted by Gv

in(t) for all v ∈ Vin. Likewise, define the vertices
of product outflows from the network by Vout := {v ∈ V : |δ+

v | = 0} and let s : A → V
map any arc onto its vertex of origin.

Assume that we like to model and simulate the network quantities over a time
period [t0, T ]. Then the time-continuous network model describes the evolution of the
density of goods ρe(x, t) inside each supplier e and the time evolution of the buffer
qe(t) belonging to supplier e. For e = 1, . . . , M denote

ρe : [ae, be] × R
+
0 → R

+
0 : (x, t) 7→ ρe(x, t)

the density of products at position x and time t in processor e as well as

qe : R
+
0 → R

+
0 : t 7→ qe(t)

the load of the queue in front of processor e at time t. We abbreviate p := (ρ1, . . . , ρM ),
q := (q1, . . . , qM ). Each processor is working with a constant velocity ve and has a
maximal processing rate µe that is constant, too. This means that on each arc e the
density ρe(x, t) is transported with velocity ve if the flux of goods is less or equal than
the maximal processing rate µe. Hence, the density ρe satisfies the partial differential
equations (PDE) of hyperbolic type

∂tρ
e(x, t) + ∂xfe(ρe(x, t)) = 0 , x ∈ [ae, be], t ∈ [t0, T ] , (2.1a)

where the relation between flux and density is given by the flux function

fe(ρe) = min(ve ·ρe, µe) . (2.1b)

Remark 2.1. The benefit of representation (2.1b) is the easy inclusion of random
breakdowns. To model a complete failure of a single processor, the maximal processing
rate will be set to zero and hence the processing rate is considered as a time-dependent
random variable, see Subsection 2.3.

For each processor e, we introduce a buffer zone for the incoming but not yet
processed goods. This buffering is modelled by the time-dependent function qe(t)
where the dynamics is governed by the difference of all incoming and outgoing fluxes
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denoted by the functions ge
in and ge

out, respectively. Hence, the load qe of a queue
fulfils the ordinary differential equation (ODE)

∂tq
e(t) = ge

in(t) − ge
out(t) , t ∈ [t0, T ]. (2.1c)

For the ingoing flux ge
in(t), we have the following model: If the origin of processor

e does not belong to the set of network inflow points Vin, the incoming flux is given
by the sum of all incoming fluxes multiplied by the distribution rate Av,e(t). For any
outgoing arc, we introduce distribution rates Av,e(t), v ∈ V such that 0 ≤ Av,e(t) ≤ 1
and

∑

e∈δ
+
v

Av,e(t) = 1 ∀v, thereby Av,e = 1 if |δ+
v | = 1. Those rates describe the

distribution of incoming parts among the outgoing processors, and represent natural
controls of the production network. If the origin of processor e belongs to the set of

network inflow points Vin the incoming flow is the inflow function G
s(e)
in (t), where s(e)

is the origin of processor e:

ge
in(t) =

{

As(e),e(t)
∑

ē∈δ
−

s(e)
f ē(ρē(bē

v, t)) if s(e) 6∈ Vin,

G
s(e)
in (t) if s(e) ∈ Vin.

(2.1d)

For the outgoing flux ge
out(t) in (2.1c), we consider the following model: If the

queue is empty, the outgoing flux is the minimum of the incoming flux and the pro-
cessing rate µe. If the buffer is not empty, the buffer is always reduced with a capacity
determined by processing the maximal capacities of the processor:

ge
out(t) =

{

min{ge
in(t) , µe} if qe(t) = 0,

µe if qe(t) > 0.
(2.1e)

Remark 2.2. Since we are mainly interested in the simulation of stochastic
networks, finding optimal distribution rates As(e),e(t) in Eq. (2.1d) is not the focus of
this work. Therefore, one can think of constant rates αs(e), e.g. the naive control

αs(e) := 1/|δ+
s(e)| (2.1f)

in the following.
In order to complete the network formulation, we introduce the following initial

values of the ODE as well as of the PDE

ρe(x, t0) = ρe
0(x), qe(t0) = qe

0 (PDE and ODE initial conditions (i.c.)) (2.1g)

and the boundary conditions of the PDE, which are given by the outgoing flow of the
queues

ρe(ae, t) = ge
out(q

e(t))/ve (PDE boundary conditions (b.c.)). (2.1h)

This boundary condition represents the coupling of the processors at their connection
points.

Putting all these equations together, we end up with the following definition of a
solution.

Definition 2.3 (The time-continuous network model). Let [t0, T ] be a fixed real
interval. Then, we call (p,q) a solution of the time-continuous network model on
[t0, T ] if it fulfils equations (2.1a) - (2.1h). The solution depends on the initial values
p(t0) = p0 and q(t0) = q0 at time t0.
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Apart from the solution components, the total outflow of the network will be an
interesting performance measure for our numerical experiments, see Section 5. The
time-dependent outflow of any outgoing vertex v ∈ Vout can be computed by

Gv
out(t) =

∑

e∈δ
−

v

fe(ρe(ve, t)).

Hence, the time evolution of all produced goods of the network is given by

Gnet
out(t) =

∑

v∈Vout

∫ t

t0

Gv
out(s) ds . (2.2)

2.2. Modelling random breakdowns of processors. The key idea in mod-
elling random breakdowns of processors is to switch the individual maximal processing
rates between on or off states, i.e. either the processing rate is on and possesses goods
with rate µe as usual or the processing rates is turned off by setting µe = 0. This
procedure is a Markov process since we assume the probability to change the state is
independent of the time elapsed since the last switch. Naturally, these on or off du-
rations are exponentially distributed since they emanate from a memoryless process,
as suggested in [10]. In order to incorporate random breakdowns of processors in a
mathematical framework, we define a set of two-state stochastic process

re : R
+
0 × Ω → {0, 1} : t × ω 7→ re(t, ω) , e = 1, . . . , M

indicating whether the processor e is operating or in-operating. The state process
re(·) depends on the time as well as on the random sample ω ∈ Ω, whose argument ω
are usually dropped. For fixed time re(t, ·) is a random variable which takes values in
{0, 1}, and for a fixed random sample re(·, ω) is a realisation or scenario of the state
process shown in Fig. 2.1.

      

0

1

Two−state process

time

st
a

te

Fig. 2.1: A realisation of the two-state process re: Values in {0, 1} and exponentially dis-
tributed times between switchings.

We assume that each processor e goes through alternating operating and in-
operating periods, which are distributed exponentially. If re(t) = 1 the processor e
is operating and the case re(t) = 0 indicates that the processor is in-operating and
under repair. We call a change in the status re of a processor switching. Transitions
from the operating to the in-operating state are called breakdowns, while those from
the in-operating to the operating state are repairs.

The operating and in-operating periods are independent of the states of the other
processors and of the number of goods in the queue as well as of the density of
goods in the processor. To model the switching between the periods we introduce
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Fig. 2.2: A processor switching from off to on and back (left) and vice versa (right).

two parameters for each processor: Let τe
on describe the mean time between failures

(MTBF) and let τe
off describe the mean repair time (MRT), respectively.

Assuming that the processor e at time t∗ + ∆τe has just switched back from
operating to the in-operating status (re(t∗+∆τe) = 0) or in-operating to the operating
status (re(t∗ + ∆τe) = 1) the length ∆τe of that period is chosen randomly from the
exponential distribution with rate parameter λ(re(t∗)). The rate parameter is given
by

λ(re(t∗)) =

{

1/τe
on , if re(t∗) = 1,

1/τe
off , if re(t∗) = 0.

(2.3)

and the density function Exp(t; λ) of the exponential distribution where λ = λ(re(t∗)).
Hence, from the mathematical viewpoint the state process re(t), t ≥ t0 is a right-

continuous continuous-time Markov process taking values in {0, 1}, describing the
operating and in-operating time periods. The switching events occur continuously
and independently of one another. For each processor the state process re(·) is a
single Markov process, where almost every sample path is a right-continuous step
function with a finite number of simple jumps (switchings) on [t0, T ].

The state of the whole network is described by the multivariate state process

r(t) = (r1(t), . . . , rM (t)) ∈ {0, 1}M , t ≥ t0 , (2.4)

which consist of the state processes of all processors. If one of the processors breaks
down or gets repaired the multivariate state process is switching from one state into
one other. In Section 3.1 we show that r(·) is a Markov process itself, which also has
a finite number of jumps on [t0, T ].

2.3. The stochastic network model with random breakdowns. The ran-
dom breakdowns of the processors are included in the network as a model for the
capacities of the processors. We model the capacity of a processor e by

µe(t) := µe · re(t) (2.5)

where µe is the maximal processing rate and re is the two state process describing its
operating and in-operating times. This model of the capacity is now used in the flux
function (2.1b) and in the function of the outgoing flux (2.1e).

Let us discuss the impact of the random breakdowns in the network formulation.
If a breakdown occurs during the operation of a processor, the capacity of the pro-
cessor switches to zero and is resumed from the point of interruption after the repair.
Incoming goods continue to join the queue during in-operating periods.
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Moreover, due to the stochastic processes re the quantities in the network formu-
lation are changing. Its solution is a stochastic process depending on the time t, the
space x and the random sample ω. Thus, the solution components ρe and qe of each
processor are stochastic processes, too. The stochastic process of the densities reads

ρe : [ae, be] × R
+
0 × Ω → R

+
0 : (x, t, ω) 7→ ρe(x, t, ω)

and the loads of the queues are given by

qe : R
+
0 × Ω → R

+
0 : (t, ω) 7→ qe(t, ω) .

In this context the densities of the processors and the loads of the queues at
fixed time t and space x, respectively, are random variables ρe(x, t, ·) = ρe(x, t) and
qe(t, ·) = qe(t) whose argument ω are usually dropped. For a fixed sample or real-
isation ω the solution components p(·, ·, ω), q(·, ω) as well as the multivariate state
process r(·, ω) is called a realisation or a scenario of the solution.

Including the state-processes re in the network model, the stochastic network
formulation reads (t ∈ [t0, T ] and ω ∈ Ω)

∂tρ
e(x, t, ω) + ∂xfe(ρe(x, t, ω)) = 0 , x ∈ [ae, be] (2.6a)

fe(ρe) = min(ve · ρe(x, t, ω), µe · re(t, ω)) (2.6b)

∂tq
e(t, ω) = ge

in(t) − ge
out(t) , (2.6c)

ge
in(t) =

{

As(e),e(t)
∑

ē∈δ
−

s(e)
f ē(ρē(bē, t, ω)) if s(e) 6∈ Vin,

G
s(e)
in (t) if s(e) ∈ Vin.

(2.6d)

ge
out(t) =

{

min{ge
in(t) , µe · re(t, ω)} if qe(t, ω) = 0,

µe · re(t, ω) if qe(t, ω) > 0.
(2.6e)

ρe(x, t0, ω) = ρe
0(x), qe(0, ω) = qe

t0
(PDE and ODE initial conditions (i.c.))(2.6f)

ρe(ae, t, ω) = ge
out(q

e(t, ω))/ve (PDE boundary conditions (b.c.)) (2.6g)

re(0, ω) = re
0 (initial state of the processors) (2.6h)

Here, we have replaced the function µe of each processor by the stochastic process
µ · re and we have rewritten the components ρe and qe of the solution into their
stochastic processes. This is denoted by the additional argument ω. Though the
network system (2.6) formally differs only by the additional status process re in (2.5)
from the deterministic network model (2.1), its solution is now a stochastic process.

Definition 2.4 (The time-continuous network model with random breakdowns).
Let [t0, T ] be a fixed real interval. Then, the stochastic process X = (p,q, r) is called a
solution of the time-continuous network model with random breakdowns on [t0, T ] if
equations (2.6a) – (2.6h) hold with probability 1. The solution consists of the densities
of processors, the loads of queues and the state process, where p(t0) = p0, q(t0) = q0,
and r(t0) = r0 denote the initial values at time t0.

7



3. The coupled PDE-ODE system with Markovian switching. Due to
the influence of the state process r(t), t ≥ t0, the randomness in the solution X of the
network with random breakdowns appears as point events when one of the processors
is breaking down or gets repaired. There is no additional component of uncertainty
and the network behaves completely deterministic between these points. Hence, its
solution belongs to the class of piecewise deterministic processes (PDPs).

PDPs are originally introduced by Davis [8, 9] for a class of hybrid Markov pro-
cesses. A PDP consists of a mixture of deterministic time evolution and random
jumps. The jump process itself may not necessarily be Markovian, because the jump
times of a PDP can depend on the deterministic time evolution. In the setting of
PDPs the interaction between both parts define a Markov process.

In our network formulation the state processes re represent the jump processes.
These processes are only time dependent and do not depend on other network quan-
tities and solution components, respectively. In the following we will see that the
multivariate state process r is a Markov process by itself and our network formulation
belongs to a special subclass of PDPs, namely X is the solution of deterministic equa-
tions with Markovian switching. More precisely, the time evolution is formulated by
a coupled deterministic PDE-ODE system and the multivariate state process r gives
the Markovian switching. We will apply a stochastic simulation algorithm to compute
sample realisations of the solution process.

Systems that combine a part of the state that takes values continuously (coupled
PDE-ODE system) and another part of the state that takes discrete values (state
process) are often called hybrid systems. When the first part is an ordinary differ-
ential equation and the latter part is a Markovian process these systems are called
ODEs with Markovian switching. Equations of these type have been considered in
some practical applications, like electrical power systems [33], solar receiver [32] and
economics [23]. A general introduction can be found in [28], and more recently in [27],
where the authors consider stochastic differential equations (SDEs) with Markovian
switching.

3.1. The multivariate jump process. In Section 2.2 we have considered the
two-state processes re, which describe if the single processor e is operating or in-
operating at time t. We have assumed that these operating and in-operating periods
are exponentially distributed and we have modelled these periods by exponential
distributed random variables. Hence, each single state process re is memoryless and
Markovian.

Now, we combine the properties of the single processes re and consider the mul-
tivariate jump process defined by r(t) = (r1(t), . . . , rM (t)), t ≥ t0. We assume that
this process just switched at the time t∗ from one state into another. We are now
interested in the length ∆τ up to the next switching. This length can be computed
as the minimum over all random variables ∆τe of processors e until the time point of
the next state switch

∆τ = min{∆τ1, . . . , ∆τM} . (3.1)

Here, each time period ∆τe are independent exponentially distributed random vari-
ables with rate parameters λe(re(t)) depending on the current state of the processor
(cf. Section 2.2). We have the following result.

Lemma 3.1. Assume that a switch in the network has occurred at time t∗ and
that the state of the network is given by r(t∗). Then the probability that the next
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switch will be the eth processor and will occur after the time period s is given by

P(s, e| r(t∗)) =
λe(re(t∗))

λsum(r(t∗))
· λsum(r(t∗)) exp(−λsum(r(t∗))s), (3.2a)

where

λsum(r(t∗)) =
∑

e

λe(re(t∗)) . (3.2b)

As for the single switch processes re, this probability depends on the current state
r(t∗) of the system, but not on its history.

Proof. Let ∆τ1, . . . , ∆τM be independently exponentially distributed random
variables with rate parameters λe. It is well-known that the minimum

∆τ = min{∆τ1, . . . , ∆τM}

is an exponentially distributed random variable, too, where the rate parameter is
given by the sum λsum of the individual rate parameters. Hence, the probability that
the next switch of the network will occur after a time s reads

P(min{∆τ1, . . . , ∆τM} > s) = exp (−λsums) .

and the index of the variable which achieves the minimum is distributed according to
the law

P(∆τe = min{∆τ1, . . . , ∆τM}) =
λe

λsum
.

Together this gives the lemma.
Remark 3.2. Formula (3.2a) can be interpreted as the joint density function of

two independent random variables: (i) length of the time period until next switch, and
(ii) index of the next switching processor. This allows us to simulate independently
the length of the next time period and the switching processor. The length of the time
interval until this next switching is an exponentially distributed random variable with
rate parameter λsum(r), whereas the next switching index corresponds to a discrete
random variable: Choose one of the processors such that the chance of picking the
eth processor is proportional to λe/λsum. Both can be computed via a uniform (0, 1)
sample (see Algorithm 4.1 for algorithmic details).

3.2. A stochastic simulation algorithm. Next we consider the solution pro-
cess of the stochastic network model. A switching between two states of r occurs only
in one of the processors and the randomness appears only at the switching points.

Proposition 3.3. Almost every sample path of r(·) is a multi-dimensional step-
function with a finite number of simple jumps on [t0, T ].

So, there is a sequence T ∗ = {t∗i }i≥0 of stopping times such that for almost every
random sample ω ∈ Ω there is a finite number S = S(ω) for t0 = t∗0 < t∗1 < · · · < t∗S =
T , which counts the number of switchings, and r(·) is a random constant on every
interval [t∗i , t

∗
i+1[, namely r(t) = r(t∗i ) on t∗i ≤ t < t∗i+1 for all i ≥ 0. We refer to t∗i as

a switching point and to T ∗ as the sequence of switchings.
The network behaves deterministically in the time interval [t∗, t∗ + ∆τ ] and its

solution X is piecewise deterministic. The time interval is still random because the
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switching points t∗i are random variables, but the state process r(·) is a random
constant on [t∗, t∗ + ∆τ ].

Whenever r is a random constant, there are no random effects in the network
and the stochastic network formulation reduces to a deterministic one. We can use
a deterministic approach to compute a solution of the coupled PDE-ODE system
between the switching point. We can compute single realisations or scenarios of the
piecewise deterministic solution process based on the multivariate jump process and
the coupled PDE-ODE system by the following stochastic simulation algorithm.

The main idea is to sample iteratively a solution or realisations of the stochastic
solution process by (i) sample the switching times from the mean up and mean down
times τe

down and τe
up of the processors, and (ii) use deterministic numerics between

these time points to solve the coupled PDE-ODE system. The initial values of one
step are given by the final values of the network of the former step.

Definition 3.4 (A modified stochastic simulation algorithm). Let [t0, T ] be
a fixed real interval. Then, a realisation X of the solution process X of the time
network model with random breakdowns on [t0, T ] can be sampled by the following
stochastic simulation algorithm for the coupled PDE-ODE system with Markovian
switching (2.6): Iterate

1. Sample next switching point t̄∗i+1 and the next state of the multivariate state
process r̄(t̄∗i+1)

2. Compute the solution over t ∈ [t̄∗i , t̄
∗
i+1] where r̄(t) = r̄(t̄∗i ) using deterministic

numerics.

As output we get a sampled realisation or sampled scenario of the solution process X.

Note that the stochastic simulation algorithm samples the switching points t̄∗i ,
where one of the M processors changes its current state from operating to in-operating
(1 to 0) or vice versa. This gives a set of strictly increasing time points denoted by

T
∗

= {t̄∗0, t̄
∗
1, . . . } .

Remark 3.5. Our approach is almost similar to the stochastic simulation al-
gorithm (SAA) to compute a single scenario of the Chemical Master Equation (see
[12]). The SSA was invented by Dan Gillespie (see the classic early reference [13]).
One can show that the SSA reproduces the statistics of the network exactly, however
it comes with a high computational cost especially in the case that the network con-
sists of processors with very fast switchings between their operating and in-operating
states.

4. Numerics for coupled PDE-ODE systems with Markovian switching.

In this section we introduce a numerical scheme to compute sample realisations of
the stochastic supply chain model introduced in Section 2. As we have shown in
Section 3, this requires the subsequent iteration of two algorithms: the simulation of
switching points of the multivariate state-process r and the deterministic computation
of the coupled PDE-ODE system between these switchings. The computation of single
realisations will be used for Monte-Carlo simulations in the next section.

Suppose we are at time t = t̄∗i , and the network has either just seen a breakdown
or repair of one of its processors. Following Section 3, we obtain the next switching
time and the next processor to default or to be repaired with the following algorithm:
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Algorithm 4.1 (Sample next switching point t̄∗i+1 and processor).

1. collect exponential weights of all processors e from (2.3): λe := λ(r̄e(t̄∗i )); (4.1a)

2. calculate total exponential weight, cf. (3.2b): λsum :=
∑

e

λe; (4.1b)

3. sample time period and set next switching: ∆τ ∼ Exp(λsum) , t̄∗i+1 = t̄∗i + ∆τ ;
(4.1c)

4. define a partition of the unit interval: he :=

[

∑e−1
i=1 λi

λsum

,

∑e
i=1λi

λsum

)

,
⋃

e∈A

he = [0, 1);

(4.1d)

5. sample from uniform distribution on [0, 1): ū ∼ U([0, 1)) ; (4.1e)

6. detect switching processor: ē ∈ {1, . . . , M} such that ū ∈ hē; (4.1f)

7. compute new state: copy r̄(t̄∗i+1) := r̄(t̄∗i ) and change r̄ē(t̄∗i+1) :=

{

1, r̄ē(t̄∗i ) = 0

0, r̄ē(t̄∗i ) = 1;

(4.1g)

Let us now consider the numerical solution the PDE-ODE system (2.6) between
two sampled switching times. We start by defining the spatial discretisation of each
processors e to consist of Ke + 1 equidistant points: xe

k = ae + k · ∆xe , k =
0, . . . , Ke, where ∆xe := le/Ke and xe

Ke = be. Recall, that propagation in spatial
length associated with a processor can be interpreted as e.g. increase of completion
within one production step in a supply chain. A fine discretisation in space therefore
corresponds to a detailed tracing of the level of completion of items within processors.
For the model to be properly defined, we need at least two discretisation points for
every processor (Ke ≥ 1 ∀e). Note, that this marks a difference between the model
introduced here and the long-chain model by Degond and Ringhofer in [10], where
each processor is identified with one discretisation point on the line.

Any proper time discretisation of [t0, T ] has to include the sampled switching
times t̄∗i ∈ T ∗, since the network configuration changes randomly at any t∗i ∈ T ∗,
whereas the system evolves deterministically in between any two switching times, as
it has been argued in the previous section. A Monte-Carlo study of the stochastic
evolution of the complete network (see Section 5) requires common points in time
discretisation in each simulation. Therefore, a deterministic grid

T := (ti), ti := t0 + i · ∆t with ∆t := min
e

{

∆xe

ve

}

given by the CFL-condition is defined common to all simulations, and the time
discretisation for a particular simulation of (2.6) between t̄∗i and t̄∗i+1 is given by
(tj) = {t̄∗i , t̄

∗
i+1} ∪ T |[t̄∗i , t̄

∗
i+1].

We solve the ODE (2.6c) with the explicit Euler scheme. Equations (2.6a), (2.6b)
reduce to a linear advection equation at positive speed between any two switching
times. Hence, (2.6a) is solved with the upwind scheme, which gives rise to the CFL-
condition. The further equations (2.6d)–(2.6f) and (2.6h) are easily discretised (see
also [15]), where a numerical cut-off function prevents negative queue values in the
discretisation of (2.6e). Emphasis has to be placed on coupling condition (2.6g): We
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stress, that product transfer from the end of one processor through the vertex into
the queue and onto the successive processor is instantaneous in the continuous model.
Diversion, control, and passing through the queue takes up no time. To preserve this
key feature in the numerical scheme, we may not introduce an artificial time delay
in the transfer from incoming into outgoing processors. This can be ensured with a
careful sequencing of computations: We first compute the spatially last step of the
upwind schemes in any processors to compute the outflow of product and the total
inflow into vertices. With the evaluation of the control functions, inflows into the
queue and the resulting outflows are obtained. The decisive step is, that the outflow
from the queue is stored as the boundary condition of the density at the current time
point tj instead of tj+1, which would cause a numerical delay:

ρ̄e(x0, tj) = ge
out(tj)/ve

After that, the remaining grid points of all processors are iterated and the boundary
condition ρ̄e(ae, tj) is transported into the processors (if r̄e = 1). The complete
numerical scheme looks as follows:

Algorithm 4.2 (Piecewise deterministic approximation of the coupled PDE-
ODE system). Let t̄∗i and t̄∗i+1 be two sampled switching times, such that r̄(t) is
constant on [t̄∗i , t̄

∗
i+1), and no switching occurs in between. Let the approximation

(p̄(t̄∗i ), q̄(t̄∗i )) up to the time t̄∗i be given. Moreover, let the number of spatial discreti-
sation intervals for the network processors be given as Ke , e ∈ A and let T be a
global time discretisation of [t0, T ]. Then, the numerical approximation (p̄, q̄) of the
solution process (p,q) of system (2.6) on [t̄∗i , t̄

∗
i+1] is given by the following algorithm:

Initialisation:

(xk)k=0:Ke :=
{

ae, ae + 1 · le/Ke, . . . , be
}

(discretisation of the processors)

T = {t0, . . . , tJ} (global time discretisation of [t0, T ])

(tj)j := {t̄∗i , t̄
∗
i+1} ∪ T |[t̄∗i , t̄

∗
i+1] =

{

t̄∗i , tc, tc+1, . . . , tc+C−1, t̄
∗
i+1

}

(local time discret.)

Iteration: For j = 0 : C − 1


















































For e = 1 : M
[

outflowe = ve · r̄e(tj) · ρ̄
e(xKe , tj); (single upwind step at processor end)

For v = 1 : N
[

vertexflowv =

{

∑

e∈δ
−

v
outflowe, v ∈ V\Vin

Gv
in(tj), v ∈ Vin

(collect flow into vertex)

For e = 1 : M
























ge
in = αe

s(e) · vertexflows(e) (divert flow into queues)

ge
out =

{

µe · r̄e(tj), q̄e(tj) > 0

min(µe · r̄e(tj), g
e
in), q̄e(tj) = 0

(queue outflow)

q̄e(tj+1) = q̄e(tj) + ∆tj · (g
e
in − ge

out) (Euler step in queue)
ρ̄e(x0, tj) = ge

out/ve (set queue outflow as boundary condition at tj)
For k = 0 : Ke − 1 (complete upwind scheme)
[

ρ̄e(xk+1, tj+1) = ρ̄e(xk+1, tj) −
(ve·r̄e(tj))∆tj

∆ex
(ρ̄e(xk+1, tj) − ρ̄e(xk, tj))

where ∆tj = tj+1 − tj and ∆ex = le/Ke.
A sample simulation of the stochastic model (2.6) over [t0, T ] is obtained through

the subsequent iteration of Algorithms 4.1 and 4.2.
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Fig. 4.1: Illustration of Algorithm 4.2 for the case of two successive processors e, e + 1 and
two switching times tj+1, tj+2 marking the default and repair of processor e + 1: The first
discretisation point of a processors serves as a ghost cell whose value does not represent mass
in the processor, as indicates by dotted lines. Apostrophes distinguish three time iterations
(tj → tj+3). Each iteration subsequently divides as follows: I) Outflux from the right
boundary of e into queue e + 1 is computed (gin). II) Flux out of the queue into processor
e + 1 is obtained (gout) and queue value is updated accordingly (explicit Euler). The flux
into the processors updates the ghost cell at current time (no time delay). III) Spatial
discretisation points of processors are updated (Upwind scheme). There is no transport in
case of default. We can see, that ghost cells are updated only in the successive iteration, as
indicated by squared dotted boxes at tj+3.

Remark 4.3 (Conservation of mass). The numerical coupling condition (4)
included in Algorithm 4.2 induces a particular way of measuring the total mass of
products stored in the network processors. The first discretisation point xe

0 = ae serves
as a ghost cell, where mass, which is to be transported if the processor is running,
is temporarily stored. Contrary, the last discretisation point xe

Ke = be is a point
containing mass and determines the flux into successive vertices. Therefore, the total
numerical mass in a processor e is given by

TM e(tj) :=
Ke

∑

k=1

ρ̄e(xk, tj)∆xe

The total mass in the network is obtained by adding all queue loads to the above
quantities. With this definition, it can be seen that the only source for gain or loss
in numerical total mass is the continuous conversion between flux and mass in the
scheme, which is however in the scale of machine accuracy. Apart from that, the total
numerical mass in Algorithm 4.2 is conserved.

Remark 4.4. We would like to point out, that numerical simulations of the
stochastic network model presented in this work are completely parallelisable. Thanks
to the use of at least two discretisation points for all processors and the CFL-condition,
all processors can be iterated simultaneously and it is not necessary to mirror the flow
of products in the sequential order of processor iterations, which is an ease for actual
implementation and enable us to consider networks, which include loops.

Remark 4.5. The subsequent iteration of Algorithms 4.1 and 4.2 is possible due
to the independence of the break down and repair process r from the system solution
(p,q). Dropping this assumption leads to interesting problems also for the numerical
simulation. For example, the modelling and simulation of load-dependent failure rates,
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where the probability of a processor to break down is related to its workload, can be a
subject of further research.

5. Simulation experiments. We are mainly interested in average values of
network quantities obtained by Monte-Carlo simulations, i.e., from a big number of
simulations of independent single scenarios. We use these quantities to analyse the
behaviour of three different networks with random breakdowns and to compare their
simulation results in the deterministic and stochastic setting.

The advantage of a Monte Carlo approach stems from the fact that it can be
used in very complex networks and is straightforward to implement since it simply
requires to simulate independently sample scenarios of the network model (2.6). These
scenario results are used to compute various estimates of average values of network
quantities. In the following examples, we consider the loads of the queues q(t), the
density p(x, t) of a processor at fixed time t, and the outgoing flow of the network:

ρe
AV (xk, ti) =

1

L

L
∑

ℓ=1

ρ̄e
ℓ(xk, ti), ti ∈ T , k = 0, . . . , Ke (5.1)

qe
AV (ti) =

1

L

L
∑

ℓ=1

q̄e
ℓ (ti), ti ∈ T (5.2)

Gnet
outAV(ti) =

1

L

L
∑

ℓ=1

Ḡnet
outℓ

(ti), ti ∈ T (5.3)

where T is the global time grid, L is the number of sample scenarios, Ke is the number
of spacial discretisation points of processor e, q̄ℓ = (q̄1

ℓ , . . . , q̄M
ℓ ) and p̄ℓ = (ρ̄1

ℓ , . . . , ρ̄
M
ℓ )

are the sample solution of scenario ℓ, and Gnet
outℓ

is the corresponding network outflow
as in (2.6e).

To start the simulation, we assume that each processor is ready to work at the be-
ginning of the simulation, i.e., let r̄e(t0) = 0 for all processors e. Moreover, all queues
appear empty q̄e(t0) = 0 and no goods are stored in the processors, i.e. ρ̄e(x, t0) = 0
for all x.

5.1. A chain of processors. In our first simulation experiment, we consider
a simple line of 5 subsequent processors (M = 5), cf. similar results in [15]. Here,
each processor e has length le = 0.2 and is assumed to work with the same processing
rate µe = 2 and processing velocity ve = 1. The raw material is joining the network
in front of processor 1 and transported through the chain. This simple network does
not have any splitting or merging of processor line such that all distribution rates

are equally one, i.e., we have As(e),e(·, t) = α
s(e)
e = 1 for all processors e. Assuming

a constant network inflow G
s(1)
in (t) = 1.8 for t ≥ t0 and a time horizon T = 4 the

deterministic simulation results are given to the left in Figure 5.1. Here, we have not
considered random breakdowns of processors. We have connected the densities of all
processors into a single graph. The density of processor 1 is given within x ∈ [0, 0.2),
the density of processor 2 is given by x ∈ [0.2, 0.4) and so on. Hence, this graph gives
the time evolution of the density of the whole chain of processors. We can observe
that the goods are transported through the chain with constant velocity and no goods
are joining the queues. Each processor is working with a processing rate of 1.8 which
is lower than their maximal processing rates. After a delay of 1 time unit the first
good is fully completed and the network outflow is constant 1.8 from these time point
on.
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Next, we assume random breakdowns of the processors. We introduce different
mean times between failures (MTBF) and mean repair times (MRT) to the processors.
These parameters are given in Table 5.1, where processor 2 remains to work constantly
and is not assumed to break down randomly.

Processor e 1 2 3 4 5

MTBF τe
on 0.95 – 0.85 1.90 0.95

MRT τe
off 0.05 – 0.15 0.10 0.05

Table 5.1: Mean times between failures (MTBF) and mean repair times (MRT) of the
processors.

The pictures in the middle and to the right in Figure 5.1 show the simulation
result of the stochastic model. Here we have plotted the mean values of the density
and the loads over 1000 computed scenarios. The right graph illustrates that only
the queue of processor 2 remains empty, because we have assumed that this processor
works constantly and all goods can join processor 2 directly. All other queues are
busy. Especially queue 3 in front of processor 3 increases, because this processor has
only a mean availability of 85%, whereas all the other processors are working with
a mean availability of 95% (expect of processor 2, which works constantly). Due
to the goods in queue 3, processor 3 is working with its maximum capacity of 2
throughout its working periods and the density of this processor is higher. Moreover,
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Fig. 5.1: Deterministic simulation results of densities of processors in a linear chain consisting
of 5 processors (left). As expected, all queues remain empty due to the fact all possible

maximal processing rates are larger than the network inflow G
s(1)
in (t), i.e. µe > G

s(1)
in (t) for

all e. This behaves completely different if random breakdowns of processors are involved.
The stochastic simulation results are illustrated by the mean densities of processors (middle)
and the loads of queues (right) vs. time over 1000 scenarios.

it can be observed, that the average total network outflow Gnet
outAV(T ) decreases. In

the deterministic setting the chain has produced 5.4 units of goods until 4 time units

(since Gnet
out(T ) = (T−Tthrough)·G

s(1)
in (t) where Tthrough denotes the total deterministic

throughput time) but when we consider random breakdowns of processors in the
network this production rate reduces to Gnet

outAV(T ) = 4.57 goods units - determined
by 1000 sample scenarios. This indicates a reduction of approximately 15 per cent.

Remark 5.1. We report on numerical similarities and differences to the stochas-
tic supply chain model of Degond and Ringhofer presented in [10]. Therein, the au-
thors propose a PDE model for the density of goods of the form

∂tρ̃(x, t) + ∂x

(

min{µ(x, t), v(x)ρ̃(x, t)}
)

= 0, x ∈ [0, 1] (5.4)
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where a partition of the stage interval [0, 1] corresponds to M processors and v(x)
is again the processing velocity and µ(x) the maximal processing rate that should be
random in time. In each Monte-Carlo simulation iteration random signals µ(x, t) are
sampled for each processor in a preprocessing step according to the following procedure:

1. Processor e hast just turned on at time t̄∗

2. Pick ∆τ̄on and ∆τ̄off from the exponential distribution
P(∆τ̄on = t) = 1

τon
exp( −t

τon
)dt and P(∆τ̄on = t) = 1

τon
exp( −t

τon
)dt, respectively.

3. Choose µ(t) = 1 for t̄∗ < t < t̄∗ + ∆τ̄on and µ(t) = 0 for t̄∗ + ∆τ̄on < t <
t̄∗+ ∆τ̄on + ∆τ̄off.

In summary, the model defined in this manner is restricted to linear chains and mea-
sures only the total average density of processors without showing individual queue-
loads. The latter constitutes the main difference to the network model (2.1). In addi-
tion, we are scanning the switching points of each single processor switching exactly
which leads to adaptivity in time and more accurate representation of the switching
behaviour in the approximate solution of (2.6). However, the model (5.4) uses only
a fixed time grid. Consequently, to compare the simulation results of the aforemen-
tioned model with our approach, we need to reformulate our averaged quantities ρe

AV

and qe
AV in terms of an averaged density ρ̃e

AV (tj) allocating both measures onto a
single processor.

ρ̃e
AV (tj) =

1

le

(

∆ex

Ke

∑

k=1

ρe
AV (xk, tj) + qe

AV (tj)
)

, ∀e. (5.5)

The comparable results of the two models are illustrated in Figure 5.2. Obviously,
the averaged density ρ̃e

AV emanating from (2.6) is able to capture the same dynamical
behaviour as the averaged density of (5.4). But due to different space-time discreti-
sations and the Monte Carlo average, minor deviations in the values are natural.
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Fig. 5.2: A linear chain with 5 processors and parameter setting as defined above: We perform
1000 Monte Carlo runs of the stochastic model (5.4) and compute the average density for
each processor over time (left). The corresponding measure (5.5) for the network model (2.6)
can be found to the right.

5.2. A diamond network. We consider a sample production network with two
controls given in [16]. The graph of that network is given in Fig. 5.3. It consists
of 7 processors with different processing rates µe, but constant length le = 1 and
processing velocity ve = 1. The network has two distribution points with distribution
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Fig. 5.3: Diamond network: 7 processors and two controls (right) and inflow profile (left).

rates α1 and α2. As in [16], we choose the maximal processing rates µ1 = 40, µ2 = 30,
µ3 = 20, µ4 = 20, µ5 = 5, µ6 = 10, µ7 = 10 and a piecewise linear inflow with a total
amount of 250 parts, see Figure 5.3. The controls in front of processor 2 and 3 are
given by α1 and (1 − α1), respectively, whereas the controls in front of processor 4
and 5 are given by α2 and (1 − α2). Our simulation time period is [t0, T ] = [0, 70].

In the following, we show both the deterministic as well as the averaged stochastic
simulation result. Default and repairs are set to τ2,4

on = τ2,4
off = 0.50 for processors 2

and 4. All other processors are working with mean times τe
on = 0.95 and τe

off = 0.05,
e = 1, 3, 5, 6, 7. This equates to an average availability of 50% and 95%, respectively.

Figure 5.4 (left) shows the total processing time necessary to produce all goods
completely for varying control parameters α1, α2. In the deterministic setting the pro-
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Fig. 5.4: Total production time of 250 units for deterministic (left) and averaged stochastic
(right) simulation using different combinations of distribution rates α1 and α2..

duction is completed after 29.56 time units, but the inclusion of random breakdowns
leads to a best-possible production time of 34.11 time units on average. Thus, we
see a considerable effect of default and repair times to the production time profiles.
The reason is that in-operating processors are stopping the flow through the network
which causes a delay in the production. Let us now look at the total outflow of the
network at time t = T/3 = 23.22 units. At this point in time, the production is not
completed. We show deterministic and averaged stochastic results in Figure 5.5 each
with two illustrations: A surface as well as a contour plot.

The best possible network outflow in the deterministic setting is 184 units given
by parameter sets (α1, α2) = (0, [0, 1]) and (0, [0, 0.5]), whereas, on average, the best
possible outflow in the stochastic setting is 170.23 at (α1, α2) = (0.6, 0.5). However,
the contour plot shows a whole level set of suitable parameters with averaged outflow
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Fig. 5.5: Total product outflow at t = T/3 for deterministic (left upper, left lower) and
averaged stochastic (right upper, right lower) simulation using different combinations of
distribution rates α1 and α2.

close to 170 (light gray area). Advisable parameters hence differ for the deterministic
and the stochastic setting. This is a motivation to consider optimisation of distribution
rates of a production network with random breakdowns in the near future.

5.3. Cascade network. Finally, we consider a network introduced by Battiston
et. al in [4]. This network was analysed to study bankruptcy and production failures
and is depicted schematically in Figure 5.6.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Fig. 5.6: A cascade of three levels at a width of 9 parallel processors (74 in total).
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Following [17], it consists of one raw material supplier and one customer. To sim-
plify the presentation of results we consider the following configuration: All suppliers
have common length le = 1 and production velocity ve = 1. The network is initially
empty and a constant product inflow of 27 units per unit time is given. The capacities
are chosen, such that processors need to run at maximum load in order to prevent
queueing in absence of stochasticity. At initial and final stage, we have µe = 27,
second and fifth stage processors work at µe = 3, whereas µe = 1 at stages 3 and 4.
Hence, we obtain a constant product flow of 27 units out of the network starting after
6 time units in the deterministic setting.

Stochastic default is introduced to small-load processors of stages 3 and 4 with
common parameters τon = 9.5, τoff = 0.5, thus each processor requires 5% repair
time on long time average. Processors of stages 1, 2, 5, 6 never break down, so a
distribution of material into small-load stages is ensured. In Table 5.2, we present
some computational results for the simulation of cascade networks, including network
information, average number of switchings, average CPU time and average long-term
network outflow.

N M |T | av. |T ∗| av. CPU time av. Gend
out (T )

Cascade-9 (det) 31 74 361 – 3.51 s 27
Cascade-9 (sto) 31 74 361 430.53 9.49 s 25.29
Cascade-10 (sto) 34 82 361 478.65 11.75 s 26.76
Cascade-11 (sto) 37 90 361 525.89 13.91 s 26.92
Cascade-12 (sto) 40 98 361 573.84 16.51 s 26.94
Cascade-20 (sto) 64 162 361 955.15 45.09 s 26.95

Table 5.2: Monte-Carlo simulation of cascade networks (100 simulations) with 9, 10, 11, and
20 parallel processors in stages 3 and 4 over the time interval [t0, T ] = [0, 40]: We show no. of
vertices, no. of processors, size of deterministic time grid, average no. of switching events
due to random breakdowns, average CPU time for a single simulation and average network
outflow at T = 40. The processor configuration is chosen as for the Cascade-9 network, so
we see, how the installation of additional, identical and parallel processors to stages 3 and 4
can compensate the loss of outflow due to stochastic default.

In particular, we can see that the number of switching events and therefore the
average computation time increase with the size of the network. This is due to the
switchings of the additional processors in the networks whose switching is traced
exactly in Algorithm 4.2. Moreover, in the stochastic setting we need 12 or more
processors on stages 3 and 4 to get close to the deterministic network outflow.

6. Conclusions. In this work, a model for stochastic default of processors has
been introduced to supply chain networks. The independent exponential failure intro-
duced in [10] for lines has been integrated into general network topologies of ’queue-
processor’ type [15]. A numerical algorithm for the detailed simulation of the stochas-
tic network has been developed. Based on the PDP-property of the model, it traces
all random switchings yet also conserves numerical mass. These stochastic simulation
algorithm allows a full parallelisation of iterations, which eases computational effort,
and is applicable to networks including loops. The effect and relevance of stochastic
failures has been demonstrated in three network examples.

The future work is twofold. On the one hand, we intend to study load-dependent
failure rates. This modelling corresponds to the idea that processors running perma-
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nently at full capacity are more prone to fail. Difficulties may occur in the numerical
analysis and simulation as well since failure rates will depend on the density of the
processors. On the other hand, we would like to integrate optimisation issues into the
stochastic network model. This can be done by routing the flow of products through
the network such that the total averaged output will be maximised. In a first step,
heuristics should be created to find suitable distribution rates.
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wish to thank stud. math. Sebastian Kühn (TU Kaiserslautern) for his assistance in
performing the numerical experiments.

REFERENCES

[1] D. Armbruster, P. Degond, C. Ringhofer: A model for the dynamics of large queuing networks
and supply chains. SIAM J. Appl. Math. 66, pp. 896–920 (2004).

[2] M.K. Banda, M. Herty, A. Klar: Gas flow in pipeline networks. Networks and Heterogenous
Media 1(1), pp. 41–56 (2006).

[3] M.K. Banda, M. Herty, A. Klar: Coupling conditions for gas networks governed by the isother-
mal Euler equations. Networks and Heterogenous Media 1(2), pp. 295–314 (2006).

[4] S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, J.E. Stiglitz: Credit chains and
bankruptcy propagation in production networks. J. Economic Dynamics and Control 31(6),
pp. 2061–2084 (2007).

[5] G. Bretti, C. D’Apice, R. Manzo, B. Piccoli: A continuum-discrete model for supply chains
dynamics. Networks and Heterogeneous Media 2, pp. 661–694 (2007).

[6] G. Coclite, M. Garavello, B. Piccoli: Traffic flow on road networks. SIAM J. on Mathematical
Analysis 36, pp. 1862–1886 (2005).

[7] C. D’Apice, R. Manzo: A fluid-dynamic model for supply chain. Networks and Heterogeneous
Media 1(3), pp. 379–398 (2006).

[8] M.H.A. Davis: Piecewise-deterministic Markov processes: A general class of non-diffusion
stochastic models (with discussion). J. Royal Statistical Society B 46, pp. 353–388 (1984).

[9] M.H.A. Davis: Markov Models and Optimisation. Monograph on Statistics and Applied Prob-
ability 49, Chapmand & Hall, London, 1993.

[10] P. Degond, C. Ringhofer: Stochastic dynamics of long supply chains with random breakdowns.
SIAM J. Appl. Math. 68(1), pp. 59–79 (2007).
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