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Abstract— This paper proposes an improved global navigation 

satellite system (GNSS) positioning method that explores the time 

correlation between consecutive epochs of the code and carrier 

phase measurements which significantly increases the robustness 

against outlier measurements. Instead of relying on the time 

difference carrier phase (TDCP) which only considers two 

neighboring epochs using an extended Kalman filter (EKF) 

estimator, this paper proposed to employ the carrier-phase 

measurements inside a window, the so-called window 

carrier-phase (WCP), to constrain the states inside a factor graph. 

A left null space matrix is employed to eliminate the shared 

unknown ambiguity variables and therefore, correlated the 

associated states inside the WCP. Then the pseudorange, Doppler, 

and the constructed WCP measurements are integrated 

simultaneously using factor graph optimization (FGO) to estimate 

the state of the GNSS receiver. We evaluated the performance of 

the proposed method in two typical urban canyons in Hong Kong, 

achieving the mean positioning error of 1.76 meters and 2.96 

meters, respectively, using the automobile-level GNSS receiver. 

Meanwhile, the effectiveness of the proposed method is further 

evaluated using a low-cost smartphone level GNSS receiver and 

similar improvement is also obtained, compared with several 

existing GNSS positioning methods.  

 
Index Terms— Navigation; GNSS; Factor graph optimization 

(FGO); Time difference carrier phase (TDCP); Urban canyons  

I. INTRODUCTION 

The global navigation satellite system (GNSS) [1] is 

currently one of the major means of providing 

globally-referenced positioning for autonomous systems [2-4] 

with navigation requirements. With the increased availability 

of multiple satellite constellations, GNSS can provide 

satisfactory performance in open-sky areas [5] based on the 

received pseudorange measurements via single-point 

positioning (SPP). However, the positioning accuracy is 

significantly degraded in highly-urbanized cities such as Hong 

Kong, due to signal reflection caused by static buildings and 

dynamic objects [6] such as double-decker buses leading to the 

notorious non-light-of-sight (NLOS) receptions and multipath 

effects, so-called outlier measurements. To mitigate the effects 

of the GNSS outlier measurements, numerous methods were 
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proposed by introducing additional information or sensors, 

such as 3D mapping aided GNSS [7-9], camera aided GNSS 

NLOS detection [10-12], and 3D LiDAR aided GNSS NLOS 

detection [6] or correction [10, 13]. Unfortunately, these 

methods rely on the availability of 3D mapping information or 

LiDAR sensors which is not suitable for low-cost applications.  

The other research stream is to make use of the Doppler 

frequency or carrier-phase measurements to improve the 

robustness of the estimator against outlier measurements. The 

fusion of pseudorange and Doppler measurements [14] was 

studied using an extended Kalman filter (EKF). The Doppler 

measurement, which is less noisy compared with the 

pseudorange measurements, was employed to estimate the 

velocity of the GNSS receiver to further constrain the kinematic 

of the GNSS receiver together with the pseudorange 

measurements. Given the fact that the GNSS measurements are 

highly environmentally dependent and time-correlated [15], the 

conventional filtering-based method (e.g. EKF estimator) for 

GNSS positioning cannot simultaneously explore the 

time-correlation among historical measurements. As a result, 

the filtering-based estimator is still sensitive to unexpected 

outlier measurements. To fill this gap, our recent work in [16] 

proposed a factor graph optimization (FGO) based GNSS 

positioning method that integrates the pseudorange and 

Doppler frequency measurements, which make of the historical 

information to increase the robustness of the estimator. 

Improved accuracy is obtained in the evaluated datasets 

compared with the conventional EKF estimator. However, the 

potential of carrier-phase measurement with high accuracy was 

not explored in [16]. Compared with the pseudorange and the 

Doppler measurements, the carrier-phase is less sensitive to the 

multipath effects [1]. However, the received carrier-phase 

measurement involves the unknown integer ambiguity which 

should be resolved for high accuracy positioning which is 

commonly done in the GNSS real-time kinematic (GNSS-RTK) 

positioning. However, the GNSS-RTK requires additional 

continuous corrections from the nearby reference stations 

which is not usually available.  

One alternative to using the carrier-phase is to make use of 

the time difference carrier phase (TDCP) [17-19] technique to 

eliminate the unknown integer ambiguity between the 

consecutive epochs. By differencing the carrier-phase 

measurements between two epochs based on the assumption 

that the integer ambiguity variables of the two consecutive 

epochs are the same, the derived TDCP displacements can be 

applied to constrain the position difference of the associated 
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two epochs. Meanwhile, the TDCP displacements can also be 

used to estimate velocity by its derivation over time [17]. 

Considering that both the TDCP and the Doppler frequency can 

be applied to estimate the velocity, the team from the China 

University of Mining and Technology conducted continuous 

work to integrate both information to estimate the velocity of 

the GNSS receiver in [20-22]. Interestingly, the recent work by 

the team from the Chiba Institute of Technology proposed a 

reference station-free double-difference technique to remove 

the integer ambiguity variables across all the epochs [23]. 

However, all these methods only consider the TDCP 

measurements in two epochs. According to the nature of GNSS 

tracking loops, the integer ambiguity tends to be constant once 

the satellite signal is effectively tracked. In other words, the 

signals transmitted from the same satellite that tracked in 

multiple epochs share the same ambiguity. Interestingly, this is 

similar to the visual-inertial integrated navigation system [24] 

where the visual landmarks shared the same position 

(corresponding to the satellite ambiguity) in multiple epochs. In 

other words, the states in multiple epochs are strongly correlated 

by the visual landmarks tracked repetitively. To avoid the 

repetitive estimation of the position of the landmarks, the work 

in [24] proposed to eliminate the shared variable (position) of 

the landmarks from the visual observation function to, therefore, 

increase the computational efficiency and guarantee the 

exploration of the time-correlation simultaneously. Based on the 

similar elimination operation, the work in [25] proposed to 

avoid the integer ambiguity resolution in the integration of 

GNSS-RTK and inertial measurement unit (IMU). However, its 

performance relies on the cost of the applied IMU sensor. 

Inspired by the elimination operation work in [24] and our 

previous work in [16], this paper proposes to employ the 

carrier-phase measurements received from the same satellite 

inside a window, the so-called window carrier-phase (WCP), to 

constrain the states inside a factor graph. Meanwhile, since 

these carrier-phase measurements share the same integer 

ambiguity variables, a left null space matrix is employed to 

eliminate the ambiguity variables and therefore, correlate the 

associated states inside the window. To cope with the potential 

inconsistency in integer ambiguity variables, the M-estimator 

[26] is employed to mitigate the impacts of the cycle slips 

phenomenon. Then the factor graph is employed to fuse the 

proposed WCP constraint, pseudorange, and the Doppler 

measurements for GNSS positioning.  The main contributions 

of this paper are listed as follows: 

(1) This paper is a continuous work of [16] by extending the 

deployment of the high accuracy carrier-phase measurements 

via a  window carrier-phase constraint, which enables 

exploration of the kinematic time-correlation between multiple 

epochs. Importantly, the conventional EKF estimator is not 

able to exploit the advantage of the proposed WCP since only 

the two consecutive epochs are considered due to its recursive 

form. Fortunately, the proposed factor graph-based formulation 

opens a window for the utilization of the high-accuracy 

carrier-phase measurements. 

(2) This paper verifies the effectiveness of the proposed 

method with several challenging datasets collected in urban 

canyons of Hong Kong, via both automobile level and 

smartphone level GNSS receivers. Since the performance of the 

WCP is highly related to the size of the window, we analyze the 

impact of the window size on the performance of the proposed 

GNSS positioning. Moreover, the accommodation of the 

potential cycle slip, which can violate the assumption of shared 

integer ambiguity inside the WCP, is analyzed using the 

different setup of M-estimator. 

The remainder of this paper is organized as follows. An 

overview of the proposed method is given in Section II. Section 

III presents the modeling of the pseudorange, Doppler, and 

conventional TDCP and their integration using the FGO. The 

derivation of the proposed WCP constraint is elaborated 

together with the application of WCP in FGO in Section IV. 

Several real experiments were performed to evaluate the 

effectiveness of the proposed method in Section V. Finally, 

conclusions are drawn, and future work is presented in Section 

VI. 

II. OVERVIEW OF THE PROPOSED METHOD 

An overview of the proposed method in this paper is shown 

in Fig. 1. The inputs of the method are the raw pseudorange, 

Doppler frequency, and carrier-phase measurements from a 

GNSS receiver. The output is the state estimation of the GNSS 

receiver in the earth-centered, earth-fixed (ECEF) frame. The 

measurement modeling blocks remove the atmosphere and 

satellite clock errors involved in the raw measurements. Finally, 

three kinds of factors are integrated using FGO. In this paper, 

matrices are denoted as uppercase with bold letters. Vectors are 

denoted as lowercase with bold letters. Variable scalars are 

denoted as lowercase italic letters. Constant scalars are denoted 

as lowercase letters. Moreover, the GNSS positioning 

mentioned in this paper means the pseudorange and Doppler 

frequency measurement fusion using FGO based on our 

previous work in [16]. This paper focuses on employing the 

carrier phase to aid the GNSS positioning method. 

 

Fig. 1. Overview of the proposed method. The inputs are the continuous raw 

GNSS measurements. The output is the state estimation from the FGO.  

To make the proposed pipeline clear, the following major 

notations are defined and followed by the rest of the paper. 
a) The pseudorange measurement received from a satellite 𝑠 

at a given epoch 𝑡 is expressed as 𝜌𝑟,𝑡
𝑠 . The subscript 𝑟 
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denotes the GNSS receiver. The superscript 𝑠 denotes the 
index of the satellite. 

b) The Doppler measurement received from satellite 𝑠 at a 
given epoch 𝑡 is expressed as 𝑑𝑟,𝑡

𝑠 .  

c) The carrier-phase measurement received from a satellite 
𝑠 at a given epoch 𝑡 is expressed as 𝜓𝑟,𝑡

𝑠 .  

d) The position of the satellite 𝑠  at a given epoch 𝑡  is 
expressed as 𝐩𝑡

𝑠 = (𝑝𝑡,𝑥
𝑠 , 𝑝𝑡,𝑦

𝑠 , 𝑝𝑡,𝑧
𝑠 )𝑇. 

e) The velocity of the satellite 𝑠  at a given epoch 𝑡  is 
expressed as 𝐯𝑡

𝑠 = (𝑣𝑡,𝑥
𝑠 , 𝑣𝑡,𝑦

𝑠 , 𝑣𝑡,𝑧
𝑠 )𝑇. 

f) The position of the GNSS receiver at a given epoch 𝑡 is 
expressed as 𝐩𝑟,𝑡 = (𝑝𝑟,𝑡,𝑥 , 𝑝𝑟,𝑡,𝑦, 𝑝𝑟,𝑡,𝑧)

𝑇. 

g) The velocity of the GNSS receiver at a given epoch 𝑡 is 
expressed as 𝐯𝑟,𝑡 = (𝑣𝑟,𝑡,𝑥 , 𝑣𝑟,𝑡,𝑦 , 𝑣𝑟,𝑡,𝑧)

𝑇. 

h) The clock bias of the GNSS receiver at a given epoch 𝑡 is 
expressed as δ𝑟,𝑡, that with the unit in meters. δ𝑟,𝑡

𝑠  denotes 

the satellite clock bias by meters. 

III. GNSS POSITIONING AIDED BY TDCP MEASUREMENTS 

This section presents the methodology of the GNSS 
positioning aided by the TDCP measurement for further 
theoretical comparison between the conventional TDCP and the 
proposed WCP constraint (to be presented in Section IV). The 
utilization of TDCP is not original in the existing work using 
EKF [17], however, this paper still presents it for further 
theoretical and experimental comparison with the proposed 
WCP constraint. The state of the GNSS receiver is represented 
as follows: 

𝛘 = [𝐱r,1, 𝐱r,2, … , 𝐱𝑟,𝑛]       (1) 

where the variable 𝛘  denotes the set of states of the GNSS 

receiver ranging from the first epoch to the current epoch 𝑛. The 

state of the GNSS receiver at a single epoch can be denoted as 

follows: 

𝐱𝑟,𝑡 = (𝐩𝑟,𝑡 , 𝐯𝑟,𝑡 , δ𝑟,𝑡)
𝑇      (2) 

where the 𝐱𝑟,𝑡 denotes the state of the GNSS receiver at epoch 

𝑡, 𝑡 ∈ (1, 𝑛), which involves the position (𝐩𝑟,𝑡), velocity (𝐯𝑟,𝑡) 

and receiver clock bias (δ𝑟,𝑡).  

 

Fig. 2. Graph structure for a conventional pseudorange/Doppler/TDCP 

integration. The blue circle denotes the satellite. Only four satellites are drawn at 
each epoch for simplicity. The purple shaded rectangle denotes the pseudorange 

factor (e.g., 𝑒𝑟,𝑡
s ). The green shaded rectangle represents the Doppler velocity 

factor (e.g., 𝑒𝑟,𝑡
𝐷𝑉). The light blue shaded rectangle denotes the TDCP factor. The 

white shaded circle stands for the state of the GNSS receiver. 

The graph structure of the FGO for solving the GNSS 

positioning aided by the TDCP measurement is shown in Fig. 2. 

The subscript 𝑛  of state node denotes the total epochs of 

measurements considered in the FGO. Each state in the factor 

graph is connected using the Doppler velocity factor. Note that 

the formulation of the GNSS pseudorange/Doppler integration 

using the FGO is firstly presented in our latest work in [16]. 

However, we still present it here for the completeness of the 

derivation of the proposed integration in Section IV. 

A. Pseudorange Measurement Modeling 

The pseudorange measurement from the GNSS receiver, 

𝜌𝑟,𝑡
𝑠 , is denoted as follows [27]. 

𝜌𝑟,𝑡
𝑠 = 𝑟𝑟,𝑡

𝑠 + 𝑐𝐿(δ𝑟,𝑡 − δ𝑟,𝑡
𝑠 ) + 𝐼𝑟,𝑡

𝑠 + 𝑇𝑟,𝑡
𝑠 + 휀𝑟,𝑡

𝑠     (3) 

where 𝑟𝑟,𝑡
𝑠  is the geometric range between the satellite and the 

GNSS receiver. 𝑐𝐿 denotes the speed of light. 𝐼𝑟,𝑡
𝑠  represents the 

ionospheric delay; 𝑇𝑟,𝑡
𝑠  indicates the tropospheric delay. 휀𝑟,𝑡

𝑠  

represents the errors caused by the multipath effects, NLOS 
receptions, receiver noise, antenna phase-related noise. 
Meanwhile, the atmosphere effects ( 𝑇𝑟,𝑡

𝑠  and 𝐼𝑟,𝑡
𝑠 ) are 

compensated using the conventional models (Saastamoinen and 
Klobuchar models, respectively) presented in RTKLIB [28]. 

The observation model for GNSS pseudorange 
measurement from a given satellite 𝑠 is represented as follows: 

𝜌𝑟,𝑡
𝑠 = ℎ𝑟,𝑡

𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡
𝑠, δ𝑟,𝑡) + ω𝑟,𝑡

𝑠       (4) 

with ℎ𝑟,𝑡
𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡) = ||𝐩𝑡
𝑠 − 𝐩𝑟,𝑡|| + δ𝑟,𝑡 

where the variable ω𝑟,𝑡
𝑠  stands for the noise associated with the 

𝜌𝑟,𝑡
𝑠 . Therefore, we can get the error function (𝐞𝑟,𝑡

𝑠 ) for a given 

satellite measurement 𝜌𝑟,𝑡
𝑠  as follows: 

||𝐞𝑟,𝑡
𝑠 ||𝚺𝑟,𝑡

𝑠
2 = ||𝜌𝑟,𝑡

𝑠 − ℎ𝑟,𝑡
𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡)||𝚺𝑟,𝑡
𝑠

2     (5) 

where 𝚺𝑟,𝑡
𝑠  denotes the covariance matrix. We calculate the 𝚺𝑟,𝑡

𝑠  

based on the satellite elevation angle, signal, and noise ratio 
(SNR) following the work in [29]. 

B. Doppler Measurements Modeling  

Given the Doppler measurement ( 𝑑𝑟,𝑡
1 , 𝑑𝑟,𝑡

2 , … ) of each 

satellite at an epoch 𝑡, the velocity (𝐯𝑟,𝑡) of the GNSS receiver 

can be calculated using the weighted least square (WLS) method 
[30]. The detail of estimating the velocity of the GNSS receiver 
based on Doppler measurement can be found in our previous 
work in [16]. Therefore, the observation model for the velocity 
(𝐯𝑟,𝑡) is expressed as follows: 

𝐯𝑟,𝑡
𝐷𝑉 = ℎ𝑟,𝑡

𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡) + 𝛚𝑟,𝑡
𝐷𝑉      (6) 

 with ℎ𝑟,𝑡
𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡) =

[
 
 
 
 
 
(𝑝𝑟,𝑡+1,𝑥 − 𝑝𝑟,𝑡,𝑥)

Δ𝑡
⁄

(𝑝𝑟,𝑡+1,𝑦 − 𝑝𝑟,𝑡,𝑦)
Δ𝑡

⁄

(𝑝𝑟,𝑡+1,𝑧 − 𝑝𝑟,𝑡,𝑧)
Δ𝑡

⁄ ]
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where the 𝐯𝑟,𝑡
𝐷𝑉  denotes the velocity measurements. The 

variable 𝛚𝑟,𝑡
𝐷𝑉  denotes the noise associated with the velocity 

measurements. The variable Δ𝑡  denotes the time difference 

between epoch 𝑡 and epoch 𝑡 + 1. Therefore, we can get the 

error function (𝐞𝑟,𝑡
𝐷𝑉) for a given Doppler velocity measurement 

𝐯𝑟,𝑡
𝐷𝑉 as follows: 

||𝐞𝑟,𝑡
𝐷𝑉||

𝚺𝑟,𝑡
𝐷𝑉

2 = ||𝐯𝑟,𝑡
𝐷𝑉 − ℎ𝑟,𝑡

𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡)||𝚺𝑟,𝑡
𝐷𝑉

2     (7) 

where 𝚺𝑟,𝑡
𝐷𝑉 denotes the covariance matrix corresponding to the 

Doppler velocity measurement. 

C. TDCP Measurement Modeling 

In terms of the measurements from the GNSS receiver, each 
carrier-phase measurement, 𝜓𝑟,𝑡

𝑠 , is represented as follows [27]. 

𝜆𝜓𝑟,𝑡
𝑠 = 𝑟𝑟,𝑡

𝑠 + 𝑐𝐿(𝛿𝑟,𝑡 − 𝛿𝑟,𝑡
𝑠 ) + 𝐼𝑟,𝑡

𝑠 + 𝑇𝑟,𝑡
𝑠 + 𝜆𝐵𝑟,𝑡

𝑠 +
𝑑𝜓𝑟,𝑡

𝑠 + 𝜖𝑟,𝑡
𝑠     (8) 

where 𝐵𝑟,𝑡
𝑠 = 𝜓𝑟,0,𝑡 − 𝜓0,𝑡

𝑠 + 𝑁𝑟,𝑡
𝑠  

where 𝐵𝑟,𝑡
𝑠  is the carrier-phase bias. The variable 𝜆 denotes the 

carrier wavelength. The variable 𝑑𝜓𝑟,𝑡
𝑠  denotes the 

carrier-phase correction term including antenna phase offsets 
and variations, station displacement by earth tides, phase 
windup effect, and relativity correction on the satellite clock. 
The detailed formulation of the carrier-phase correction can be 
found in [28]. 𝜖𝑟,𝑡

𝑠  represents the errors caused by the multipath 

effects, NLOS receptions, receiver noise, antenna delay. The 
variable 𝜓𝑟,0,𝑡 represents the initial phase of the receiver local 

oscillator. Similarly, the 𝜓0,𝑡
𝑠  stands for the initial phase of the 

transmitted navigation signal from the satellite. The variable 
𝑁𝑟,𝑡

𝑠  denotes the carrier-phase integer ambiguity. Typically, the 

𝑁𝑟,𝑡
𝑠  is an unknown variable to be estimated during the utilization 

of the carrier-phase measurements. By differencing the raw 
carrier-phase measurements between two epochs, the TDCP 
measurement (∆𝜆𝜓𝑟,𝑡,𝑡+1

𝑠 ) can be derived as follows: 

∆𝜆𝜓𝑟,𝑡,𝑡+1
𝑠 = (𝑟𝑟,𝑡+1

𝑠 − 𝑟𝑟,𝑡
𝑠 ) + 𝑐𝐿(𝛿𝑟,𝑡+1 − 𝛿𝑟,𝑡) + (𝜖𝑟,𝑡+1

𝑠 −
𝜖𝑟,𝑡

𝑠 )    (9) 

where the unknown integer ambiguity term is eliminated by the 
differencing operation. Therefore, the observation model for the 
TDCP measurement from a given satellite 𝑠 is represented as 
follows: 

∆𝜆𝜓𝑟,𝑡,𝑡+1
𝑠 = ℎ𝑟,𝑡

𝑇𝐷𝐶𝑃,𝑠(𝐩𝑟,𝑡 , 𝐩𝑡
𝑠, δ𝑟,𝑡 , 𝐩𝑟,𝑡+1, 𝐩𝑡+1

𝑠 , δ𝑟,𝑡+1) +

ω𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

 (10) 

with ℎ𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠(𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡 , 𝐩𝑟,𝑡+1, 𝐩𝑡+1
𝑠 , δ𝑟,𝑡+1) = (||𝐩𝑡

𝑠 −

𝐩𝑟,𝑡|| + δ𝑟,𝑡) − (||𝐩𝑡+1
𝑠 − 𝐩𝑟,𝑡+1|| + δ𝑟,𝑡+1) 

where the variable ω𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

 stands for the noise associated with 

the TDCP measurement. Therefore, we can get the error 

function ( 𝐞𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

) for the given TDCP measurements 

(𝜓𝑟,𝑡
𝑠 , 𝜓𝑟,𝑡+1

𝑠 ) as follows: 

||𝐞𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠||

𝚺𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

2 = ||∆𝜆𝜓𝑟,𝑡,𝑡+1
𝑠 −

ℎ𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠(𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡 , 𝐩𝑟,𝑡+1, 𝐩𝑡+1
𝑠 , δ𝑟,𝑡+1)||𝚺𝑟,𝑡

𝑇𝐷𝐶𝑃,𝑠
2     (11) 

where 𝚺𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

 denotes the covariance matrix. Similarly, we 

calculate the 𝚺𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

 based on the satellite elevation angle, 

signal, and noise ratio (SNR) following the work in [29]. 

D. Pseudorange/Doppler/TDCP Fusion Via FGO 

Based on the factors derived above, the combined objective 

function can be formulated as follows: 

𝛘∗ = arg min
𝛘

∑ (||𝐞𝑟,𝑡
𝐷𝑉||

𝚺𝑟,𝑡
𝐷𝑉

2 + ||𝐞𝑟,𝑡
𝑠 ||𝚺𝑟,𝑡

𝑠
2 +𝑠,𝑡

||𝐞𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠||

𝚺𝑟,𝑡
𝑇𝐷𝐶𝑃,𝑠

2 )  (12) 

The variable 𝛘∗ denotes the optimal estimation of the state sets, 

which can be estimated by solving the objective function above 

iteratively.  

IV. GNSS POSITIONING AIDED BY WINDOW CARRIER-PHASE 

This section presents the methodology of the GNSS 

positioning aided by the proposed WCP constraint. The graph 

structure of the FGO for solving the GNSS positioning aided by 

the WCP constraint is shown in Fig.3 where the TDCP in Fig. 2 

is replaced by the proposed WCP.  

A. WCP Constraint Modeling 

Fig. 3 shows that four satellites (satellites 1, 2, 3, and 4) are 

received repetitively from epoch 1 to epoch 𝑛  which are 

involved in the factor graph. Taking satellite 1 as an example, 

the continuous observed carrier-phase measurements can be 

stacked into the following form: 

[
 
 
 
 
𝜆𝜓𝑟,1

1

𝜆𝜓𝑟,2
1

…
𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

=

[
 
 
 

𝑟𝑟,𝑡
𝑠 + 𝑚𝑟,1

𝑠

𝑟𝑟,2
𝑠 + 𝑚𝑟,2

𝑠

…
𝑟𝑟,𝑁𝑘

𝑠
𝑠 + 𝑚𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+

[
 
 
 
𝜆𝐵𝑟,1

𝑠

𝜆𝐵𝑟,2
𝑠

…
𝜆𝐵𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+

[
 
 
 
𝜖𝑟,1

𝑠

𝜖𝑟,2
𝑠

…
𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

   (13) 

With 𝑚𝑟,𝑡
𝑠 = 𝑐𝐿(𝛿𝑟,𝑡 − 𝛿𝑟,𝑡

𝑠 ) + 𝐼𝑟,𝑡
𝑠 + 𝑇𝑟,𝑡

𝑠 + 𝑑𝜓𝑟,𝑡
𝑠  

where the 𝑁𝑘
𝑠 indicates that satellite 1 is tracked by the GNSS 

receiver continuously for 𝑁𝑘
𝑠  epochs. The carrier-phase 

measurements involved in (13) form a window carrier-phase of 

satellite 1 with a window size of 𝑁𝑘
𝑠. The variable 𝑘 denotes the 

index of the window carrier-phase constraint inside the factor 

graph. The 𝑚𝑟,𝑡
𝑠  is defined for simplicity.  
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Fig. 3. Graph structure for the proposed pseudorange/Doppler/WCP 

integration. The blue circles denote the satellite. The purple shaded rectangle 

denotes the pseudorange factor (e.g 𝑒𝑟,𝑡
s ). The green shaded rectangle represents 

the Doppler velocity factor (e.g 𝑒𝑟,𝑡
𝐷𝑉). The red shaded rectangle denotes the WCP 

factor. The white shaded circle stands for the state of the GNSS receiver. 

Giving the fact that the carrier-phase measurements inside 

the window share the same integer ambiguity, the (13) can be 

rewritten as follows: 

[
 
 
 
 
𝜆𝜓𝑟,1

1

𝜆𝜓𝑟,2
1

…
𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

=

[
 
 
 

𝑟𝑟,𝑡
𝑠 + 𝑚𝑟,1

𝑠

𝑟𝑟,2
𝑠 + 𝑚𝑟,2

𝑠

…
𝑟𝑟,𝑁𝑘

𝑠
𝑠 + 𝑚𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+ 𝜆𝐵𝑟,𝑁𝑘
𝑠

𝑠 [

1
1
…
1

] +

[
 
 
 
𝜖𝑟,1

𝑠

𝜖𝑟,2
𝑠

…
𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

  (14) 

where the 𝐵𝑟,𝑁𝑘
𝑠

𝑠  denotes the shared integer ambiguity value for 

satellite 1 within the continuous 𝑁𝑘
𝑠 epochs. The compact form 

of the equation (14) can be further organized by multiply a left 

null space matrix 𝐆𝑟,𝑘
𝑠  on both sides of equation (14) and the 

following form is obtained: 

𝐆𝑟,𝑘
𝑠

[
 
 
 
 
𝜆𝜓𝑟,1

1

𝜆𝜓𝑟,2
1

…
𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

= 𝐆𝑟,𝑘
𝑠

[
 
 
 

𝑟𝑟,𝑡
𝑠 + 𝑚𝑟,1

𝑠

𝑟𝑟,2
𝑠 + 𝑚𝑟,2

𝑠

…
𝑟𝑟,𝑁𝑘

𝑠
𝑠 + 𝑚𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+ 𝐆𝑟,𝑘
𝑠

[
 
 
 
𝜖𝑟,1

𝑠

𝜖𝑟,2
𝑠

…
𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

  (15) 

with 𝐆𝑟,𝑘
𝑠 [

1
1
…
1

] = [

0
0
…
0

] 

Therefore, the derived (15) is free of ambiguity variable which 

is eliminated by a left multiplication of the left null space 

matrix 𝐆𝑟,𝑘
𝑠 . The construction of the 𝐆𝑟,𝑘

𝑠  can be found in 

Appendix A of this paper. 
Therefore, the observation model for WCP constraint from a 

given satellite 𝑠 being tracked by 𝑁𝑘
𝑠 epochs are represented as 

follows: 

𝐆𝑟,𝑘
𝑠

[
 
 
 
 
𝜆𝜓𝑟,1

1

𝜆𝜓𝑟,2
1

…
𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

= 𝐆𝑟,𝑘
𝑠

[
 
 
 
 ℎ𝑟,1

𝑊𝐶𝑃,𝑠(𝐩𝑟,1, 𝐩1
𝑠 , δ1)

ℎ𝑟,2
𝑊𝐶𝑃,𝑠(𝐩𝑟,2, 𝐩2

𝑠 , δ2)
…

ℎ
𝑟,𝑁𝑘

𝑠
𝑊𝐶𝑃,𝑠 (𝐩𝑟,𝑁𝑘

𝑠 , 𝐩𝑁𝑘
𝑠

𝑠 , δ𝑁𝑘
𝑠)]

 
 
 
 

+ 𝐆𝑟,𝑘
𝑠

[
 
 
 
𝜖𝑟,1

𝑠

𝜖𝑟,2
𝑠

…
𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

 

(16) 

with ℎ
𝑟,𝑁𝑘

𝑠
𝑊𝐶𝑃,𝑠 (𝐩𝑟,𝑁𝑘

𝑠 , 𝐩𝑁𝑘
𝑠

𝑠 , δ1,𝑁𝑘
𝑠) = ||𝐩𝑁𝑘

𝑠
𝑠 − 𝐩𝑟,𝑁𝑘

𝑠 || + δ𝑟,𝑁𝑘
𝑠  

Therefore, we can get the error function (𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠

) for a WCP 

constraint as follows: 

||𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠||

𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

2 =
‖
‖
𝐆𝑟,𝑘

𝑠

[
 
 
 
 
𝜆𝜓𝑟,1

1

𝜆𝜓𝑟,2
1

…
𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

−

𝐆𝑟,𝑘
𝑠

[
 
 
 
 ℎ𝑟,1

𝑊𝐶𝑃,𝑠(𝐩𝑟,1, 𝐩1
𝑠, δ1)

ℎ𝑟,2
𝑊𝐶𝑃,𝑠(𝐩𝑟,2, 𝐩2

𝑠 , δ2)
…

ℎ
𝑟,𝑁𝑘

𝑠
𝑊𝐶𝑃,𝑠 (𝐩𝑟,𝑁𝑘

𝑠 , 𝐩𝑁𝑘
𝑠

𝑠 , δ𝑁𝑘
𝑠)]

 
 
 
 

‖
‖

𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

2

      (17) 

where 𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

 denotes the covariance matrix associated with the 

WCP constraint which can be calculated as follows: 

𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠 = 𝐆𝑟,𝑘

𝑠

[
 
 
 
 
𝜖𝑟,1

𝑠 0 0 0

0 𝜖𝑟,2
𝑠 0 0

0 0 … 0
0 0 0 𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 
 

𝐆𝑟,𝑘
𝑠 T

    (18) 

The WCP factor (𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠

) is denoted by the red shaded 

rectangles in Fig. 3 which connects the same satellite received in 
multiple epochs across the factor graph.  

B. Comparison Between the Conventional TDCP and the 

Proposed WCP 

Different from the conventional TDCP constraint which 
only explores the kinematic correlation between the two 
consecutive epochs, the proposed WCP constraint effectively 
makes use of the correlation of shared integer ambiguity within 
multiple epochs inside the window. Meanwhile, the involved 

covariance matrix ( 𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

) effectively maintained the 

cross-correlation using the multiplication of 𝐆𝑟,𝑘
𝑠 . Specifically, a 

similar format of the formulation can also be derived for TDCP 
measurements given a set of continuously tracked GNSS 
measurements from the same satellite as follows:  

[
 
 
 
 
∆𝜆𝜓𝑟,1

1

∆𝜆𝜓𝑟,2
1

…
∆𝜆𝜓𝑟,𝑁𝑘

𝑠
1

]
 
 
 
 

= 𝐃𝑟,𝑘
𝑠

[
 
 
 

𝑟𝑟,𝑡
𝑠 + 𝑚𝑟,1

𝑠

𝑟𝑟,2
𝑠 + 𝑚𝑟,2

𝑠

…
𝑟𝑟,𝑁𝑘

𝑠
𝑠 + 𝑚𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+ 𝐃𝑟,𝑘
𝑠

[
 
 
 
𝜆𝐵𝑟,1

𝑠

𝜆𝐵𝑟,2
𝑠

…
𝜆𝐵𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

+

𝐃𝑟,𝑘
𝑠

[
 
 
 
𝜖𝑟,1

𝑠

𝜖𝑟,2
𝑠

…
𝜖𝑟,𝑁𝑘

𝑠
𝑠

]
 
 
 

   (19) 

where the ∆𝜆𝜓𝑟,1
1  denotes the TDCP measurements of satellite 

1. The 𝐃𝑟,𝑘
𝑠  denotes the time difference matrix which is 

employed to remove the ambiguity term in TDCP operation 
which can be denoted as follows (5 continuously tracked GNSS 
measurements as an example): 

𝐃𝑟,𝑘
𝑠 =

[
 
 
 
 
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 0]

 
 
 
 

   (20) 

The 𝐃𝑟,𝑘
𝑠  matrix is sparse and only enables the time difference 

between consecutive epochs which is the major difference 
between the TDCP and the proposed WCP. The analysis of the 
matrix 𝐆𝑟,𝑘

𝑠  which is a densely correlated matrix, and the 𝐃𝑟,𝑘
𝑠  

with real data is to be presented in Section V. 

C. Cycle Slip Accommodation and Selection of the Window 

Size of the WCP 

Cycle Slip Accommodation: In typical urban canyons, the 
occasional GNSS signal blockage and reflection can cause the 
cycle slip problem which can therefore violate the assumption 
of shared integer ambiguity inside a WCP. From the 
measurement domain, the cycle slip phenomenon can cause 
significant inconsistency in the consecutive carrier-phase 
measurements. Thanks to the factor graph optimization which 
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involves a large number of redundant measurements, this paper 
employs the robust M-estimator [26] to detect and mitigate the 
effects of the cycle slip. Our previous work [31] shows that the 
M-estimator can effectively mitigate the unexpected visual 
outlier measurements in a visual/inertial integrated positioning 
system. A more detailed discussion about the cycle slip 
mitigation analysis using M-estimator can be found in Section 
V. 

Window size selection of the WCP: Theoretically, the 
optimal window size (𝑁𝑘

𝑠) can be selected by maximizing the 
exploration of the time correlation of the states involved. 
Therefore, it is good to select the largest window size as long as 
the assumption of constant integer ambiguity inside the WCP 
holds. However, the invariant ambiguity inside the WCP for a 
long period is hard to be satisfied in urban canyons due to the 
potential cycle slip. Therefore, we set a threshold for the 𝑁𝑘

𝑠 

denoted by the 𝑁𝑘,𝑀𝐴𝑋
𝑠 . After the size of WCP exceeds the 

𝑁𝑘,𝑀𝐴𝑋
𝑠 , a  WCP should be constructed.  

D. Pseudorange/Doppler/WCP Fusion Via FGO 

Based on the factors derived above, the combined objective 

function proposed in this paper can be formulated as follows: 

𝛘∗ = arg min
𝛘

∑ (||𝐞𝑟,𝑡
𝐷𝑉||

𝚺𝑟,𝑡
𝐷𝑉

2 + ||𝐞𝑟,𝑡
𝑠 ||𝚺𝑟,𝑡

𝑠
2 +𝑠,𝑡,𝑘

||𝜌(𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠)||

𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

2 )  (21) 

The variable 𝛘∗ denotes the optimal estimation of the state 

sets, which can be estimated by solving the objective function 

above iteratively. The operator 𝜌(∗)  denotes the robust 

function of the M-estimator [26] and the Cauchy function is 

applied as can be formulated as follows: 

𝜌(𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠) =

𝑘𝜌
2

2
log (1 +

(𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠

)2

𝑘𝜌
2 )    (22) 

where the 𝑘𝜌  denotes the kernel value (parameter) which 

dominates the non-convexity of the Cauchy function. 

Meanwhile, the performance of the Cauchy function relies 

heavily on the selection of the 𝑘𝜌  and the analysis is to be 

presented in Section V. Both the objective equations (12) and 

(21) are solved using the Levenberg-Marquardt algorithm via 

the state-of-the-art Ceres-solver [32]. 

V. EXPERIMENT RESULTS AND DISCUSSION 

A. Experiment Setup 

Experimental scenes: To verify the effectiveness of the 

proposed method, two experiments were conducted in typical 

urban canyons in Hong Kong. Fig. 4 shows the data collection 

vehicle (Fig. 4-(a)), scenes in urban canyon 1 (Fig. 4-(b)) and 2 

(Fig. 4-(c)), respectively. Both of the urban scenarios contain 

static buildings, trees, and dynamic objects, such as 

double-decker buses, which can lead to numerous GNSS outlier 

measurements. 

Sensor setups: Fig. 4-(a) shows the data collection vehicle 

and the detail of the data collection vehicle can be found 

through our open-sourced UrbanNav [33] dataset 1. In both 

experiments, a u-blox M8T GNSS receiver was used to collect 

raw GNSS measurements at a frequency of 1 Hz. Besides, the 

 
1 https://github.com/weisongwen/UrbanNavDataset 

NovAtel SPAN-CPT, a GNSS (GPS, GLONASS, and Beidou) 

RTK/INS (fiber-optic gyroscopes, FOG) integrated navigation 

system was used to provide ground truth of positioning. The 

gyro bias in-run stability of the FOG is 1 degree per hour, and 

its random walk is 0.067 degrees per hour. The baseline 

between the rover and the GNSS base station is about 7 km. 

Meanwhile, we post-process the data from SPAN-CPT using 

the inertial explorer software from NovAtel to guarantee the 

accuracy of the ground truth of positioning. All the data were 

collected and synchronized using a robot operation system 

(ROS) [34]. The coordinate systems between all the sensors 

were calibrated before the experiments.  

 

Fig. 4. Demonstration of the evaluated urban canyons 1 and 2. The red curves 

inside the Figures denote the trajectories of the tests.  

Evaluation metrics: We analyze the performance of 

positioning by comparing five different methods, as shown 

below to validate the effectiveness of the proposed method in 

improving the GNSS positioning.  

(a) u-blox [35]: the commercial GNSS positioning solution 

from the u-blox M8T receiver. 

(b) WLS [28]: weighted least squares positioning.  

(c) PSR-DOP (Sol 1): the pseudorange and Doppler 

integration using FGO based on [16]. 

(d) PSR-DOP-TDCP (Sol 2): the pseudorange, Doppler, 

and TDCP measurements integration using FGO 

(corresponding to the factor graph in Fig. 2). 

(e) PSR-DOP-WCP (Sol 3): the pseudorange, Doppler, and 

WCP measurements integration using FGO (corresponding to 

the factor graph in Fig. 3) with maximum window size (𝑁𝑘,𝑀𝐴𝑋
𝑠 ) 

of 6. 

B. Experimental Evaluation in Urban Canyon 1  

1) Positioning Performance Evaluation 

The positioning results of the listed five methods are shown 

in Table 1. The first column shows the 2D positioning error of 

the u-blox receiver. The positioning result is based on standard 

NMEA [36] messages from the u-blox receiver. A mean error 

of 6.23 meters was obtained, with a standard deviation of 7.31 

meters. The maximum error reached 38.53 meters. The second 

column shows the positioning result using the raw pseudorange 

measurements from the u-blox receiver and positioning based 

on WLS. Similarly, the weighting scheme was taken from [29] 

and is based on the satellite elevation angle and the 

signal-to-noise ratio (SNR). The positioning error decreased to 

3.10 meters with a standard deviation of 1.95 meters. The 
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maximum error also decreased to about 11 meters. Fig. 5 shows 

the positioning error throughout the evaluation where the red 

and green denote the solutions from u-blox and WLS, 

respectively. The positioning error fluctuate occasionally 

during the test due to the unexpected GNSS outlier 

measurements arising from the blockage and reflections by 

surrounding buildings.  

With the help of the integration of the Doppler frequency 

measurements, the positioning error decreases to 2.14 meters 

with the standard deviation decreasing to 1.01 meters. The 

improved results show that the Doppler frequency 

measurement can help to mitigate the effects of the GNSS 

outlier measurements which can also be seen from Fig. 5 with a 

smoother error curve by the method of PSR-DOP. However, 

the jump can still be seen (e.g. epoch A annotated by the circle 

in Fig. 5) as the Doppler measurement can also be biased by the 

multipath effects [37]. After applying the carrier-phase 

measurements using the TDCP technique (corresponding to the 

factor graph in Fig. 2), the positioning error decreases slightly 

to 2.01 meters (PSR-DOP-TDCP) with a maximum error of 

5.69 meters. However, a more significant improvement can be 

seen in the standard deviation which means that smoother 

results are obtained. The results show that the high-accuracy 

carrier-phase measurements can help to smooth the positioning 

against GNSS outlier measurements.  

With the help of the proposed WCP constraint 

(corresponding to the factor graph in Fig. 3), the positioning 

error decreases to only 1.76 meters which is almost a lane-level 

accuracy which shows that the effectiveness of the proposed 

method. Moreover, the standard deviation decreases to only 

0.57 meters with a maximum error of 4.06 meters. The 

significantly decreased standard deviation indicates that the 

proposed WCP constraint can effectively constrain the multiple 

states more tightly compared with the TDCP which only 

involves the two pairwise states. Fig. 6 shows the trajectories 

on the evaluated five methods. Epoch B in Fig. 5 is 

corresponding to Fig. 6-(a) located in an intersection with tall 

buildings. As a result, the positioning error of the WLS is larger 

than 10 meters. With the help of the WCP, the error decreases 

from 5.6 meters for PSR-DOP-TDCP to only 4.06 meters. Fig. 

6-(b) shows a scene with dense foliage which can cause GNSS 

signal blockage and diffractions. As a result, the solution from 

WLS deviates significantly from the ground truth. However, 

smooth results are still achieved with the proposed method 

(PSR-DOP-WCP).  

In short, both the Doppler frequency and the carrier-phase 

measurements can help to improve the positioning accuracy by 

mitigating the impacts of the GNSS outlier measurements. We 

gradually compare the improvement from both measurements. 

The utilization of the TDCP (PSR-DOP-TDCP) obtains similar 

accuracy compared with the PSR-DOP although with a slight 

decrease of STD in the evaluated dataset. Fortunately, the 

proposed method (PSR-DOP-WCP) pushes the positioning 

performance to a higher accuracy with a mean error of 1.76 

meters and an STD of only 0.57 meters. 

Table 1. Performance of the listed five methods in urban canyon 1 

(Max: maximum error; STD: standard deviation; MEAN: mean error; 

Sol 1: PSR-DOP, Sol 2: PSR-DOP-TDCP, Sol 3: PSR-DOP-WCP) 

Item (m) u-blox WLS Sol 1 Sol 2 Sol 3 

MEAN  6.23 3.10 2.14 2.01 1.76 

STD  7.31 1.95 1.01 0.82 0.57 

Max  38.53 11.23 6.52 5.69 4.06 

 

Fig. 5. 2D positioning errors of the evaluated five methods in urban canyon 1. 

The red curve denotes the 2D error from the commercial solution of the u-blox 

receiver. The green, cyan, magenta, and blue colors denote the WLS, PSR-DOP, 

PSR-DOP-TDCP, and PSR-DOP-WCP, respectively. 

 

Fig. 6. 2D positioning trajectories of the evaluated five methods in urban 
canyon 1. The black and red curves denote the 2D trajectories of the ground 

truth and the commercial solution of the u-blox receiver. The green, cyan, 

magenta, and blue colors denote the WLS, PSR-DOP, PSR-DOP-TDCP, and 

PSR-DOP-WCP, respectively. 

2) Analysis of the Impact of Maximum Window Size  

Since the proposed WCP constraint is highly related to the 

maximum window size (𝑁𝑘,𝑀𝐴𝑋
𝑠 ). Table 2 shows how the 

𝑁𝑘,𝑀𝐴𝑋
𝑠  impacts the performance of the overall integration 

(PSR-DOP-WCP). Therefore, we present the accuracy of the 

PSR-DOP-WCP under the different values of 𝑁𝑘,𝑀𝐴𝑋
𝑠 . The 

maximum window size of 6 is corresponding to the evaluation 

in Section B-(1). Interestingly, after slightly increase the 

𝑁𝑘,𝑀𝐴𝑋
𝑠 , both the mean and standard deviation decrease with the 

mean error decreasing from 1.76 to 1.69 meters. This is due to 

fact that the larger 𝑁𝑘,𝑀𝐴𝑋
𝑠  enables the stronger correlation 

between the states. However, after almost doubling 𝑁𝑘,𝑀𝐴𝑋
𝑠 , the 

mean error slightly increases to 1.82 meters. A similar 
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phenomenon is also seen by increasing the 𝑁𝑘,𝑀𝐴𝑋
𝑠  to 25 and 35, 

respectively. This is caused by the violation of shared 

ambiguity variables inside the WCP due to the cycle slip. 

Although the proposed method in this paper employs the 

M-estimator to mitigate the effects of the cycle slip, the error 

caused still exists.  

Fig. 7 shows the details of the errors under different values 

of 𝑁𝑘,𝑀𝐴𝑋
𝑠 . The representative epoch is epoch A (denoted by a 

circle in Fig. 7) where the green curve (𝑁𝑘,𝑀𝐴𝑋
𝑠 = 9) obtains 

better accuracy than all other methods. In addition to 𝑁𝑘,𝑀𝐴𝑋
𝑠 , 

the maximum size of the WCP can also be determined by the 

times that one satellite is being tracked. The histograms (Fig. 

7-(a) and Fig. 7-(b)) denote the distributions of the window size 

of the WCP during two tests. It is shown that the majority of the 

WCP can have a size of the 𝑁𝑘,𝑀𝐴𝑋
𝑠 . However, the 𝑁𝑘

𝑠 of some 

satellites is even smaller than 10 due to lost track occasionally. 

In short, the performance of the WCP constraint is highly 

related to the window size, and too large a size does not 

necessarily lead to better results due to the existence of 

occasional cycle slips. 

Table 2. Performance of the proposed method under different 

maximum window sizes (𝑁𝑘,𝑀𝐴𝑋
𝑠 ) assumptions. 

𝑁𝑘,𝑀𝐴𝑋
𝑠  6 9 16 25 35 

MEAN (m) 1.76 1.69 1.82 1.89 1.93 

STD (m) 0.57 0.48 0.62 0.72 0.82 

Max (m) 4.06 3.16 4.67 5.43 6.01 

 

Fig. 7. 2D positioning errors of the proposed method under the different 

values of 𝑁𝑘,𝑀𝐴𝑋
𝑠 . The “WS” in the legend denotes the 𝑁𝑘,𝑀𝐴𝑋

𝑠 . The x-axis 

denotes time and the y-axis represents the errors.  

C. Experimental Evaluation in Urban Canyon 2 

1) Positioning Performance Evaluation 

To challenge the performance of the proposed method, 

another experiment was conducted in a denser urban canyon 2 

with significantly higher building structures. Table 3 shows that 

a mean error of 31.02 meters is achieved via the commercial 

solution from the u-blox receiver. Similar to the experimental 

results in urban canyon 1, improved accuracy is obtained by the 

WLS with the mean error decreasing to 16.66 meters. 

Fortunately, the integration of the pseudorange and Doppler 

measurements using FGO (PSR-DOP) significantly reduce the 

error to only 3.9 meters with a significantly decreased standard 

deviation. Interestingly, the utilization of the TDCP constraint 

even degrades the overall performance with the mean error 

increasing to 5.21 meters. This is due to the significantly 

increased percentage of the cycle slip phenomenon in urban 

canyons 2 with denser building structures. As a result, the 

TDCP becomes an incorrect constraint due to the violation of 

the constant integer ambiguity between consecutive epochs of 

measurements. However, after applying the proposed WCP, the 

mean error decreases to only 2.96 meters with the standard 

deviation decreasing to only 1.89 meters. The detailed 2D 

positioning errors of the evaluated five methods can also be 

shown in Fig. 8. Different from the TDCP, the WCP involves 

multiple carrier-phase measurements and the impacts of the 

single-cycle slip can be further resisted by the measurements 

redundancy of window constraint. This significant 

improvement again shows the effectiveness of the proposed 

method in improving the GNSS positioning even in such a 

dense urban canyon. 

Table 3. Performance of the listed five methods in urban canyon 2 

(Max: maximum error; STD: standard deviation; MEAN: mean error; 

Sol 1: PSR-DOP, Sol 2: PSR-DOP-TDCP, Sol 3: PSR-DOP-WCP) 

Item (m) u-blox WLS Sol 1 Sol 2 Sol 3 

MEAN  31.02 16.66 3.90 5.21 2.96 

STD  37.69 12.82 2.29 2.38 1.89 

Max  177.6 56.23 12.84 12.52 12.02 

 

Fig. 8. 2D positioning errors of the evaluated five methods in urban canyon 2. 
The red curve denotes the 2D error from the commercial solution of the u-blox 

receiver. The green, cyan, magenta, and blue colors denote the WLS, PSR-DOP, 

PSR-DOP-TDCP, and PSR-DOP-WCP, respectively. 
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Fig. 9. 2D positioning trajectories of the evaluated five methods in urban 

canyon 2. The black and red curves denote the 2D trajectories of the ground 

truth and the commercial solution of the u-blox receiver. The green, cyan, 

magenta, and blue colors denote the WLS, PSR-DOP, PSR-DOP-TDCP, and 

PSR-DOP-WCP, respectively. 

Fig. 9 shows the trajectories of the evaluated five methods. 

Both the solutions from the u-blox (red curve) and the WLS 

(green curve) deviate significantly from the ground truth (black 

curve) due to the GNSS outlier measurements. With the help of 

the proposed WCP constraint, a significantly smoother 

trajectory (blue curve) is obtained.  

2) Analysis of the Cycle Slip Accommodation via M-estimator 

As mentioned in Section IV-C, the cycle slip is 

accommodated by the M-estimator by mitigating the effects of 

the inconsistency in integer ambiguity. This is based on the 

assumption that the cycle slip can induce inconsistency in 

integer ambiguity where large residuals (see (17)) can be 

observed after solving the (21). However, the performance of 

the M-estimator relies heavily on the selection of its kernel 

parameter. To see how the selection of the kernel parameter 

impacts the performance of the proposed WCP with different 

kinds of M-estimators, Table 4 presents the positioning 

performance of the proposed PSR-DOP-WCP under different 

M-estimator setups. The Huber-based M-estimator (see 

Appendix B regarding the formulation of the Huber function) 

fails to resist the inconsistency of integer ambiguity caused by 

the cycle slip for both selected kernel parameters where the 

PSR-DOP-WCP diverges. This is mainly due to the convex 

surface property of the Huber-based M-estimator. As a result, 

the Huber cannot mitigate the impacts of the gross outlier. The 

Huber and Cauchy functions with different kernel values (𝑘𝜌) 

are shown in Fig. 10. The red shaded area denotes the potential 

outlier area with larger residuals. The light green area denotes 

the typical healthy measurements area with smaller residuals. 

The cyan curve denotes the conventional squared loss function 

where the gross outlier of the WCP constraint can cause large 

loss, leading to a large final position estimation error. The 

Huber-based robust function can mitigate the impacts of the 

outliers (e.g., red curve), compared with the conventional 

squared loss function. However, the outlier with a large residual 

can still mislead the final position estimation. For example, a 

residual of 50 can cause a loss of about 100 using the Huber (2) 

which can be seen by the red circle of the marker in Fig. 10. 

Differently, the Cauchy function is a cut-off function that can 

significantly mitigate the effects of the gross outlier. For 

example, a residual of 50 can cause a loss of only 4 using the 

Cauchy (1) which can be seen by the blue asterisk of the marker 

in Fig. 10. As a result, a mean error of 3.62 meters is obtained 

using Cauchy based M-estimator with a kernel value of 1. The 

mean error decreases to 3.11 meters with a kernel value of 2. A 

similar mean error is obtained after increasing the kernel value 

to 4 which is an appropriate kernel to accommodate the cycle 

slip phenomenon.  

Table 4. Positioning error of the PSR-DOP-WCP under different 

M-estimator setups in urban canyon 2 (H (1): Huber function with 

kernel value (𝑘𝜌) of 1; C (1): Cauchy function with kernel (𝑘𝜌) value 

of 1) 

Item (m) H (1) H (2) C (1) C (2) C (4)  

MEAN  Diverge Diverge 3.62 3.11 3.05  

STD  Diverge Diverge 2.04 1.78 1.68  

Max  Diverge Diverge 13.11 11.20 10.76  

 

To show the detail that how the M-estimator helps to 

mitigate the impacts of the cycle slip phenomenon, as Fig. 11 

shows that we present the residuals of the WCP constraints in 

urban canyon 2, using Huber and Cauchy functions, 

respectively. With the help of the Cauchy function, the gross 

residuals are mitigated with all the residuals ranging between 

[−4, 4]. Conversely, the residuals involve long-tail with large 

values using the Huber function.  

 

Fig. 10. Comparisons of the robust functions with different kernel values (𝑘𝜌).  

 

Fig. 11. Histograms of residuals of the WCP constraints using the Cauchy and 

Huber functions. The x-axis denotes the residuals calculated using the (17) and 

the y-axis represents the counts.  

3) Analysis of the TDCP and Left Null Space Matrices 

As shown in the experimental results of the urban canyons 1 

and 2, the improved positioning results are obtained using the 

proposed WCP constraint based on the 𝐆𝑟,𝑘
𝑠 , compared with the 

conventional TDCP constraint based on the 𝐃𝑟,𝑘
𝑠  (see (20)). It is 

interesting to compare the difference between the two matrices 

with real data. To show the detail of the left null space matrix 

𝐆𝑟,𝑘
𝑠  of WCP constraint and the TDCP matrix 𝐃𝑟,𝑘

𝑠 , we select a 

window for a satellite being observed for 11 epochs in the urban 

canyon 2. The 𝐆𝑟,𝑘
𝑠  of WCP constraint is shown on the right 

side of Fig. 12. Similarly, the 𝐃𝑟,𝑘
𝑠  for the TDCP measurements, 

is shown on the left side of Fig. 12. We can see that the 
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off-diagonal components of the 𝐃𝑟,𝑘
𝑠  for the TDCP are zero 

which neglects the cross-correlation between the multiple 

epochs of carrier-phase measurements. According to our 

previous work in [16], the GNSS measurements are highly 

environmentally dependent and time-correlated in urban 

scenarios. Differently, the 𝐆𝑟,𝑘
𝑠  for the proposed WCP is a 

dense matrix that effectively explores the correlation between 

measurements between consecutive epochs which is the major 

difference between the proposed WCP and the conventional 

TDCP. As a result, the WCP constraint significantly increases 

the robustness of the estimator against outlier measurements 

and leads to smoother position estimation with the help of 

multiple epoch constraints.  

 

Fig. 12. Comparison of the 𝐃𝑟,𝑘
𝑠  for TDCP constraint and the 𝐆𝑟,𝑘

𝑠  for the 

proposed WCP constraint. The x and y axes denote the epoch index. The color 

denotes the value of the components of the matrix. The size of both matrices is 

11 × 11 where 11 denotes the number of epochs inside the window. In other 

words, the given satellite is continuously tracked for 11 epochs. 

D. Discussions: Experimental Evaluation in Urban Canyon 

Using Low-cost Smartphone-level Receiver 

The u-blox GNSS receiver and patch antenna belong to the 

automobile level that is usually used in intelligent 

transportation (ITS) application. Therefore, it is interesting to 

see how the proposed method works for the smartphone 

receiver. The internal antenna of the mobile phone is sensitive 

to multipath/NLOS and the collected GNSS measurements are 

noisier. To this end, we collect the other dataset in an urban 

canyon. The applied smartphone is Huawei P40 Pro and raw 

GPS/BeiDou measurements are collected at a frequency of 1 

Hz. The positioning results of the listed four methods are shown 

in Table 5. Since the NMEA solution from the smartphone is 

estimated based on additional information, such as onboard 

inertial measurement unit, map matching [38], and magnetic 

sensors, we do not compare the NMEA solution in this 

experiment. A mean error of 14.45 meters is obtained using the 

conventional WLS method and the trajectory is shown in Fig. 

13 with green curves. After applying the PSR-DOP method, the 

mean error decreases to 8.74 meters with a decreased standard 

deviation of 4.21 meters. Interestingly, the mean error increases 

slightly to 9.19 meters after applying the TDCP constraint. 

With the help of the proposed method, the mean error decreases 

to 7.47 meters which shows the effectiveness of the proposed 

method even in the low-cost smartphone level GNSS receiver. 

However, we can see that the standard deviation even increases 

slightly after applying the WCP constraints compared with the 

PSR-DOP method. One of the major reasons is the unexpected 

cycle slip in carrier-phase measurements. Due to the limited 

cost of the GNSS receiver, the cases of the cycle slip are 

significantly increased compared with the ITS-level u-blox 

GNSS receiver. Although the Cauchy-based M-estimator can 

help to mitigate the impacts of the cycle slip, its impacts are still 

involved in the position estimation problem. It is important to 

detect the potential cycle slip with the help of other additional 

onboard sensors, such as IMU to further improve the proposed 

WCP constraint, which will be one of our future works. 

Table 5. Performance of the listed four methods in an urban canyon 

using smartphone level GNSS receiver  

Item (m) WLS Sol 1 Sol 2 Sol 3 

MEAN  14.45 8.74 9.19 7.47 

STD  11.79 4.21 4.82 4.60 

Max  110.74 46.10 45.39 46.38 

 

Fig. 13. 2D positioning trajectories of the evaluated four methods in an urban 

canyon. The black curve denotes the 2D trajectories of the ground truth. The 
green, cyan, magenta, and blue colors denote the WLS, PSR-DOP (Sol 1), 

PSR-DOP-TDCP (Sol 2), and PSR-DOP-WCP (Sol 3), respectively. 

VI. CONCLUSIONS  

Accurate GNSS positioning in urban canyons is still a 

challenging problem due to excessive outlier measurements 

caused by the surrounding high-rising building structures. To 

improve the urban GNSS positioning, instead of relying on the 

time difference carrier phase (TDCP) which only considers two 

neighboring epochs using an extended Kalman filter (EKF) 

estimator, this paper proposed to employ the carrier-phase 

measurements inside a window, the so-called window 

carrier-phase (WCP), to constrain the states inside a factor 

graph. The effectiveness of the proposed method is verified 

using both automobile-level and smartphone-level GNSS 

receivers in typical urban canyons of Hong Kong. One of the 

major limitations of the proposed method is the reliance on the 

assumption of constant integer ambiguity for the continuously 

observed carrier-phase measurements. In the future, we will 

study the detection of cycle slip by adding the occurrence of the 

cycle slip as an additional state to be estimated with the help of 

data redundancy inside the factor graph optimization.  
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APPENDIX: CONSTRUCTION OF THE LEFT NULL SPACE MATRIX  

A. Construction of the Left Null Space Matrix  

Given a vector 𝐯𝑟,𝑘
𝑠 = [1 1 … 1]T , there are several 

candidate matrices 𝐆𝑟,𝑘
𝑠  that satisfying the following equation: 

𝐆𝑟,𝑘
𝑠 [

1
1
…
1

] = [

0
0
…
0

]         (A-1) 

Theoretically, the 𝐆𝑟,𝑘
𝑠  encodes the time-correlation of the 

carrier-phase measurements considered in a WCP by using the 

equation (15). Different selection of 𝐆𝑟,𝑘
𝑠  is corresponding to 

different confidence levels of time correlation across different 

epochs of carrier-phase measurements. However, it is still an 

open question that how to select the optimal 𝐆𝑟,𝑘
𝑠  which can 

optimally capture the time-correlation inside the WCP.  

According to our evaluation in Section V, the performance 

of the WCP is mainly dominated by the size of the window (𝑁𝑘
𝑠) 

and the quality of the covariance estimation (𝚺𝑟,𝑘
𝑊𝐶𝑃,𝑠

). Therefore, 

we adopt the random process [39] to construct the 𝐆𝑟,𝑘
𝑠  based 

on a given size of the window denoted by 𝑁𝑘
𝑠 . Firstly, the 

orthonormal basis [39] of the null space of the matrix 𝐯 can be 

calculated which is denoted by matrix 𝐒𝑟,𝑘
𝑠 . Then a complex 

matrix 𝐇𝑟,𝑘
𝑠  can be constructed by randomly generating two 

matrices 𝐇𝑟,𝑘,1
𝑠  and 𝐇𝑟,𝑘,2

𝑠  which making up the real and 

imaginary part of matrix 𝐇𝑟,𝑘
𝑠 = [𝐇𝑟,𝑘,1

𝑠 𝐇𝑟,𝑘,2
𝑠 ]. Meanwhile, 

all the components of the two matrices 𝐇𝑟,𝑘,1
𝑠  and 𝐇𝑟,𝑘,2

𝑠  are 

ranging between [0,1] . Then the QR factorization [39] is 

performed as follows: 

𝐐𝑟,𝑘
𝑠 𝐑𝑟,𝑘

𝑠 = [𝐇𝑟,𝑘
𝑠 − 𝐈𝑟,𝑘

𝑠 ]       (A-2) 
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where the matrix 𝐐𝑟,𝑘
𝑠  is an orthogonal matrix and the matrix 

𝐑𝑟,𝑘
𝑠  is an upper triangular matrix. Finally, a unitary matrix can 

be generated as follows: 

𝐔𝑟,𝑘
𝑠 = 𝐒𝑟,𝑘

𝑠 𝐐𝑟,𝑘
𝑠 𝐒𝑟,𝑘

𝑠 T
+

1

𝑁𝑘
𝑠 𝐯𝑟,𝑘

𝑠 𝐯𝑟,𝑘
𝑠 T

     (A-3) 

where the 𝐔𝑟,𝑘
𝑠  is a complex and unitary matrix. Finally, the 

𝐆𝑟,𝑘
𝑠  is the imaginary part of the matrix 𝐔𝑟,𝑘

𝑠 . 

B. Huber-based Robust Function for WCP Constraint 

Given the error function of the WCP constraint as 𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠

, 

the robustified Huber based error function can be formulated as 

follows:  

𝜌(𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠) = {

1

2
(𝑐)2,                               |𝐞𝑟,𝑘

𝑊𝐶𝑃,𝑠| ≤ 𝑘𝜌

𝑘𝜌 (|𝐞𝑟,𝑘
𝑊𝐶𝑃,𝑠| −

1

2
𝑘𝜌),     |𝐞𝑟,𝑘

𝑊𝐶𝑃,𝑠| > 𝑘𝜌

 (B-1) 

where the 𝑘𝜌 denotes the kernel value (parameter). 


