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:Vfoment:-; in the two-time spin-pair correlation function are evaluated up to 16-th order 

for the one-dimensional Heisenberg system with S=l/:2 at infinite temperature. The method 

of evaluatiOn, with a u:-;eful recurrence formula is reporter!. The current methods of treating 

the correlation function together with a newly proposed one are examined for both the 

:-;patially-Fourier-transformed correlation function and the auto-correlation function. 

§ l. Introduction 

21 

Considerable attention has been paid to the spin dynamics in the Heisenberg 

system at high temperatures. In particular, the two-time spin-pair correlation func

tion is the main subject The spectral density function associated with the two

time spin-pair correlation function is closely related to the spe~tra of inelastically 

scattered neutrons 1 J~ 7 J and to EPE line width.sJ,g) Many theoretical studies of the 

t\\O-time spin-pair correlation function have appeared. However there is no exact 

solution e\·en for the one-dimensional lattice. The essential difficulty involved in 

our problem has clearly been described in Blume and Hubbard,IO) in which the 

references before 1969 have been extensively given. 

Now, the moments associated with the spectral density function grve us a 

\·aluable clue to imprO\·e the current methods and/or to examine their approximate 

nature. However the evaluation of moments becomes extremely difficult with in

creasing order. The moments have been evaluated up to 10-th order in the Heisen

berg spin system for S = 1/2 at infinite temperature, 11), 12) while the temperature

dependent moments up to 6-th order have been reported for the isotropic system 

-with classical spins;j) all for one-dimensional case, We also mention the latest 

report on the 6-th moment for the isotropic system m any lattice with arbitrary 

spin.:n 

It rs one of our arms of this paper to present the moments up to 16-th order 

for the one-dimensional isotropic system with S = 1/2 together with our method 

of evaluations. Another aim of this paper is to examine the approximate nature 

of some of the current methods of treating the two-time spin-pair correlation func

tion, by using the obtained moments. 

We shall particularly pay our attention to the method of continued fraction 
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22 N. Nagao and H. Miyagi 

expansion,l3) which has widely been utilized. In this method some ingeneous ap

proximation to the memory function is. necessary for the cutoff of the continued 

fraction, as have been recongnized by various authours. 3 J~?J Among them Tomita 

and Mashiyama4J have analyzed the experimental spectrum of RbMnF3 and have 

shown that the second-step memory function can be well approximated by a Gaussian 

function as an alternative of Lovesey and Meserve's exponential one. 6J It is, how

ever, desirable to look into the convergence of such methods by the use of the 

higher moments. In the present paper we also examine the other method, which 

will be called the approximate-stationary-memory-function method. This method 

seems implicit in Dupuis' paper. !4J 

In § 2 we give the moments up to 16-th order for the one-dimensional isotropic 

system with S=l/2 together with a brief description of our method of evaluations. 

In § 3 the results are given for the correlation spectra resulting from the Gaussian 

method, which is compared with those from the alternative one. In § 4 we compute 

the auto-correlation function by the Gram-Charlier expansion, whose spectrum is 

compared with Carboni and Richards' result extrapolated from their calculation for 

finite chain system. SJ 

§ 2. Evaluation of moments 

For the sake of simplicity we shall represent the Pauli spin operators (rJxi> 

rJ11i> !Jzj) at site j ~ (Xi> Yh Zj). The moment expansion of the two-time spin-pair 

correlation function at infinite temperature is merely the power series of it in time: 

(1) 

with l=i-j. Here, by the use of Kubo's notation axb=ab-ba, the 2n-th mo

ment M 2n(j, i) is written as 

M2n(j, i) =(Z;(Hx) 2nZj), (2) 

In the reduced time r=Jtjfi, where our Hamiltonian 1s expressed in terms of the 

Pauli spin operators as 

H = (1/2) I; (XjXHI + Yj YH1 + ZjZH1). 
j 

As can be seen from the familiar expression 

(3) 

( 4) 

operation of (Hx) n on Zj generates various products of spin operators. A product 

of spin operators on k contiguous sites is called k-th order spin array. If the 

sequence of sites with spin operator is intermitted, we add 2 to the number of 

orders for each intervening site without spin operator. Thus for instance, Xj Yj+2 

is a 4-th order array. Operation of i- 1Hx on a k-th order spin array produces 

at most 4k spin arrays of the (k--1)-th and (k+l)-th orders. If two spin 
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Time Correlation Function in the One-Dimensional Heisenberg System 23 

arrays coincide with each other by a translation, they are called dependent arrays. 

An assembly of dependent arrays is represented by the array with the leftmost 

spin operator at site 0. A spin array belonging to an assembly is generated 

from its representative by operating T(l) on the latter, making it translate by 

l sites. Independent spin arrays are denoted by Ilg, as numbered by the following 

way: II1 = Z0 , II,= YoXb Il3 = Xo Y1 and so on. The number of independent spin 

arrays appearing in (i- 1Hx)nZ0 , which is denoted by hn, increases with n approxi

mately as hn"-'3n. 

Now the important point in our evaluation is the use of a recurrence formula. 

Let i- 1 Hx Ilg be 

(5) 

Here o runs over -1, 0, 1 and r5gh (o) = 0, ± 1, being determined from the evalu

ated result of commutators. Let us then introduce a many-dimensional vector A<nlg, 

whose l-th component is defined by 

(6) 

Inserting Eq. (5) into Eq. (6), we obtain the recurrence formula: 

(7) 

Since l'v12n (i, i) = ( -1) n A <zn\ (j- i), all independent spin-arrays appearing in 

(Hx)mzo with m=O, 1, ... , n are needed for the evaluation of M,n(j-i). If they 

are provided, A<znl 1 can be obtained from Eq. (7) with the initial condition A<0l9 (l) 

= Og1010 • According to our procedure the number of independent coordinates neces

sary for the evaluation of A <zn\ is equal to (2n + 1) hn"-'3nn, owing to the recur

rence formula. If one took the direct procedure with the use of Eq. (5), the 

corresponding number would be hn2"-'3 2n with a formidable figure. 

The computed results for M,n(l) are shown in Table I, whence M,n(l) with 

l<O is obtained by M,n ( -Z) = lt1,n (l). Another relation "E.,l,Mn (l) = 0 as well as 

the above one checks our result. Besides these relations, some regularities are 

Table I. Numerical values of M,.(l). 

2n 
-,--

' 

- --

I 

----------

0 I 2 j_ 4 6 I 8 10 12 14 16 

0 1 
I 

4 44 6521 11,636 242,816 
- I 

166,988,876 I 5,522,663,076 5,896,200 ' 

1 -2 I -28 I -456 I -8,464 -177,424 -4,199,416 -112,473,076 1 -3,410,887,248 

2 6 I 15o , 3,304 73,200 1,677,302 39,475,150 908,113,680 

3 
I -20 I -728 -20,292 -525,316 -13,331,916 -335,808,000 

4 701 3,360 113,454 3,369,938 94,555,188 

5 -252 -15,048 -597,168 -20,045,896 

6 924 66,066 3,013,868 

7 -3,432 -286,000 

8 12,870 
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24 N. Nagao and H. ~vfiyagi 

observed. We mention here M 2n(n)=(-l)n(2n)!/(n!) 2• 

The spatial Fourier transform of f(l, r) is given by 

with 

Z (tc) = N- 11' :l: ci"1Z 1 , 

! 

whose spectral function G (tc, w) is defined by 

(8) 

(9) 

(10) 

The moments associated with G(tc, (!)), 1lf2n(tc), is merely a spatial Fourier transform 

of Jl.;J2n ( Z): 

( 11) 

1112n(tc) can be written m terms of 

X=2(1-cos tc) ( 12) 

as follows: 

M2n(tc) = ~ M 2';;Xm, (13) 
m 

where the coefficients M 2';; obtained from Table I are tabulated in Table II. 

The figures appearing along the diagonal line in the table are again given 

by (2n) !/ (n!) 2 • These are only non-vanishing coefficients which one would get 

for the XY-model. 15l Along the line contiguous to the diagonal one \YC have 

1'112';..- 1 = [(2n)!/(n+1)!(n-2)!]. Otherwise there is no regularity as far as we could 

observe. 

m 

§ 3. Use of the continued fraction method 

Let G(tc, s) be the Laplace transform of F(tc, r) as is defined by 

Table II. Numerical values of M,.m. 

8 10 16 ~~~o-12 416 
() ---- -1--! ~+------'------+-

12 __ I __ :~ 
,-----------~ -~-

~ '2 :1:~ 
3 I 20 

4 

5 

6 

7 

8 

680 

336 

168 

70 

19,792 

6,048 

2,232 

840 

252 ! 

745,724 33,359,704 

139,106 3,288,272 

40,876 882,908 

12,870 

3,960 

924 

245,102 

68,640 

18,018 

3,432 

1,693,659,992 

46,799,100 

18,855,000 

5,279,300 

1,371,240 

348,348 

80,080 

12,870 
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Time Correlation Function in the One-Dimensional Heisenberg System 25 

(14) 

This function may be represented by 

G(!C, s) =J/[s+J,'(JC)G,(IC, s)] (15) 

1n accordance vvith Mori's treatment. 131 Here G1 (IC, s) is the Laplace transform of 

the memory function which is called the first step memory function. The first 

step memory function is in turn expressed in terms of the second step memory 

function, both in their Laplace transforms, again in accordance with Mori's treat

ment. By this way one gets 

Gn_ 1 (1C, s) =1/[s+J,'(te)Gn(IC, s)], (16) 

where Gn(!C, s) is the Laplace transform of the n-th step memory function. The 

coefficients Jn'(te) are expressed in terms of the moments of F(te, c) :131 'w 

J,'(te) =Af,(te). 

J,' (te) = 1124 (K) I 1122 (K) - M, (!C), 

J 3'(te) =[M6 (te)/Af2 (te) -{kf.(te)/M2 (te)}']/J,'(te) (17) 

and so on. Figure 1 sho\VS the jn'(tc)'s 

\'ersus 11 for several values of /C. 

Now the residual part, namely, the 

Laplace transform of the higher order 

memory function cannot be neglected as is 

widelY known. If the n-th step memory 

function converges to a limiting function 

vvith increase of n, the approximate limit

mg memory function may be obtained if 

one puts 

Gn 1 (/C, s) =Gn(IC, s). (18) 

The above equation leads tow 

Gn(te, s) = [ -s+ {s'+4.d;+ 1} 112J 

X (2.1;+ 1) - 1. (19) 

10 

2 3 4 5 

c 

d 

e 

6 

112 

1/4 

0 

7 8 n 

Fig. L Plot for &;(tc) vs n for several wave 

vectors. 

However the existence of the limiting memory function is not necessarily required. 

If one could find a step number n at which .dn2 is stationary with respect to the 

variation of n, the condition (18) would be valid there. In this sence the cutoff 

procedure with the use of Eq. (19) will be called the approximate-stationary-memory

function (AS11F) method, ~where Gn thus approximated will be referred to as the 

n-th ASMF. 

In place of the above procedure, Tomita and Mashiyama5> assumed the second 
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26 N. Nagao and H. Miyagi 

step memory function to be Gaussian as given by 

(20) 

which is compared with the inverse Laplace transform of Eq. (19), namely, 

J1 (2Jn+Jr) / (.1n+1r) with J1 (x) the Bessel function of first order. The Laplace 

transform of Eq. (20) is written as 

0 0~----------~2~.0~--------~4~.0~-w---

Fig. 2. Spectral density function G(K:, al) for K:=rr. 

The spectral density curve m the n-th ASMF is 

labeled by [n] and that in the n-th Gaussian 

approximation by [n]'. The angular frequency is 

reduced in units of h/IJI. 

(21) 

We compute the spectral func

tion for the spatial Fourier trans

form of the two-time spin-pair cor

relation function, which is given by 

G(tc, w) =2 Re G(tc, -iw). In Fig. 

2 the computed results for /C = 7r are 

shown for both ASMF and Gaussian 

approximation with different step 

numbers of the cutoff, separately 

for even and odd step numbers. 

The area under the shown curves 

is automatically normalized to 2rr 

owing to the sum rule. Now, it 

appears that the Gaussian approxi

mation gives peaks much sharper 

than ASMF as shown in Fig. 2. 

The curve [2] in the figure, where 

the cutoff has been done at the 

second step, is quite similar to that 

for classical spin in the second step 

Gaussian approximation,'1 while it 

is not the case for the correspond

ing curve for spin one half in the 

latter approximation, [2]' in the 

same figure. It is to be noted that 

Lovesey and Meserve's exponential 

function61 gives us a sharper peak 

than the Gaussian approximation. 

As can be seen in Fig. 2, 

ASMF seems more convergent than 

the Gaussian approximation. How

ever the spectral curves in the 
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Time Correlation Function in the One-Dimensional Heisenberg System 27 

higher approximation bring us another 

peak in the intermediate frequency region. 

We are not sure whether the new peak 

is spurious or not. Note that the frac

tional change in dn2 is the smallest 

between n = 5 and n = 6 as seen in Fig. 

1. This observation suggests that the 

4-th ASMF may be the most reasonable 

one. In Fig. 3 we show our computed 

results with the 4-th ASMF for several 

wave vectors and compare them with the 

previous ones. We note here that ASMF 

approximation gives results close to 

the Carboni-Richards spectral curves. 

1.5 

1.0 

(a) tclrr =219 
(b) 4/9 

(c) 8/9 

Fig. 3. Spectral density curves for several wave vectors. The angular frequency 
is reduced in units of h/IJI. Here the 4-th step ASMF: --, the 2nd step 
Gaussian for classical spin :•l -----, Carboni and Richards' result: 

§ 4. Use of the Gram expansion 

The Gram expansion was applied first by Collins and Marshall,2) and later 

by various authors.16l,m Here the starting function is a Gaussian one in accordance 

with the calculated second moment and 

its modification is expanded in the deriva

tives of the same function where the ex

pansion coefficients are fitted to the higher 

moments. The relevant expansion formula 

is obtained easily as given in Appendix A. 

The convergence of this method will be 

studied in detail particularly for the auto

correlation function. 

The auto-correlation function f(O, -r) 

defined by Eq. (1) with l = 0, is in the 

best position for the purpose of studying 

the above-mentioned convergence, where 

one has the greatest number of available 

moments. There is also another point, 

as is described below. Let 1-ln be the 

ratio of M 2n(0)/(2n)! to M 2n-2(0)/(2n- 2)!. 

Then a plot of log [log 1-ln + c] versus n is 

nearly a straight line with suitable choice 

1.0 

0.5 

0 

-0.5 

·J.O 

2 3 4 5 6 7 8 n 

Fig. 4. Plot for ¢.=log [log ttn+c8] vs n. Here 

,u.=[M •• (0)/(2n)!] + [M ••.• (O)/(Zn-2)!] 

and ca=2.30373. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

5
/1

/2
1
/1

8
5
4
8
4
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



28 N. Nagao and II. J\1iyagi 

(A) 

(B) 

9 terms 

13 

1.0 17 

-- 9 terms 
----- 13 

--17 1.0 

~\ 
"', 

M-T 

H-M 

Fig. 5. Auto-correlation function and spectral density function m the Gram expanswn. 

(A) Auto-correlation function f(O, r) as a functwn of the reduced 11me -:= IJit. h. Carbom 

and Richards' extrapolated result 1s represented by the dotted lines. (B) Spectral density 

functwn ?i (0, oJ) as a function of the reduced angular frequency in units of h/IJI. Carboni 

and Richards' result is represented by the horizontal lines. The open circles are l'vlcFadden 

and Tahir-Kheli's results201 and the crosses Horiguch1 and JVIorita's."l 

of the constant c, as IS manifested 1!1 Fig. 4. B:-· this way we obtain the following 

'empirical' formula: 

(22) 

with four parameters cbosen to be c1 =11.0665, c,•=0.320653, c,=•2.30373 and c, 

=11.0411, using the least square fit. This formula can reproduce 1\1,, 1\1" ... , },116 

to an accuracy of 0.02%. Thus we get some higher moments than ]\1]16 , as a 

result of the extrapolation with the aiel of Eq. (22). (See also Appendix B). 

The auto-correlation function f(O, r) thus obtained is plotted in (A) and the 

corresponding spectral density g(O, !!)) defined by the Fourier transform of f(O, r), 

in (B), both of Fig. 5, where Carboni and Richards' result extrapolated from their 

finite chain calculations81 is also sho·wn. The convergence is notably slo·w and only 

three of our curves are plotted. The appearance of a broad maximum on the 

high frequency side remains unchanged even in the higher approximation with the 

use of extrapolated moments, as can be seen in the same figure. The hump thus 

found cannot clearly be seen in Carboni-Richards' horizontal lines, which are not 

in contradistinction to ours. The curve with 13 terms is almost the same as that 

with 17 terms except the center. The mentioned hump may be characteristic of the 

one-dimensional lattice with spin one half: vVindsor's computer simulation resule8' 

shows a monotonically decreasing spectral curve, referring to the simple cubic 

Ia ttice with classical spins. 
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Time Correlation Function zn the One-Dimensional Heisenberg System. 29 

We mention here the other kind of prevrous results for the auto-correlation 

function, basing its evaluation on De Leener and Resibois' integral equation. 191 

Here the relevant memory function is approximated by a Gaussian function and 

its modification may be treated by the same way as was clone in the Gram ex 

pansion of the correlation function. The memory function approximated thus can 

be determined by the moments of the correlation function. The resulting spectral 

density functions have been published by M:cFadden and Tahir-Kheli201 and by 

Horiguchi and Morita2D respectively for the memory functions consisting of one 

and four terms. These results are shown also in Fig. 5 (B). 

The two-time spin correlation function for the nearest neigh boring pair 1s 

another interesting subject. Unfortunately we could not succeed in finding any 

reliable extrapolation formula here. The single cun·e given in Fig. 6 is our 

result "\Yith the moments up to c\116 (1) taken into account. Here our time cor

relation function /(1, -c) is shown in (A) and its Fourier transform g(l, w) m (B), 

in comparison with Carboni and Richards' result. 

In both Figs. 5 (B) and 6 (B), the spectral density near the center may not 

be reliable clue to its singular behavior as pointed out by several authors. 81 ' 221 (See 

also Manson231 for a recent discussion of the asymptotic behavior of the correlation 

function at long times.) The rise of the central peak with increase of the terms 

taken into account is clear in Fig. G(B), where a bottom appears as a result of 

compensation of the area increase near the center. 

\ 

3 \ (B) 

lD) 

0.5 (A) 0.5 

2.0 4.0 w 

2.0 
0 0 o~----J.o 

-0.5 

Fig. 6. Nearest neighbor correlation function /(1, r) and its spectral function g (1, (l)) in the 

Gram expansion. (A) The curve for /(1, r) with 8 terms in the expansion. (B) The 

curve for g (1, (l)) with the same approximation as in (A). The horizontal lines show 

the Carboni-Richards histgram. 

§ 5. Conclusion and discussion 

The moments associated with the two-time spin-pair correlation function haYe 

been evaluated up to the 16-th moment for the one-dimensional isotropic Heisenberg 

system with spin 1/2 at infinite temperature. The result is in agreement with 
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30 N. Nagao and H. Miyagi 

the previous one up to the 10-th moment, of which the 6-th and 8-th moments had 

resulted from a direct count done by one of us (N.N.) without use of the com

puter, as quoted in Refs. 11) and 12). Owing to the reccurrence formula found 

in the direct count, the computation has been advanced to the higher moments as 

given in Table I. 

Using the obtained moments, we have discussed the approximate nature of the 

continued fraction method with cutoff function particularly at the Brillouin zone 

boundary, which might be the worst case for the above method. Besides the 

Gaussian cutoff, another cutoff function called ASMF has been studied, resulting 

more convergent solution than the Gaussian one. However both the methods do 

not seem satisfactory as far as we could examine. It should be mentioned that 

the second step Gaussian cutoff has been suggested through an analysis of the 

experimental data for a three dimensional lattice. It has been pointed out that 

the 4-th ASMF seems more plausible than the higher ones for the considered 

system. 

The Gram expansion method has been applied to the auto-correlation function 

with rather successful result. Due to a slow convergence of the expansion series 

we needed more moments than ours, which have been obtained with the help of 

an extrapolation formula. A hump in the relevant spectral curve has been predict

ed to exist, possibly as a characteristic of the one-dimensionality of our system. 
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Appendix A 

--Gram's expansion--

The Gram expansion will below be derived. The two-time correlation function 

for two spins separated by l sites, f(l, r), is given by Eq. (1) of the text. For 

n<l, the M 2n(l)'s vanish identically as seen in Table II of the text. Then we 

put the series of f(l, r) as follows: 

j(l, r) = ~~;;M 2 l (l) r 21 [1- (2l+ l)\2l+ 2) · ~:ci? · r 2 + · ·l (A ·1) 

which may be written as 

f(l, r) = (-Y Mu (l) r 2l exp[- 2
1 (o>trY] ~ (2

1) 1 • B
2
;, (liJtrY'. 

(2l)! s~o S • Oh 
(A·2) 

Here the width parameter Oh is chosen to be fitted to the initial decay and is given 

by 
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Time Correlation Function in the One-Dimensional Heisenberg System 31 

w/= --~-2,7\,121+2 (l)_~_ 
(2l+1) (2l+2)M21 (l) 

The coefficient in Eq. (A· 2) is then written as 

B2s= (2s)! t (-r-- J?l2!_ . M21+2mC!l.- ... _1:_.·~( Wz2)S-m. 

m~o (2l+2m)! M 21 (l) (s-m)! 2 

The spectral density function is obtained as 

g(l, w) = J_ooj(r)eiwrdr 

(A-3) 

(A-4) 

=j2n. M 21 (l) exp[-1:_(.!!!_) 2
] f:C-)'~ 1 ~-B 28 H21+2•(.!!!_). (A-5) 

(}) 1 (2l) !w/1 2 W1 s~o (2s)! W1 21 W1 

Here Hn(x) is the hermite polynomials. In Ref. 17), the width parameter Wz 

is assumed to be oJ0, being independent of l. 

Appendix B 

--Note on the extrapolated moments--

After preparing the manuscripts the following paper drew our attention: A. 

Sur and I. ]. Lowe, Phys. Rev. Bll (1975), 1980. In this paper the moments 

associated with the auto-correlation function have been estimated by extrapolating 

the moments for the finite chain systems whose maximum number of spins is eleven. 

We shall below compare our extrapolated values of M 2n (0) with theirs for 2n> 18, 

because both the values for 2n = 16 are identical with each other up to the first 

five figures as it should be. We note here that their numerical values must per

fectly be correct up to 2n = 18. It should also be noted that their method of 

extrapolation is less reliable for M 2n (l) with larger l. 

M,.(O) 

2n 

I 
ours Sur-Lowe 

18 2.131 X 1011 

--~~--~~-·-------

I 2.127X1011 

20 9.586 X 1012 
i 9.480X 1012 

22 5.002X1014 I 4.850x10" 

24 3.015x1o'• 
I 

2.821x1o•• 

26 2.089x1018 I 1.844x1o•• 

28 1.653x10" 
I 

1.344X 1020 

30 1.49 X 1022 I 1.08 X 1022 
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