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Synopsis

The kinetics of the spin 4 Ising chain is studied for a class of master equations
describing transitions in the spin system owing to interactions with a heat bath. The
case in which only transitions of z successive spins are allowed is called the n-flip
model. The time-correlation functions for energy density and magnetization are calcu-
lated exactly in the limit of an infinite chain for all values of n. The effect of critical
slowing-down near temperature T = 0 is studied and it is shown that the critical
exponents characterizing the divergence of the relaxation times of energy and magnet-
ization are independent of #.

1. Introduction. In equilibrium statistical mechanics the theory of Ising
spin systems has led to a wealth of interesting results. The study of the non-
equilibrium statistics of Ising systems may likewise be highly instructive.
As a starting point it seems advisable to take a modest point of view and
to relax the requirement of a fully microscopic, quantum-mechanical treat-
ment of an Ising system with spin-flipping interactions. Instead one may
use as a result of non-equilibrium statistical mechanics that in many cases
the behaviour in time of large systems may in good approximation be de-
scribed by a (markoffian) master equation. Thus for the Ising system we
postulate that, owing to the interaction with a heat bath, spin configu-
rations may change in the course of time with certain transition proba-
bilities per unit time.

Glauber!) has introduced a model in which the only allowed transitions
are those in which individual spins flip, with probability depending on the
temperature of the heat bath and on the state of the neighbouring spins.
For the one-dimensional model he was able to solve exactly for the expec-
tation value of individual spins and of the products of pairs of spins2).

t On leave of absence from the Institute for Solid State Physics, University of
Tokyo, Tokyo, Japan.
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Recently Bedeaux, Shuler and Oppenheim3) have solved the equations of
motion for a set of correlation functions involving an arbitrary number of
spins. One of us (B.U.F.) has given an alternative complete solution of the
master equation for this model?).

The Glauber model is not exactly soluble in dimensions higher than 1,
but various approximate methods have been applied, in particular with a
view of studying the behaviour near the critical point?%). Yahata and
Suzuki®) have made numerical studies for both 2 and 3 dimensions of
exact high-temperature series expansions of the time-correlation functions
of energy and magnetization. These studies have shown that the slowing
down of the relaxation near the critical point is non-classical and have
confirmed conjectures concerning the critical exponents characterizing the
divergence of the relaxation times. According to these conjectures the
critical exponents are independent of the details of the kinetics and the
equilibrium statistics, and are sensitive only to drastic changes, such as a
change of dimensionality, change of symmetry or conservation laws, or
change from short-range to long-range interactions. Thus for Ising systems
with nearest-neighbour interactions in 2 and 3 dimensions the critical ex-
ponents have been shown to be independent of lattice structure.

In the present paper we study the Ising chain with nearest-neighbour
interactions in the absence of a magnetic field for a class of relaxation
models. In each model the only allowed transitions are those in which »
neighbouring spins flip simultaneously. The time-correlation functions of
the Fourier components of energy density and magnetization are calcu-
lated exactly in the thermodynamic limit for all values of #. It is shown
that the critical exponents characterizing the divergence of the relaxation
times near temperature T = O, which thermodynamically acts as a criti-
cal point?), are independent of %, thus confirming the above conjecture.

In section 2 the models are described in more detail, and a mathemati-
cally convenient formulation is given in section 3. In section 4 a class of
transformations of Pauli spin operators to new sets of Pauli operators is
presented. In section 5 it is shown that the so-called o7 transformation of
order » may be used to reduce the #n-flip model to a collection of # sta-
tistically independent 1-flip models. This decomposition is exact in the
thermodynamic limit of an infinite number of spins. In section 6 the time-
correlation function for Fourier components of the energy density is calcu-
lated explicitly, and in section 7 a similar calculation is made for the magnet-
ization. In section 8 the relaxation times for energy and magnetization are
studied near 7" = O and are shown to exhibit slowing-down with critical
exponents independent of #. In section 9 we present some conclusions. In
appendix A it is shown by a ¢r transformation of order 2 that the master
operator of the 1-flip model is essentially equivalent to the hamiltonian of
the XY model. Appendix B contains some computational details.
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2. Description of the model. We consider a one-dimensional lattice of N
spins 4. A microstate of the lattice is specified by the set of N quantum
numbers sy = (sy, S, ..., Sy) where s; can take the values 41 and —1. For
a cyclic Ising chain with nearest-neighbour interactions an energy

N
E(sy) = —J 5 sy, (2.1)
-

where sy4+1 = s3, is associated with each microstate. Thermal equilibrium
is characterized by a probability distribution Pey($x) on the set of micro-
states,

Peq(sw) = exp[—BE(sy)]/Zn(B), (2.2)
where § = 1/ksT and
Zy(p) = X exp[—BE(sw)], (2.3)

is the canonical partition function. Non-equilibrium states of the system are
specified by a probability distribution P(sw, {). We postulate that the ap-
proach to thermal equilibrium owing to the interactions with a heat bath
is governed by a master equation

oP(sn, )

= = Z [Wisw, si) Plsi, ) — Wisly, sx) Plsw, 1)) (2.4)

Glauberl) has proposed a model in which the transition probabilities
W(sy, sn) describe transitions of individual spins with probability per
unit time depending on the state of the neighbours of the flipping spin and
on temperature. We shall refer to this model as the 1-flip model. In the
present paper we discuss more generally the #-flip model for which in each
transition » neighbouring spins simultaneously change their state. We may
write

N
Wa(sy, Sy) = §1 wj(n), (2.5)

where w;(n) refers to the transition in which the spins 7,7+ 1,...,7 +# — 1
flip. We assume uniformity throughout the chain so that w;(») in magnitude
is independent of . In order to be consistent with the thermal equilibrium
distribution (2.2) we assume in addition that the transition probabilities
satisfy the detailed balance relation

W(sn, $n) Pea(Sy) = W(sy, $N) Pea(sn)- (2.6)

Arguing in the same manner as in the 1-flip casel) one finds that (2.6) may
be satisfied by

wi(n) = Yan[l — Sy (sj-157 + Sj+n—157+n)], (2.7)
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with
y = tanh 2K, K = B]. (2.8)

The factor ay, determines the overall transition rate in the #-flip model.

In the sequel we wish to compare various relaxation times for different
temperatures of the heat bath. For this reason it is necessary to specify
the temperature dependence of ay on the basis of a physical model. There
are three types of transitions, namely transitions in which the spin system
absorbs an energy 4], transitions in which it loses an energy 4], and tran-
sitions in which the energy is conserved. We assume that the energy-non-
conserving transitions occur due to interactions with a heat bath of phonons
(or photons) and that only single phonons are absorbed or emitted. The
transition probability for spontaneous emission of a phonon is independent
of temperature, say of magnitude

|wi?(n)] = An, (2.9)
whereas the probabilities for stimulated emission and absorption are given by
5 ()| = [f*(m)] = An(e*” — 1), (2.10)

where the last factor is the average occupation of phonon states with energy
4], as given by the Planck distribution. The expressions (2.9) and (2.10) are
consistent with (2.7) if we put

an = Anfy. (2.11)

From (2.7) it follows that the energy-conserving transitions have a proba-
bility 1«p per unit time. This is an arbitrary limitation ot generality with
the sole purpose of making the model soluble. In the limit T — O the
energy-conserving transition probability tends to $4,, whereas the proba-
bilities for stimulated emission and absorption tend to zero, with the limiting
behaviour conveniently expressed as

[wft(n)| = |wf®(n)| = Ane? 4 O(e%), (2.12)
where ¢ = exp[—28]].

3. Mathematical formulation. It is mathematically convenient to repre-
sent a microstate sy as a direct product of N spinors

~(! for si= +1
a’l—oi T — )

0
ﬁi:<) for sg = —1.
1/

The direct product will be denoted by |sx)> and will be regarded as a basis

(3.1)
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vector in a 2¥-dimensional Hilbert space $n endowed with the usual scalar
product. The vectors |sy) satisfy the orthonormality relation

(SN Sy = O(Sw — Sy), (3.2)

where 8(sy — $y) is shorthand for a product of N Kronecker deltas. A
probability distribution P(sy, {) may be represented uniquely by a time-
dependent vector in Yy,

|P(t)> = X P(sw, {) [$w>. (3.3)

It is convenient to introduce the unit state |1> by

1> = % [sa

(<

The norm of this state is

|1y =278, (3.5)
The normalization of the probability distribution P(sy, £) is expressed by
PRy = 1. (3.6)

The master equation (2.4) corresponds to an equation of motion for the
vector |P(¢)> which may be written

2 1PW> = 1P, 3.)

where #° is a linear operator in Yn. For the n-flip model this operator is
given explicitly by

N
Won= %anj_zl {1+ 3(07-107 + 074 n-19710)107 0741 - OF 1
—[1 = $p(07-107 + G n-107 1)1} (3-8)

where ¢f and of act as Pauli spin operators on the jth spinor and as unit
operators on all other spinors. (We use a cyclic definition for § = 0 and
j > N.)
In the sequel we shall be interested in the calculation of equilibrium time-
correlation functions defined by
A)aBreq = X X A(Sy) B(SN) Pu(Sx|Sn, 1) Peq(Sn), 39

where Py(sy|$n, t) is the conditional probability for the n-flip model, 7.e.,
the solution of the master equation with initial condition

Pu(sy|sn, 0) = 6(sy — Sn). (3.10)
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In the present formulation (3.9) may be written
<A(t)nB>eq = <1 1Az ewnth|Peq>, (3.11)

where A2 and B? are operators diagonal in the ¢? representation with eigen-
values A(sy) and B(sw), respectively. A more symmetric formulation may
be found by introducing the density operator

peq = exp[—BHN]/Zn(B), (3.12)

where # y is the Ising hamiltonian

R s
We then have

|Peq> = peq |1>- (3.14)
Defining the “vacuum’ state |[0) by

0> = piq |1, (3.15)

we may write
<A(t)/n B>eq — <1 !AZ eWﬂt szeql 1>
= 0|4z P B2|0y, (3.16)

where we have used that peq commutes with the operators 4% and B? and
where #",(f) is defined by

Wn(ﬂ) = pe—q’}Wﬂpgw (3 17)

From the detailed-balance relation (2.6) it follows that in the ¢% repre-
sentation # ,(B) is a symmetric real operator. From the fact that the ther-
mal equilibrium distribution is a static solution of (2.4) it follows that
|Peq> is an eigenvector of #°, with eigenvalue 0, or equivalently

# a(f) 10> = 0. (3.18)
Hence we may also write

(A n Byeq = <0 |A%(t)y B?| 0>, (3.19)
where

A2(t)y = e 7Bt gz O, (3.20)

Thus we may evaluate time-correlation functions as vacuum expectation
values of products of operators whose time evolution is determined by a
Bloch-like equation. We shall be interested mainly in the correlation func-
tions of energy and magnetization, in particular as regards their behaviour
near " = 0, which in many respects acts as a critical point.
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4. The o7 transformation. In I the complete solution of the master equa-
tion for the 1-flip Glauber model has been given by diagonalizing the oper-
ator #"1(f). A similar diagonalization of the operator #°,(f) for the general
n-flip model does not seem feasible. We have, however, found a transfor-
mation which shows that the #-flip model is macroscopically equivalent
to n independent 1-flip models. By ““macroscopically equivalent” we mean
that except for boundary effects the systems have identical properties.
Thus in the thermodynamic limit N — oo correlation functions of bulk
properties, such as the total energy, the total magnetization or their Fourier
components, may be calculated exactly.

We introduce a class of transformations, each of which transtorms a set
of 3N Pauli-spin operators (67, 6, 65; j = 1, ..., N) into another set of 3N
Pauli-spin operators (7§, 7¥,75; = 1, ..., N). A member of the class will
be called the o7 transformation of order n, where n runs through the positive
integers. For order # it is convenient to subdivide the lattice into cells each
containing # spins (except for the last cell which may have less than #
spins). Correspondingly we enumerate the spins as follows

j=m—1)n41
where (4.1
l=1,2,..., n, m=1,2,..., M.

Thus m indicates the lattice cell to which the spin belongs and / indicates
the location in the cell. Instead of the subscript § we use the pair (m, /).
The o7 transformation of order »# reads

Tfn,z = (O'fn,lafn,lﬂ e O nOm1,1 - Ok 1,11

gn,l = (Ui,z—lai,z)(ﬁg,z—ﬂz,z) ---(Ofn,z-lagn,z"fn,z+10§1,l+2 ---Ufn+1,z-1)»
Tfn,l = (61,1—10'5,1)(03,1—10;,1) (an,l—lgfn,z)» (4.2)

where we have bracketed products of operators corresponding to uninter-
rupted sequences of spins. Furthermore, we adopt the conventions

(mn+1)=@m+1,1), (m+1,0) = (m, n),
Op,1 = 1 for j<1and 7> N. (4.3)

It is easily verified that the operators T,,; satisfy all the rules for Pauli-
spin operators.
The inverse transformation of order » reads
Ufn,z = ("'fn,ﬂfn,lﬂ)(Tfn+1,l"'fn+1,z+1) (T:fw,sz:ll,HI):

G?rln,l = (Tin—I,H—l "'T:n,l—lT?rln,len,l+1) (Tfn+l,f71zrt+l,l+l) (T?ll,l'rﬁl,l+l):
Ot = (T 1,041+ Tm,0)» (4.4)
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with the convention
Tm,1 = 1 for <1 and f > N. (4.5)

One may naturally associate with the 7,,,; operators a one-dimensional
lattice of N spins . We shall call this the 7 lattice, and the original lattice
the ¢ lattice. The significance of the transformation is most easily perceived
by considering the expression for ¢, ;. The eigenvalues +1 of this operator
correspond to the product of # successive spins on the = lattice, except for
the first lattice cell where of ; is a product of / operators 72. Obviously,
specification of the signs of the = spins uniquely determines the signs of the
o spins and vice versa.

5. Application of the transformation. For convenience of notation we shall
henceforth assume that for the #-flip model N = nM, 1.e., the last lattice
cell also contains » spins. Since we are interested only in bulk properties
this simplication is clearly allowed. The master operator (3.8) of the n-flip
model may then be rewritten

M-1 =n
Wn = o 21 121 {{1+ (05, 1- 10,1+ T 1,110+ 1,1) ]
el 1=
X O 0m, 141 -+ T 1,11

—[1 —%V(O'Z z+ m+1,1— 1Ufn+1z)]}
+ ianﬁ’(oﬁu,nol,l - 0’7,1)(0:1;,10'31”,2 0l 1)

+ 3o El {{1 + 3y(0%,1-1%%1,1 + 5,1-191,0)]

XU?WZ...Ganle...le_l
—[l—fy(o’aMz 1‘7th+ 1,1— 1°'§ z)]}
+ oy (0%,,03,1 — 03, 10(6%1,1050,2 - - O3, 1 1), (5.1)

where we have used the convention (4.3). Applying now the or transfor-
mation of order » one finds

M-1 n
Wa=dan 21 21{[1‘1’%?’ 1,171 T, T 1,0 ) T, 1
— (1 = (Tt + Tt 1,01 (5.2)

- boundary terms.

It is mathematically convenient to consider a slightly different operator

W= fan E 2 {1+ 3y, T mm 1,01 Tyt

m=1 1=1

—[1— %}’( -1, le,l + Tm frm-}-l l)]} (53)
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where now, instead of (4.5), we adopt the cyclic definition
0,0 = T 1,1 =T, (5.4)

It is easily shown that when %7} is transformed back to ¢ operators it
differs from #7, only in boundary terms relating to transitions of spins in
the first two and the last cell of the ¢ lattice. As long as we are interested in
bulk properties these terms have negligible effect in the limit N — oo. As is
evident from (5.3}, on the = lattice the master operator #'; decomposes into
a sum of 1-flip operators, one for each of the » sublattices.

We also apply a or transformation of order » to the hamiltonian (3.13).
Again one finds that apart from terms of order unity the eigenvalues of #y
are identical to the eigenvalues of

M =a
Hy=—-] Z X T Tt 1,1 (5.5)
m=1 l=1
where we use the cyclic definition (5.4). Hence in this approximation the
hamiltonian also decomposes into a sum of uncoupled hamiltonians for the
n r-sublattices. As a consequence, the thermal equilibrium distribution P,
corresponding to this hamiltonian is a product of # uncorrelated equi-
librium distributions for the different sublattices.

Since we know the complete solution of the 1-flip Glauber model4) we
now also have the solution of the #-flip model at our disposal, at least as
regards the bulk properties. The calculation of non-equilibrium averages is
generally rather complicated because the non-equilibrium distribution P(sy, ?)
will involve correlations between the = sublattices. In the calculation of equi-
librium time-correlation functions, however, the statistical independence of
the 7 sublattices may be used with benefit.

6. Energy—energy correlations. We consider the time-correlation function
of a Fourier component of the energy density
CEQ(t)n E-@req = <0|# o(t)n # 0|0, (6.1)
where # g is defined by

N
Ho=—]JNt 3 djof, e ¥ (6.2)
=1
Except for boundary terms this operator is identical to
M n
Ho= —JNT 3 3 7wy eI (63)
m=1 1=1

We detine a Fourier transform on the /th 7 sublattice

M
=M+ 3 fmie7lom, (6.4)
m=1
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where for cyclic boundary conditions ¢ takes the values (mod 2r)
g =0, £2x/M, +4=[M, ..., =, (6.5a)
while for anticyclic boundary conditions ¢ takes the values (mod 2x)

g = +n/M, £3n/M, ..., +(M — 1) n/M. (6.5b)

We assume for convenience that M is even. The relation to the Fourier
transform on the complete = lattice is

N n
fe=N7t '21 fre i =yt ine 121 fioe™™, (6.6)
j= =

where Q takes the values (mod 2w)

Q =0, 4-2r/uM, +4x/nM, ..., =, (6.7a)
or

Q= +n/uM, 4-3x/nM, ..., £ (nM — 1) x/uM, (6.7b)

for cyclic or anticyclic boundary conditions, respectively. Hence if we
define

M
fg) — “—*le_‘s 2 Tfn,l‘rfn-# 1,1 e_lqm, (6.8)
m=1
we have
n
Hoy=n1e T #Y e (6.9)

=1

As noted before, in thermal equilibrium the different = sublattices are sta-
tistically independent. Moreover, we shall show in a moment that

<0 1P ()10 =0 for g # 0 (mod 2}, (6.10)

where the subscript / indicates that the average is performed over the
thermal equilibrium ensemble of the /th 7 sublattice. Hence one finds

O ot)n H ol 0> = <01 L)1 #1001, (6.11)

for all values of @ % 0 (mod 2x/n). Thus we have derived a simple relation
between the time-correlation functions of the energy density in the »-flip
and the 1-flip model,

<Eq(t)n E—@req ~ <E£1}Q)(t)l E(_llbg>eq- (6.12)

The relation is exact in the thermodynamic limit M — co. From (6.12) it
follows that <Eg(f)n E-gdeq is periodic in the first Brillouin zone (—n <
Q < =) with periodicity 2x/n. The exceptional point @ = 0 (mod 2w/n)
need be of no special concern, as it merely points to the necessity of sub-
tracting equilibrium averages in the definition of the time-correlation func-
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tion. As is evident from (6.9) the average {#>,, differs from zero only for
@ = 0. In the thermodynamic limit the expressions for the properly de-
fined correlation functions in the exceptional points ¢ = O (mod 2n/n) may
be found simply by taking a continuous limit.

The correlation function in the 1-flip model may be calculated using the
formalism of I. We refer to I for notation and more detailed explanation.
In order to evaluate <0|s#{"(#): #1051 and <0}#(£)110>1 we note that

D = — JM- zk; (&f — Ep) (614 g + Exta)

X expi(sxe + sxr+e + £+ 9), (6.13)

where £ and ¢ range over the set of values (6.5b) and where £ + ¢ is defined
mod 2r. The operators &} and & satisfy the Fermi anticommutation rules
and have |0y; as vacuum,

£ 1051 = O, (6.14)
The angle yi is defined by
exp iyx = (cosh K — e % sinh K)2/(cosh 2K — sinh 2K cos ). (6.15)

The relation (6.13) is valid only if the operator acts on a state containing
an even number of fermions. The transformed 1-flip operator #°1(8) (for
M spins) is linear in the fermion number operators &}éx. In I we have de-
fined two operators #7f (8) and %' (8) by

WEB) = — T Mkikn, (6.16)
k
where
Ay = an{l —ycosk) (6.17)

and where for #{ () the sum runs over the values (6.5b) and for #'{(B) it
runs over the values (6.5a). The fermion operators occurring in #°7 (8) have
a slightly different vacuum state given by

101 = Ap(cosh K — 74, 17§ ; sinh K) |0>4, (6.18)
Ay = [1 + (tanh K)MJ[1 — (tanh K)M]~+,

The eigenvectors of #71(8) consist of those eigenvectors of #°f () having
even numbers of fermions and those eigenvectors of #7(8) having odd
numbers of fermions. The “odd” eigenvectors of #7§(f) and the “even”
eigenvectors of #° () are irrelevant and must be discarded. In appendix A
we demonstrate that the or transformation may be used to find an inter-
esting relation between the operator #71(f) and the hamiltonian of the
XY model.

From (3.20), (6.13) and (6.16) it follows that the time-behaviour of #{(¢)1
is found by replacing the fermion operators in (6.13) by the time-dependent
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operators
Ex()r = Ere™™, EL)L = &f M. (6-19)

One immediately confirms the validity of (6.10) with the aid of (6.14).
Evaluating the time-correlation function in the same manner one finds for
g # 0 using y—& = —y&
<O lz#((ll)(t)l %9{3' O>1 — ]ZM—l E e—(lk+lk+a)l
k

X [1 —expi(ye + gr+q -+ 2k + q)1, (6.20)

where % ranges over the values (6.5b). In the thermodynamic limit M — oo
the sum over & may be replaced by an integral. From (6.12) and (6.20) we
finally have for the energy—energy correlation function in the limit M — oo
and for Q # 0

) 7
<EQ(t)nE—Q>eq = _‘.]._Jve_(lk%'lkwm)l
27

X [1 — expi(zk + grrne + 2k -+ #Q)] dE. (6.21)

For the time-correlation function of the properly normalized energy fluctu-
ation

0Ey = NHEN — <ENVeq], (6.22)
we find by taking the limit Q — 0 in (6.21)

2
OE(t)n0Edeq = Lje_‘“"‘ sin2(yg + k) dk, (6.23)
s

again in the thermodynamic limit M — co. As was to be expected this
correlation function is independent of %, except for a trivial time-scale de-
pendence through «y. In section 8 we shall examine some features of the
correlation function (6.23).

7. Magnetization—magnetization correlations. The time-correlation func-
tion of a Fourier component of the magnetization is given by

<SQ(t)n S—Q>eq - <O |Uz(t)n Gz—Ql O>, (7 l)
where ¢f, is defined by
N
0,2 — Nt 2 OJJZ e—iQ}'. (72)
i=1
Except for boundary terms this operator is identical to

M n
05 = N1 3 3 (75 _y gy .. 7o) e WDl (7.3)

m=1 l=1
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with the cyclic definition (5.4). We define the Fourier transform
70 = M- Z 2, €7, (7.4)

where ¢ takes the values (6.5a). Substituting in (7.3) one finds

o = niMn 5 T 77183 gi— Q) Fig, O) (7.5
q 1-1
where ¢ = (q1, ..., ¢») and where
F(q,Q) = % exp{—i[ T ¢r— (n—10Q]}. (7.6)
=1 r=1+1

All wavenumbers in (7.5) and (7.6) must be reduced to the first Brillouin
zone. Using the statistical independence of different r sublattices one hence
finds for the correlation function

Olog(t)n 0% gl 0> =n"IM—" 3 (% 6 —nQIF(g, QP
q

n

XTI <0 [75P(t)1 743, 0. (7.7)

—&
l_

In the thermodynamic limit M — oo the magnetization correlation func-
tion of a 7 sublattice is given by

Tim 07500, 72101 = G(g) e, (7.8)
where
G(g) = [cosh 2K(1 — y cos ¢)]L. (7.9)

Thus one finds

T

lim <Sq(t)n S-greq = n-1(2m)1=" [ ... [ dugq

M~—»00 —-n

n

n
5(}% g1 —nQ)|F(q, Q)1* T Gqr) exp[—A(q1) t]. (7.10)
In the next section we shall examine some features of this correlation
function. The frequency- and wavenumber-dependent susceptibility is re-
lated to the correlation function by a Fourier transform?2)

12(0: ) = 2(Q, 0) — i0f [ (Solt)n S-gea e L (7.11)

For the 1-flip model?) the function y1(Q, ») has a simple pole in the complex
o plane at w(Q) = iA(Q). For the 2-flip model y2(Q, ) may also be evalu-
ated explicitly; it exhibits a branch-cut singularity in the o plane. The
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static susceptibility x(Q, 0) is given by
#(@. 0) = BG(Q) = Bleosh 2K(1 — y cos Q)]L. (7.12)

To conclude this section we note that the energy density-magnetization
correlation function <Eg(f)n S—_g>eq vanishes identically, since the equilibri-
um ensemble and the first operator are invariant under reversal of spins,
whereas the second operator changes its sign.

8. Relaxation times. In order to study qualitatively the behaviour of the
correlation functions near T = O we define characteristic times for the relax-
ation of energy and magnetization. We shall here consider only the long-
wavelength limit Q¢ — 0. A characteristic relaxation time for the fluctu-
ations of the total energy in the #-flip model is defined by 8)

rE(n) = Ofo«sE(t)n OE >oq d1[<(8E)eq. (8.1)

From (6.15) and (6.23) it follows that the numerator is given by

o0 i

j(éE(t)n SEeq dt — JE J IR 4
; 2may cosh? 2K 4 (1 — vy cos k)3
= o, 1 J2(cosh 2K)=2 (1 — »2)~¢
= dog 131 + a¥)/(1 — a?), (8.2)
where ¢ = tanh K. The denominator in (8.1) is given by
K(OE)®>eq = J2(1 — a?), (8.3)
so that
7E(n) = Jag, ' (1 + a?)/(1 — a¥2, (8.4)
with limiting behaviour as T — 0
re(n) = LA e 4+ 0(s), (8.5)
where
e = exp[—2f]] (8.6)

and where we have used (2.11). Thus we find that the energy relaxation
time diverges as 7" — 0 with a characteristic singularity which is inde-
pendent of #, that is, independent ot the particular relaxation model. We
deal with a case of non-classical slowing-down since the singularity is differ-
ent from that predicted by the classical theory in which

752(n) = <(OE)eq/Lr(n), (8.7)
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with a nonsingular Onsager coefficient Lg(n). In the present case the
classical theory would actually imply that rg(n) tend to zero as T — 0,
because of the vanishing of the specific heat.

A characteristic relaxation time for the fluctuations of the total magnet-
ization is defined by 8)

TM(n) = I <So(t)n SO)eq dt/(Sg>eq. (88)
0
In the thermodynamic limit the denominator is given by

{S¥eq = G(0) = [cosh 2K(1 — y)]L. (8.9)
For the numerator in (8.8) we have from (7.10), (6.17), and (7.9)

[ <So(t)n Soveq dt = a;, '[cosh 2K]" .4, (8.10)
0
where
Fn=n"12m)l-n | .. | [F(q,0)? l]:ll (1 — p cos ¢g;)~1
X [Z (1 —ycos g™ 6(2‘1 q1) dng. (8.11)
=1

For » = 1 and » = 2 the integral may be evaluated explicitly with the
results

= (Il —p)~2
Fa= 1 + )2+ y)(1 =yt (8.12)

For general » the integral is singular as y — | owing to the behaviour of
the integrand near ¢ = 0. Integrating once to get rid of the delta function
and expanding the cosines one finds that the dominant term is given by

Fn = BA=IYCy (1 — ) THOD L g[(1 —)=Heb D, (8.13)

where

oo

Comrmion | o | TLU+A)[E (141

—o0 =1
n
X 8( %) dxy ... dw,. (8.14)
=1
One easily finds
Ci1=1, Co=3; (8.15)

It is shown in appendix B that C, is monotonically decreasing in #» with
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asymptotic behaviour
Cn= Bn=3 + 0(n—4), (8.16)

where B is a constant.
From (8.8), (8.9), (8.10) and (8.13) it finally follows that as T — O the
asymptotic behaviour of the magnetization relaxation time is given by

a(n) = YA 'nCre? + O(e71). (8.17)

Hence for the magnetization the critical exponent is again independent of
the particular relaxation model. Only the prefactor is model dependent.

The classical theory would predict slowing-down owing to the divergence
of the susceptibility y = BG(0),

5(n) = x/La(n), (8.18)

with a nonsingular Onsager coefficient Ly (#). Again this would lead to a
weaker singularity, namely

() ~ LJ-1L3A(n) e Inel. (8.19)

From (8.16) and (8.17) it follows that if the spontaneous emission rate
Ay is taken to be independent ot %, then at a fixed low temperature the
relaxation time 7p(n) decreases proportionally to #~2 for large ». This is
understandable since, as is evident from (3.8), on the average every spin
partakes in # times as many transitions per unit time as in the I-flip model,
and every transition is # times as effective in changing the magnetization.

9. Conclusions. We have studied time-correlation functions for a class of
stochastic relaxation models for the Ising chain. In particular we have de-
rived explicit expressions (6.21) and (7.10) for the time-correlation functions
of Fourier components of the energy density and the magnetization. In the
last section we have studied the gross features of the correlation functions
of total energy and total magnetization and we have shown that the charac-
teristic relaxation times exhibit singularities near 7 = 0. Since for the Ising
chain temperature T = O thermodynamically acts as a critical point the
effect may be termed critical slowing-down. We have shown that for our
class of models the behaviour is non-classical and we find agreement with
conjectures made for the 2- and 3-dimensional Ising model implying that
the critical exponents are independent of the detailed dynamics, but are
sensitive only to drastic changes, such as change of. dimensionality and
change of symmetry or conservation laws. In our case the relaxation time
for the energy (8.5) is completely independent of the relaxation model,
whereas the relaxation time for the magnetization (8.17) exhibits a singu-
larity at T = O with a model-independent critical exponent, but with a
model-dependent prefactor.
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Qualitatively the origin of the slowing down may be understood as
follows. The behaviour of the energy—energy correlation function for all
models is determined by the combined decay of pairs of elementary exci-
tations with wavenumbers ¢ and —g¢ and decay rate 1; = ay(l — ¥ cos g).
Near T = 0 the dominant contribution comes from a range of wavenumbers
around ¢ = 0 with a width

4g = [2(1 =)y}t ~ 2, (9.1)

which shrinks to zero as 7' — 0. We note that Aq is approximately equal to
the inverse correlation length |In a| &~ 2¢. The relaxation time 7g(n) is pro-
portional to the characteristic decay time for long wavelength excitations
251 = [an(l — 9)]7L. The same is true for the relaxation of the magnet-
ization. In the »n-flip model the magnetization on the average decays through
the combined nonlinear effect of # elementary excitations. The main contri-
bution to the relaxation time 7ar(#) comes from a domain of range (4¢)?-1
in the (» — 1)-dimensional ¢ space. Again the singularity of the relaxation
time is essentially proportional to 4;. It may be of interest to compare the
above exact calculation with the basic ideas of mode-mode coupling theories.

APPENDIX A

Equivalence of the master operator W1(B) to the XY hamiltonian. We show
that the transformed master operator #"1(8) of the 1-flip model may be
related by a o7 transformation of order 2 to the hamiltonian of the XY
model?). On a  lattice of NV spins the operator #"1(f) is given by

N
Wp) =t = Byla™ —7j_17j41a] 77

—[1 — %?’Tg(Tf—l + ’T?+1):|}: (A.1)
where @ = tanh K and where we use cyclic boundary conditions. Using the
or transformation of order 2 given by (4.2) this may be transformed to

N-1
#1(B) = d E‘z [va~tofoi. 1 + dyacio},, — 1 + yof]

+ doa{fy[a™t — (6 ... o) a] 070}

+iylat —(of... A i) Gl E — 2+ plof ... A+ oK) (A2)
Hence apart from boundary terms the operator #°1(8) coincides with the

hamiltonian of the XY model on the o lattice for a suitable choice of para-
meters.



60 B. U. FELDERHOF AND M. SUZUKI

APPENDIX B

Asymptotic behaviour of Cy for large n. In this appendix we study the
asymptotic behaviour for large # of the coefficient Cy, defined by (8.14),

— o0

ngg

x [
l

UL

(14291 §( Z %) dxy ... dxg. (B.1)
-1

The integral may be rewritten

1 3 i
oo [ fi

X explif T xi—n 2 (1 +x)]dxy... dxy
-1 -1

- f j (1, )  dy, (8.2
where
1 . 151: —n(1+x?)
16 m) ; I + Tl 4% dx
= J (meu)~t exp[—u — £2/4u] du. (B.3)

n
The function f(&, ) is monotonically decreasing in both £ and % in the first
quadrant of the (&, #) plane, tending to 0 at oo, and takes its maximum
value f(0, 0) = 1 at the origin. Hence it follows that C, is monotonically
decreasing with »# and in the limit # — oo the dominant contribution to
the integral (B.2) comes from the neighbourhood of the origin. One may
also write

&, n) =eé— jn(n-u)‘f exp[—u — £2/4u] du, (B.4)
0

so that along the & axis one has
f(&,0) = e~¢, (B.5)

whereas along the n axis

10, 7)) = }0 (mu)~t e % du. (B.6)
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For fixed & all derivatives of f(£, ) with respect to # vanish at = 0. The
second derivative of f(&, ) with respect to & is finite for fixed # at £ = 0.
Changing variables in the integral in (B.4) to v = 4u/£2 one finds that the
behaviour of f(§, ) for small & and 7 is given by

1€, 1) = e~¢ — (2/m) L E[go(£2/4n) — 16%1(%/4n) + ..., (B.7)
with
go(?) =I'(—4, 2), g1a) =I'(—%, 2), (B.8)

where I'(v, z) is the incomplete gamma function. Hence to lowest order
f(&, ) is approximated near the origin by

HE m) ~ 1 — §D(E2/4n), (B.9)
with
D(z) =1 + (2/m)"1 (-4, 2). (B.10)
The leading contribution to the integral (B.2) is therefore given by
§ | exp[—né®(£2/4n)] dé dy = Bn3, (B.11)
00
where
B = | (2x2)71 [®(x)]3dx. ‘ (B.12)
0
The higher-order correction terms in (B.7) lead to the estimate
Cp=Bn3+0n1Y as % — oo. (B.13)
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