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synopsis 

The kinetics of the spin 4 Ising chain is studied for a class of master equations 

describing transitions in the spin system owing to interactions with a heat bath. The 

case in which only transitions of n successive spins are allowed is called the n-flip 

model. The time-correlation functions for energy density and magnetization are calcu- 

lated exactly in the limit of an infinite chain for all values of W. The effect of critical 

slowing-down near temperature T = 0 is studied and it is shown that the critical 

exponents characterizing the divergence of the relaxation times of energy and magnet- 

ization are independent of n. 

1. Introductio~z. In equilibrium statistical mechanics the theory of Ising 

spin systems has led to a wealth of interesting results. The study of the non- 

equilibrium statistics of Ising systems may likewise be highly instructive. 

As a starting point it seems advisable to take a modest point of view and 

to relax the requirement of a fully microscopic, quantum-mechanical treat- 

ment of an Ising system with spin-flipping interactions. Instead one may 

use as a result of non-equilibrium statistical mechanics that in many cases 

the behaviour in time of large systems may in good approximation be de- 

scribed by a (markoffian) master equation. Thus for the Ising system we 

postulate that, owing to the interaction with a heat bath, spin configu- 

rations may change in the course of time with certain transition proba- 

bilities per unit time. 

Glauberi) has introduced a model in which the only allowed transitions 

are those in which individual spins flip, with probability depending on the 

temperature of the heat bath and on the state of the neighbouring spins. 

For the one-dimensional model he was able to solve exactly for the expec- 

tation value of individual spins and of the products of pairs of spins’-‘). 

t On leave of absence from the Institute for Solid State Physics, University of 

Tokyo, Tokyo, Japan. 
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Recently Bedeaux, Shuler and Oppenheims) have solved the equations of 

motion for a set of correlation functions involving an arbitrary number of 

spins. One of us (B.U.F.) has given an alternative complete solution of the 

master equation for this model4). 

The Glauber model is not exactly soluble in dimensions higher than 1, 

but various approximate methods have been applied, in particular with a 

view of studying the behaviour near the critical point 5). Yahata and 

Suzukie) have made numerical studies for both 2 and 3 dimensions of 

exact high-temperature series expansions of the time-correlation functions 

of energy and magnetization. These studies have shown that the slowing 

down of the relaxation near the critical point is non-classical and have 

confirmed conjectures concerning the critical exponents characterizing the 

divergence of the relaxation times. According to these conjectures the 

critical exponents are independent of the details of the kinetics and the 

equilibrium statistics, and are sensitive only to drastic changes, such as a 

change of dimensionality, change of symmetry or conservation laws, or 

change from short-range to long-range interactions. Thus for Ising systems 

with nearest-neighbour interactions in 2 and 3 dimensions the critical ex- 

ponents have been shown to be independent of lattice structure. 

In the present paper we study the Ising chain with nearest-neighbour 

interactions in the absence of a magnetic field for a class of relaxation 

models. In each model the only allowed transitions are those in which n 

neighbouring spins flip simultaneously. The time-correlation functions of 

the Fourier components of energy density and magnetization are calcu- 

lated exactly in the thermodynamic limit for all values of n. It is shown 

that the critical exponents characterizing the divergence of the relaxation 

times near temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 0, which thermodynamically acts as a criti- 

cal point7), are independent of n, thus confirming the above conjecture. 

In section 2 the models are described in more detail, and a mathemati- 

cally convenient formulation is given in section 3. In section 4 a class of 

transformations of Pauli spin operators to new sets of Pauli operators is 

presented. In section 5 it is shown that the so-called UT transformation of 

order 1z may be used to reduce the n-flip model to a collection of n sta- 

tistically independent l-flip models. This decomposition is exact in the 

thermodynamic limit of an infinite number of spins. In section 6 the time- 

correlation function for Fourier components of the energy density is calcu- 

lated explicitly, and in section 7 a similar calculation is made for the magnet- 

ization. In section 8 the relaxation times for energy and magnetization are 

studied near T = 0 and are shown to exhibit slowing-down with critical 

exponents independent of n. In section 9 we present some conclusions. In 

appendix A it is shown by a CJT transformation of order 2 that the master 

operator of the l-flip model is essentially equivalent to the hamiltonian of 

the XY model. Appendix B contains some computational details. 
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2. Description of the model. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsider a one-dimensional lattice of N 

spins 4. A microstate of the lattice is specified by the set of N quantum 

numbers SN = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Sl, ~ 2, . . ., SN) where SJ can take the values $1 and - 1. For 

a cyclic Ising chain with nearest-neighbour interactions an energy 

N 

E(SN) = -J c W+I, 
i=l 

(2.1) 

where SN+r = sr, is associated with each microstate. Thermal equilibrium 

is characterized by a probability distribution P,9(sN) on the set of micro- 

states, 

(2.2) 

where fi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl/k~T and 

zN(p) = c exp[--r6E(sN)lp 
SN 

(2.3) 

is the canonical partition function. Non-equilibrium states of the system are 

specified by a probability distribution P(sN, t). We postulate that the ap- 

proach to thermal equilibrium owing to the interactions with a heat bath 

is governed by a master equation 

ap(sN, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

at 
= c [w(sN, Sk) p(s;v, t) - w(s&, SN) p(sN, t)]. 

SN’ 
(2.4 

Glauberr) has proposed a model in which the transition probabilities 

W(sk, SN) describe transitions of individual spins with probability per 

unit time depending on the state of the neighbours of the flipping spin and 

on temperature. We shall refer to this model as the l-flip model. In the 

present paper we discuss more generally the n-flip model for which in each 

transition n neighbouring spins simultaneously change their state. We may 

write 

where w,(n) refers to the transition in which the spins i, j + 1, . . ., j + n - 1 

flip. We assume uniformity throughout the chain so that wj(%) in magnitude 

is independent of j. In order to be consistent with the thermal equilibrium 

distribution (2.2) we assume in addition that the transition probabilities 

satisfy the detailed balance relation 

w(sN, s;v) pe,(s~, = W&B SN) Peq(SN). (2.6) 

Arguing in the same manner as in the l-flip easer) one finds that (2.6) may 

be satisfied by 

Wj(4 = &%a[1 - BY(SPlSj + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsj+n-1Sj+n)l, (2.7) 
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with 

y = tanh 2K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = ,6J. (2-8) 

The factor oln determines the overall transition rate in the n-flip model. 

In the sequel we wish to compare various relaxation times for different 

temperatures of the heat bath. For this reason it is necessary to specify 

the temperature dependence of cx n on the basis of a physical model. There 

are three types of transitions, namely transitions in which the spin system 

absorbs an energy 4J, transitions in which it loses an energy 4J, and tran- 

sitions in which the energy is conserved. We assume that the energy-non- 

conserving transitions occur due to interactions with a heat bath of phonons 

(or photons) and that only single phonons are absorbed or emitted. The 

transition probability for spontaneous emission of a phonon is independent 

of temperature, say of magnitude 

I.W;p(fi)l = An, (2.9) 

whereas the probabilities for stimulated emission and absorption are given by 

~z@(~)l = @Tbs(n)l = A,(e48’ - 1)-l, (2.10) 

where the last factor is the average occupation of phonon states with energy 

4J, as given by the Planck distribution. The expressions (2.9) and (2.10) are 

consistent with (2.7) if we put 

0112 = A./ y. (2.11) 

From (2.7) it follows that the energy-conserving transitions have a proba- 

bility &, per unit time. This is an arbitrary limitation ot generality with 

the sole purpose of making the model soluble. In the limit T --f 0 the 

energy-conserving transition probability tends to +A%, whereas the proba- 

bilities for stimulated emission and absorption tend to zero, with the limiting 

behaviour conveniently expressed as 

#(n)l = 1z~;~~(n)l = Ad + O(d), (2.12) 

where E = exp[--2pJ]. 

3. Mathematical formdation. It is mathematically convenient to repre- 

sent a microstate SN as a direct product of N spinors 

1 
a( = 0 for 

Oa 
S# = fl, 

t%= ;, 
0 

for St = -1. 

(3.1) 

The direct product will be denoted by 1s~) and will be regarded as a basis 
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vector in a 2N-dimensional Hilbert space @N endowed with the usual scalar 

product. The vectors 1s~) satisfy the orthonormality relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

<sN 1 &T> = d(sN - Sk), (3.2) 

where 6(sN - &) is shorthand for a product of N Kronecker deltas. A 

probability distribution P(sN, t) may be represented uniquely by a time- 

dependent vector in .!&%J, 

[P(t)) = c p(sN, t) ISN). (3.3) 
8N 

It is convenient to introduce the unit state 1 I> by 

11) = c ISN) 

SN 

The norm of this state is 

<l/l> = 2N. (3.5) 

The normalization of the probability distribution P(sN, t) is expressed by 

(1 /P(i)> = 1. (3.6) 

The master equation (2.4) corresponds to an equation of motion for the 

vector [P(t)> which may be written 

$ P(q) = 7T I~(~)), (3.7) 

where ?V is a linear operator in @)N. For the n-flip model this operator is 

given explicitly by 

where $ and C$ act as Pauli spin operators on the jth spinor and as unit 

operators on all other spinors. (We use a cyclic definition for j = 0 and 

i > N.) 

In the sequel we shall be interested in the calculation of equilibrium time- 

correlation functions defined by 

<A (t)n B>,, = c c A(&) B(sN) pn(s;.r 1 SN, t) P&N), (3.9) 

SN m?’ 

where P&k 1 sN, t) is the conditional probability for the n-flip model, i.e., 

the solution of the master equation with initial condition 

P&J 1 SN, 0) = d(s;, - SN). (3.10) 
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In the present formulation (3.9) may be written 

<A(t), B>,, = <1 IA2 eYnt Bzl P,,>, (3.11) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAZ and Bz are operators diagonal in the ~2 representation with eigen- 

values A(sN) and B(sN), respectively. A more symmetric formulation may 

be found by introducing the density operator 

peq = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevC-P~~l/ZidB), (3.12) 

where XN is the Ising hamiltonian 

’ %N = -J ; ~~,1, (3.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=l 

We then have 

IPeq> = Peq 11). 

Defining the “vacuum” state 10) by 

(3.14) 

IO> = p:sll), (3.15) 

we may write 

<A(t), B>eq = <1 IA2 ewnt B’peql 1) 

= <0 IA2 ew’@)’ Bzj O>, (3.16) 

where we have used that peq commutes with the operators AZ and Bz and 

where w,(p) is defined by 

(3.17) 

From the detailed-balance relation (2.6) it follows that in the uz repre- 

sentation wn(B) is a symmetric real operator. From the fact that the ther- 

mal equilibrium distribution is a static solution of (2.4) it follows that 

lP,,> is an eigenvector of w, with eigenvalue 0, or equivalently 

w,(p) IO> = 0. 

Hence we may also write 

<A(t), B>eq = (0 IA’(t). Bzl O), 

where 

(3.18) 

(3.19) 

AZ(~), = e- ?vv,mt AZ ew?L(B)t* (3.20) 

Thus we may evaluate time-correlation functions as vacuum expectation 

values of products of operators whose time evolution is determined by a 

Rloch-like equation. We shall be interested mainly in the correlation func- 

tions of energy and magnetization, in particular as regards their behaviour 

near T = 0, which in many respects acts as a critical point. 
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4. The UT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransformation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn I the complete solution of the master equa- 

tion for the l-flip Glauber model has been given by diagonalizing the oper- 

ator %‘-I(@). A similar diagonalization of the operator #‘-,(/ 3) for the general 

n-flip model does not seem feasible. We have, however, found a transfor- 

mation which shows that the n-flip model is macroscopically equivalent 

to n independent l-flip models. By “macroscopically equivalent”  we mean 

that except for boundary effects the systems have identical properties. 

Thus in the thermodynamic limit N --f 00 correlation functions of bulk 

properties, such as the total energy, the total magnetization or their Fourier 

components, may be calculated exactly. 

We introduce a class of transformations, each of which transforms a set 

of 3N Pauli-spin operators (07, UT, $; j = 1, . . ., N) into another set of 3N 

Pauli-spin operators (77, T$‘, T;; j = 1, . . ., N). A member of the class will 

be called the err transformation of order n, where n runs through the positive 

integers. For order n it is convenient to subdivide the lattice into cells each 

containing IZ spins (except for the last cell which may have less than n 

spins). Correspondingly we enumerate the spins as follows 

j= (m- l)n+Z, 

where (4-I) 

I= 1,2 ,..,, n, m= I,2 ,..., M. 

Thus m indicates the lattice cell to which the spin belongs and I indicates 

the location in the cell. Instead of the subscript j we use the pair (m, I). 

The CT transformation of order n reads 

Tzl=(dc x m,&,1+1 ... 6%,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0”  m+l,l *.* 4i+l,l-l )Y 

et,1 = (~,1--1~,1)(~~,1-1U22,1) . . . (8 m,l &,14i,~+14i,~+2 ... - 6”  1 m+l,Z-1 ) 

r; l = (~,E--l~,l)(‘3~,1--1U~,1) ... Kn,l-1ozm,1L (4.2) 

where we have bracketed products of operators corresponding to uninter- 

rupted sequences of spins. Furthermore, we adopt the conventions 

(m, n + 1) = (m + 1, l), (m+ l,O) = (m,fl), 

urn,1 = 1 for j < 1 and j > N. (4.3) 

It is easily verified that the operators rm,l satisfy all the rules for Pauli- 

spin operators. 

The inverse transformation of order n reads 
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with the convention 

%,z = 1 for j < 1 and j > N. (4.5) 

One may naturally associate with the rm,z operators a one-dimensional 

lattice of N spins 4. We shall call this the T lattice, and the original lattice 

the 0 lattice. The significance of the transformation is most easily perceived 

by considering the expression for o”,,~. The eigenvalues f 1 of this operator 

correspond to the product of n successive spins on the 7 lattice, except for 

the first lattice cell where 4,, is a product of I operators ~2. Obviously, 

specification of the signs of the 7 spins uniquely determines the signs of the 

cz spins and vice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAversa. 

5. Application of the transformation. For convenience of notation we shall 

henceforth assume that for the a-flip model N = nM, i.e., the last lattice 

cell also contains n spins. Since we are interested only in bulk properties 

this simplication is clearly allowed. The master operator (3.8) of the n-flip 

model may then be rewritten 

M-l n 

w-, = ga, c c U1 + t14a”,,~-l4i,~+ o”,+l,z-14k+l,z)j 
m=l 1=1 

x 4a,P~,Zfl .** G+l,Z-1 

- [1 - h4J%,z-14r&,z+ 42+1,z-&%+1,z)11 

+ hw+Gf,,4,, - 4,1wf,I~,Z~~~ qn+ 1) 

+ 4% ,iI w + &Y~4t,z--16!f,z + of,,-cm 

x ‘T&... Gf,dcJ * * * <,z-1 

- L1 - b?+?M.Z-&f,Z + <,Z-&,Z)l> 

+t0lnr(~,,~,,-a~,l)(~,1~~,2...a~,,+ 1)J (5.1) 

where we have used the convention (4.3). Applying now the UT transfor- 

mation of order n one finds 

M-l n 

w, = 4% c Ix -a + Men-1.zcz.1$. 
m=l Z=l 

- L1 - b(C-l,ZT~,Z + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,Z+n+l,Z)ll 

+ boundary terms, 

cb,zen+l,z)l GLZ 

(5.2) 

It is mathematically convenient to consider a slightly different operator 

M ?z 

w:, = gay, C 22 {iI1 + &Y(Cn-l,dn,l+ Cn,7,TL+1,E)1 T%,Z 
m=l Z=l 

- L1 - h’b%-l,z%,z + Tk,~k+l,z)lh (5.3) 
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where now, instead of (4.5), we adopt the cyclic definition 

6.l = %iJ, P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&f+1,2 = 1,z. 7”  (5.4) 

It is easily shown that when V;t is transformed back to IS operators it 

differs from V, only in boundary terms relating to transitions of spins in 

the first two and the last cell of the o lattice. As long as we are interested in 

bulk properties these terms have negligible effect in the limit N -+ 00. As is 

evident from (5.3), on the 7 lattice the master operator YY~ decomposes into 

a sum of l-flip operators, one for each of the n sublattices. 

We also apply a cr7 transformation of order n to the hamiltonian (3.13). 

Again one finds that apart from terms of order unity the eigenvalues of .#N 

are identical to the eigenvalues of 

K-q = -J ; Ii C,z~%+1,z, 
m=l Z=l 

(5.5) 

where we use the cyclic definition (5.4). Hence in this approximation the 

hamiltonian also decomposes into a sum of uncoupled hamiltonians for the 

n T-sublattices. As a consequence, the thermal equilibrium distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi, 

corresponding to this hamiltonian is a product of n uncorrelated equi- 

librium distributions for the different sublattices. 

Since we know the complete solution of the l-flip Glauber model4) we 

now also have the solution of the n-flip model at our disposal, at least as 

regards the bulk properties. The calculation of non-equilibrium averages is 

generally rather complicated because the non-equilibrium distribution P(sN, t) 

will involve correlations between the T sublattices. In the calculation of equi- 

librium time-correlation functions, however, the statistical independence of 

the T sublattices may be used with benefit. 

6. Energy-energy correlations. We consider the time-correlation function 

of a Fourier component of the energy density 

<&(t)n E-Q>,, = (0 jzQ(t)la *-&I o>, (6.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&Q is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

%Q = - JN-* $ a”t~? 
j-1 f 7+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e_iQi. 

Except for boundary terms this operator is identical to 

&b = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJN-a g i  flm,z~m+l,z e-iQ[(m-l)n+ll. 
m=l z=1 

We define a Fourier transform on the lth 7 sublattice 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ff’ = iI@  C  fm,ze  --iqm , 

m=l 

(6.3) 

(6.4) 
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where for cyclic boundary conditions 4 takes the values (mod 2x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q = 0, &2x/ M, +4x/ M, . . . . x, (6.5a) 

while for anticyclic boundary conditions q takes the values (mod 2x) 

q = &n/M, &3lc/M, . . ., &(M - 1) n/ M. (6.5b) 

We assume for convenience that M is even. The relation to the Fourier 

transform on the complete 7 lattice is 

fQ = N-i z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,e-iQj = n-i $nk! i fib e_ilQ, 

j=l 1=1 
(6.6) 

where Q takes the values (mod 2x) 

Q = 0, &2x/ n&f, &4rc/ nM, . . . . x, (6.7a) 

or 

Q = +c/ nM, f3x/ nM, . . ., j-(nM - 1) Tc/ nM, (6.7b) 

for cyclic or anticyclic boundary conditions, respectively. Hence if we 

define 

&$’ = _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJM-b ; 
TE&n+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,1 e 

-iqm 
) (6.8) 

m=l 

we have 

(6.9) 

As noted before, in thermal equilibrium the different 7 sublattices are sta- 

tistically independent. Moreover, we shall show in a moment that 

(0 I%;‘(t)11 O>z = 0 for q # 0 (mod 274, (6.10) 

where the subscript 1 indicates that the average is performed over the 

thermal equilibrium ensemble of the Zth 7 sublattice. Hence one finds 

(0 I&J@)% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%“‘Ql 0)’ = <o I~;;(+ *““;QI @I, (6.11) 

for all values of Q # 0 (mod 2x/ ~). Thus we have derived a simple relation 

between the time-correlation functions of the energy density in the n-flip 

and the l-flip model, 

<EQ(t)n E--&&q = &#)l E!!;Q)~~. (6.12) 

The relation is exact in the thermodynamic limit M --f co. From (6.12) it 

follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<EQ(~). E--&>eq is periodic in the first Brillouin zone (-x 5 

Q < x) with periodicity 2x/ n. The exceptional point Q = 0 (mod 2x/ n) 

need be of no special concern, as it merely points to the necessity of sub- 

tracting equilibrium averages in the definition of the time-correlation func- 
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tion. As is evident from (6.9) the average <%“ ;a>& differs from zero only for 

Q = 0. In the th ermodynamic limit the expressions for the properly de- 

fined correlation functions in the exceptional points Q = 0 (mod 2rr/ n) may 

be found simply by taking a continuous limit. 

The correlation function in the l-flip model may be calculated using the 

formalism of I. We refer to I for notation and more detailed explanation. 

In order to evaluate (0 I%:)(t), %!i/ O)i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 j&'r'(t)i(O)i we note that 

St) = - JM-b X (tL - 5-k) (Etk-, + &+a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

x exp i(&k + hkfq + k + 4, (6.13) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and q range over the set of values (6.5b) and where k + q is defined 

mod 2~. The operators EL and 5k satisfy the Fermi anticommutation rules 

and have / O)i as vacuum, 

5k IOh = 0. (6.14) 

The angle xk is defined by 

exp ixk = (cash K -. edik sinh K)s/ (cosh 2K - sinh 2K cos k). (6.15) 

The relation (6.13) is valid only if the operator acts on a state containing 

an even number of fermions. The transformed l-flip operator WI(~) (for 

M spins) is linear in the fermion number operators 5lEk. In I we have de- 

fined two operators w,f (@) and w;(B) by 

w:(p) = - 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlkt:tk, (6.16) 
k 

where 

jlk = a%(1 -ycosk) (6.17) 

and where for Icy:(b) the sum runs over the values (6.5b) and for wT(/ 3) it 

runs over the values (6.5a). The fermion operators occurring in w;(/ ?) have 

a slightly different vacuum state given by 

/ O-)1 = Il&cosh K - Pa,,l~~,l sinh K) jO>i, 

ill = [ 1 + (tanh K)“]* [ 1 - (tanh K)M]--*. 

(6.18) 

The eigenvectors of wi(/ 3) consist of those eigenvectors of @“ t(p) having 

even numbers of fermions and those eigenvectors of w;(b) having odd 

numbers of fermions. The “odd”  eigenvectors of wlf(p) and the “even”  

eigenvectors of ?P-; (B) are irrelevant and must be discarded. In appendix A 

we demonstrate that the err transformation may be used to find an inter- 

esting relation between the operator ‘yry-i(p) and the hamiltonian of the 

XY model. 

From (3.20), (6.13) and (6.16) it follows that the time-behaviour of Z’F’(t)i 

is found by replacing the fermion operators in (6.13) by the time-dependent 
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operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-Ad 
h(t)1 = 5ke , El(t)1 = ~~ eAkt. (6.19) 

One immediately confirms the validity of (6.10) with the aid of (6.14). 

Evaluating the time-correlation function in the same manner one finds for 

q # 0 using X-k = -Xk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x [1 - exp i(Xk + Xk+q + 2k + q)]> (6.20) 

where k ranges over the values (6.5b). In the thermodynamic limit M --f 00 

the sum over k may be replaced by an integral. From (6.12) and (6.20) we 

finally have for the energy-energy correlation function in the limit M -+ co 

and for Q # 0 
ii 

<EQ(t)nE_Q>es zzz c 

s 

e-(Ak+le+nQ)t 

--x 

X [l - exp i(Xk -b Xk+nQ + 2k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnQ)l dk. (6.21) 

For the time-correlation function of the properly normalized energy fluctu- 

ation 

HEN = N-~[EN - (E~)eq], (6.22) 

we find by taking the limit Q --f 0 in (6.21) 

x 

<dE(t)ndE>,q = J” 

s 
epZAkt siI?(Xk + k) dk, (6.23) 

x 
--x 

again in the thermodynamic limit M + 00. As was to be expected this 

correlation function is independent of n, except for a trivial time-scale de- 

pendence through an. In section 8 we shall examine some features of the 

correlation function (6.23). 

7. Magnetization-magnetization correlatiows. The time-correlation func- 

tion of a Fourier component of the magnetization is given by 

<SQ(t)n S-Q)eq = (0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlu$(t)n &QI O>, 

where a: is defined by 

#o = N-1 z 6 e_iQi. 
I=1 

(7.1) 

(7.2) 

Except for boundary terms this operator is identical to 

0; = N-* ‘z i (7z,_1,1+l . . . -&) e-iQ[(m-l)n+zl, 
,n=l 1=1 

(7.3) 
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with the cyclic definition (5.4). We define the Fourier transform 

flu’ = jbr-* z fi, 1 e-&m 
Q 

m=l ' 
> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7.4) 

where y takes the values (6.5a). Substituting in (7.3) one finds 

d” ; = N-~lk?--~n c [ ;; 
Q I=1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+"P(~&z - %Q) Fkz, Q)J (7.5) 

where Q = (41, . . ., qn) and where 

F(q, Q) = ,iI exp{--iLr$+lq, - (a -4 Ql). (7.6) 

All wavenumbers in (7.5) and (7.6) must be reduced to the first Brillouin 

zone. Using the statistical independence of different 7 sublattices one hence 

finds for the correlation function 

(0 lu$)n @+I 0)’ = n-ill/ l+ C B(r+r qz - ?zQ) IF(q, Q) I2 

x ,jj <o,Tg'(t)l e.j, OhP (7.7) 

In the thermodynamic limit M --f co the magnetization correlation func- 

tion of a T sublattice is given by 

lim <0 I~:‘“ ‘(t)i ?_!:I 0)~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(q) edApt, 

M+a, 

where 

G(q) = [cash 2K(l - y cos q)]-1. 

Thus one finds 

lim <s,(t), S-Q)eq = ?2-1(2x)i-n ; . . . f d,q 
M--*oo -77 -n 

x dtlilqz -nQ)IF(% Q)12 lI?lG(qz) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexp[--iZ(qz) 4. 

(7.8) 

(7.9) 

(7.10) 

In the next section we shall examine some features of this correlation 

function. The frequency- and wavenumber-dependent susceptibility is re- 

lated to the correlation function by a Fourier transforms) 

xn(Q, w) = x(Q, 0) - io.$ oj<SQ(& S--&h evimt dt. (7.11) 

For the l-flip models) the function xi(Q, w) has a simple pole in the complex 

w plane at w(Q) = S(Q). For the 2-flip model xs(Q, w) may also be evalu- 

ated explicitly; it exhibits a branch-cut singularity in the cu plane. The 
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static susceptibility x(Q, 0) is given by 

x(Q, 0) = ,5G(Q) = ,4[cosh 2K(l - y cos Q,]-1. (7.12) 

To conclude this section we note that the energy density-magnetization 

correlation function <EQ(L)~ S’_Q)~~ vanishes identically, since the equilibri- 

um ensemble and the first operator are invariant under reversal of spins, 

whereas the second operator changes its sign. 

8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARelaxation times. In order to study qualitatively the behaviour of the 

correlation functions near T = 0 we define characteristic times for the relax- 

ation of energy and magnetization. We shall here consider only the long- 

wavelength limit Q + 0. A characteristic relaxation time for the fluctu- 

ations of the total energy in the n-flip model is defined by*) 

V(W) = j%=(1), aBe9 dt/ <(6E)%_,. (8.1) 

From (6.15) and (6.23) it follows that the numerator is given by 

s (dE(t)n aE)e, dt = 2ra cJo:h2 2K 

”  ?z s sins k 

(1 - y cos k)3 
dk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 -i-c 

= i,,1J2(cosh 2K)-2 (1 - ys)-’ 

= &,rJs(l + a2)/ (1 - a2), 

where a = tanh K. The denominator in (8.1) is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

<(dE)‘>eq = J2( 1 - a2), 

(8.2) 

(8.3) 

so that 

T&z) = &,‘(l + a” )/ (1 - &)2, 

with limiting behaviour as T --f 0 

T&z) = &&l&-2 + 0(&-l), 

where 

(84 

(8.5) 

F = exp[-2pJ] (8.6) 

and where we have used (2.11). Thus we find that the energy relaxation 

time diverges as T + 0 with a characteristic singularity which is inde- 

pendent of n, that is, independent of the particular relaxation model. We 

deal with a case of non-classical slowing-down since the singularity is differ- 

ent from that predicted by the classical theory in which 

+j(n) = <(~ E)2)ecJLE(~ ), (8.7) 
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with a nonsingular Onsager coefficient LE(~). In the present case the 

classical theory would actually imply that TE(TZ) tend to zero as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT + 0, 

because of the vanishing of the specific heat. 

A characteristic relaxation time for the fluctuations of the total magnet- 

ization is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby s) 

TM(~) = &a(t), So)eq dW,2>,,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

(8.8) 

In the thermodynamic limit the denominator is given by 

<S,2>,,_, = G(0) = [cash 2K( 1 - r)]-l. (8.9) 

For the numerator in (8.8) we have from (7.10), (6.17), and (7.9) 

j?,S,(t)~ S&es dt = ai1 [cash 2K]+ .Yn, (8.10) 

where 

,Yn = 12-1(2x)1-~ j . . . i F(!z> 0) I2 lil (1 - y cos qz)-l 
--x -7t 

x EliI (1 - Y COS 4z)lb1 611il 41) dnq. (8.11) 

For n = 1 and n = 2 the integral may be evaluated explicitly with the 

results 

41 = (1 - $2 

92 = a(1 + Y)(2 + y)(l --2)-f. (8.12) 

For general n the integral is singular as y --+ 1 owing to the behaviour of 

the integrand near q = 0. Integrating once to get rid of the delta function 

and expanding the cosines one finds that the dominant term is given by 

yn = 2*(1--n&&(1 yp"+3' + O[(l -p'"+l'], (8.13) 

where 

Cn=xi-n r _oo * * ._I ,s (1 + G)-’ e1 (1 + 41-’ 

x 6( ; XI) dxi . . . dx,. (8.14) 
I=1 

One easily finds 

cl= 1, c2 =&. (8.15) 

It is shown in appendix B that C, is monotonically decreasing in TZ with 
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asymptotic behaviour 

C, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABn-3 + 0(n-4)) (8.16) 

where B is a constant. 

From (8.8), (8.9), (8.10) and (8.13) it finally follows that as T + 0 the 

asymptotic behaviour of the magnetization relaxation time is given by 

TM(%) = &l,Wna-s + q&-r). (8.17) 

Hence for the magnetization the critical exponent is again independent of 

the particular relaxation model. Only the prefactor is model dependent. 

The classical theory would predict slowing-down owing to the divergence 

of the susceptibility x = bG(O), 

T%(W) = XI-LVz(fi)> (8.18) 

with a nonsingular Onsager coefficient L.M(~). Again this would lead to a 

weaker singularity, namely 

4r(4 = +J-lL;‘((rt) e-l (In ~1. (8.19) 

From (8.16) and (8.17) it follows that if the spontaneous emission rate 

An is taken to be independent of n, then at a fixed low temperature the 

relaxation time TM(~) decreases proportionally to n-2 for large n. This is 

understandable since, as is evident from (3.8), on the average every spin 

partakes in IZ times as many transitions per unit time as in the l-flip model, 

and every transition is 12 times as effective in changing the magnetization. 

9. Conclusions. We have studied time-correlation functions for a class of 

stochastic relaxation models for the Ising chain. In particular we have de- 

rived explicit expressions (6.21) and (7.10) for the time-correlation functions 

of Fourier components of the energy density and the magnetization. In the 

last section we have studied the gross features of the correlation functions 

of total energy and total magnetization and we have shown that the charac- 

teristic relaxation times exhibit singularities near T = 0. Since for the Ising 

chain temperature T = 0 thermodynamically acts as a critical point the 

effect may be termed critical slowing-down. We have shown that for our 

class of models the behaviour is non-classical and we find agreement with 

conjectures made for the 2- and 3-dimensional Ising model implying that 

the critical exponents are independent of the detailed dynamics, but are 

sensitive only to drastic changes, such as change of. dimensionality and 

change of symmetry or conservation laws. In our case the relaxation time 

for the energy (8.5) is completely independent of the relaxation model, 

whereas the relaxation time for the magnetization (8.17) exhibits a singu- 

larity at T = 0 with a model-independent critical exponent, but with a 

model-dependent prefactor. 
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Qualitatively the origin of the slowing down may be understood as 

follows. The behaviour of the energy-energy correlation function for all 

models is determined by the combined decay of pairs of elementary exci- 

tations with wavenumbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and -q and decay rate 1, = ~l%( 1 - y cos q). 

Near T = 0 the dominant contribution comes from a range of wavenumbers 

around q = 0 with a width 

Aq = [2(1 - y)/y]” M 2&, (9.1) 

which shrinks to zero as T + 0. We note that Aq is approximately equal to 

the inverse correlation length jln a] =22~. The relaxation time TE(VS) is pro- 

portional to the characteristic decay time for long wavelength excitations 

n,’ = [CYn(l - r)]- 1. The same is true for the relaxation of the magnet- 

ization. In the n-flip model the magnetization on the average decays through 

the combined nonlinear effect of n elementary excitations. The main contri- 

bution to the relaxation time TM(W) comes from a domain of range (Aq)n-1 

in the (W - I)-dimensional Q space. Again the singularity of the relaxation 

time is essentially proportional to 12;l. It may be of interest to compare the 

above exact calculation with the basic ideas of mode-mode coupling theories. 

APPENDIX A 

Equivalence of the master operator %‘-I(/?) to the XY hamiltonian. We show 

that the transformed master operator WI(B) of the l-flip model may be 

related by a IJT transformation of order 2 to the hamiltonian of the XY 

models). On a 7 lattice of N spins the operator Wi(/?) is given by 

- [I - h’T;($-1 + $+I)]}, (A.11 

where a = tanh K and where we use cyclic boundary conditions. Using the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UT transformation of order 2 given by (4.2) this may be transformed to 

N-l 

wr(B) = QW ,zs [$ya+-$$+r + !+#$+i - 1 + Y$I 

+ ~~l{~y[a-l - (~7:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . CJ$) a] 64 

+ *y[a-l- (az"... G-J al4$-2+y(G...beN+G)}. (A.3 

Hence apart from boundary terms the operator Wr(/?) coincides with the 

hamiltonian of the XY model on the G lattice for a suitable choice of para- 

meters. 
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APPENDIX B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Asymptotic behaviour of C, for large n. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn this appendix we study the 

asymptotic behaviour for large n of the coefficient Cn, defined by (8.14), 

n 11 

x [C (1 + x1”)]-’ 6( C xz) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdxr . . . dx,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E=l 1=1 

The integral may be rewritten 

-00 0 -co -co 

x exp[iE 5 XL - q i (1 + z,“ )] dxi . . . dx, 
1=1 Z=l 

0300 

zZ= 

SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If@ > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs)l"d5dv, 

0 0 

where 

(B.1) 

(B.2) 

00 

eiE+-rl(l+xa) 

1 + 99 
dx 

co 
n 

= 

J 

(x~)-* exp[--24 - 62/ 4~] du. (B.3) 

‘I 

The function f(l) 7) is monotonically decreasing in both t and 7 in the first 

quadrant of the (t, q) plane, tending to 0 at co, and takes its maximum 

value f(0, 0) = 1 at the origin. Hence it follows that C, is monotonically 

decreasing with n and in the limit ?z + 00 the dominant contribution to 

the integral (B.2) comes from the neighbourhood of the origin. One may 

also write 

f(E,r) = e-6 - f (mb)-* exp[-u - Es/ &] du,, 
0 

so that along the 6 axis one has 

f(E, 0) = e-c, 

whereas along the q axis 

f(0, q) = 7 (xu)-* e-U du. 
rl 

(B.4) 
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For fixed E all derivatives of f(t, q) with respect to q vanish at 1;1 = 0. The 

second derivative of f(E, 7) with respect to 5 is finite for fixed 7 at 5‘ = 0. 

Changing variables in the integral in (B.4) to v = 42t/E2 one finds that the 

behaviour of f(E, 7) for small 5 and 7 is given by 

f(~!, q) = e-5 - (2J+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt[g0(t2/4q) - &t2g1(t2/4r) + . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I, WY 

with 

go(z) = I’(-$, z), gd.4 = r(-% 4, Pw 

where ~(IJ, z) is the incomplete gamma function. Hence to lowest order 

f(E, 7) is approximated near the origin by 

f(E, q) w 1 - E@(E2/4rl), (B.9) 

with 

Q(z) = 1 + (2&)-l q-$, 2). (B.lO) 

The leading contribution to the integral (B.2) is therefore given by 

,,r[exp[-n@(f2/411)1 dt cl7 = Bs-~, (B. 11) 

where 

B = r (2x9-1 [@(x)3-3 dx. (B. 12) 
0 

The higher-order correction terms in (B.7) lead to the estimate 

C, = Bn-3 + O(n-4) as n-+00. (B.13) 
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