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Abstract
Influence maximization is a problem of finding a small set
of highly influential users in a social network such that the
spread of influence under certain propagation models is max-
imized. In this paper, we consider time-critical influence max-
imization, in which one wants to maximize influence spread
within a given deadline. Since timing is considered in the
optimization, we also extend the Independent Cascade (IC)
model to incorporate the time delay aspect of influence diffu-
sion in social networks. We show that time-critical influence
maximization under the time-delayed IC model maintains de-
sired properties such as submodularity, which allows a greedy
algorithm to achieve an approximation ratio of 1 − 1/e, to
circumvent the NP-hardness of the problem. To overcome
the inefficiency of the approximation algorithm, we design
two heuristic algorithms: the first one is based on a dynamic
programming procedure that computes exact influence in tree
structures, while the second one converts the problem to one
in the original IC model and then applies existing fast heuris-
tics to it. Our simulation results demonstrate that our heuris-
tics achieve the same level of influence spread as the greedy
algorithm while running a few orders of magnitude faster, and
they also outperform existing algorithms that disregard the
deadline constraint and delays in diffusion.

1 Introduction
Recently, the rapidly increasing popularity of online social
networking sites such as Facebook, Twitter, and Google+
opens up great opportunities for large-scale viral marketing
campaigns. Viral marketing, first introduced to the data min-
ing community by Domingos and Richardson (2001), is a
cost-effective marketing strategy that promotes products by
giving free or discounted items to a selected group of highly
influential individuals (seeds), in the hope that through the
word-of-mouth effects, a large number of product adoption
will occur. Motivated by viral marketing, influence maxi-
mization emerges as a fundamental data mining problem
concerning the propagation of ideas, opinions, and innova-
tions through social networks.

In their seminal paper, Kempe et al. (2003) formulated
influence maximization as a problem in discrete optimiza-
tion: Given a network graph G with pairwise user influ-
ence probabilities on edges, and a positive number k, find
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k users, such that by activating them initially, the expected
spread of influence is maximized under certain propagation
models. Two classical propagation models studied in the the
literature are the Independent Cascade (IC) and the Linear
Threshold (LT) model.

The family of models considered in Kempe et al. and its
follow-ups, including IC and LT, do not fully incorporate
important temporal aspects that have been well observed in
the dynamics of influence diffusion. First, the propagation
of influence from one person to another may incur a certain
amount of time delay, which is evident from recent studies
in statistical physics (Iribarren and Moro 2009; Karsai et al.
2011).

Second, the spread of influence may be time-critical in
practice. In a certain viral marketing campaign, it might be
the case that the company wishes to trigger a large volume
of product adoption in a fairly short time frame, e.g., a three-
day sale. As a motivating example, let us suppose that Alice
has bought an Xbox 360 console and Kinect with a good
discount, but the deal would only last for three days. Alice
wanted to recommend this deal to Bob, but whether her rec-
ommendation would be effective depends on whether Alice
and Bob can be in touch (e.g., meeting in person, or Bob
seeing the message left by Alice on Facebook) before the
discount expires. Therefore, when we try to maximize the
spread of influence for a viral marketing campaign facing
this kind of scenarios, we need to take both the time delay
aspect of influence diffusion and the time-critical constraint
of the campaign into consideration.

To this end, we extend the influence maximization prob-
lem to have a deadline constraint to reflect the time-critical
effect. We also propose a new propagation model, the Inde-
pendent Cascade model with Meeting events (IC-M) to cap-
ture the delay of propagation in time. We show that the IC-
M model maintains monotonicity and submodularity, which
implies a greedy (1 − 1/e)-approximation algorithm to cir-
cumvent the NP-hardness of the problem. In addition, we
design two efficient and effective heuristic algorithms, MIA-
M and MIA-C, based on the notion of Maximum Influ-
ence Arborescence (MIA) (Chen, Wang, and Wang 2010)
to tackle time-critical influence maximization under the IC-
M model. Our experiments demonstrate that both algorithms
produce seed sets with equally good quality as those mined
by approximation algorithm, while being two to three or-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

592



ders of magnitude faster. Moreover, we show that only using
standard heuristics such as MIA and disregarding time de-
lays and deadline constraint could result in poor influence
spread compared to our heuristics that are specifically de-
signed for this context.

1.1 Related Work
Domingos and Richardson (2001; 2002) first posed influ-
ence maximization as an algorithmic problem. They mod-
eled the problem using Markov random fields and pro-
posed heuristic solutions. Kempe et al. (2003) studied influ-
ence maximization as a discrete optimization problem. They
showed that the problem is NP-hard under both the IC and
LT models, and relied on submodularity to obtain a (1−1/e)
greedy approximation algorithm.

A number of studies following (Kempe, Kleinberg, and
Tardos 2003) developed more efficient and scalable solu-
tions, including the cost-effective lazy forward (CELF) op-
timization (Leskovec et al. 2007) and also work by Kimura
et al. (2007), Chen et al. (2009), etc. Specifically for the IC
model, Chen et al. (2010) showed that it is #P-hard to com-
pute the exact influence of any node set in general graphs.
They proposed the MIA model which uses influence in local
tree structures to approximate influence propagated through
the entire network. They then developed scalable algorithms
to compute exact influence in trees and mine seed sets with
equally good quality as those found by the approximation
algorithm. Goyal et al. (2012) leveraged real propagation
traces to derive more accurate diffusion models.

The time-delay phenomena in information diffusion
has been explored in statistical physics. Iribarren and
Moro (2009) observed from a large-scale Internet viral mar-
keting experiment that the dynamics of information diffu-
sion are controlled by the heterogeneity of human activities.
More recently, using time-stamped phone call records, Kar-
sai et al. (2011) found that the spreading speed of informa-
tion on social networks is much slower than one may ex-
pect, due to various kinds of correlations, such as commu-
nity structures in the graph, weight-topology correlations,
and burstiness.

2 Influence Maximization with Deadline and
Meeting Events and Its Properties

2.1 Model and Problem Definition
We first describe the standard Independent Cascade (IC)
model in Kempe et al. (2003), and then show our extensions
that incorporate deadline and random meeting events. In the
IC model, a social network is modeled as a directed graph
G = (V,E), where V is the set of nodes representing users
and E is the set of directed edges representing links (rela-
tionship) between users. Each edge (u, v) ∈ E is associ-
ated with an influence probability p(u, v) defined by func-
tion p : E → [0, 1]. If (u, v) 6∈ E, define p(u, v) = 0.

The diffusion process under the IC model proceeds in dis-
crete time steps 0, 1, 2, . . . . Initially, a seed set S ⊆ V is
targeted and activated at step 0, while all other nodes are
inactive. At any step t ≥ 1, any node u activated at step
t− 1 is given a single chance to activate any of its currently

inactivate neighbors v with independent success probability
p(u, v). Once a node is activated, it stays active. The process
continues until no new nodes can be activated. The influence
maximization problem under the IC model is to find a seed
set S with at most k nodes such that the expected number
of activated nodes after the diffusion terminates, called in-
fluence spread and denoted by σ(S), is maximized.

We now describe our extension to the IC model to incor-
porate time-delayed influence diffusion, which we denote
by IC-M (for Independent Cascade with Meeting events).
In the IC-M model, each edge (u, v) ∈ E is also associ-
ated with a meeting probability m(u, v) defined by function
m : E → [0, 1] (if (u, v) /∈ E, m(u, v) = 0). As in IC,
a seed set S is targeted and activated at step 0. At any step
t ≥ 1, an active node u meets any of its currently inac-
tive neighbors v independently with probability m(u, v). If
a meeting event occurs between u and v for the first time, u
is given a single chance to try activating v, with an indepen-
dent success probability p(u, v). If the attempt succeeds, v
becomes active at step t and will start propagating influence
at t+1. The diffusion process quiesces when all active nodes
have met with all their neighbors and no new nodes can be
activated.

Several possibilities can be considered in mapping the
meeting events in the IC-M model to real actions in online
social networks. For instance, a user u on Facebook post-
ing a message on her friend v’s wall can be considered as a
meeting event. Different pairs of friends may have different
frequencies of exchanging messages on each other’s walls,
which is reflected by the meeting probability.

Note that the original IC model is a special case of IC-
M with m(u, v) = 1 for all edges (u, v) ∈ E. More im-
portantly, for the original influence maximization problem,
the meeting probability is not essential, because as long as
m(u, v) > 0, eventually u will meet with v and try to influ-
ence v once. Thus, if we only consider the overall influence
in the entire run, there would be no need to introduce meet-
ing probabilities. However, if we consider influence within a
deadline constraint, then meeting probability is an important
factor in determining the optimal seed set.

Formally, for a deadline τ ∈ Z+, we define στ : 2V →
R+ to be the set function such that στ (S) with S ⊆ V is the
expected number of activated nodes by the end of time step
τ under the IC-M model, with S as the seed set. The time-
critical influence maximization with a deadline constraint τ
is the problem of finding the seed set S with at most k seeds
such that the expected number of activated nodes by step τ
is maximized, i.e., finding S∗ = arg maxS⊆V,|S|≤k στ (S).

Since the original influence maximization problem is NP-
hard for the IC model (Kempe, Kleinberg, and Tardos 2003)
and that problem is a special case of time-critical influence
maximization for the IC-M model with all m(u, v) = 1 and
deadline constraint τ = |V |. This leads to the following
hardness result.

Theorem 1. The time-critical influence maximization prob-
lem is NP-hard for the IC-M model.
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2.2 Properties of the IC-M Model
Although to find the optimal solution for time-critical in-
fluence maximization with deadline τ under IC-M is NP-
hard (Theorem 1), we show that the influence function στ (·)
is monotone and submodular, which allows a hill-climbing-
style greedy algorithm to achieve a (1−1/e)-approximation
to the optimal.

Given a ground set U , a set function f : 2U → R is
monotone if f(S1) ≤ f(S2) whenever S1 ⊆ S2. Also,
the function is submodular if f(S1 ∪ {w}) − f(S1) ≥
f(S2 ∪ {w}) − f(S2), ∀S1 ⊆ S2, ∀w ∈ U \ S2. Submod-
ularity captures the law of diminishing marginal returns, a
well-known principle in economics.

Theorem 2. The influence function στ (·) is monotone and
submodular for an arbitrary instance of the IC-M model,
given any deadline constraint τ ≥ 1.

To prove the theorem, we can view the random cascade
process under IC-M using the “possible world” semantics
and the principle of deferred decisions. That is, we can sup-
pose that before the cascade starts, a set of outcomes for all
meeting events, as well as the “live-or-blocked” identity for
all edges are already determined but not yet revealed.

More specifically, for each meeting event (a (u, v) pair
and a time step t ∈ [1, τ ]), we flip a coin with bias m(u, v)
to determine if u will meet v at t. Similarly, for each edge
(u, v) ∈ E, we flip once with bias p(u, v), and we declare
the edge “live” with probability p(u, v), or “blocked” with
probability 1 − p(u, v). All coin-flips are independent. The
identity of the edge (u, v) is revealed in the event that u is
active and is meeting the inactive v for the first time. There-
fore, a certain set of outcomes of all coin flips corresponds to
one possible world, denoted by X , which is a deterministic
graph (with all blocked edges removed) obtained by condi-
tioning on that particular set of outcomes.

Proof of Theorem 2. Fix a set XM of outcomes of all meet-
ing events (∀(u, v) ∈ E, ∀t ∈ [0, τ ]), and also a set XE of
live-or-blocked identities for all edges. Since the coin-flips
for meeting events and those for live-edge selections are or-
thogonal, and all flips are independent, any XE on top of an
XM leads to a possible world X .

Next, we define the notion of “reachability” in X . Con-
sider a live edge (u, v) in X . Traditionally, without meeting
events, v is reachable from u via just one hop. Now with
pre-determined meeting sequences, v is reachable from u
via tv − tu hops, where tu is the step in which u itself is
reached, and tv is the first step when u meets v, after tu.
Hence, we say that v is reachable from a seed set S if and
only if (1) there exists at least one path consisting entirely of
live edges (called live-path) from some node in S to v, and
(2) the collective number of hops along the shortest live-path
from S to v is no greater than τ .

Then, let σXτ (S) be the number of nodes reachable from
S in X (by the reachability definition above). Let S1 and S2

be two arbitrary sets such that S1 ⊆ S2 ⊆ V , and let node
w ∈ V \ S2 be arbitrary. The monotonicity of σXτ (·) holds,
since if some node u can be reached by S1, the source of
the live-path to u must be also in S2. As for submodularity,

Algorithm 1: Greedy (G = (V,E), k, στ )
1 S ← ∅;
2 for i = 1→ k do
3 u← argmaxv∈V \S

[
στ (S ∪ {v})− στ (S)

]
;

4 S ← S ∪ {u};
5 Output S;

consider a certain node u which is reachable from S2 ∪ {w}
but not from S2. This implies (1) u is not reachable from S1

either, and (2) the source of the live-path to u must be w.
Hence, u is reachable from S1 ∪ {w} but not from S1. This
gives σXτ (S1∪{w})−σXτ (S1) ≥ σXτ (S2∪{w})−σXτ (S2).

Let EI denote the event that I is the true realization (vir-
tually) of the corresponding random process. Taking the
expectation over all possible worlds, we have στ (S) =∑
X Pr[EX ] ·σXτ (S),∀S ⊆ V , where X is any combination

of XE and XM , and Pr[EX ] = Pr[EXE
] · Pr[EXM

]. There-
fore, σ(·) is a nonnegative linear combination of monotone
and submodular functions, which is also monotone and sub-
modular. This was to be shown.

With Theorem 2, we can apply the result in Nemhauser
et al. (1978) to obtain a greedy algorithm (Algorithm 1:
Greedy) that approximates the optimal solution with a factor
of 1−1/e for the time-critical influence maximization prob-
lem under the IC-M model. The greedy algorithm repeatedly
grows S by adding uwith the largest marginal influence w.r.t
S in each iteration until |S| = k or no more node can pro-
vide marginal gain greater then zero.

However, Chen et al. (2010) shows that it is #P-hard to
compute σ(·) values in general graphs for the IC model, and
this hardness result is applicable to our problem as it sub-
sumes the original one (Sec. 2.1). A common practice is to
estimate influence spread using Monte-Carlo (MC) simula-
tions, in which case the approximation ratio of Greedy drops
to 1−1/e−ε, where ε is small if the number of simulations is
sufficiently large. Due to expensive simulations, the greedy
algorithm is not scalable to large data, even the implemen-
tation is accelerated by the CELF optimization (Leskovec et
al. 2007).

3 Computing Influence in Arborescences
In this section, we present an dynamic programming algo-
rithm that computes exact influence spread in tree structures,
which will be used in Sec. 4 to develop MIA-M.

An in-arborescence is a directed tree where all edges
point into the root. Given a graph G = (V,E) with influ-
ence probability function p and meeting probability function
m, consider an in-arborescence A = (VA, EA) rooted at v
where VA ⊆ V and EA ⊆ E. We assume that influence
propagates to v only from nodes in A. We also assume that
there exists at least one s ∈ S such that s ∈ VA; otherwise
no nodes can be activated inA. Given a seed set S and dead-
line τ , we show how to compute στ (S) in A in time linear
to the size of the graph.
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Let ap(u, t) be the activation probability of u at step t,
i.e., the probability that u is activated at step t after the cas-
cade ends in A. Since the events that u gets activated at dif-
ferent steps are mutually exclusive, the probability that u
ever becomes active by the end of step τ is

∑τ
t=0 ap(u, t).

By linearity of expectation, στ (S) =
∑
u∈V

∑τ
t=0 ap(u, t).

Hence, the focus is to compute ap(u, t), for which we have
the following theorem.

Theorem 3. Given any u in arborescence A, and any t ∈
[0, τ ], the activation probability ap(u, t) can be recursively
computed as follows.

For base cases when u ∈ S or t = 0,

ap(u, t) =

{
1 (u ∈ S ∧ t = 0)
0 (u 6∈ S ∧ t = 0)
0 (u ∈ S ∧ 1 ≤ t ≤ τ)

When u 6∈ S ∧ t ∈ {1, . . . , τ}, ap(u, t) =

∏
w∈N in(u)

(
1−

t−2∑
t′=0

ap(w, t′)p(w, u)[1− (1−m(w, u))t−t
′−1])

)

−
∏

w∈N in(u)

(
1−

t−1∑
t′=0

ap(w, t′)p(w, u)[1− (1−m(w, u))t−t
′
]
)
,

(1)

where N in(u) ⊆ VA is the set of in-neighbors of u in A.

Proof. The base cases (u ∈ S or t = 0) are trivial.
When u 6∈ S and t ∈ {1, . . . , τ}, for any in-neighbor
w ∈ VA of u and t′ < t, p(w, u){1 − [1 − m(w, u)]t−t

′−1}
is the probability that w meets u at least once from t′ + 1
to t − 1 and that (w, u) is live. Since the events that w
gets activated at different t′ are mutually exclusive, 1 −∑t−2
t′=0 ap(w, t

′)p(w, u){1− [1−m(w, u)]t−t
′−1} is the prob-

ability that u has not been activated by w before or at t− 1.
Note that

∑−1
t′=0 ap(w, t

′)p(w, u){1− [1−m(w, u)]t−t
′−1} =

0, so the above still holds for t = 1. Similarly,
∏
w∈N in(u)(1−∑t−1

t′=0 ap(w, t
′)p(w, u){1 − [1 −m(w, u)]t−t

′
}) is the proba-

bility that u has not become active before or at t. Hence,
Formula 1 is exactly the probability that u is activated at t,
which is ap(u, t).

The recursion given by Formula 1 can be carried out by
dynamic programming, traversing from leaves to the root.
In a general in-arborescence, given as input a node u and
a deadline constraint τ , the time complexity of calculating∑τ
t=0 ap(u, t) by Formula 1 is polynomial to τ , which is

exponential to the size of the input: Θ(log τ) bits. In princi-
ple, this does not affect efficiency much as τ is small (5 or
10), and in general much smaller than the size of the graph.

To reduce the amount of computations, a few optimiza-
tions can be applied in implementation. Let path(u) be the
path from some s ∈ S inA to u that has the minimum length
among all such paths. Note that we only need to compute
ap(u, t) for t ∈ {|path(u)|, . . . , τ}, as u cannot be reached
earlier than step |path(u)|. In other words, ap(u, t) = 0
when t < |path(u)|. Also, if path(u) = ∅ (i.e., does not
exist), ap(u, t) = 0,∀t.

For computing ap(u, t) on a chain of nodes within an in-
arborescence, we derive a more efficient method that reduces
the time complexity to polynomial to log τ . We defer the
discussions on this to Section 6.

4 MIA Algorithms for IC-M
The greedy approximation algorithm is too inefficient to use
in practice as it lacks of a way to efficiently compute in-
fluence spread in general graphs (Sec. 2). To circumvent
such inefficiency, we propose two MIA-based heuristic algo-
rithms. The first algorithm is MIA-M (Maximum Influence
Arborescence for IC-M) which uses the dynamic program-
ming in Theorem 3 to compute exact influence of seeds. The
second one is MIA-C (Maximum Influence Arborescence
with Converted propagation probabilities) which first esti-
mates propagation probabilities for pairwise users by com-
bining meeting events, influence events, and the deadline τ ,
and then uses MIA for IC to select seeds.

Both algorithms first construct a maximum influence in-
arborescence (MIIA) for each node in the graph, we calcu-
late influence propagated through these MIIAs to approxi-
mate the influence in the original network.

4.1 The MIA-M Algorithm
Before describing the algorithm, we first introduce some
necessary notations. For a pair of nodes u, v, let P(u, v)
be the set of all paths from u to v in G. Given a path
P = 〈u = u1, . . . , ul = v〉 ∈ P(u, v), its propagation prob-
ability pp(P) =

∏l−1
i=1 p(ui, ui+1).

Next, we define the maximum influence path from u to
v to be MIP(u, v) = argmaxP∈P(u,v) pp(P). Note that
MIP(u, v) = ∅ if u = v or P(u, v) = ∅. In addition, we
require at most one MIP(u, v) for each u, v pair, with ties
broken in a consistent way. To compute MIPs, notice that
if we transfer influence probability p(u, v) into edge weight
− log p(u, v), computing MIP(u, v) is equivalent to finding
the shortest path from u to v in G, and this can be done effi-
ciently by Dijkstra’s algorithm.

For MIA-M, we also introduce the “augmented” length
`A(P) of a path P to take meeting events and the deadline
constraint into account. Consider an edge (ui, uj) ∈ P. Due
to random meeting events, after ui activates at step t, its in-
fluence will not propagate to uj exactly at t + 1. Instead,
the propagation may take multiple steps and the number of
such steps is a random variable Xi,j , which can also be in-
terpreted as the number of Bernoulli trials needed to get the
first meeting between ui and uj after ui’s activation. Clearly,
Xi,j follows the geometric distribution, with success prob-
ability m(ui, uj), expectation 1

m(ui,uj)
, and standard devi-

ation
√

1−m(ui,uj)

m(ui,uj)
. Here we propose to estimate the value

of Xi,j by 1
m(ui,uj)

−
√

1−m(ui,uj)

m(ui,uj)
, and define the aug-

mented path length `A(P) of P to be the sum of all esti-
mated values of the random variables (one per edge) along

P: `A(P) =
∑

(ui,uj)∈P

(
1

m(ui,uj)
−
√

1−m(ui,uj)

m(ui,uj)

)
. We
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empirically verify that this is a good choice for `A(P).

Constructing Arborescences. For any node v in G, we
approximate the influence to v from all u ∈ V \ {v} us-
ing the maximum influence in-arborescences (MIIA) of v.
To construct the MIIA rooted at v, we first take the union
over the maximum influence paths to v over all u ∈ V \{v}.
After that, two pruning steps will be done. First, we remove
paths whose propagation probability is below a pre-defined
influence threshold θ ∈ (0, 1], which controls the size of the
local influence region and is a trade-off between efficiency
and seed set quality. Second, to take the effect of deadline
into account, we eliminate paths whose augmented length is
greater than τ .

Definition 1 (Maximum Influence In-Arborescence).
Given an influence threshold θ ∈ (0, 1] and a deadline con-
straint τ ∈ Z+, the maximum influence in-arborescence of
any node v ∈ V is

MIIAτ (v, θ) = ∪u∈V,pp(MIP(u,v))≥θ,`A(MIP(u,v))≤τMIP(u, v)

The full MIA-M is described in Algorithm 2, where
MG(u) = στ (S ∪ {u}) − στ (S) is the marginal influence
of u w.r.t to seed set S, MG(u, v) is the marginal influ-
ence of u on a specific v, and realized(v) is the cumula-
tive influence realized on v by S. Also, for each u ∈ V ,
InfSet(u) = {v ∈ V : u ∈ MIIAτ (v, θ)}. After construct-
ing MIIAτ (v, θ) and using Theorem 3 to obtain στ ({v}) for
all v ∈ V (lines 4-10), the algorithm selects k seeds iter-
atively in a greedy manner, and uses Theorem 3 to update
the marginal gain of nodes in related MIIAs (lines 11-20).
Specifically, after u is picked as a seed, the activation prob-
ability of all v ∈ InfSet(u) goes up, and thus we need to up-
date the marginal gain of allw ∈ MIIAτ (v), ∀v ∈ InfSet(u).
Time Complexity: Let nmθ = maxv∈V |MIIAτ (v, θ)|, and
nsθ = maxv∈V |InfSet(v)|. Also suppose that the maxi-
mum running time to compute MIIAτ (v, θ) for any v ∈
V by Dijkstra’s algorithm is tmθ. Thus, MIA-M runs in
O(|V |(tmθ + nmθτ

3) + knmθnsθ(nmθτ + log |V |)).

4.2 The MIA-C Algorithm
We now discuss our second algorithm, MIA with Converted
propagation probability (MIA-C). It consists of two steps.
First, for each (u, v) ∈ E, we estimate a converted propa-
gation probability pc(u, v) that incorporates meeting prob-
ability m(u, v), influence probability p(u, v), and deadline
τ , with the intention to simulate the influence spread under
the IC-M model in the original IC model. Second, after ob-
taining all pc(u, v), we treat these converted probabilities as
parameters for the IC model and run the MIA algorithm pro-
posed for IC to select k seeds.

In the IC-M model with deadline τ , the value of pc(u, v)
depends on p(u, v), m(u, v), and τ . We use the following
conversion function to obtain pc(u, v):

pc(u, v) = p(u, v) · [1− (1−m(u, v))β ], (2)

where β ∈ [1, τ ] is the parameter used to estimate the num-
ber of meeting attempts. If β is 1, pc(u, v) = p(u, v) ·
m(u, v), in which case we are pessimistic that u has only

Algorithm 2: MIA-M (G = (V,E), k, θ, τ )
1 S ← ∅;
2 ∀v ∈ V,MG(v)← 0 and realized(v)← 0;
3 ∀v ∈ V,MIIAτ (v, θ)← ∅ and InfSet(v)← ∅;
4 foreach v ∈ V do
5 Compute MIIAτ (v, θ) (Definition 1);
6 foreach u ∈ MIIAτ (v, θ) do
7 InfSet(u)← InfSet(u) ∪ {v};
8 Compute ap(v, t, {u},MIIAτ (v, θ)), ∀t ≤ τ

(Theorem 3);
9 MG(u, v)←

∑τ
t=0 ap(v, t, {u},MIIAτ (v));

10 MG(u)←MG(u) +MG(u, v);

11 for i = 1→ k do
12 u← argmaxv∈V \SMG(v);
13 S ← S ∪ {u};
14 foreach v ∈ InfSet(u) do
15 realized(v) += MG(u, v);
16 foreach w ∈ MIIAτ (v, θ) do
17 Compute ap(v, t, S ∪ {w},MIIAτ (v, θ)),

∀t ≤ τ (Theorem 3);
18 MGnew(w, v)←

[∑τ
t=0 ap(v, t, S ∪

{w},MIIAτ (v, θ))
]
− realized(v);

19 MG(w) += MGnew(w, v)−MG(w, v);
20 MG(w, v)←MGnew(w, v);

one chance to meet v (the minimum possible, assuming
u itself activates before τ ). On the other hand, if β is τ ,
pc(u, v) = p(u, v) · [1− (1−m(u, v))τ ], for which we are
optimistic that u has τ chances to meet v (the maximum pos-
sible). To achieve a balanced heuristic, we let β = τ

2 for all
pairs of u, v, and experiments show that this estimation turns
out to be more effective than other choices in most cases.

After the probability conversion step, we utilize MIA (Al-
gorithm 4, (Chen, Wang, and Wang 2010)) to find the seed
set, making MIA-C take the advantage of updating marginal
gains of nodes in an extremely efficient manner.

The time complexity of converting probabilities is
O(|E|), and second part of MIA-C has the same time com-
plexity as MIA, which is O(|V |tmθ + knmθnsθ(nmθ +
log |V |)).

5 Empirical Evaluations
We conduct experiments on four real-world network datasets
to evaluate MIA-M and MIA-C, and compare them to the
greedy approximation algorithm and a few other baselines.
Dataset Preparation. We use four network datasets. The
statistics of the datasets are presented in Table 1. NetHEPT,
standard in this area, is a collaboration network extracted
from arXiv.org’s High Energy Physics Theory section.
DBLP is a much larger collaboration network from the
DBLP Computer Science Bibliography. Nodes in NetHEPT
and DBLP are authors; if u and v have collaborated, we
draw arcs in both directions. WikiVote is a who-vote-whom
network from Wikipedia. If v voted on u for promoting u
to adminship, we draw an arc (u, v). Epinions is a who-
trust-whom social network from Epinions.com, for which
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(a) NetHEPT (b) WikiVote (c) Epinions (d) DBLP

Figure 1: Influence spread (#nodes, Y-axis) against seed set size (X-axis) on graphs with weighted meeting probabilities.

(a) NetHEPT (b) WikiVote (c) Epinions (d) DBLP

Figure 2: Influence spread (#nodes, Y-axis) against seed set size (X-axis) on graphs with uniform random meeting probabilities.

we draw an arc (u, v) if v expressed her trust in u.

Graph Parameters. Influence probabilities are assigned us-
ing the Weighted Cascade model1 (Kempe, Kleinberg, and
Tardos 2003), in which p(u, v) = 1/din(v) where din(v) is
the in-degree of v. Similarly, for meeting probabilities, we
also adopt the weighted method:m(u, v) = c/(dout(u)+c),
since it is reasonable to deem that the more friends u have,
the less probable that u could meet a certain individual in
one time unit. Here c is a smoothing constant and we choose
it to be 5. In addition, we test on cases where m(u, v) is
chosen uniformly at random from {0.2, 0.3, . . . , 0.7, 0.8}.

Algorithms Compared. We evaluate MIA-M, MIA-C, the
greedy algorithm (Greedy) and the other two: Degree and
MIA. For Greedy, we apply CELF and run Monte Carlo for
10000 times. Degree is a heuristic based on the notion of
degree centrality that considers high degree nodes as influ-
ential ones. It outputs the top-k highest out-degree nodes as
seeds. We also test MIA2, one of the state-of-the-art heuris-
tic algorithms for the standard IC model. For the purpose of
comparisons, we let MIA select seeds disregarding meeting
probabilities and the deadline constraint entirely, i.e., treat-
ingm(u, v) = 1 for all edges and τ = |V |. MIA-M, MIA-C,
and MIA all use 1/320 as the influence threshold θ, as rec-
ommended by Chen et al. (2010). For MIA-C, we choose
β = τ

2 since it gives more stable performance (compared to
1 and τ ) in most cases.

All experiments were conducted on a server running Mi-
crosoft Windows Server 2008 R2 with 2.33GHz Quad-Core
Intel Xeon E5410 CPU and 32G memory.

1We also do experiments on the Trivalency model (Chen, Wang,
and Wang 2010). Since the results are similar, we omit it here.

2We also test the Prefix-excluding MIA algorithm (Chen, Wang,
and Wang 2010). Since the results are similar to those for MIA, we
omit it here.

Dataset NetHEPT WikiVote Epinions DBLP
Num. of nodes 15K 7.1k 75K 655K
Num. of edges 62K 101K 509K 2.0M
Average degree 4.12 26.6 13.4 6.1
Maximum degree 64 1065 3079 588
#Connected components 1781 24 11 73K
Largest component size 6794 7066 76K 517K
Avg. component size 8.55 296.5 6.9K 9.0

Table 1: Statistics of Network Datasets.

5.1 Experimental Results and Analysis
We compare the five algorithms on quality of seeds sets and
running time. The deadline τ is set to 5 (relatively short time
horizon) and 15 (relatively long time horizon) in all results
reported. Greedy is too slow to finish on Epinions and DBLP
within a reasonable amount of time (three days).

Quality of Seed Sets. The quality of seed sets is evaluated
based on the expected influence spread achieved. To en-
sure fair and accurate comparisons, we run MC simulations
10000 times to get the “ground truth” influence spread of
all seed sets obtained by various algorithms. Fig. 1 and 2 il-
lustrate influence spread achieved on datasets with weighted
and uniform random meeting probabilities, respectively.

On graphs with weighted meeting probabilities, except for
Greedy, MIA-M has the highest seed set quality, while MIA-
C is the second best in most test cases. MIA-M performs
consistently better than Degree and MIA, e.g., on Epinions,
the influence of 50 seeds by MIA-M is 99.4% (τ = 5) and
53.6% (τ = 15) higher than those by MIA. On NetHEPT
and WikiVote, MIA-M produces seed sets with equally good
quality as Greedy does, e.g., on WikiVote, when τ = 5 they
both achieve influence spread of 101; when τ = 15, MIA-M
(181) even achieves 3% higher than Greedy (175).

When meeting probabilities are assigned uniformly at ran-
dom, seed sets by MIA-M, MIA-C, and MIA tend to have
matching influence, all being close to Greedy and better than
Degree. Most often, MIA-M is marginally better than MIA-
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Algorithm
NetHEPT WikiVote Epinions DBLP
5 15 5 15 5 15 5 15

Greedy 40m 1.3h 22m 28m - - - -
MIA-M 1.6s 15s 7.9s 43s 47s 5.1m 6.6m 10m
MIA-C 0.3s 0.3s 0.4s 0.5s 2.7s 3.3s 24s 33s
MIA 0.3s 0.3s 1.4s 1.4s 12s 13s 40s 41s

Table 2: Running Time (Weighted Meeting Probability)

C and MIA. The reason why MIA catches up is that it picks
seeds assuming that all m(u, v) = 1 and τ = |V |, and in ex-
pectation those seeds still have high influence under uniform
random m(u, v)’s, where the expectation is taken over all
possible meeting events outcomes. Also, when τ is large, the
time-critical effect of the deadline is diminishing, so MIA
tends to perform better with larger τ .

In reality, however, meeting probabilities between indi-
viduals in social networks may be quite different from being
uniform random, and over all test cases it can be seen that
MIA-M and MIA-C are more stable than MIA. For certain
meeting probabilities, MIA has poor performance.
Running Time. We demonstrate the running time results on
weighted meeting probability datasets in Table 2 (the uni-
form random cases are similar). Greedy takes 0.5 to 1.3
hours to finish on NetHEPT and WikiVote, and fails to com-
plete in a reasonable amount of time (three days) on Epin-
ions and DBLP with τ = 5. Degree finishes almost instantly
in all test cases so it is not included in the table.

MIA-C and MIA are three orders of magnitude faster than
Greedy, since both benefit from the linearity rule of acti-
vation probabilities when updating marginal gains (Chen,
Wang, and Wang 2010). MIA-C is more efficient because
its converted probabilities are smaller than the original in-
fluence probabilities used in MIA, and hence arborescences
are smaller for MIA-C under the same influence threshold
(1/320). MIA-M is two orders of magnitude faster than
Greedy, and is scalable to large graphs like Epinions and
DBLP. It is slower than MIA-C and MIA because its dy-
namic programming procedure computes activation proba-
bilities associated with steps, and hence is not compatible
with the linearity rule of activation probabilities.

6 Conclusions and Discussions
In this work, we extend the classical Independent Cascade
model to study time-delayed influence diffusion and we con-
sider the time-critical influence maximization problem un-
der our proposed IC-M model. We prove the submodular-
ity of IC-M, and propose fast heuristics MIA-M and MIA-C
to find seed sets efficiently and effectively, and we validate
them experiments on four network datasets.
Future Work. There are a number of extensions and fu-
ture directions on time-critical influence maximization. One
problem is to look into more efficient computation of influ-
ence spread in tree structures, with time complexity in poly-
nomial to log τ . We have obtained results on chain graphs
(see our full technical report (Chen, Lu, and Zhang 2012)).
Since chain cases are common in the execution of MIA-
based algorithms, this could already improve the running

time of MIA-M.
Another extension is to use login events to model time-

delayed influence diffusion, which could fit better into on-
line social networks. Specifically, each user has a probabil-
ity of logging on to the system, and only after logging in,
users could be influenced by the word-of-mouth of active
friends. Incorporating login probabilities into the IC model
turns out to be more challenging than doing so for meet-
ing probabilities, as it introduces dependencies in activation
events. We have obtained partial results using more compli-
cated dynamic programming methods to deal with this case.

The third extension is to consider time delays in the Linear
Threshold (LT) model or even more general diffusion mod-
els. We are able to show submodularity for the LT model
extension (Chen, Lu, and Zhang 2012), and are looking into
extensions to the General Threshold model.
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