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Abstract We propose a novel approach to understanding

activities from their partial observations monitored through

multiple non-overlapping cameras separated by unknown

time gaps. In our approach, each camera view is first decom-

posed automatically into regions based on the correlation

of object dynamics across different spatial locations in all

camera views. A new Cross Canonical Correlation Analysis

(xCCA) is then formulated to discover and quantify the time

delayed correlations of regional activities observed within

and across multiple camera views in a single common ref-

erence space. We show that learning the time delayed activ-

ity correlations offers important contextual information for

(i) spatial and temporal topology inference of a camera net-

work; (ii) robust person re-identification and (iii) global ac-

tivity interpretation and video temporal segmentation. Cru-

cially, in contrast to conventional methods, our approach

does not rely on either intra-camera or inter-camera object

tracking; it thus can be applied to low-quality surveillance

videos featured with severe inter-object occlusions. The ef-

fectiveness and robustness of our approach are demonstrated

through experiments on 330 hours of videos captured from

17 cameras installed at two busy underground stations with

complex and diverse scenes.
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1 Introduction

In recent years there has been increasing deployment of mul-

tiple camera systems in wide-area public spaces such as air-

ports, underground stations, shopping complexes and road

junctions. To facilitate more efficient multi-camera surveil-

lance and reduce the burden on human operators, growing

research efforts have been undertaken on automated activ-

ity understanding in camera networks, focusing on camera

topology inference (Makris et al. 2004; Tieu et al. 2005;

van den Hengel et al. 2006), person re-identification (Javed

et al. 2003, 2005; Prosser et al. 2008; Gheissari et al. 2006;

Gray and Tao 2008; Hu et al. 2006a; Zheng et al. 2009), and

global activity analysis (Lee et al. 2000; Wang et al. 2010;

Zelniker et al. 2008). In topology inference, the aim is to in-

fer spatial and temporal relationships between cameras. The

task of person re-identification is concerned with associating

people observed at different camera views. As for global ac-

tivity analysis, one wishes to understand activities captured

by multiple cameras holistically by building global activ-

ity models. These three problems are non-trivial, especially

given multiple disjoint cameras with non-overlapping views,

in which global activities can only be observed partially with

different views being separated by unknown time gaps. In

particular, the unknown and often large separation of cam-

eras in space and over time increases the uncertainties in

activity understanding due to drastic feature variations and

temporal discontinuity in visual observations.

Let us first define the term ‘activity’ before we discuss the

motivations of our approach on multi-camera activity under-

standing. In this paper, we categorise activities into global

activities and regional activities. A regional activity refers

to an activity that takes place locally in a single region of

a camera view. For instance, passengers walking next to a

train track or sitting on benches on a platform are regional

mailto:ccloy@eecs.qmul.ac.uk
mailto:txiang@eecs.qmul.ac.uk
mailto:sgg@eecs.qmul.ac.uk
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Fig. 1 (a) Partial observations

of activities observed from

different camera views often

form a chain of inter-correlated

spatio-temporal patterns: a

group of people (highlighted in

green boxes) get off a train

[Cam 8, frame 10409] and

subsequently take an upward

escalator [Cam 5, frame 10443]

which leads them to the

escalator exit view [Cam 4,

frame 10452]. (b) Three

consecutive frames captured

from two different cameras at

0.7 frames per second (fps). An

object can pass through the

whole view in just three frames.

In addition, severe inter-object

occlusion and low-quality video

are among the key factors that

render object tracking infeasible

activities. A global activity, on the other hand, is defined

as an activity that involves correlated partial observations

of multiple regional activities across multiple cameras. For

example, a global activity of train departure may involve co-

existing activities taking place at different regions such as

the movements of a train at a track area of a platform, pas-

sengers moving towards the exits of the platform, and pas-

sengers leaving station via escalators (see Fig. 1(a)).

The key to activity understanding in multiple non-over-

lapping cameras lies on how well we can link the partial

observations of an activity together for complete and global

interpretation. Specifically, activities of an object in a public

space are inherently context-aware, exhibited through con-

straints imposed by scene layout and the correlated activi-

ties of other objects both in the same camera view and other

views. Consequently the partial observations of a global ac-

tivity are correlated in that they take place following a cer-

tain temporal order with unknown temporal gaps caused

by the spatial distances between camera views. In other

words, these partial observations often form a chain of inter-

correlated spatio-temporal patterns, spanning across differ-

ent regions in a networked global view space (see Fig. 1(a)

for an example). It is therefore necessary to discover and

quantify the correlations between these partial observations

in terms of both temporal order and temporal delays, which

provides important contextual information on the global ac-

tivities across multiple camera views. While considerable

work has been done on multi-camera activity understanding,

none of them has addressed the problem of discovering and

modelling multi-camera activity correlations with unknown

time delays (see Sect. 2 for detailed discussion).

An obvious solution to multi-camera activity correlation

analysis and global activity understanding seems to be track-

ing objects within and across camera views. Indeed, most

previous methods rely on either intra-camera (within cam-

era) tracking to detect entry and exit events for modelling

transition time distribution, or inter-camera (between cam-

eras) tracking for object/trajectory association (Zelniker et

al. 2008; Makris et al. 2004; Wang et al. 2010). These meth-

ods generally assume reliable object localisation and detec-

tion as well as smooth object movement. However, these as-

sumptions are often invalid in real-world surveillance set-

tings featured with severe occlusions caused by excessive

number of objects in the scene and very low temporal and

spatial resolution.1 Particularly, in a typical public scene

as shown in Fig. 1(b), the sheer number of objects with

complex activities causes severe inter-object occlusions con-

tinuously, leading to temporal discontinuity of trajectories.

Tracking is further compounded by the typically low tem-

poral resolution of surveillance video, where large spatial

1Many multi-camera surveillance systems record videos at less than

5 fps to optimise data bandwidth and storage space (Kruegle 2006;

Cohen et al. 2006).
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displacement is observed in moving objects between con-

secutive frames.

In this paper, we propose a novel approach to modelling

time delayed correlations among multi-camera activities

without relying on either intra-camera or inter-camera track-

ing. Specifically, since a complex scene naturally consists of

multiple local scene regions that encompass distinctive ac-

tivities, each camera view is first decomposed automatically

into regions, across which different spatio-temporal activity

patterns are observed. A novel Cross Canonical Correlation

Analysis (xCCA) framework is then formulated to discover

and quantify correlation and temporal relationships of ar-

bitrary order among these multi-camera regional activities.

As opposed to object centred approaches, our xCCA learns

activity correlations by exploiting the underlying spatial and

temporal correlation of regional activities in a holistic man-

ner and avoids object tracking under challenging surveil-

lance conditions.

The proposed approach is employed to address three fun-

damental problems in multi-camera activity understanding:

(i) Estimate the spatial topology (i.e. between-camera spa-

tial relationships) and more importantly the temporal

topology of a camera network, that is, the temporal

relationships (e.g. the unknown delay time) between

inter-correlated partial observations taking place in dif-

ferent camera views.

(ii) Facilitate more robust and accurate person re-identifica-

tion among different camera views, by resolving am-

biguities and uncertainties that arise due to large and

unknown separation among cameras both spatially and

temporally.

(iii) Interpret global activity, and perform video tempo-

ral segmentation by linking visual evidences collected

from different camera views.

We demonstrate the effectiveness of the proposed approach

using 330 hours of videos captured at 0.7 fps from two busy

underground stations with eight and nine camera views re-

spectively, all of which feature crowded scene and complex

activities.

The rest of the paper is structured as follows: Sect. 2

reviews related work to highlight the contributions of this

study. The proposed framework is explained in Sect. 3. Re-

sults are reported and discussed in Sect. 4. Finally, the paper

concludes with some suggestions for further investigation in

Sect. 5.

2 Previous Work

Much work on activity correlation modelling has been de-

voted to single camera scenario. In most cases, activity

correlations are modelled among limited number of indi-

vidual objects (Oliver et al. 2000; Du and Chen 2007;

Gong and Xiang 2003). More recently, Li et al. (2008) pro-

pose to model the co-occurrence of activities observed in

different regions of a wide-area scene. Although promising

results are reported, these methods are not suitable for multi-

ple camera scenarios since the time delays between activities

are ignored.

For multi-camera activity analysis, there have been a few

attempts, but only limited to modelling co-occurrence or

first-order temporal relationships between activities. Zhou

and Kimber (2006) model activities across views using a

Coupled Hidden Markov Model (CHMM), which can only

handle first-order dependencies without considering rela-

tionships of arbitrary order. Wang et al. (2010) employ intra-

camera tracking to extract trajectories from each camera

view and group them into global activities using topic mod-

els extended from the Latent Dirichlet Analysis (LDA) (Blei

et al. 2003), with a restriction that only co-occurrence rela-

tionships between activities within a fixed temporal thresh-

old can be modelled. In contrast to existing methods, the

xCCA framework proposed in this work is capable of cap-

turing correlation and temporal relationships of arbitrary or-

der without relying on object tracking. Moreover, our ap-

proach is able to cope with co-existence of large number of

objects both within and across camera views.

Apart from global activity analysis, considerable efforts

have been devoted to camera network topology inference

(Javed et al. 2003; Makris et al. 2004; Tieu et al. 2005)

and person re-identification (Javed et al. 2003, 2005; Gheis-

sari et al. 2006; Prosser et al. 2008). To infer the topology

of a camera network or re-identify a person over multiple

cameras, existing methods generally follow two approaches:

(i) matching individual object visual appearance or motion

trends such as movement speed; (ii) exploiting distribution

of transition times of entry and exit events.

The first approach, e.g. (Javed et al. 2003), relies on the

availability of reliable visual and motion features from target

to achieve inter-camera object association. In practice, this

approach suffers from significant feature variations across

camera views due to changes in illumination (both intra- and

inter-camera), camera orientation, and person appearance

caused by pose change (see Fig. 1(a) for example). Although

various strategies have been proposed (Javed et al. 2005;

Gheissari et al. 2006; Gray and Tao 2008; Zheng et al. 2009)

to adapt and rectify feature variation, object feature match-

ing remains a notoriously difficult problem under real-world

surveillance conditions. This is because that even if feature

variation can be rectified or reduced, reliable features for

matching may still not be available due to severe inter-object

occlusions, typical in a busy public space. In contrast, our

approach circumvents unreliable feature matching by infer-

ring the spatial and temporal relationships between regions

across camera views, which also provides an important con-

textual cue in addition to visual appearance for person asso-
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ciation. Furthermore, most existing methods perform super-

vised training by assuming known object correspondences,

which is difficult to establish automatically and reliably. In

comparison, our approach is unsupervised without relying

on any prior knowledge on object correspondence.

The second approach, e.g. (Makris et al. 2004; Tieu et al.

2005), avoids explicit feature matching by modelling transi-

tion time distribution between entry and exit events detected

in different camera views. These methods are based on the

assumption that individual exit and entry events can be de-

tected by exploiting starting and ending points of object tra-

jectories. However, as we shall see in Sect. 4.4, object track-

ing in a busy public scene is extremely unreliable especially

when the spatial and temporal resolutions of the video are

low. Our approach overcomes this problem by discovering

and quantifying correlation and temporal relationships be-

tween activities in different camera views without relying on

either intra-camera or inter-camera tracking. It therefore can

be applied under the most challenging public scene viewing

conditions.

It is worth pointing out that van den Hengel et al. (2006)

also attempted to infer the camera topology without relying

on object tracking. Their method starts with full connectiv-

ity among camera views and gradually eliminates linkages

among image regions that exhibit simultaneous object occu-

pancy and vacancy. This method, however, only examines

static object co-occurrence over time without considering

the temporal relationships among multi-camera activities.

Importantly, it ignores possible connections between non-

overlapping views. It is thus limited to learning only the con-

nectivity among overlapping camera views. On the contrary,

our approach takes temporal relationships among activities

into account. In addition, although we focus on disjoint cam-

eras in this study, the proposed approach can be readily used

for camera views with any degrees of overlapping.

In summary, the main novelties of the proposed approach

are two-fold:

(i) It is capable of discovering and quantifying the correla-

tion and temporal relationships of arbitrary order among

local activities across different camera views. To our

best knowledge, this study is the first attempt to model

time delayed activity correlations among multiple cam-

eras.

(ii) It does not rely on either inter-camera or intra-camera

tracking. Therefore it is robust to occlusions and can be

applied to crowded scenes of low spatial and temporal

resolutions.

Compared to our earlier version of this work (Loy et

al. 2009), there are three changes in methodology for ad-

dressing a number of key limitations of our CVPR ap-

proach that prevent it from being scalable on more compli-

cated and challenging multi-camera scenes. First, we for-

mulate in this paper a robust background model to cope

with sudden changes in global intensity level within cam-

era views in surveillance videos (Sect. 3.1). This results in

more reliable features for the proposed time delayed corre-

lation analysis. Second, we formulate a new topology infer-

ence approach that considers both time delay and correlation

strength (Sect. 3.3). Third, we employ a more principled ap-

proach to compute objects’ spatio-temporal relationships for

context-aware person re-identification (Sect. 3.4). On exper-

imental evaluation, a new dataset is added to the one used in

Loy et al. (2009), which was captured from a multi-camera

site that exhibits more complex behaviours and contains

more diverse scenes. Our experimental results suggested the

performance of the approach formulated in this work is su-

perior to that of the approach in Loy et al. (2009).

3 Multi-camera Activity Correlation Analysis

The key components of the proposed approach is illustrated

in Fig. 2. Given disjoint camera views in a camera net-

work (Fig. 2(a)), local spatio-temporal patterns are first ex-

tracted and represented as time-series data from each cam-

era view (Fig. 2(b)). The patterns are then used as input

to our activity-based scene decomposition method to seg-

ment the scenes into regions (Fig. 2(c)), from which the

regional activity patterns are extracted. Subsequently, the

Cross Canonical Correlation Analysis (xCCA) is performed

to infer inter-region time-delayed correlations (Fig. 2(d)).

Regional activity correlations are then discovered and quan-

tified (Fig. 2(e)). We refer the process of activity-based

scene decomposition and xCCA as training in this study. Fi-

nally the inferred regional activity correlations are exploited

for camera topology inference, and used as contextual infor-

mation for person re-identification and global activity tem-

poral segmentation (Fig. 2(f–h)).

3.1 Scene Decomposition and Activity Representation

A complex public scene naturally consists of multiple local

regions, each of which encapsulates a unique set of activity

patterns correlated with each other either explicitly or im-

plicitly. Given a set of training video sequences, our goal is

to decompose M camera views into N regions R accord-

ing to the spatial-temporal distribution of activity patterns,

where R is given as

R = {Rn|n = 1, . . . ,N}. (1)

Consequently, the m-th camera view in the network contains

Nm regions with Nm being determined automatically and

N =
∑M

m=1 Nm.
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Fig. 2 A diagram illustrating our multi-camera activity correlation approach

3.1.1 Robust Background Modelling

Sudden and frequent intensity changes in real-world surveil-

lance videos may introduce noise that affects the accuracy

of time-delayed correlation analysis. To address this prob-

lem, a robust background modelling method is formulated.2

The changes in intensity level are caused either by lighting

condition changes (e.g. moving clouds outdoor or flashing

advertising boards indoor) or camera response to different

crowdedness in the scene. In the latter case, auto gain and

white balancing functions of cameras yield different global

intensity level on a particular video frame when crowd or

large objects are present in the video. An example of the lat-

ter can be seen in Fig. 3 where drastically different global

intensity level are observed when an underground train plat-

form changes from crowding (Fig. 3(a)) to empty (Fig. 3(b)).

The key idea of our method is to adapt the background

image to the intensity level of current frame prior to back-

ground subtraction. In particular, a static background image

is first constructed by employing a method proposed by Rus-

sell and Gong (2006). We then compute pixel-level intensity

ratios g between all pixels of the stored background image

2Matlab implementation of the proposed background subtrac-

tion method is available at http://www.eecs.qmul.ac.uk/~ccloy/files/

substractBackgroundMS.zip.

Fig. 3 The figure depicts a frame with abrupt intensity level change

(a) compared to its background model (b). The ratios of RGB channels

between the extracted regions of (a) and (b) are 1.2380, 1.2829 and

1.3428 respectively

and the current frame. Subsequently, the background image

is adjusted by multiplying all its pixels with g. However, not

all the ratios reflect the true intensity level change as some of

them belong to foreground regions. To eliminate the effect

http://www.eecs.qmul.ac.uk/~ccloy/files/substractBackgroundMS.zip
http://www.eecs.qmul.ac.uk/~ccloy/files/substractBackgroundMS.zip
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of incorrect ratios caused by foreground regions, a mean-

shift procedure (Fukunaga and Hostetler 1975) is performed

to find the stationary point of the distribution of g. In partic-

ular, the centre of a Gaussian kernel denoted by {cj }j=1,2,...

is iteratively moved from the current point to the new point

according to:

cj+1 =

∑Npixel

i=1 gi exp(−
‖cj −gi‖

2

2h2 )

∑Npixel

i=1 exp(−
‖cj −gi‖2

2h2 )
, j = 1,2, . . . , (2)

where Npixel is the number of pixels and the size of the

Gaussian kernel h is set to 1 in this study. To obtain the

initial point c1 of the kernel, we first perform a coarse back-

ground subtraction between the stored background image

and the input image. The initial point is then computed as the

mean of the intensity ratios between all the non-foreground

pixels. The mean shift procedure terminates when the max-

imum iteration allowed is reached or

‖cj+1 − cj‖ < ǫ, (3)

where ǫ is set to a small value. The final centre of the ker-

nel gives the most likely intensity ratios that account for the

change of intensity level. These ratios are used to adjust the

original background image in an online manner and a fine

background subtraction is performed to obtain a foreground

mask that is least affected by abrupt changes of intensity

level.

Apart from implementing robust background modelling,

we also perform colour correction in YUV colour space by

blending the chrominancy components of previous and cur-

rent frames to reduce the chroma noise commonly found in

surveillance videos.

3.1.2 Discussion

Many previous work has been done in robust background

modelling. There are quite a few methods that can han-

dle gradual lighting changes but are still vulnerable to sud-

den lighting changes (Stauffer and Grimson 2000; Zivkovic

and van der Heijden 2006; Friedman and Russell 1997). In

particular, they are based on statistical background mod-

elling which are slow in model update, thus being less

effective in handling rapid lighting changes. Recently, a

number of methods have been proposed to cope with sud-

den lighting changes (Pilet et al. 2008; Sung et al. 2008;

Xie et al. 2004). Our background subtraction method is sim-

ilar to Sung et al. (2008) but with a key difference on the

intensity ratio estimation. In their approach, a set of recent

frames are kept to estimate a background model; therefore g

is estimated between the current frame and previous frame.

However, given surveillance videos featured with crowded

scenes, it is hard to maintain a reliable background model

with limited number of recent frames. Therefore, we choose

to generate a single background image, and adjust it based

on g estimated between the current frame and the back-

ground image itself.

3.1.3 Local Block Activity Pattern Representation

First, we divide the image space of a camera view into equal-

sized blocks with 10 × 10 pixels each (Fig. 2(b)). Fore-

ground pixels are then detected using the aforementioned

background subtraction method. The foreground pixels are

categorised as either static or moving via frame differencing

(e.g. sitting people are detected as static foreground whilst

passing-by people are detected as moving foreground). Ac-

tivity patterns of a block are then represented as a bivariate

time-series

ub = (ub,1, . . . , ub,t , . . . , ub,T ),

vb = (vb,1, . . . , vb,t , . . . , vb,T ),
(4)

where b representing the two-dimensional coordinates of a

block in the image space and T is the total number of frames

used in training, ub, t and vb, t are the percentage of static

and moving foreground pixels within the block at frame t

respectively. Note that T needs to be sufficiently large to

cover enough repetitions of activity patterns, depending on

the complexity of a scene.

The low spatial and temporal resolution of surveillance

footages has imposed great challenges to the selection of ap-

propriate features for local block activity pattern representa-

tion. As explained in Sect. 1, trajectory features (Hu et al.

2006b; Saleemi et al. 2009) are extremely unreliable under

these restrictions. More sophisticated features such as opti-

cal flow (Wang et al. 2009; Yang et al. 2009) are found to be

unstable too. Importantly, optical flow computation assumes

small object displacement and constant brightness for the

computation of velocity field; both assumptions are invalid

for videos with very low frame rate and poor image quality.

Similarly, spatio-temporal gradients proposed by Kratz and

Nishino (2009) would fail due to motion discontinuities in

low-frame rate videos.

Consequently ub and vb are chosen as they are the only

features that can be extracted reliably given videos of low

spatial and temporal resolution such as those used in our ex-

periments (Sect. 4). Despite their simplicity as time-series

features ub and vb are found to be effective in capturing the

temporal characteristics of activity patterns including tem-

poral persistence of different patterns and their temporal or-

der.

3.1.4 Activity-based Scene Decomposition

After feature extraction, we group blocks into regions ac-

cording to the similarity of local spatio-temporal activity
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patterns represented as ub and vb. Specifically, two blocks

are considered similar and grouped together if they are

closed to each other spatially and exhibit high correlations in

both static and moving foreground activities over time. The

grouping process begins with computing correlation dis-

tances among local activity patterns of each pair of blocks.

A correlation distance is defined as a dissimilarity metric

derived from Pearson’s correlation coefficient (Liao 2005),

given as

r = 1 − |r|. (5)

In particular, r = 0 if two blocks have strongly correlated

local activity patterns, or r = 1 otherwise. Subsequently, we

construct an affinity matrix A = {Aij } ∈ R
B×B , where B is

the total number of blocks in the camera view and Aij is

defined as:

Aij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp
(

−
(ru

ij )2

2σu
i σu

j

)

exp
(

−
(rv

ij )2

2σ v
i σ v

j

)

exp
(

−
‖bi−bj ‖2

2σ 2
b

)

,

if ‖bi − bj‖ ≤ R and i �= j,

0 otherwise,

(6)

where the correlation distances of ub and vb between block

i and block j are given by ru
ij and rv

ij respectively, whilst

[σ u
i , σ u

j ] and [σ v
i , σ v

j ] are the respective correlation scaling

factors for ru
ij and rv

ij . The correlation scaling factors are de-

fined as the mean correlation distance between the current

block and all blocks within a radius R. The coordinates of

the two blocks are denoted as bi and bj . Similar to the corre-

lation scaling factors, the spatial scaling factor σb is defined

as the mean spatial distance between the current block and

all blocks within the radius R. The affinity matrix is then

normalised according to

A = L− 1
2 AL− 1

2 , (7)

where L is a diagonal matrix and Lii =
∑B

j=1 Aij . Upon

obtaining the normalised affinity matrix A, we employed

spectral clustering method proposed by Zelnik-Manor and

Perona (2004) to decompose each camera view into regions

with the optimal number of regions being determined auto-

matically.

In the computation of the affinity matrix, we follow Li et

al. (2008) to compute similarity within a fixed radius R. This

strategy was shown to prevent under-fitting problem during

decomposition in comparison to the local scaling strategy

proposed by Zelnik-Manor and Perona (2004). Note that

similarity in the Gaussian kernel affinity matrix is governed

by the selection of scaling factors (Zelnik-Manor and Perona

2004; Ng et al. 2001). In this study, the scaling factors are

functions of the radius R; the scene decomposition results

are therefore governed by the selection of R. From our ex-

periments, we observed that the cluster formations are gen-

erally stable when R is set within the range of 20–30. Conse-

quently, we selected R = 20 in this study. Figure 2(c) shows

some examples of scene decomposition. It is evident that

each camera view is decomposed into semantically mean-

ingful regions such as train track areas and people sitting

areas.

Our scene decomposition method is similar to that of Li

et al. (2008) but with a noticeable modification on how local

activities are represented. Specifically, in our method local

activities are represented as time series and correlation dis-

tance between them are used as the dissimilarity measure. In

comparison, a Bag of Words representation is adopted by Li

et al. (2008), which ignores the temporal order information

of a local activity and is thus less discriminative than our

representation.

3.1.5 Regional Activity Representation

Given the scene decomposition, regional activity patterns of

a camera view are formed based on the local block activity

patterns. In particular, the regional activity patterns at region

Rn is represented as

ûn =
1

|Rn|

∑

b∈Rn

ub,

v̂n =
1

|Rn|

∑

b∈Rn

vb,

(8)

where |Rn| is the number of blocks belong to region Rn. To

facilitate a more accurate time delayed correlation analysis,

we remove any region with half of its blocks exhibiting low

activity. In this study, a low-activity block is defined as a

block with activity patterns having a standard deviation that

is less than three.

3.2 Cross Canonical Correlation Analysis

For any pair of regions in a camera network, two questions

are to be answered: (i) are activities in these regions corre-

lated? (ii) if yes, how strong are the correlations and what

are the temporal relationships among them? It is non-trivial

to discover and quantify correlations and temporal relation-

ships between cameras. Different viewing angles of cam-

eras may introduce pattern variations across camera views.

Importantly, correlations between regional activities across

disjoint camera views are complex in that there is often

an unknown temporal gap/delay between the times when a

causing activity in one region taking place and the corre-

lated/caused activity in the other region being observed.
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To this end, we wish to search for linear combinations3

of the regional activities (represented as time-series) having

maximal correlation and model the temporal gap as a tem-

poral dependency of arbitrary order between the two time-

series. Consequently, we formulate a new Cross Canoni-

cal Correlation Analysis (xCCA) to measure the correla-

tion of two regional activities as a function of an unknown

time lag τ applied to one of the two regional activity time-

series.

Our approach differs from Canonical Correlation Analy-

sis (CCA) (Hotelling 1936) in that CCA can only measure

how strong two vector variables are correlated in a concur-

rent or zero-order sense. The proposed xCCA extends CCA

to measure correlations beyond zero order by including ad-

ditional steps similar in nature to the standard Cross Corre-

lation Analysis (xCA) (Kendall and Ord 1990). This princi-

pally involves shifting of one time series and computes its

canonical correlation with the other. An example is shown

in Fig. 2(d).

Formally, let xi(t) and xj (t) denote the two regional ac-

tivity time series observed in the ith and j th regions re-

spectively. Note that xi(t) and xj (t) are time-series of Nf -

dimensional variables. In our case, Nf = 2 since we extract

two features û and v̂ from each region. For clarity in the fol-

lowing equations, we denote y(t) = xj (t + τ). We also omit

the symbol t for conciseness, e.g. time series xi(t) becomes

xi and y(t) becomes y.

At each time delay index τ (or each shifting step), xCCA

finds two sets of optimal basis vectors wxi
and wy for xi

and y such that correlation of the projections of them onto

the basis vectors are mutually maximised. Let linear com-

binations of canonical variates be xi = wT

xi
xi and y = wT

yy,

canonical correlation ρxi ,xj
(τ ) is defined as:

ρxi ,xj
(τ ) =

E[xiy]
√

E[x2
i ]E[y2]

=
E[wT

xi
xiy

Twy]
√

E[wT
xi

xixi
Twxi

]
√

E[wT
yyyTwy]

=
wT

xi
Cxiywy

√

wT
xi

Cxixi
wxi

√

wT
yCyywy

, (9)

where Cxixi
and Cyy are within-set covariance matrices of

xi and y, respectively, whilst Cxiy is between-set covariance

matrix.

3Recall that activity patterns over all regions are represented by the

percentage of static and moving foreground pixels (8), which reflect

the crowd densities in the regions. If two regions are connected with

correlated activity patterns, we expect to observe similar changes in

crowd density across them after a certain time delay. It is therefore

reasonable to assume that the relationships of the features extracted

from the two regions to be linear.

The maximisation of ρxi ,xj
(τ ) at each time delay index τ

can be solved by setting the derivatives in (9) to zero, yield-

ing the following eigenvalue equations:

{

C−1
xixi

CxiyC−1
yy Cyxi

wxi
= ρ2

xi ,xj
(τ )wxi

,

C−1
yy Cyxi

C−1
xixi

Cxiywy = ρ2
xi ,xj

(τ )wy,
(10)

where the eigenvalues ρ2
xi ,xj

(τ ) are the square canonical

correlations and the eigen vectors wxi
and wy are the basis

vectors. We only need to solve one of the eigenvalue equa-

tions since the equations are related by:

{

Cxiywy = ρxi ,xj
(τ )λxi

Cxixi
wxi

,

Cyxi
wxi

= ρxi ,xj
(τ )λyCyywy,

(11)

where

λxi
= λ−1

y =

√

wT
yCyywy

wT
xi

Cxixi
wxi

. (12)

The time delay that maximises the canonical correlation

between xi(t) and xj (t) is computed as:

τ̂xi ,xj
= arg max

τ

∑Ŵ
ρxi ,xj

(τ )

Ŵ
, (13)

where Ŵ = min(rank (xi), rank (xj )). Note that we average

the canonical correlation function with Ŵ to obtain a single

correlation value at each time delay index. The associated

maximum canonical correlation is then obtained by locating

the peak value in the averaged canonical correlation function

as:

ρ̂xi ,xj
=

∑Ŵ
ρxi ,xj

(τ̂xi ,xj
)

Ŵ
. (14)

We compute the maximum canonical correlation and the as-

sociated time delay for each pair of regional activity patterns

to construct a regional activity affinity matrix

P = {Pij } ∈ R
N×N , Pij = ρ̂xixj

, (15)

and a time delay matrix

D =
{

Dij

}

∈ R
N×N , Dij = τ̂xixj

. (16)

Note that 0 ≤ ρ̂xi ,xj
≤ 1 with equality to 1 if, and only if

the two regional time series are identical. If τ = 0, xCCA is

equivalent to performing CCA on xi(t) and xj (t).

3.2.1 Discussion

Our xCCA compares favourably to alternative correlation

analysis methods. One alternative approach is to repre-

sent each region as a node in a Bayesian network and
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learn the optimal structure of the network. This can be

achieved by performing search over the space of candidate

network structures, using methods such as Markov Chain

Monte Carlo Bayesian network structure learning (MCMC-

BNSL) (Neapolitan 2003). The strength of dependency be-

tween two regions can then be represented by the frequency

of an edge being selected from the sampled structures. How-

ever, the learned structure can only reveal zero-order tempo-

ral dependency, and thus cannot cope with more complex

(and higher order) correlations that are common in multi-

camera scenes. Another alternative is the standard Cross

Correlation Analysis (xCA). Compared to xCA, xCCA is

more capable of capturing the underlying mutual patterns of

two regional activity time series. This is because by project-

ing them into an optimal subspace, it minimises the effect

of pattern variations introduced by different camera viewing

angles and the temporal delays between correlated activities

across camera views.

3.3 Topology Inference

With the regional activity correlation of arbitrary order being

discovered and quantified ((15) and (16)), we wish to infer a

camera topology. It is observed that considerable high corre-

lations can be found between some region pairs even though

they are not close to each other both spatially and tempo-

rally. This could be caused by noise or constant crowdedness

in both regions. As a result, when shifting is performed to

compute the correlation function of two region time-series,

the algorithm may locate a ‘spurious’ peak that does not re-

flect the true correlation among their activity patterns. Fortu-

nately, those ‘spurious’ peaks are normally found at a point

where the time delay has a large value. Therefore, we exploit

both time delay and correlation strength for topology infer-

ence. Specifically, two cameras will be connected in the in-

ferred topology if they contain connected regions which are

defined as those with high correlation value (14) and short

time delay (13).

First, we compute a region connectivity matrix � =

{�ij } ∈ R
N×N , which represents how likely each pair of re-

gions in the camera network are connected, or the strength

of their connectivity. More specifically, each element in the

region connectivity matrix is computed as

�ij = ρ̂xi ,xj
(1 − |τ̂xi ,xj

|), (17)

where ρ̂xi ,xj
is obtained from normalised regional activity

affinity matrix P, so that it has a value range of [0,1]. Whilst

|τ̂xi ,xj
| is obtained by normalising the absolute values of the

elements of the time delay matrix D. These two normalisa-

tions ensure that we have 0 ≤ �ij ≤ 1. The higher the value

of �ij , the stronger the connectivity between a region pair.

Once we have obtained the region connectivity matrix,

the camera topology, represented as a camera connectivity

matrix � = {	ij } ∈ R
M×M , can be inferred. Specifically the

strength of the connectivity between the ith and j th camera

nodes is obtained by averaging the regional activity connec-

tivity strength (17) between each pair of regions across the

two camera views. In this study, in order to reduce the in-

fluence of possible noise and redundant connectivities in � ,

we first search for the strongest connectivity between a re-

gion in the ith camera view with all regions in the j th cam-

era view. This searching step is repeated for all regions in

the ith camera view. Subsequently, the top Ne connectivi-

ties are averaged to obtain 	ij , with Ne being set to half of

the number of regions in the ith camera view. Finally � is

normalised so that its elements have a value range of [0,1].

Two cameras are then deemed as being connected if the cor-

responding 	ij value is greater than the mean value of all

the elements of �.

3.4 Context-aware Person Re-identification

The goal of person re-identification is to search for a given

individual who disappeared in one camera view over other

camera views. Here we describe how the learned time-

delayed activity correlations can be employed as contextual

information to reduce the search space as well as to resolve

ambiguities arising from:

(i) Similar visual features presented by different people.

(ii) Feature variations caused by different poses, camera

viewing angles and illumination changes.

Simple colour histogram feature is used for discriminat-

ing an individual against others. Though more sophisticated

features are available (Gheissari et al. 2006; Gray and Tao

2008), the use of simple features provides a baseline for

evaluating to what extent the time delayed correlations could

improve the person re-identification accuracy. Specifically,

given the bounding boxes of two people a and b observed

in different camera views, we first normalise the bounding

boxes to equal size. We then segment each normalised boxes

into Nh horizontal strips of equal height, from which colour

histograms are computed and concatenated for representing

the visual appearances of a and b.

The similarity between the two concatenated colour his-

tograms H a and H b of a and b is measured using Bhat-

tacharyya score (Bhattacharyya 1943; Comaniciu et al.

2000) as follows:

S
a,b
bha =

Nbin
∑

i=1

√

H a
i H b

i , (18)

where Nbin represents the number of bins. Each histogram

bin is normalised using the total number of pixels in the nor-

malised image, so that
∑Nbin

i=1 H a
i = 1 and

∑Nbin

i=1 H b
i = 1.

Note that the Bhattacharyya score is close to zero (mini-

mum value is 0) if H a and H b are very different, or have
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a maximum value of 1 if two histograms are identical. The

Bhattacharyya score is first computed for each colour chan-

nel separately. The overall Bhattacharyya score S
a,b

bha is then

obtained by multiplying the scores S
a,b
bha computed over all

channels.

To incorporate the learned activity correlations and time

delays into the final score for person re-identification, we

first determine the regions (see Sect. 3.1) occupied by per-

son a and b and the associated inter-region correlation and

time delay. In particular, if a person’s bounding box over-

laps Nr regions in the image space, the occupancy fractions

of individual regions within the bounding box are computed

and represented as a set of weights:

μ = {μi |i = 1, . . . ,Nr}, (19)

where
∑Nr

i=1 μi = 1. The weights are used to calculate the

correlation between regions occupied by person a and b as

follows:

ρ̂a,b =

Na
r

∑

i=1

μa
i

( Nb
r

∑

j=1

μb
j ρ̂xi ,xj

)

, (20)

where ρ̂xi ,xj
is the maximum cross canonical correlation

computed using (14). The corresponding time delay is given

as:

τ̂ a,b =

Na
r

∑

i=1

μa
i

( Nb
r

∑

j=1

μb
j τ̂xi ,xj

)

, (21)

where τ̂xi ,xj
is computed using (13). The overall score is

computed as follows:

S
a,b
overall =

⎧

⎨

⎩

S
a,b

bhaρ̂
a,b if 0 < t

a,b
gap < ατ̂ a,b,

0 otherwise,
(22)

where t
a,b
gap is the time gap of observing the two people in the

two camera views, whilst α is a factor that determines the

maximum allowable transition time between cameras during

person matching.

3.5 Global Activity Interpretation

Global activities defined by correlated activities across mul-

tiple camera views should be modelled collectively. This is

because by utilising visual evidences collected from differ-

ent views, global activity modelling is more robust to noise

and visual ambiguities than modelling activities separately

within individual camera views. Note that the regional ac-

tivity affinity matrix P (15) is only concerned with the cor-

relations of regional activities. It does not reveal either the

contributions of these regional activities to the global activ-

ities or the temporal dynamics of the global activities.

Fig. 4 Hidden Markov Model

with two time slices unrolled.

Observation nodes are shown as

shaded circles and hidden nodes

are shown as clear squares

A complex camera network can capture many activities

occurring simultaneously. However, not all the activities are

correlated and they should be excluded during global activ-

ity modelling. In this study, the underlying global activities

are discovered and modelled by taking the following steps:

(i) The same spectral clustering algorithm used in Sect. 3.1

is employed to group regional activities using the re-

gional activity affinity matrix P (15) as an input affinity

matrix.

(ii) The clusters returned by the spectral clustering algo-

rithm are examined for discovering highly-correlated

global activities. Specifically, those clusters that consist

of cross-camera regions with the highest mean cross

canonical correlations are selected.

(iii) Activity patterns in one of the χ selected regions are

set as a reference point to temporally align activity pat-

terns of other regions in accordance to the respective

temporal offsets τ̂xi ,xj
computed using (13).

(iv) The aligned regional activity patterns, each represented

as a two-dimensional time series (i.e. û and v̂), are

concatenated together to form global activity patterns,

zt = û1,t‖v̂1,t‖ · · · ‖û′
χ,t‖v̂′

χ,t , with the prime symbol

indicating an aligned time-series according to the tem-

poral offset. The global activity patterns, zt is then used

as inputs to train an Hidden Markov Model (HMM) to

model the temporal dynamics of the global activity.

(v) The HMM structure is shown in Fig. 4. It is an ergodic

(fully-connected) model with Qt being discrete ran-

dom variable, Qt ∈ {q i |i = 1, . . . ,K}. We assume that

the model is first-order Markov, i.e. p(Qt |Q1:t−1) =

p(Qt |Qt−1). We also assume that the observations are

conditionally first-order Markov, i.e. p(zt |Qt , z1:t−1) =

p(zt |Qt ).

(vi) Automatic model selection is performed based on the

Bayesian Information Criterion (BIC) score to find the

number of hidden states K in the model. For model pa-

rameter estimation, we first group the aligned regional

activity patterns at different time instances using K-

means clustering algorithm into K groups. The clus-

tering results, i.e. the means and covariances of indi-

vidual groups are used to initialise a K-hidden states

HMM. The model parameters are then estimated using

the Baum-Welch algorithm (Baum et al. 1970).
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Fig. 5 (Color online) The station layout and camera topology of Station A dataset. Entry and exit points are highlighted in red bars

The learned HMM for each global activity can be used for

real-time activity-based temporal segmentation. The objec-

tive is to segment unseen video streams into activity phases

based on ‘what is happening’ not only in a particular view

but also in other views with highly-correlated activities.

These activity phases are obtained by inferring the hid-

den states Qt at each time instance using online filtering

method (Murphy 2002). In particular, given zt observed as

a continuous data stream, the probability of a particular hid-

den state p(Qt |z1:t ) is computed as a function of current

input zt and prior belief state p(Qt−1|z1:t−1):

p(Qt |z1:t ) ∝ p(zt |Qt , z1:t−1)p(Qt |z1:t−1)

= p(zt |Qt )

[

∑

Qt−1

p(Qt |Qt−1)p(Qt−1|z1:t−1)

]

.

(23)

Based on the Markovian assumption, we can use p(zt |Qt )

to replace p(zt |Qt , z1:t−1). Similarly, p(Qt |z1:t−1) can be

computed from the prior belief state under the Markovian

assumption. To infer the activity phase Q∗
t , the probabili-

ties p(Qt = q i |z1:t ) are first computed using (23). The most

likely hidden state is then determined by choosing the hid-

den state that yields the highest probability:

Q∗
t = arg max

qi

p(Qt = q i |z1:t ). (24)

4 Experimental Results

4.1 Datasets

The two datasets employed in our experiments contain syn-

chronised and static views, captured at a frame rate of 0.7

fps from uncalibrated and disjoint cameras installed at two

busy underground stations. Each image frame has a size of

320 × 230 pixels.

4.1.1 Station A Dataset

A snapshot of each of the 8 camera views and the cam-

era topology of this station are depicted in Fig. 5. The two

train platforms of this station are covered by three cameras

each (Cam 1–6). The rest two cameras (Cam 7–8) monitor a

connected concourse, which is far away from the two plat-

forms. The video from each camera lasts over 19 hours from

5:28 am to 12:38 am the next day, giving a total of 153 hours

of video footage. Typically, when a train arrives at one of the

platform, passengers on the train get off and leave the plat-

form whilst passengers waiting on the platform get into the

train. Nonetheless, it is also common that some passengers

remain staying at the platform to wait for a later train to a

different destination.

4.1.2 Station B Dataset

The camera topology of this station is shown in Fig. 6,

alongside with sample images of 9 camera views. The sta-

tion has a ticket hall and a concourse leading to two train

platforms via escalators. Three cameras are placed in a ticket

hall and two cameras are positioned to monitor the escalator

areas. Both train platforms are covered by two cameras each.

The video from each camera lasts around 20 hours from

5:42 am to 01:19 am the next day, giving a total of 177 hours

of video footage. Typically, passengers enter from the main

entrance, walk through the ticket hall or queue up for tick-

ets (Cam 1), enter the concourse through the ticket barriers

(Cam 2, 3), take the escalators (Cam 4, 5), and enter one of

the platforms. The opposite route is taken if they are leaving

the station. Apart from the two platforms in Cam 6–7 and

Cam 8–9, the passengers may also proceed from the con-

course to other platforms (not visible in the camera views)

without taking the escalators. In addition, after getting off a

train they may also go to a different platform without leaving

the station.
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Fig. 6 (Color online) The station layout and camera topology of Station B dataset. Entry and exit points are highlighted in red bars

The two datasets employed in our experiments are dif-

ferent in that Station A dataset has a larger time gaps be-

tween cameras, thus it is more challenging for the per-

son re-identification task. Whilst Station B dataset features

more diverse scenes and complex activities, hence it is more

ideal for experiments in topology inference. In general, both

datasets are difficult in several aspects:

(i) Complexity and diversity of the scenes. Activities ob-

served in the scenes take place at ticket hall, concourse,

train platforms and escalators, which are thus very dif-

ferent in nature.

(ii) Low video temporal and spatial resolution.

(iii) The lighting conditions are very different across cam-

era views.

(iv) Heavy inter-object occlusions due to enormous number

of objects in the scene especially during peak hours.

(v) Complex crowd dynamics, e.g. passengers may appear

in a group or individually, remain stationary at any

point of the scenes, or not get on an arrived train.

(vi) Only limited areas of the two large underground sta-

tions are covered by the cameras. In particular, there

are multiple entry and exit points that are not visible

in the camera views. This increases the uncertainties in

the interpretation of the observed activities.

4.2 Background Subtraction

A comparison between the proposed mean-shift based back-

ground subtraction method and the frame differencing based

method in Loy et al. (2009) was carried out. Some qualita-

tive results are shown in Fig. 7. As can be seen, foreground

masks yielded by the proposed method is noticeably better.

Apart from qualitative evaluation, we also performed quan-

titative evaluation on both methods on topology inference

task. The results are reported in Sect. 4.4.

4.3 Activity-based Scene Decomposition

We used 5000 frames (≈2-hour in length) from each camera

view for activity-based scene decomposition. In particular,

the eight camera views from Station A dataset were auto-

matically decomposed into 62 regions (Fig. 8). Whilst the

nine camera views from Station B dataset were decomposed

into 96 regions (Fig. 9). As can be seen from Fig. 8 and

Fig. 9, the camera views were decomposed automatically

into semantically meaningful regions in spite of the heavy

inter-object occlusions and low temporal resolution. For in-

stance, the areas corresponding to the train tracks and plat-

forms formed distinctive regions. The sitting areas (e.g. re-

gions 3 and 7 of Station A dataset, regions 80 and 86 of

Station B dataset) were also segmented from areas where

people standing or walking. Another example is the differ-

ent escalators exits (regions 40, 43, 46) in Station B dataset,

which were clearly decomposed into different regions in ac-

cordance to the object dynamics.

We performed both qualitative and quantitative com-

parisons between scene decomposition method introduced

by Li et al. (2008) and our method. The two methods differ

mainly in their feature representations, i.e. time-series rep-

resentation in our method and Bag of Words representation

in that of Li et al. (2008).

(i) Qualitative result: we found that our method yielded

more meaningful region boundaries. Some results are

shown in Fig. 10. As can be seen from most of the cam-

era views depicted in column (a) of Fig. 10, the train

track regions were clearly separated from the platform

regions using the time-series representation. In contrast,

some train track areas and platforms were segmented as

a single region using Bag of Words representation (col-

umn (b) in Fig. 10).
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Fig. 7 The figure shows background models (the second column) and

foreground masks (the third column) yielded by frame differencing

method without background adjustment (the first row) and our ap-

proach (the second row) on frames with abrupt global intensity level

change (the first column)

(ii) Quantitative result: It is difficult to provide quantitative

result on activity-based scene decomposition as the cor-

rect region segmentation is subjective, especially when

the segmentation is not based on visual information but

activity patterns observed over time. Therefore, we per-

formed quantitative evaluation on a synthetic dataset, in

which the segmentation ground truth is known. In the

dataset, all blocks (10 × 10 pixels each) within the same

region encompassed similar time-series patterns, whilst

blocks located in different regions contained different

time-series patterns. All time series had a length of 5000

and were corrupted by Gaussian noise. We measured

the decomposition accuracy based on the agreement be-

tween our segmentation and the segmentation ground

truth. As can be seen from Fig. 11, our time-series rep-

resentation yielded higher accuracy, 99.73% compared

to 83.83% obtained by using Bag of Words representa-

tion proposed by Li et al. (2008).

As we explained in Sect. 3.1, better performance is ob-

tained because our time-series activity representation cap-

tures the temporal dynamics of activity while the Bag of

Words representation utilised by Li et al. (2008) ignores the

temporal order of the activity occurrences.

4.4 Activity Correlation Analysis

4.4.1 Discovering and Quantifying Regional Activity

Correlation

The proposed xCCA was compared with xCA and MCMC-

BNSL for learning regional activity correlations. The re-

gional activity affinity matrices P (15) (normalised to have

a value range of [0,1]) and the time delay matrices D (16)

yielded by different methods for Station A and Station B

datasets are shown in Figs. 12 and 13 respectively. Note that

time delay matrix is not available for MCMC-BNSL since it

can only discover zero-order temporal dependency between

regional activities.

It can be seen from Figs. 12 and 13 that all methods

are able to discover high correlations and relatively shorter

time delays (except MCMC-BNSL) between regions from

the same camera views (see the block structure along the

diagonals of the P matrices). Importantly, a number of inter-

esting cross-camera correlations were discovered and quan-

tified accurately by xCCA. For instance, in Station B dataset,

high correlation value (see Fig. 13(a)) with a time delay of

9 frames or 13 seconds (see Fig. 13(b)) are discovered by

xCCA between region 46 (Cam 4) and region 51 (Cam 5).

This corresponds to the frequently occurred inter-camera ac-

tivity of passengers taking the upward escalator (with part of

the escalator invisible from the view), and leaving from the

escalator exit (see Fig. 1(a)). In comparison, although xCA

can also learn these correlations, it tends to ‘over-correlate’
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Fig. 8 Station A dataset:

activity-based scene

decomposition results

Fig. 9 Station B dataset:

activity-based scene

decomposition results

regions, i.e. detect correlations that do not exist (e.g. region

pairs 3–91 and 18–48). In contrast, MCMC-BNSL revealed

few and also incorrect correlations (e.g. region pairs 13–48

and 9–91) with a lot of miss-detections (e.g. region pairs 46–

51 and 40–55 which correspond to passenger getting upward

and downwards using the escalators respectively).

4.4.2 Camera Topology Inference

Given the regional activity affinity matrices and time de-

lay matrices yielded by different methods, we generated the

camera topologies Φ by following the steps described in

Sect. 3.3. The camera topologies for both Station A and Sta-

tion B dataset are shown in Figs. 14 and 15 respectively. The

inferred topologies are compared with the actual topology

obtained manually and the numbers of missing edges (M)

and redundant edges (R) are also shown in the two figures.

For both datasets, we observe that xCCA yielded the

closest topology to the actual one based on the M and R

metrics. It is not surprising to see that our xCCA outper-

formed MCMC-BNSL significantly. As we discussed ear-
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lier, the learned structure using MCMC-BNSL can only re-

veal zero-order temporal dependencies, i.e. co-occurrence

relationships, between activities. Thus it cannot cope with

Fig. 10 Better scene decomposition result (a) was obtained using our

time-series activity representation and correlation based distance met-

ric, as compared to the result (b) obtained using Bag of Words repre-

sentation (Li et al. 2008)

more complex time delayed correlations that are common in

multi-camera scenes. As expected, xCA yielded a number

of redundant edges in both datasets. The better performance

of xCCA compared to xCA is due to its ability in captur-

ing the underlying mutual patterns of two regional activity

time series by projecting them onto an optimal subspace.

This is critical for analysing a busy public space such as

an underground station where significant variations exist for

correlated activities in different views caused by different

camera view angles and uncertainties on activity time de-

lays between views.

Let us discuss those missing and redundant edges in the

topologies. For Station A dataset, all methods except xCA

(which tends to ‘over-correlate’) failed to infer the connec-

tion between Cam 7 and Cam 8 because the area in Cam 8

adjacent to Cam 7 is too far away from the camera (at the

end of the concourse). In addition, there are four entry/exit

points in the field of view of Cam 7 leading to spaces not

covered by Cam 8 (see Fig. 5). This weakened the corre-

lation between these two camera views and explains why

the edge was miss-detected. Similarly, all methods except

xCA failed to infer the connection between Cam 3 and 4

in Station B data as the connection point is too far away

from the field of view as well as the existence of multiple

entry/exit points. All methods inferred additional edges for

camera pairs 1–3 and 4–6 in Station A dataset. Again this is

not unexpected. Specifically, although they are not directly

adjacent to each other (e.g. as shown in Fig. 5, Cam 1 is ad-

jacent to Cam 2 which is then next to Cam 3), they cover the

same platforms therefore sharing a number of common ac-

tivities which are highly correlated, e.g. the arrival/departure

of trains, passenger getting on/off trains.

To demonstrate the importance of activity-based scene

decomposition on topology inference, we also performed

xCCA without scene decomposition, i.e. the activities within

each camera view as a whole are correlated with those in

other camera views to infer the camera topology. The re-

sults are shown in Figs. 14(e) and 15(e) which suggest

that without scene decomposition, even the proposed xCCA

would not be able to learned the correct camera topol-

ogy.

Fig. 11 Quantitative

comparison between our

time-series representation

(decomposition accuracy

= 99.73%) against Bag of

Words representation (Li et al.

2008) (decomposition accuracy

= 83.83%) on a synthetic

dataset
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Fig. 12 Station A dataset:

regional activity affinity

matrices P (normalised to have

a value range of [0,1]) and the

associated time delay matrices

D obtained using xCCA, xCA

and MCMC Bayesian network

structure learning

4.4.3 Comparison with Method Proposed

in Loy et al. (2009)

In our previous work (Loy et al. 2009), a naive background

subtraction method based on frame differencing is em-

ployed. In addition, camera topology is inferred solely based

on correlation strength. Experiments were conducted on Sta-

tion B dataset to compare the approach reported in Loy et al.

(2009) and the new method proposed in this study on topol-

ogy inference. The results are shown in Fig. 16.

As can be seen from Fig. 16(a), poor topology was in-

ferred with naive background subtraction method and based

only on correlation strength (method in Loy et al. 2009). In

contrast, as shown in Fig. 15(b), camera topology inferred

using our method produces fewer missing and redundant

edges.

Even if we exploited both correlation and time de-

lay, topology inferred with naive background subtraction

method still consists of a number of missing and redun-

dant edges (Fig. 16(b)). On the other hand, if we employed

robust background subtraction method, poor topology was

still obtained when the topology was inferred based solely

on correlation strength (Fig. 16(c)). These results demon-

strate that robust background modelling as well as the use

of both correlation strength and time delay play important
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Fig. 13 Station B dataset:

regional activity affinity

matrices P (normalised to have

a value range of [0,1]) and the

associated time delay matrices

D obtained using xCCA, xCA

and MCMC Bayesian network

structure learning

Fig. 14 Station A dataset:

xCCA yielded the closest

topology to the actual one as

compared to other methods.

M = missing edges,

R = redundant edges
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Fig. 15 Station B dataset: xCCA yielded the closest topology to

the actual one as compared to other methods. M = missing edges,

R = redundant edges

Fig. 16 Camera topology inferred on station B dataset (a) without ro-

bust background subtraction + using correlation alone, (b) without ro-

bust background subtraction + using both correlation and time delay

and (c) with robust background subtraction + using correlation alone

roles in making the proposed method scalable to challeng-

ing and complicated multi-camera scenes such as the one in

the Station B dataset.

4.4.4 Comparison with Tracking-based Method

To highlight the inadequacy of tracking-based topology in-

ference approach, we compared our results with a method

proposed by Makris et al. (2004). In particular, tracking

was performed on Cam 4 and Cam 5 of Station A dataset

using a state of the art multi-object tracker (Chen et al.

2005). The starting and ending points of individual trajecto-

ries were clustered using Gaussian Mixture Model (GMM)

to automatically locate the entry and exit zones, as shown

in Fig. 17(a–b). Two entry and exit zones that correspond to

the upward escalator and exit were selected and the corre-

sponding exit/entry transition time distribution was plotted

in Fig. 17(c). A peak in the transition time distribution at

25 frames suggests the existence of inter-zone connection.

To verify this result, we manually recorded the amount of

time taken by 50 objects passing across Cam 4 and Cam 5.

Fig. 17 (a) Passengers leave the field of view of Cam 5 from a zone

marked with ‘Exit’ and (b) enter Cam 4 from a zone marked with ‘En-

trance’. (c) The exit/entry transition time distribution for selected pairs

of zones obtained using tracking-based method proposed by (Makris et

al. 2004). Dotted lines labelled as [i] at 9 frames and [ii] at 25 frames

represent the time delays between the selected pairs of zones estimated

using our method and the tracking-based method respectively. The av-

erage time delay obtained from manual observations is 9.12 frames

It is observed that on average, an object took 9.12 frames

to pass through the two zones. This demonstrates that the

tracking-based method failed to estimate the correct transi-

tion time. The failure of the tracking-based method is mainly

due to the difficulty in performing object tracking in low-

frame rate video featured with heavy occlusion. The resul-

tant fragmentation of object trajectories produced unreliable

trajectory starting points and ending points, leading to inac-

curate estimation of the entry/exit zones and transition time

distribution. In comparison, using our method region 46 and

51 were automatically segmented which correspond the two

entry and exit zones. The time delay between the two re-

gions was estimated using xCCA as 9 frames, which is very

close to the manual observation.

4.5 Context-aware Person Re-identification

In this experiment, we compared the performance of match-

ing people across camera views using colour histogram

(CH) alone, CH+xCA, and CH+xCCA. Note that MCMC-

BNSL was excluded from this experiment since it is not able

to quantify the time delayed relationships between regional

activities.

The probe set consists of 250 individuals which were

matched against a gallery set of 1800 people extracted from

Station A dataset. The image of each person was manually
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Fig. 18 (Color online) Example

queries selected from the person

re-identification experiment.

The first image in each row is a

probe image. It is followed by

top 20 results, sorted from left to

right according to the ranking

obtained using CH+xCCA,

with the correct match

highlighted using a green

bounding box. The ranks

returned by the evaluated

methods are included at the

rightmost columns for

comparison. Note the visual

ambiguity in the search space

due to variations of pose,

colours, lighting changes; as

well as poor image quality

caused by low spatial resolution

segmented and normalised to 48 × 128 pixels. Each image

was then divided into Nh = 8 horizontal strips equally, from

which we extracted the concatenated colour histograms. To

select the best setting for CH, we varied the number of

bins Nbin from {8,16,32,64,128,256} and attempted both

RGB and YUV colour spaces. It turned out that RGB colour

space with 256 bins yielded the best result. Score returned

by CH was computed as S
a,b

bha (see Sect. 3.4), whilst score

returned by CH + other methods were computed by (22).

The factor α that defines the size of search window was set

to 10.

Given a probe image, we computed the matching scores

over all 1800 people and ranked them from the most likely

match to least likely one. To examine the recognition rate

at different ranks, a Cumulative Matching Characteristic

(CMC) curve (Gray and Tao 2008) with a cut-off rank of

30 was plotted (Fig. 19). Example matches are given in

Fig. 18. It can be seen that despite the poor image quality
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Fig. 19 Cumulative Matching Characteristic (CMC) curve for

CH+xCCA, CH+xCA and CH

Fig. 20 Comparing person re-identification result obtained using

CH+xCCA and CH alone. Given the probe image at the leftmost col-

umn, CH+xCCA found the same person in another camera view at

rank 1, whilst CH can only find the true match at rank 59. Ambiguities

due to similar visual features presented by multiple objects are greatly

reduced by introducing time delayed activity correlation as contextual

information

and drastic feature variations across camera views, good re-

sults were obtained using both CH+xCCA and CH+xCA

with CH+xCCA yielding better result. In comparison the

result of using CH, i.e. visual appearance alone, was sig-

nificantly worse. In particular, CH+xCCA yielded the best

performance with approximately 94.00% of the queries gen-

erated a true match in the top 20 rank, compared to 88.40%

and 41.60% using CH+xCA and CH alone.

Without considering the activity correlation and time

delay factor (CH alone), each person has to be com-

pared against all possible candidates. However, as shown

in Fig. 20, passengers in the underground stations tend to

wear clothes with similar colours (e.g. white shirt with black

trousers). It is thus difficult to match the same person over a

large camera network by considering the colour informa-

tion or any visual appearance information alone. On the

contrary, with the inferred time delayed activity correla-

tions employed as contextual information (CH+xCCA or

CH+xCA), the search space and ambiguities were greatly

reduced which has resulted in significantly better recogni-

tion rate. Note that one can also employ the time delays es-

timated using tracking-based methods (Makris et al. 2004;

Tieu et al. 2005) as contextual information to reduce the

search space. However, given low-frame rate videos with

crowded scene, the estimation becomes inaccurate due to

unreliable tracking (see Fig. 17(c)). Incorporating the time

delays estimated thus will harm instead of improving the

person re-identification performance.

4.6 Global Activity Modelling

Global activities were discovered by performing spectral

clustering on the regional activity affinity matrix P. For

each global activity, we employed 5000 frames to train an

HMM following the steps described in Sect. 3.5. The test set

which consists of the rest of the videos was used to evaluate

the performance of a model in temporal segmentation. The

segmentation result obtained using the proposed multi-view

global activity analysis was compared with those from (i) in-

dividual single camera view without activity-based scene

decomposition and (ii) single camera view with activity-

based scene decomposition.

For Station A dataset, two global activities were learned

by clustering P (see Fig. 12(a)), corresponding to the plat-

form activities observed by Cam 1, 2, 3 and Cam 4, 5, 6 re-

spectively. For Cam 1, 2, 3, it turned out that an HMM with

two hidden states gave the best BIC score in the model se-

lection process. The two phases have clear semantic mean-

ing: phase one corresponds to the period when train is ab-

sent, whilst phase two is the period when train is present.

We compared the phases inferred using the three meth-

ods with the ground truth. The accuracy yielded by single

view analysis (Cam 3) without scene decomposition was

73.40%. The accuracy increased to 83.78% after we em-

ployed scene decomposition on the single view analysis,

whilst the proposed method based on global activity analy-

sis gave 97.90%. Examples of the inferred phases by differ-

ent methods and some example frames from the segmented

phases are shown in Figs. 21 and 22 respectively. We ob-

tained similar results on Cam 4, 5, 6—the accuracies were

86.59%, 91.70% and 94.09% for methods without scene de-

composition, with scene decomposition and scene decompo-

sition + single view analysis.

We repeated the same procedures on Station B dataset.

Several global activities were discovered, which include the

platform activities monitored by Cam 6, 7 and Cam 8, 9,

as well as escalator activities captured by Cam 4, 5. Here,

we report the global activities that occurred at the escala-

tor area, from which regions 46 and 51 were automatically

detected as highly-correlated regions. A two-phase HMM

was selected in the automatic model selection process. The

two phases contain clear semantic meaning: phase one oc-

curs when passengers on the escalator track approach the es-

calator exit, whilst phase two takes place when passengers

move clear of the escalator exit area. In general, the results

achieved on Station B dataset were relatively poorer com-

pared to those obtained on Station A dataset as occlusion

problem was more severe. In particular, single view analy-

sis (Cam 4) without and with scene decomposition yielded
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similar results on this dataset, giving accuracies of 67.32%

and 67.10% respectively. Scene decomposition failed to im-

prove the result on single view analysis because region 46 in

Cam 4 (see Fig. 9(d)) only occupies a small portion of many

regions in the whole view. The activity model was thus dom-

inated by activity patterns learned from other regions. Dif-

fering from the platform scene in Station A dataset, there

are multiple global activities in the scene captured by Cam 4

Fig. 21 Station A dataset: example of phases inferred using (a) single

view activity analysis without activity-based scene decomposition, (b)

single view activity analysis with activity-based scene decomposition,

and (c) multi-view global activity analysis. The ground truth is shown

in (d). Y -axis represents the inferred phases and X-axis represents the

frame index. Only 3000 frames from the test set are shown

and 5, namely passengers getting upwards and downwards.

Using all regions blindly thus would not help improve the

segmentation accuracy. Overall, the proposed method based

on global activity analysis gave the best accuracy of 79.08%.

Examples of the inferred phases by different methods and

some example frames from the segmented phases are shown

in Figs. 23 and 24 respectively.

The results on both datasets demonstrate the effective-

ness of our global activity modelling based on the learning

of regional activity correlations. In particular, single view

activity analysis was susceptible to noise and visual ambi-

guities due to heavy occlusions and low frame rate. As com-

pared to single view activity analysis, our global activity

modelling utilises evidences collected from multiple corre-

lated regions across camera view. It therefore reduced visual

ambiguities, resulting in a more accurate segmentation re-

sult.

4.7 Computational Cost

The computational cost of each component of the proposed

approach is analysed below:

– Activity-based scene decomposition: A total of B(B −

1)/2 computations are required to obtain the pairwise cor-

relation distances among local activity patterns of each

block pair. The spectral clustering involves computation

of eigenvectors of affinity matrix A (6) with computa-

tional complexity of O(B3).

– Cross canonical correlation analysis: To obtain each ele-

ment in a regional activity affinity matrix (15) and a time

delay matrix (16), a regional time-series is shifted against

another regional time-series and canonical correlation is

performed at each shifting step. A total of 2T − 1 shift-

ing steps are required where T is the total of training

frames. However, if we bound the maximum time delay

Fig. 22 Station A dataset:

example frames from the phases

inferred using our global

activity analysis. Phase 1: train

is absent and passengers are

waiting for train on the platform.

Phase 2: train arrives and

passengers get on/off the train
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Fig. 23 Station B dataset: example of phases inferred using (a) sin-

gle view activity analysis without activity-based scene decomposition,

(b) single view activity analysis with activity-based scene decomposi-

tion, and (c) multi-view global activity analysis. The ground truth is

shown in (d). Y -axis represents the inferred phases and X-axis repre-

sents the frame index. Only 3000 frames from the test set are shown

Fig. 24 Station B dataset: example frames from the phases inferred us-

ing global activity analysis. Phase 1: passengers on the escalator track

are approaching the escalator exit; Phase 2: passengers move clear of

the escalator exit area

as τmax, the total number of shifting steps can be reduced

to τmax − 1. The computational cost of canonical correla-

tion analysis is dominated by singular value decomposi-

tion (SVD). However, since Ŵ in (13) is small, the com-

plexity of SVD, O(Ŵ3) is low.

In practise, on a 2.8 GHz single-core machine, the computa-

tion of correlation distances in Matlab takes approximately 6

minutes on each camera view, whilst the spectral clustering

implemented in C code requires 7 seconds. For xCCA, Mat-

lab implementation takes approximately 12 minutes on Sta-

tion A dataset and 30 minutes on Station B datasets.

4.8 Failure Modes, Limitations and Possible Extensions

There are a number of areas to improve on:

(i) As discussed in Sect. 4.4, if a region is located far away

from camera, our method may fail to infer its connec-

tion with other regions in the camera network due to

lack of visual information.

(ii) The activity correlations in the current framework are

assumed to be static once learned. It is desirable to for-

mulate a computationally tractable incremental learn-

ing framework to address the dynamic changes of re-

gions and their correlations. This is a non-trivial prob-

lem and is part of our ongoing work.

(iii) The discovered activity correlations are limited to pair-

wise correlations and multiple dependencies in a global

context are not considered. Thus, some redundant cor-

relations caused by noise may affect the accuracy in ac-

tivity understanding. This problem could be addressed

by formulating a structure learning method for global

optimisation on activity correlations.

(iv) It is assumed in our approach that there is only one

delay time between two regions. In most cases, this

assumption is valid because objects with different

speeds (such as cars and pedestrians) appear in differ-

ent regions, and their activities will thus be separated

into different regions using our scene decomposition

method. However, there are still cases where objects

with different speeds and directions appear in the same

location (e.g. middle of a traffic intersection). We did

not consider modelling multiple delay modes because

the features we used do not capture motion speed and

direction due to videos with low temporal and spatial

resolution. Nonetheless, if object speed and direction

can be measured given videos with higher frame rate,

it is straightforward to extend our xCCA framework to

capture multiple delay and correlation modes. Specif-

ically, we could decompose different directions into

different bins (e.g. direction 001 = 0◦–15◦, direction

010 = 15◦–30◦, etc.). For each decomposed direction,

we could then perform xCCA and model the correla-

tion surface of different speeds and time delays.

There are several possible extensions to the proposed ap-

proach. Firstly, topology inference is performed in an unsu-

pervised manner. Nevertheless, if coarse or partial informa-

tion on a camera topology is available, it can be integrated
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into the proposed framework. For example, one can incorpo-

rate this information into training stage in a form of regulari-

sation, e.g. increasing the correlation value between a region

pair if their connection is known and penalising the correla-

tion value if otherwise. Secondly, global anomaly detection,

i.e. detection of abnormal events across camera views is not

attempted in this study, which is an important application

of multi-camera activity understanding. Finally, while we

have demonstrated the effectiveness of our simple feature

representation on challenging surveillance videos, including

more sophisticated features is expected to improve the time-

delayed correlation analysis when they can be computed re-

liably.

5 Conclusions

In this work we have presented a novel approach to multi-

camera activity understanding by discovering and modelling

the correlations with unknown time delays between activ-

ities observed within and across non-overlapping camera

views. In particular, we introduced Cross Canonical Corre-

lation Analysis to detect and quantify correlation and tem-

poral relationships between partial observations across lo-

cal regions. Experimental results have shown that the time

delayed activity correlations are not only useful for infer-

ring the spatial and temporal topology of a camera net-

work, but also important as contextual information to fa-

cilitate more robust and accurate person re-identification,

global activity interpretation, and video temporal segmenta-

tion. The proposed framework does not rely on either inter-

camera or intra-camera tracking. Consequently, as demon-

strated through our experiments, it can be applied to the

most challenging surveillance videos, featured with heavy

occlusions due to enormous number of objects in the scenes,

as well as poor image quality caused by low video frame rate

and image resolution.
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