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Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf

bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown

that for appropriate choices of time delay, either suppression or enhancement of coherence reso-

nance can be achieved. Analytical calculations are combined with numerical simulations and

experiments on an electronic circuit.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915066]

The generalized Van der Pol oscillator is a paradigmatic
model in nonlinear dynamics and electrical engineering.
In contrast to a standard Van der Pol model, the general-
ized Van der Pol oscillator allows to describe both super-
critical and subcritical Hopf bifurcations. In the regime
close to a saddle-node bifurcation of periodic orbits (sub-
critical case) under the influence of noise, the model dem-
onstrates the phenomenon of coherence resonance. It
means that there exists an optimum intermediate value of
the noise intensity for which noise-induced oscillations
become most coherent. Using experiments on an elec-
tronic circuit, numerical simulations, and an analytical
approach, we show how to control the system with sub-
critical Hopf bifurcation by time-delayed feedback. In
particular, we demonstrate experimentally that time
delay allows both enhancement and suppression of coher-
ence resonance.

I. INTRODUCTION

The phenomenon of coherence resonance1–4 was origi-

nally discovered for excitable systems. It implies that noise-

induced oscillations become more regular for an optimum

value of noise intensity. These oscillations can be also

synchronized mutually as well as by an external forcing.5–7

Moreover, the synchronization of noise-induced oscillations

occurs in a similar way as for a deterministic quasiperiodic

system.8 Coherence resonance has also been found for cha-

otic systems9 where its mechanism is explained by switching

between attractors. Furthermore, the possibility to control

coherence resonance by noise-induced symmetry has been

reported.10 It has been shown that coherence resonance can

be modulated by applying time-delayed feedback in systems

with type-I (Ref. 11) and type-II (Ref. 12) excitability.

Coherence resonance has also been found in non-

excitable systems with a subcritical Hopf bifurcation

(HB).13–17 It is important to note that the pure coherence

resonance effect for non-excitable systems is observed for a

subcritical Hopf bifurcation and not for the supercritical

case. The standard Van der Pol model close to a supercritical

Hopf bifurcation has been investigated in the presence of

delay and noise,12,18,19 but the interplay of noise and delay

with respect to coherence resonance in the subcritical Van

der Pol system has not been considered. In the present work,

we aim to study coherence resonance in the generalized Van

der Pol system with a subcritical Hopf bifurcation. We dem-

onstrate theoretically that coherence resonance can be modu-

lated by time-delayed feedback and confirm our results in

experiment with an electronic circuit. We consider the re-

gime close to the saddle-node (SN) bifurcation of periodic

orbits, where in the deterministic case, the only attractor of

the system is a stable focus. The oscillations are induced by

noise and further controlled by time delay. The importance

of this issue is emphasized by the fact that delay and noise

are very often invoked not only in theoretical investiga-

tions20–24 but also in real-world applications. For example,

coherence resonance appears also in microwave dynamical

systems, such as a five-cavity delayed-feedback klystron os-

cillator at the self-excitation threshold,25 in lasers with opti-

cal feedback,26–28 or in semiconductor superlattices.29,30 In

general, time delay arises inevitably in every real device due

to final signal propagation velocity. Delayed feedback is a

powerful tool for achieving a wide range of operating

regimes and enhancing amplitude-frequency characteristics,

and controlling the stochastic or deterministic dynamics of

nonlinear systems.31–33

II. MODEL

We investigate the generalized Van der Pol oscillator,

extended by a quartic term in the nonlinear friction. If we

additionally involve noise and time-delayed feedback, it is

described by the following equation:

d2x

dt2
� eþ lx2 � x4
� � dx

dt
þ x2

0x

¼
ffiffiffiffiffiffi

2D
p

n tð Þ þ K x t� sð Þ � x tð Þð Þ; (1)
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where x is the dimensionless variable, t is the dimensionless

time, e 2 R and l> 0 are the parameters responsible for ex-

citation and dissipation, respectively, x0 is the eigenfre-

quency of linear oscillations at the Hopf bifurcation, K is the

strength of time-delayed feedback, s is the delay time, n(t) is

normalized Gaussian white noise: hnðtÞnðtþ sÞi ¼ dðsÞ;
hnðtÞi ¼ 0, and D is the noise intensity. Because of the

quartic nonlinearity, the system can exhibit simultaneously

two limit cycles: a stable and an unstable one. The regime of

coexistence of these two periodic orbits is limited from one

side by a saddle-node bifurcation of limit cycles (e¼�l2/8)

and from the other side by a subcritical Hopf bifurcation

(e¼ 0). Besides two limit cycles, the regime �l2/8< e< 0

contains a stable focus in the origin. For e<�l2/8, the only

attractor is the stable focus. It becomes unstable for e> 0 in

a subcritical Hopf bifurcation at e¼ 0.

For the experimental confirmation of our theoretical

results, we consider an electronic circuit, which models the

system equation (1). The corresponding scheme of the exper-

imental setup is shown in Fig. 1. The setup consists of two

main parts: an analog (Fig. 1(a)) and a digital (Fig. 1(b)) one.

The analog part models the generalized Van der Pol oscilla-

tor, while the digital one provides time delay. The analog

part contains operational amplifiers, analog multipliers, and

additional passive elements. The digital part consists of

microcontroller ATmega16 and external analog-to-digital

and digital-to-analog converters. The time delay s is realized

by a signal Us which can be varied (0�Us� 5V) in real

experiment. The scheme in Fig. 1 is described by the follow-

ing equation:

d2v

dt2
� 1

RC
ve þ

R

R7

v
2 � v

4

� �

dv

dt
þ 1

RCð Þ2
v

¼ 1

RCð Þ2
vn þ

R

Rs RCð Þ2
vs � vð Þ: (2)

Here, v is the voltage at the point x on the scheme (Fig. 1(a)),

vs¼ v(t� s), and vn is the noise voltage which is taken from

the noisy signal of the generator Agilent 33250A. The values

of the resistors and capacitors in Fig. 1(a) are chosen such that

R1¼R2¼R5¼R9¼R10¼R12¼R13¼R14¼R15¼R16�R,

R3¼R4¼R6¼R8¼R11¼ 10R, and C1¼C2�C. In dimen-

sionless form and with the substitution x¼ v, t0 ¼xt;
s0 ¼xs;x¼ 1=ðRCÞ; e¼ ve; l¼R=R7; K¼R=Rt, and

ffiffiffiffiffiffi

2D
p

n

¼ vn, Eq. (2) is reduced to Eq. (1) with x0¼1, where we

have dropped the 0 in the dimensionless time. Further

details on this experimental setup without time delay,

including a bifurcation diagram, can be found in Ref. 16.

It is important to note that despite the direct correspon-

dence between Eq. (2), which describes the experimental

setup, and Eq. (1), the experimental values of the bifurca-

tion points differ from the values obtained numerically and

analytically. This is due to the fact that Eq. (2) was

derived using standard approximations on operation ampli-

fiers, which are common in electronics. Since our main

goal is to confirm the observed phenomena qualitatively

and not quantitatively, this difference is not essential for

our study.

III. NOISE-FREE SYSTEM

We begin our investigations with the case of a noise-

free system, since it is important to understand how the time-

delayed feedback influences the deterministic system. The

model equation reduces to

d2x

dt2
� eþ lx2 � x4
� � dx

dt
þ x2

0x ¼ K x t� sð Þ � x tð Þð Þ: (3)

We assume that the amplitude of the oscillations is

changing slowly on the time-scale of the period of oscilla-

tion. Then we can apply the averaging method (quasihar-

monic reduction) to the Van der Pol equation. To find the

solution of Eq. (3), we use the following ansatz:

x tð Þ ¼ Re A tð Þexp ix0tð Þ
� �

¼ 1

2
A exp ix0tð Þ þ c:c:

� �

; (4)

where A(t) is a complex amplitude, and c.c. denotes the com-

plex conjugate A� expð�ix0tÞ. The first and second

derivatives,
FIG. 1. Scheme of experimental setup: (a) electronic circuit of the analog

part and (b) electronic circuit of the digital part.
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dx

dt
¼ 1

2

dA

dt
þ ix0A

	 


exp ix0tð Þ þ c:c:

� �

; (5)

d2x

dt2
¼ 1

2

d2A

dt2
þ 2ix0

dA

dt
� x2

0A

	 


exp ix0tð Þ þ c:c:

� �

; (6)

can be approximated by

dx

dt
¼ 1

2
ix0A exp ix0tð Þ þ c:c:½ �; (7)

and

d2x

dt2
¼ 1

2
2ix0

dA

dt
� x2

0A

	 


exp ix0tð Þ þ c:c:

� �

(8)

for slowly varying amplitude j dA
dt
j � x0A.

Substituting Eqs. (4), (7), (8) into Eq. (3), we approxi-

mate all fast oscillating terms (expð3ix0tÞ; expð5ix0tÞ and

c.c.) by their averages over one period T¼ 2p/x0 which

gives zero. Furthermore, we assume that the delay s is small,

so that we can approximately set A(t� s)�A(t) on the slow

time scale of A(t). Then we obtain

dA

dt
¼ 1

2
eAþ 1

8
ljAj2A� 1

16
jAj4A

þ 1

2

K

x0

A i 1� cos x0sð Þ
� �� sin x0sð Þ

� �

: (9)

In order to solve Eq. (9), we transform to polar coordinates

A ¼ q expði/Þ; (10)

where q	 0 is the amplitude and / 2 R is the phase of

oscillations. After substituting Eq. (10) into Eq. (9) and sepa-

rating the resulting equation into real and imaginary parts,

we obtain

dq

dt
¼ 1

2
eþ 1

8
lq2 � 1

16
q4 � 1

2x0

K sin x0sð Þ
� �

q; (11)

d/

dt
¼ 1

2x0

K 1� cos x0sð Þ
� �

; (12)

where Eq. (11) describes the amplitude and Eq. (12) the

phase dynamics. Using the conditions _q ¼ 0; _/ ¼ 0, we find

the steady state. We are only interested in stationary solu-

tions of the amplitude equation, which describe steady states

or limit cycles

1

2
eþ 1

8
lq2 � 1

16
q4 � 1

2x0

K sin x0sð Þ
� �

q ¼ 0: (13)

Equation (13) has three solutions q	 0. The substitution

a¼ 2l and b ¼ 8ðe� K
x0
sinðx0sÞÞ gives the solution in the

following forms:

q1 ¼ 0; (14)

q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4b
p

2

s

; (15)

q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4b
p

2

s

: (16)

Further we perform a linear stability analysis of these solu-

tions for K¼ 0. The solution equation (14) is characterized

by the eigenvalue

k1 ¼
1

2
e: (17)

Therefore, it is stable for e< 0 and unstable for e> 0. The so-

lution q2 Eq. (15) exists for � l2

8
� e < 1. In this regime,

the stability of the solution q2 is given by the eigenvalues

k2 ¼ �2e� 1

4
l2 � 1

4
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 8e
p

; (18)

which is always negative (Fig. 2). It means that the solution

q2 corresponds to a stable limit cycle in the system equation

(3). The solution q3, Eq. (16), represents an unstable limit

cycle in the system equation (3) and exists for e 2 ½� l2

8
; 0�

where it always has a positive eigenvalue

k3 ¼ �2e� 1

4
l2 þ 1

4
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 8e
p

: (19)

All the solutions and eigenvalues as a function of e are

shown in Fig. 2.

If delay is added in the slowly-varying-amplitude

approximation, this simply amounts to a rescaling of the

bifurcation parameter e ! e� K
x0
sinðx0sÞÞ The two periodic

orbits collide in a saddle-node bifurcation, which implies

q2¼ q3. From this condition, one can derive e as a function

of s at the saddle-node bifurcation of limit cycles

e sð Þ ¼ �l2

8
þ K

x0

sin x0sð Þ: (20)

FIG. 2. Bifurcation diagram of the generalized Van der Pol oscillator without

noise and delay. Analytical solutions of Eq. (13): red shadowing corresponds

to the stable limit cycle q2, blue shadowing shows the unstable limit cycle q3,

black shadowing represents the steady state q1. Solid lines stand for the simula-

tions performed with XPPAUT. The eigenvalues are shown by blue dotted

lines. The vertical dashed lines mark the saddle-node (SN) and the Hopf bifur-

cation (HB), respectively. Parameter values are K¼ 0, D¼ 0, l¼ 0.5, x0¼ 1.
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Fixing K¼ 0, l¼ 0.5 gives e¼�0.03125, in agreement with

the value obtained numerically with the continuation tool

XPPAUT. The unstable limit cycle q3 and the stable fixed

point q1 collide in the subcritical Hopf bifurcation at

e sð Þ ¼ K

x0

sin x0sð Þ: (21)

It follows that for s 6¼ 0, the maximum shift of the bifurcation

parameter e from its value without delay is observed for

x0s ¼ p
2
þ pn; n 2 N. The dependence of e on s obtained

analytically from Eqs. (20) and (21) agrees well with the ex-

perimental measurements (Fig. 3).

IV. NOISE-INDUCED OSCILLATIONS

From the analysis of the system equation (3) in the ab-

sence of noise, we now know that time-delayed feedback can

shift the bifurcation point in both directions, which also can

cause the change of the dynamical regime. Moreover, it is

known how the distance between the operating point and the

saddle-node bifurcation point influences the optimum value

of the noise intensity for the coherence resonance: the larger

the distance, the stronger is the noise required to achieve co-

herence resonance (Fig. 4). Thus, by tuning the time delay

value, we can control the coherence resonance. Recent works

have uncovered the link between coherence resonance and

stochastic P-bifurcation.14,16 This type of bifurcation appears

when the variation of the noise characteristics (like noise in-

tensity) causes a qualitative change of the probability density

distribution, e.g., from monomodal to bimodal. Experimental

evidence of the P-bifurcation in an electronic circuit is

reported in Ref. 15. Moreover, it is shown experimentally

that the bimodal probability distribution corresponds to the

most pronounced coherence resonance.16 Therefore, in

the following, we use the probability density distribution for

the study of the impact of time delay upon coherence reso-

nance. For the investigation of the system equation (1), we

choose the resonance value of the noise intensity and choose

the time-delayed feedback strength K¼ 0.024. The general-

ized van der Pol equation (1) can be re-written as a two-

variable dynamical system

dx

dt
¼ y;

dy

dt
¼ eþ lx2 � x4

� �

y� x2
0xþ

ffiffiffiffiffiffi

2D
p

n tð Þ

þ K x t� sð Þ � x tð Þð Þ: (22)

The probability distribution of the amplitude is calculated

from the numerical simulation of Eq. (22), where the ampli-

tude is defined as aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞ þ y2ðtÞ
p

. In experiment, the

amplitude distribution is obtained in a similar way from the

measured x(t) and y(t). We analyze the probability density

distribution of the amplitude for varying time delay. The

results of the experiment (Fig. 5) and the numerical simula-

tion (Fig. 6) for the corresponding probability distributions

agree well. It can be seen that for s¼T/4, where T¼ 2p/x0,

FIG. 3. Modulation of the bifurcation parameter e by time delay s:

Analytical result and electronic circuit experiment. The saddle-node bifurca-

tion of limit cycles (e(s¼ 0)¼�0.03125) is represented by red dashed lines

(analytical) and red open circles (experiment). The subcritical Hopf bifurca-

tion (e(s¼ 0)¼ 0) corresponds to black solid lines (analytical) and black

dots (experiment). Parameters: K¼ 0.024, D¼ 0, l¼ 0.5, x0¼ 1.

FIG. 4. Dependence of the optimum noise intensity on the bifurcation pa-

rameter e (experiment). Parameters: K¼ 0, l¼ 0.5, x0¼ 1.

FIG. 5. Experimental results for the probability density distribution of the

amplitude for various values of s. Parameters: K¼ 0.024, D¼ 0.01, l¼ 0.5,

e¼�0.093, x0¼ 1, T¼ 2p.
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the distribution is unimodal. This means that the trajectory is

fluctuating in phase space near the deterministic stable focus

and there is no coherence resonance. For s¼ 3 T/4, the distri-

bution has a well-pronounced bimodal shape, which indi-

cates the appearance of noise-induced oscillations with a

non-zero amplitude. The maximum of the distribution close

the origin is due to the noisy motion near the stable focus

and the second maximum corresponds to the amplitude of

the noise-induced oscillatory motion. This behavior repeats

with a period T. For delay times s¼ 0, T/2, T, 3 T/2, the dis-

tribution is practically not changed, and is still unimodal.

Therefore, if the delay time is equal to a multiple of half the

intrinsic period of deterministic oscillations, the system

behaves in the same way as without delay.

To investigate the impact of time delay on coherence res-

onance, we also calculate the correlation time tcor defined by

tcor ¼ 1
r2

Ð1
0

jWðsÞjds, where WðsÞ ¼ hxðtÞxðtþ sÞi is the

autocorrelation function and r2 ¼ hxðtÞ2i is the variance. It is
approximately related to the full width at half maximum

(FWHM) of the power spectral density Dx by tcor ¼ 4
pDx

.16,18

The correlation time is a common measure used for the diag-

nostics of coherence resonance. Again we achieve good agree-

ment of experimental results with numerical simulations

(Fig. 7). The dependence of the correlation time tcor on the

time delay s has well-pronounced minima (Fig. 7), which cor-

respond to a unimodal probability density distribution (Figs. 5

and 6) and appear for s ¼ 1
4
þ nÞT; n 2 N

�

. The maxima are

related to bimodal probability distributions of the amplitude

and observed for s ¼ 3
4
þ nÞT; n 2 N

�

.

The features of coherence resonance clearly show up in

the plot of the correlation time versus the noise intensity. In

analogy with Ref. 17, we numerically calculate this depend-

ence for different values of time delay (Fig. 8) to demon-

strate the possibility of controlling coherence resonance by

time-delayed feedback. Without time delay, this dependence

has a maximum at an intermediate noise intensity, which

indicates coherence resonance. By properly choosing the

delay time, we can significantly enhance the effect of coher-

ence resonance which becomes apparent for s ¼ 3
4
þ nÞT;

�

n 2 N (Fig. 8). For s ¼ 1
4
þ nÞT; n 2 N

�

, no distinct maxi-

mum is observed, thus coherence resonance is suppressed. In

similarity to the probability distributions, the dependence of

the correlation time upon noise intensity also clearly indi-

cates that time delay has no impact on the system for

s ¼ n
2
T; n 2 N. This can be understood from Fig. 3 and Eq.

(20), which shows that the maximum shift of the saddle-

node bifurcation points to larger and to smaller values of e

occurs for s ¼ 1
4
þ nÞT

�

and s ¼ 3
4
þ nÞT

�

, respectively,

while there is no shift for s ¼ n
2
T. The bimodality of the am-

plitude probability distribution, and hence coherence reso-

nance, is enhanced if the operating point is brought closer to

the saddle-node bifurcation of limit cycles.

V. CONCLUSION

We have analyzed the generalized Van der Pol oscillator

in the presence of noise and delay. This model exhibits non-

excitable dynamics, and in the regime of subcritical Hopf

FIG. 6. Numerical simulation of the probability density distribution of the

amplitude for various values of s. Parameters: K¼ 0.024, D¼ 0.003,

l¼ 0.5, e¼�0.06, x0¼ 1, T¼ 2p.

FIG. 7. Both numerically obtained (solid line) and measured (open squares)

dependences of correlation time on time delay. Parameters: K¼ 0.024,

l¼ 0.5, e¼�0.06, x0¼ 1, T¼ 2p, D¼ 0.003 (numerical experiment),

D¼ 0.01 (real experiment).

FIG. 8. Numerical results for the dependence of the correlation time on

noise intensity D for various values of time delay. Parameters: K¼ 0.024,

l¼ 0.5, e¼�0.06, x0¼ 1, T¼ 2p.
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bifurcation, it demonstrates the phenomenon of coherence res-

onance. The amplitude probability density distributions for

various values of the time delay and the correlation time in

dependence upon time delay and noise intensity are studied to

demonstrate the controllability of coherence resonance by

delay. We find the suppression of noise-induced oscillations

for s ¼ 1
4
þ nÞT; n 2 N

�

and their enhancement for

s¼ 3
4
þnÞT;n2N

�

. The delay time values s¼ 1
2
nT;n2N do

not have any impact on the coherence resonance.

Coherence resonance in non-excitable systems in the

presence of time delay has recently been considered theoreti-

cally in a model of Stuart-Landau oscillator.17 The present

study discloses the possibility to control coherence resonance

by time delayed feedback in the experiment on an electronic

circuit, which is especially relevant from the application

point of view.
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