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I. INTRODUCTION AND GOVERNING EQUATIONS

In previous studies [1, 2, 3], we devised stable and accurate steady-state hybrid finite
volume/finite element algorithms to simulate complex viscoelastic flows. These schemes
were applied successfully to flow past cylinder [1], and to the benchmark flow of an
Oldroyd-B fluid through a planar sharp 4:1 contraction [2]. Subsequently, application
was extended to various Phan-Thien/Tanner model fluids, contrasting planar and ax-
isymmetric flows through sharp and rounded-corner contractions [3, 4]. Such advances
were achieved by ensuring consistency in the treatment of flux and complex source-
terms (solution and velocity-gradient dependent), which arise in the constitutive equa-
tion. Now, as a consequence, transients may be seriously addressed and time-accuracy
delivered.

We have undertaken such a task in two distinct phases. First, through spatial discreti-
sation adjustments (viewed as right-hand-side stress equation terms). Secondly, through
consideration of time-term approximations (left-hand-side terms). Hence, under the spa-
tial phase, we outline a series of variants under “Fluctuation Distribution”, (FD), both
with and without Median-Dual-Cell (MDC) contributions. This leads to recommenda-
tions as to optimal selection of upwinding factors (αT

l ) of FD-schemes. Subsequently, we
turn to the blending of fluctuation distribution and Median-Dual-Cell contributions to
the temporal stress-residual.

Lastly, we identify the link between finite volume (fv) and finite element (fe) spatial
contributions. This simply recognises the fact that at the fv-cell level, the sum of the
linear Galerkin interpolant contributions naturally yields the amalgamated finite volume
residual to that cell. The second phase of study addresses the discrete approximation of
the fv time-term,

∫

ΩT

∂τ
∂t

dΩT . Here, again we identify the link to Galerkin discretisation

(fe), and place this alongside a standardised iteration, based around a consistent Mass-
matrix formulation. The success of this approach may be judged critically against the
attainment of minimal error in stress and velocity, both in amplitude and phase as a
function of time, measured from the theoretical position.

Justification, in broad terms, for the use of such hybrid schemes may be found in
their ability to achieve high-order accuracy, whilst retaining stability and when applied
judiciously, both in the transient as well as at steady-state. They are responsive and
appropriate for use in combination with unstructured meshing (an advantage over spec-
tral schemes). Hence, they find application equally on complex smooth and non-smooth
viscoelastic problems, as we proceed to demonstrate. The numerical deliberation above
are taken first against a model transient viscoelastic flow problem, start-up Poiseuille
channel flows for an Oldroyd-B fluid, leading on to a complex flow, that of transient
viscoelastic flow through a contraction. The literature in this area was covered in Matal-
lah et al. [5]. In this regard, one notes the work of Sato and Richardson [6], utilising
a hybrid finite element/finite volume method with a pressure-correction scheme and a
time-stepping procedure. Their results documented the transient evolution in velocity
(alone) for planar channel Poiseuille flow, and pseudo-transient solutions (via stream-
lines, and progressively We-increasing states) for a 4:1 planar sharp-corner contraction.
Similarly, transient solutions were reported by Olsson [7] for a Giesekus fluid and a
rounded-corner contraction geometry, using a method-of-lines time integration proce-
dure and a finite-difference spatial discretisation. In addition, the same start-up channel
Poiseuille-flow for an Oldroyd-B fluid was considered more recently by Fiéter and Deville
[8], to expose the properties of spectral element methods in this regime. This work, as
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our own, enforced analytical transient inlet boundary conditions on velocity and stress,
following Waters and King [9]. These authors noted that accuracy in the transient re-
vealed typical errors of the order of a few percent, reflecting our own findings likewise.
In the present article, we go further and consider complex flows, where in particular we
analyse the influence of dynamic boundary conditions on evolutionary flow-structure for
start-up flow of Oldroyd-B fluids in a 4:1 rounded-corner contraction. In this respect,
we point to the conspicuous trends through the transient states in vortex activity and
stress fields. We are able to comment upon our transient findings, in contrast to those
of others in this context, who largely have appealed to fixed-point steady-state driving
boundary conditions, on the basis of far-field assumptions. We demonstrate the outcome
when such assumptions are avoided.

Incompressible viscoelastic flows are governed by conservation laws for mass and mo-
mentum, and a constitutive equation for stress. In non-dimensional form, the balance
equations under isothermal conditions may be represented as:

∇ · uuu = 0, (1.1)

Re
∂uuu

∂t
= −Re uuu · ∇uuu −∇p + ∇ ·

(

2
µ2

µ
ddd + τττ

)

. (1.2)

Utilising the Oldroyd-B constitutive equation for the equation of state, the stress τττ is
given by:

We
∂τττ

∂t
= −We uuu · ∇τττ + 2

µ1

µ
ddd + We (LLL · τττ + τττ ·LLLT ) − τττ . (1.3)

Here, uuu, p, τττ represent the fluid velocity, the hydrodynamic pressure and the extra-stress
tensor; ddd = (LLL+LLLT )/2 represents the Eulerian rate-of-deformation tensor and LLLT = ∇uuu,
the velocity gradient. The total viscosity µ is split into Newtonian solvent (µ2) and
polymeric (µ1) contributions, such that µ = µ1 +µ2. The Oldroyd-B model is a constant
shear viscosity model fluid (with an unbounded elongational viscosity at finite strain
rates).

Non-dimensional group numbers are Reynolds (Re = ρUL
µ

) and Weissenberg (We =
λU
L

) numbers, defined with reference to material parameters ρ, λ of fluid density and
relaxation time, and U , L, characteristic velocity and length scales for the flow. Creeping
flow for 4 : 1 contraction problem is represented by a low setting of Reynolds number,
typically 0(10−2).

II. NUMERICAL ALGORITHM

A. Fundamental scheme structure

The present hybrid finite volume/element method is articulated around a time-splitting
semi-implicit formulation, involving two distinct aspects: a Taylor-Galerkin scheme and
a pressure-correction scheme. The Taylor-Galerkin scheme is a two-step Lax-Wendroff
time stepping procedure (predictor-corrector), extracted via a Taylor series expansion
in time [10, 11]. The pressure-correction method accommodates the incompressibility
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constraint to ensure second-order accuracy in time (see [12, 13]). A three-stage structure
emerges per time-step cycle, which can be expressed in discrete form, see [1]. Galerkin
spatial fe-discretisation is employed within the momentum equation in stage 1 (matrix
Au), the pressure-correction in stage 2 (stiffness matrix A2) and the incompressibili-
ty constraint in stage 3 (mass matrix A3).The momentum diffusive terms are treated
in a semi-implicit manner to enhance stability. The resulting augmented-Galerkin Mass
matrix-vector equations at stages 1 and 3 are solved using an efficient element-by-element
Jacobi scheme. The required levels of convergence are attained with only a handful of
such Jacobi iterations. A direct Choleski decomposition procedure is invoked to handle
stage 2.

It is the discretisation of stress that dictates the nature of the implementation. For
a pure fe method, stress matrix, Aτ , is sparse and of Galerkin form. In contrast, for
the hybrid finite volume/element scheme, represented as fv, Aτ is taken as the identity
matrix. Hence, the need to resolve a matrix-vector equation is avoided, and the right-
hand side vector bu is straightforward to construct. Spatial discretisation is based upon
six-noded fe-triangular cells, with three vertices and three mid-side nodes. Velocity
and pressure interpolation is identical for either fe or fv implementation. Velocity
components are computed via quadratic shape functions, using the six nodal values of
the fe-triangle. Pressure is formed from linear functions, based upon the vertices alone
(see Fig. 1a). Stress interpolation is of quadratic form for fe and linear for fv (with
non-recovered stress gradient). With the hybrid scheme, interpolation errors may be
avoided when recovering the stress nodal values for the momentum equation. This is
achieved via the finite volume tessellation, constructed from the finite element grid by
connecting the mid-side nodes. Four triangular fv sub-cells are generated per fe-parent
triangle, Fig. 1a. The stresses are computed on the vertices of the fv-cells, as outlined
below.

B. Finite volume discretisation, background

Cell-vertex fluctuation distribution schemes are used to split the flux (R) and source (Q)
residuals to the vertices of each fv-triangle T . To this end, it is convenient to represent
the stress constitutive equation in the form,

∂τττ

∂t
= −∇ · R + QQQ (2.1)

R = uuuτττ (2.2)

QQQ =
1

We
(2

µ1

µ
ddd − τττ) + LLL · τττ + τττ ·LLLT , (2.3)

thus, isolating the flux (R) and source (QQQ) terms.
The integration of Eqs.(2.1)-(2.3), for each scalar stress component τ , provides the

time, flux and source residuals:
∫

Ωl

∂τ

∂t
dΩ =

∫

ΩT

uuu · ∇τ dΩ +

∫

Ωl

Q dΩ. (2.4)

These can be evaluated over different control volumes, namely, the fv-triangle T (RT ,
QT ) or/and the Median-Dual-Cell associated to a given node l within the fv-cell T
(Rl

MDCT , Ql
MDCT). Median-Dual-Cell zones are unique non-overlapping regions defined

per node l, an area one third of the triangular cell over which it is constructed, see Fig.
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1b. A Median-Dual-Cell tessellation is equivalent to the Dirichlet tessellation/Voronoi
region if the triangulation is of Delaunay form [14].

To summarize, a time consistent distributioned approach over flux and source terms
(area-weighted [15, 16]), is paramount to ensure high-order accuracy at steady-state, and
a consistent Median-Dual-Cell contribution is required to retain stability of convergence
in complex flows. A generalised complete nodal update equation corresponds to the sum
of contributions from all triangles surrounding node l, given by:

τn+1
l − τn

l

∆t
=

∑

∀T δT αT
l (RT + β1QT )

Ω̂FD
︸ ︷︷ ︸

Fluctuation distribution

+

∑

∀T δMDC(β2R
l
MDCT + Ql

MDCT)

Ω̂l
︸ ︷︷ ︸

Median-Dual-Cell

, (2.5)

where
∑

∀T represents all fv-cells surrounding node l; αT
l the fluctuation distribution

coefficients; Ω̂FD =
∑

∀T δT αT
l ΩT , with ΩT area for triangle T ; and Ω̂l = 1

3

∑

∀T ΩT ,
Median-Dual-Cell zone about node l. This approach, henceforth referred to as CT2, has
led to significant gains in accuracy and stability for steady 4:1 contraction benchmark
flows [2]. Parameters δT and δMDC dictate different scheme options, as do boolean factor,
β1, β2, generally taken as unity. If δMDC = 0, MDC-forms are discarded and pure-FD
schemes emerge, capable of second-order steady-state accuracy for 1D and 2D extensional
flows [17]. If δT = δMDC = 1 and β1 = β2=0, a standard [RT -FD , QMDC ] fv-scheme
is classified, of uniform type if αT

l = 1
3 and inconsistent in control volume per term. For

flows with shear, stability demands MDC-forms, δMDC 6= 0 with β1 = β2=1. As such
in Ref [1], the authors retained δT = κ, with κ = ξ/3 if |ξ| ≤ 3 and 1 otherwise, and
δMDC = 1 (see below for CT3, with δMDC = 1 − δT). Here, ξ = We(a/h), with a the
magnitude of the advection velocity per fv-cell and h the square-root of the area of the
fv-cell in question. A less generalised form of Eq. (2.5), inconsistent in area-weighting,
would equate Ω̂FD = Ω̂l.

III. FLUCTUATION DISTRIBUTION SCHEMES - CHOICE OF α
T

L

The finite volume method presented in this paper is based on Fluctuation Distribution
(FD) schemes. These are compact-stencil upwinding schemes, that update the solution
in a triangular cell, by splitting flux variations to its vertices according to a prescribed
strategy. Such schemes can possess properties of conservation, positivity and linearity
preservation. Non-linear FD schemes can be both positive and linearity preserving,
whereas linear schemes may possess only one such property.

An important aspect of fluctuation distribution is the distinction between triangles
with two or one inflow side(s). This is achieved via the sign of the coefficients kl =
1
2aaa ·nnnl, l = 1, 2, 3, where aaa is the average velocity in the triangular cell and nnnl the scaled
inward normal to the edge opposite vertex l; kl > 0 indicates an inflow edge, that is a
contribution is sent to node l, whilst kl < 0 designates an outflow edge, i.e. vertex l
receives no contribution. Hence, triangles with two inflow sides possess two positive kl

(kj > 0, kk > 0 leading to (αi = 0, αj , αk)), whereas triangles with one inflow side have
one positive kl only ( kj > 0, so that (αi = 0, αj = 1, αk = 0)). If the one inflow side
situation was to prevail throughout the whole domain, all FD-schemes would collapse to
the same form, thus making it impossible to conduct a comparative study.
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We proceed to discuss briefly the various fluctuation distribution schemes contrasted
in this study, namely two linear schemes (LDB and Lax-Wendroff) and two non-linear
versions (PSI and Fluctuation Redistribution). It is important to note that fluctuation
distribution schemes have been developed within the realm of pure advection equations.
For more details on the theory and the construction of such upwinding schemes, the
reader is referred to the work of Jameson et al. [18], Morton et al. [19], Deconinck et al.
[15] and Hubbard et al. [20].

A. LDB scheme

The Low Diffusion B (LDB) scheme is a linear scheme. It is linearity preserving, and
lacks positivity accordingly. However, it displays a relatively small amount of numerical
diffusion in comparison to a linear positive scheme. The LDB distribution coefficients
αT

l are defined per cell node l according to the angles γ1 and γ2 in the triangle T , see Ref
[1], subtended on both sides of the cell advection velocity aaa (an averaged velocity-vector
per cell), independent of |aaa|. The closer the advection velocity is to any given side, the
more contribution is sent to the downstream vertex of that side. Our previous work on
steady-state problems has proven the efficiency of LDB schemes in dealing with model
problems, as well as some complex flows [1, 4].

B. Lax-Wendroff scheme

The Lax-Wendroff scheme (LW) is a linear (linearity preserving) scheme. It is spatially
centred and second-order accurate in space. In addition, it contains a dissipation term
designed to control oscillations in the neighbourhood of discontinuities, thus conferring
second-order accuracy in time. Lax distribution coefficients are,

αT
l = 1/3 +

∆t

4ΩT

aaa ·nT
lnT
lnT
l (3.1)

where ∆t is a time-step and nT
lnT
lnT
l is the scaled inward-normal to the edge of triangle T ,

opposite to node l.

C. PSI scheme

The Positive Streamwise Invariant (PSI) scheme is a non-linear scheme, based on the
notion of enforcing invariance along a preferred direction within a triangle. It is both
positive and linearity preserving. By design, it is first-order accurate in time, and second
order-accurate at steady state. The PSI-scheme is based on the so-called Narrow (N)
scheme which exhibits the lowest cross-diffusion noise among linear positive schemes. To
this, a MinMod limiter (L(x, y)) has been appended. The triangle [τi, τj , τk]-solution
update reads,

τn+1
i = τn

i +
∆t

ΩT

R∗

i , τ
n+1
j = τn

i +
∆t

ΩT

R∗

j , τ
n+1
k = τn

k , (3.2)

R∗

i = Ri − L(Ri,−Rj), Ri = −
1

2
aaa ·nT

inT
inT
i (τn

i − τn
k ),

R∗

j = Rj − L(Rj ,−Ri), Rj = −
1

2
aaa ·nT

jnT
jnT
j (τn

j − τn
k ), (3.3)

L(x, y) =
1

2
[1 + sgn(xy)] ∗

1

2
[sgn(x) + sgn(y)] ∗ min[|x|, |y|].
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The shock-capturing capabilities of this scheme make it particularly attractive for pure
advection flows. Nevertheless, it is our experience that positivity should be handled with
care when source terms are involved.

D. Fluctuation redistribution scheme

The fluctuation redistribution (FR) scheme combines a low order (LO) monotone scheme
(here, PSI) and a high order (HO) non-monotone scheme (here, second-order Lax-
Wendroff ) in such a fashion that, see Hubbard [20]: (a) the monotone scheme is favoured
in regions where the solution gradient is locally high, thus reducing the appearance of os-
cillations in the solution; (b) the high-order scheme dominates in smooth flow regions
to capture second-order accuracy. This combination is realised through a fluctuation
redistribution step (akin to a predictor-corrector), whereby a nodal-limiter [(βT

i )max]
is applied to the difference between the contributions of the two underlying schemes,
low-order (LEC-PSI ) and high-order (HEC-Lax ). Such a difference is termed an antid-
iffusive cell contribution(AECT

i ), see [20] for details. The four phases of implementation
∀ node i and FV cell T are:

(i) Compute LECT
i ; HECT

i ; AECT
i = HECT

i − LECT
i ;

(ii) τL
i = τn

i +
∑

Ti
LECT

i ;

(iii) Compute nodal limiter (βT
i )max; correct AECT

i := (βT
i )max ∗ AECT

i ;

(iv) final solution update τn+1
i = τn

i +
∑

Ti
AECT

i .

IV. FINITE VOLUME DISCRETISATION, TRANSIENT CONSIDERATIONS

The above nodal-update strategies described in II. section B. have been designed with
steady-state solutions in mind. In this section, we shift the focus to capturing accuracy
in the transient evolution of the solution. First, we explore an optimal combination of
parameters δMDC and δT of CT2 (spatial weighting). Then, we consider the viability
of treating the left-hand side of Eq. (2.5) in a finite element fashion, that is using a
mass-matrix iteration alternative, in place of the finite volume mass-lumping approach.

A. Dynamic correction

As pointed out in section B., a Median-Dual-Cell contribution is required to ensure
stability of convergence in complex flows. However, adding these contributions in an
indiscriminate fashion (δT = κ, δMDC = 1), as in Eq. (2.5), may produce additional
contributions to the evolving transient solution. By design, the same should vanish
once a steady-state is reached. The dependence of the parameter δT on the cell average-
velocity, for a given We, provides an elegant way to locally adjust the contributions of the
two terms of the right-hand side of CT2 (Eq. (2.5)). Indeed, in extreme cases, δT would
equate to 1 in fast-flow regions (usually located away from fixed boundaries), whereas
δT would vanish on fixed boundaries (assuming no-slip boundary conditions). Hence, a
natural and consistent combination choice would be (δT , δMDC = 1 − δT ). This would
ensure a minimal Median-Dual-Cell contribution in core-flow, whilst little upwinding is
imposed near fixed boundaries.



8 M. F. WEBSTER ET AL.

B. Consistent Mass-Matrix iteration

Commencing with integral terms from the stress equation for a fv-cell T , of area ΩT , and
Median-Dual-Cell, Ω̂T

l , we observe for the right-hand-side residual, Lrhs(τ), and three
independent linear interpolation functions on the cell ψi(xxx), i = 1, 2, 3, that the Galerkin
terms are:

∫

ΩT

ψi(xxx)Lrhs(τ) dΩT , i = 1, 2, 3. (4.1)

By taking the sum of all three contributions from the fv-cell T , this leads to

3∑

i=1

∫

ΩT

ψi(xxx)Lrhs(τ) dΩ =

∫

ΩT

(
3∑

i=1

ψi(xxx)

)

Lrhs(τ) dΩ =

∫

ΩT

Lrhs(τ) dΩ. (4.2)

In other words, we extract the fv-cell contribution, having discarded the variational
weighting. From this position, having gathered a single contribution to an fv-cell, one
then has to construct a distribution of this quantity to the nodes of that cell. This
is achieved either via “fluctuation distribution” philosophy or the “Median-Dual-Cell”
construct. Within the fe-approach, the weighting deals with such matters. One may
observe, in addition, that under summation of weighting functions over ΩT , the same
conclusions arise for Petrov-Galerkin weighting, irrespective of interpolation function
order, that is

i=3∑

i=1

(1 + αh uuu · ∇)ψi(xxx) = 1

In similar fashion, we may address the time terms, with a goal of recognising the rela-
tionship between fv and fe discretisations. Here, we may start with

∫

ΩT

ψi(xxx)ψj(xxx)
[τn+1 − τn]j

∆t
dΩT , (4.3)

as a realisation of the Galerkin form of
∫

ΩT

ωi(xxx) ∂τ
∂t

dΩT , subsuming temporal gradient
approximation and linear interpolation. We may express this term, via the “consistent
mass-matrix” in the form,

1

∆t
[MT

fel]ij
[
∆τn+1

]

j
,MT

fel =
ΩT

12





2 1 1
1 2 1
1 1 2



 . (4.4)

Equivalently, under fv weighting,
∑

i ψi(xxx) ≡ 1, we would have

1

∆t
[MT

fvl]ij
[
∆τn+1

]

j
,MT

fvl =
ΩT

3





1 1 1
1 1 1
1 1 1



 . (4.5)

In either fe or fv form, nodal updates are enforced through assembling the system of
equations ∀ΩT . This is performed via inversion of the mass-matrix, through an efficient
element-by-element Jacobi iteration. This same procedure is employed for velocity (and

stress in the case of a pure fe-scheme): it is applied to nodal vector iterate XXX(r), and
appeals to a diagonalised “iterative pre-conditioner”, Md and an acceleration parame-
ter ω. Thus, for the generalised system and over schemes of discretisation (fe or fv),
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Msch XXX = bsch,

Md XXX(r+1) = (Md − ω Msch)XXX(r) + ω bsch, r = 0, 1, · · · (4.6)

with solution XXX =
[
τn+1 − τn

]
.

Here, we observe from the background theory [12, 16, 21], that element-cell contribu-
tions may be assembled, via element boolean transformation matrices Le,

Msch =
∑

e

Le Me
sch LT

e

and likewise for Md, so that, relevant eigenvalue bounds may be established for the iter-
ation from the element-matrix contributions. This leads to optimal acceleration param-
eter settings. Note, one can recover the conventional Median-Dual-Cell implementation
of time, by choosing the “straight diagonal” (Md)fvl as “iterative pre-conditioner”. In

this scenario, ΩT /3 = Ω̂T
l , and the base iterate, XXX(1) is identical to the standard MDC-

treatment of the time-term, with XXX(0) ≡ 0 by default. Pursuing the iteration further
(with Mfvl and ω = 1), provides an iteration that will diverge if projected eigenvalue
bounds are attained (lower bound 0, upper bound 3). This, indeed, we observe in prac-
tice. Of course, it is fairly obvious, even at the element level, that Mfvl is likely to lead
to a non-diagonally dominant and singular system, once one considers the rhs-vector and
note that nodal contributions will differ for the cell under any practical fv discretisation.
Nevertheless, interpreting the fv-system in this manner, does provide us with fresh in-
sight as to scheme choices that converge (actually work), and a point of cross-reference
with other approaches.

Conversely, considering the fe-alternative, we observe that the “row-sum diagonal”
choice, yields

(Md)fel =
ΩT

12





4 0 0
0 4 0
0 0 4



 =
ΩT

3





1 0 0
0 1 0
0 0 1



 . (4.7)

So again, the base iterate, XXX(1), provides the conventional Median-Dual-Cell fv-time
representation. Such a single iteration, with absolute-value row-sum diagonalisation is
often referred to in the literature as “mass-lumping” [11, 12]. However, and in contrast
to Mfvl, one can now proceed with further iterations, due to the favourable conditioning
of Mfel. Such time-discretisation is anticipated to improve the time-accuracy of the
proposed fv-rhs-discretisation, as observed in the fe-context [10, 12].

Within the above framework, adopting Mfel, we have options posed as to choice of
bsch. Directly from fv-discretisation, we extract bfv and the class of all such rhs terms.
In addition, we may also call upon bfel, over fv-cells, as sub-cells of parent velocity fe-
cells. This may, or may not, draw upon the further complication of Petrov-, as opposed
to Galerkin weighting, for the stress equation (the relevant upwinding strategy). Hybrid
implementations are also clearly within our grasp.

C. Consistent fv-time scheme

From our earlier studies, we have established an effective area-weighted nodal update
scheme, CT2, incorporating both FD and MDC contributions, see Eq. (2.5). Never-
theless, this scheme only accommodates MDC-discretisation of the time term to the lhs
of the equation. Noting the role of blending parameters δT on FD and δMDC on MDC
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contributions, so that we adopt δMDC = 1 − δT for consistency, we may analyse each
area contribution separately, for triangle T and the associated MDC for node l, deriving
CT3-scheme. This would lead to separate nodal update equations per cell, typically,

ΩT

3

αT
l

∆t
[∆τi + ∆τj + ∆τk]

n+1
= αT

l (RT + QT ), on ΩT , l = 1, 2 or 3 (4.8)

Ω̂T
l

∆t

[
∆τn+1

]

l
= (RMDC + QMDC)

l
= bMDC

l , on MDC. (4.9)

To extract a unique equation on ΩT for node l from Eq. (4.8), demands a step, such as
mass-lumping, from which,

ΩT

∆t
αT

l

[
∆τn+1

]

l
= αT

l (RT + QT ) = αT
l bT , on ΩT . (4.10)

Blending equation (4.9) and (4.10) with parameters δT and δMDC, so that Ω̂blend
l =

[
∑

Tl
δT αT

l ΩT +
∑

MDCl
δT
MDCΩ̂T

l

]

and summing over cells yields scheme CT3,

∆τn+1
l

∆t
=

∑

∀Tl
δT αT

l bT

Ω̂blend1

l

+

∑

∀MDCl
δT
MDCbMDC

l

Ω̂blend2

l

, (4.11)

an alternative complete nodal update to equation (2.5), with Ω̂blend1

l = Ω̂blend2

l =

Ω̂blend
l . From this adjusted form, we observe that a uniform distribution α-scheme

(αT
i = 1/3,∀i, T ) on time terms would generate an area factor of Ω̂l. One notes the

versatility of CT3, if Ω̂blend1

l = Ω̂FD and Ω̂blend2

l = Ω̂l regenerating Eq. (2.5). In the
more general state, the blending parameters themselves direct the precise composition of
area-weighting, hence governed by local dictates. We proceed to demonstrate the effective
nature of CT3, in contrast to CT2, through practical temporal implementation, noting
that we may treat these variants as delivering alternative rhs-vectors bsch. Consequently,
consistent mass-matrix iteration may be layered upon each alternative, as required.

V. PROBLEM SPECIFICATION

To investigate the performance of the different fluctuation distribution schemes presented
in section III., and the solution-update strategies discussed above (consistent FD fv-
approach of Eq. (2.5) (δT = κ, δMDC = 0), CT2 of Eq. (2.5), CT3 of Eq. (4.11) and
mass-matrix of Eq.(4.6)), we consider planar start-up channel flow (Poiseuille flow). This
is a transient problem, when initiated from rest. For the Oldroyd-B model fluid, this
flow is equipped with an analytical transient solution in velocity and stress, provided by
Waters and King [9]. The transient-stress exhibits both overshoots and undershoots as it
evolves towards a steady-state. The problem is a pure transient shear flow computed upon
an unstructured mesh, see Fig. 2. Such choice is ideal for the purpose of this study, since
it is sufficiently crude to stimulate differences between various scheme implementations,
but not so crude as to significantly degrade solution quality. Also, on unstructured meshes
the two-inflow side condition per element is ensured, so that the various FD-upwinding
schemes may be distinguished.

Following the Waters and King transient analytical solution, velocity components are
imposed both at the inlet and exit, whilst stress is imposed at the inlet only. Pressure
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is set at a boundary exit point to remove the indeterminacy of pressure level. No-slip
boundary conditions prevail at the walls. The non-dimensional parameters are µ1/µ =
8/9, µ2/µ = 1/9. These ratios correspond to representative values used in the literature,
when studying highly viscoelastic fluids. We start with a typical time step of order
0(10−2) and the level of We = 1. Here usually, five Jacobi iterations are enough to
reach convergence for the fe-stages. We have recourse to different number of iterations
to determine optimal settings, since iteration numbers can be different for stress and/or
velocity components of the system. The time-stepping termination criteria is taken as
10−5, governing a relative solution temporal increment within a least squares measure
[17, 5]. All solutions are compared against the transient analytical solution, both at a
boundary and at an interior node. Solution quality is judged on two criteria: keeping in
phase with the analytical solution, and minimisation of the relative error to the analytical
solution throughout the transient development, and steady-state. We retain Node 39
[x = 1.2, y = 0.0] and Node 62 [x = 0.62, y = 0.6], respectively (see Fig. 2). In this
way, we are able to establish the properties of the various implementations without any
boundary influence. Also, we can investigate the potential of improving the solution by
specific treatment of the boundary, if so required.

VI. DISCUSSION OF RESULTS

We proceed to scrutinise our implementation results for start-up channel flow and tran-
sient response for the various fv-nodal updates discussed above, organised into sections
on pure FD-schemes, hybrid schemes, MDC inclusion, and mass-matrix iteration. We
focus attention entirely upon all-important stress evolution. As demonstrated in the
following sections, it is necessary to segregate behaviour at the shear boundary from
that in core-flow. Table I charts the number of time-steps required for each FD-scheme
(without MDC, δMDC = 0) to achieve steady-state, and the departure from the analyt-
ical solution at predefined instants that correspond to the successive peaks in transient
stress-evolution (peaks 1-3, long-time). Table II quantifies the same when MDC is in-
cluded. We refer to these tables in the discussion below. Default options, if not otherwise
stated, are: CT2, δMDC = 1, with LDB FD-scheme.

Pure FD-schemes, less MDC (δMDC=0): A1. Shear boundary Fig. 3a con-
trasts the three cell-vertex Fluctuation Distribution schemes of interest, that form the
backbone for the present numerical study: LDB (linear and linearity-preserving), PSI
(non-linear and positive) and Lax-Wendroff (linear, central-scheme with dissipation).
Note, these FD-schemes are applied consistently to both flux and source terms. The
LDB-scheme undershoots the analytical solution throughout, starting from peak-1, and
gradually asymptotes towards analytical steady-state form. The PSI-scheme almost repli-
cates the transient (analytic-form) throughout, albeit with a minor undershoot at peak-
1, and a minor overshoot, thereafter. Steady-state is captured as well. The LW-scheme
manifests response similar to that of LDB, but with more pronounced undershoot. A
quantitative summary is provided in Table I, in terms of peak errors, taken relatively to
the analytical solution. For the shear boundary, PSI raw-results are clearly superior over
all three options (up to five times better, worst-case).

Pure FD-schemes, less MDC (δMDC=0): B1. Core-flow In Fig. 3b, we
contrast the base FD-schemes, impinging consistently on both flux and source terms
without MDC contributions. The LDB-scheme (linearity-preserving) reasonably captures
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the analytical solution, particularly beyond peak-2 (except for an overshoot at peak-
1 and undershoot at peak-2). PSI-scheme (positive) undershoots throughout, and is
conspicuous in that it exhibits a constant departure from the analytical solution at long-
time. Performance of the LW-scheme is ubiquitous: this scheme overshoots until peak-3,
then undershoots, before converging to the steady-state analytical solution. Table I
summarises the departure of these solutions from analytical form. It is clear that the
various schemes do not replicate the features exhibited within shear-boundary flow. In
particular, the positive PSI-scheme fails to capture long-time transients, and undershoots
peak-1 in core-flow. We emphasise, that this same scheme approximated the analytical
solution closely in the boundary zone, see Fig 3a. Paradoxically, the most promising
FD-scheme in core flow is the LDB-scheme (particularly so, beyond peak-2 and as time
advances).

Hybrid FD-schemes, less MDC (δMDC=0): A2. Shear boundary Elsewhere,
positive FD-schemes have been introduced for pure advection problems. Hence, we have
tested various update-strategies, without applying PSI to source terms. Eq. 2.5 with
δMDC=0 is segregated to allow one FD-scheme to apply to RT , with a second acting
on QT , e.g. [PSI(RT ),LDB(QT )]. In the boundary zone, none of these hybrid schemes
improve upon the exceptional quality of the consistent PSI-option, as demonstrated in
Fig. 4a and results of Table I. The FR-option, mimics PSI-results closely at peak-1,
but thereafter adopts Lax-form. Infact, any option with Lax-inclusion, degrades from
PSI, following Lax. Schemes with PSI-LDB mix, are heavily influenced by PSI (at the
boundary) and prove reasonable candidates to pursue (see on for core-flow). Notation
[PSI,LDB/LDB], implies average [PSI,LDB] contribution to RT , with pure-LDB on QT .

Hybrid FD-schemes, less MDC (δMDC=0): B2. Core-flow The combined
schemes are slightly out of phase with regard to the analytical solution, as demonstrated
in Fig. 4b. All suffer degradation in long-time development, as with PSI. Noticeably,
the larger the LDB-contribution to the combined scheme, the closer the solution to the
analytical steady-state value. Overall, the [PSI,LDB/LDB] is preferred, though cannot
surpass the exceptional performance of pure-LDB after peak-2. Note, the first-peak
is almost captured (within 1.7%) by any hybrid-combination attempted (attributed to
PSI-influence), with the exception of the FR-results. The failure of this FR-scheme
is disappointing, since its application to pure advection problems was promising for
transient model flows [20].

MDC-inclusion (δMDC 6= 0): A3. Shear boundary For complex flows, our past
experience has been that MDC-contributions are required to ensure numerical stability
[1, 2]. In addition, consistent MDC-inclusion is paramount to reflect transient accuracy.
Indeed, the [δMDC = 1, δT = f(ξ)] combination (standard CT2) is poor, as compared with
that of other cases at peak-1 for the boundary node, almost doubling the magnitude of
the analytical solution. This would indicate that a greater domination through the δMDC-
term (with lesser from the FD-part) is required in the boundary region, since the average
velocity is minimal there. In this respect, even a standard inconsistent (αRT + QMDC)
scheme would perform reasonably well, with heavy-side weighting to source-MDC terms.
Here, the optimal combination of δMDC and δT is gained when δMDC = 1 − δT (so,
compatible blending functions). Indeed, for this model problem the value of h is between
0.04 and 0.06, whilst the magnitude of the advection velocity is unity at channel-centre
and vanishes as one approaches the boundary. Therefore in core-flow, the value of δT

tends to 1 and δMDC to 0, since |ξ| > 3. Alternatively, the value of δT practically
vanishes towards the boundary, where δMDC dominates. This setting concurs well with
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[1, 2] and the case [δT = 1, δMDC = f1], where f1 = 1 at boundary points, and f1 = 0
elsewhere.

Henceforth, we pursue PSI and LDB FD-schemes further, since these two schemes
outperformed others, in the absence of MDC-contributions. Commencing with LDB,
Fig. 5a confirms the judicious choice of [δT , δMDC=1-δT ]-combination for CT2 (noting,
the comment above with δMDC = 1). Indeed, the relative error at peak-1 is reduced
impressively, from 100% to a mere 4%, see Table II. In contrast, for CT3 in-phase results
are derived, and retaining δMDC = 1 does not degrade the solution from δMDC = 1− δT .
On the contrary, setting δMDC = 1 improves the solution marginally, above δMDC =
1 − δT . This reflects the superior consistency in term-weighting of CT3, upon inclusion
of MDC-contributions. Consequently, we retain CT3, henceforth. Note, the maximum
relative error for the (LDB,[δT , δMDC = 1])-nodal update is 4% (corresponding to peak-
1), which reduces to 0.3% at steady-state. Note, the PSI-scheme remains optimal at the
boundary, as indicated in Fig. 5a and Table II for (PSI,[δT , δMDC = 1]). The relative
error achieves its maximum at peak-1 (2.4%), declining to 0.1% at steady-state. The
option with δMDC = 1− δT is marginally better at peak-2, but worse elsewhere. All such
error bars are dramatically reduced with h-reduction [12 , 14 ] and ∆t-reduction through one
and two orders (see [22]).

MDC inclusion (δMDC 6= 0): B3. Core-flow Finding in core-flow, re-echoe those
for near-shear-boundary flow. More specifically: using δMDC=1 with CT2 introduced
oscillations around peak-1, (instead of doubling the first-peak magnitude, as near the
boundary); appealing to the δMDC=1-δT choice corrects for this, to produce a solution
similar to that of a consistent pure-FD-approach, see Fig. 5b. Here, again, the choice of
δMDC is not critical for CT3, though the slight improvement brought about by δMDC=1
on the boundary, is marginal in core flow. Finally, as anticipated, PSI with MDC, inherits
the long-time behaviour of PSI without MDC. Short-time response (peak-1,-2) are quite
respectable, so that PSI-MDC displays good first-peak performance. Quantification is
provided in Table II.

Here, it is worth mentioning that the axial velocity component for this 10x10 crude
mesh is predicted to lie within a few percent of the transient analytical solution. The
numerical solution captures the transient development at all the peaks/troughs, and
long-time behaviour within 0.04% of the analytical solution. The relative error declines
upon the refined 40x40 mesh, as shown in Fig. 8a,b. The sampled boundary and in-
ternal nodes of reference are [x=1.2, y=0.0] and [x=0.56, y=0.65], respectively. At this
level of refinement and time-step selection of 0(10−4), the [LDB, CT3]-scheme sharply
captures the transient response, throughout the transient development and onwards to-
wards steady-state. For example, τxx maximum relative error at steady-state, on interior
and boundary sample points is 0.13% and 0.049%, respectively. In this study, we have
focused on the more stringent scenario of unstructured meshing, generally unavailable to
spectral element schemes in the wider context. Our extensive earlier analysis, over mesh
refinement and time step reduction, would point to second-order spatial accuracy and
temporal accuracy between first and second order (see [22, 23]).

Mass-matrix weighting (δMDC 6= 0): A4. Shear boundary We proceed to in-
vestigate the effect of introducing mass-matrix-iteration, in its treatment of the time
integral, see Fig. 6a. We recall that raw CT3-schemes are equivalent to using a single-
iteration (m1). In addition, when appealing to mass-matrix iteration, iteration is avoided
at boundary points, as this introduces significant accuracy degradation. Empirical esti-
mation has revealed that two mass-iterations is optimal.
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For the LDB-m2 scheme, the improvement brought about by mass-matrix iteration
over pure-CT3 is striking for the boundary solution, especially in the short-time transient.
Indeed, this LDB-m2 scheme tallies closely with [CT3-PSI]-results throughout, with the
exception of a slightly more pronounced undershoot at peak-1. Relative errors for peak-2
and peak-3 are now quite respectable with LDB-m2. This is significant, since none of
the strategies involving mass-lumping (m1) could compete against the pure-FD (PSI)
nodal-update.

Moreover, incorporating mass-matrix iteration into [CT3-PSI], degrades solution qual-
ity at the boundary beyond peak-1 (which itself is remarkably good), with respect to pure
[CT3-PSI], irrespective of number of iterations employed (see Fig. 5a versus Fig. 7a).
The situation is similar with reduction in δMDC from unity.

Mass-matrix weighting (δMDC 6= 0): B4. Core-flow Under such weighting,
there is positive impact upon the LDB-scheme, as was the case with boundary-flow.
Now, peak-1 is captured upon iteration. This is followed by a minor overshoot around
peak-3. These characteristics are judged against the significant first-peak overshoot and
second-peak undershoot of LDB without mass-matrix weighting of Fig. 6b. So, iteration
aids [CT3-LDB] in core and boundary flow.

In contrast, for the positive PSI-scheme in core-flow, recourse to mass-matrix-weighting
does not improve long-time behaviour and departure from the analytical solution is con-
spicuous. It accentuates the undershoot at the first-peak, see Fig. 7b in contrast to Fig.
5b.

For LDB, a dynamic adjustment may be more appropriate here, so that gradually
iteration would be phased out as time advances (say, beyond peak-2). Preliminary evi-
dence would indicate that such a time-switch is effective, at both boundary and within
core-flow, noticeably once the strength of solution-oscillation has abated to beyond peak-
3. Dynamic algorithmic adjustment may of course be enforced on alternative portions
of the schemes constructed. Notably, an average of (CT2/CT3)-LDB, performs well at
boundary-peak1 (as [PSI,CT3,m2]).

VII. APPLICATION TO A COMPLEX FLOW

We extend the application of the optimal scheme, derived in the previous section [LDB,CT3,
δT
MDC = 1], to start-up creeping flows within a 4:1 planar contraction (Fig. 9). Creep-

ing flow is approximated via a low setting of Reynolds number, typically 0(10−2). We
observe that solutions for Reynolds number 0, 10−4 and 10−2 are practically identical.
Here, we focus upon the issue of the influence of time-dependent inlet boundary condi-
tions settings on flow-structure, see Waters and King [9]. Transient velocity-components
are imposed at inlet and exit-flow stations, and transient stress-components at the in-
let station only. A pressure level may again be set at the inlet-station (or exit), and
symmetry is imposed at the centreline. No-slip boundary conditions are retained on
static wall boundaries. To reflect the transient nature of the solution, Fig. 10 charts the
centreline-velocity against time, monitored at the inlet zone for We = 1.0 and We = 2.5.
The first peak [P1], corresponds to the first overshoot at t=0.52 units, [P2] to t=1.58,
[P3] to t=2.60 and the last [P4] to steady-state at t=8.8 units for We = 1.0. Fig.
11 demonstrates the transient evolution of velocity-vectors for the We = 1.0 solution,
from a short-time (t=0.20 units) after start-up of flow, till the ultimate steady-state is
reached (t=8.80 units). A salient-corner vortex builds-up gradually to time-P1 (first-
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overshoot, t=0.52 units). As centreline-velocity gradually declines (cf. Fig. 10), a large
secondary-vortex appears (half-way between P1 and P2 time). This extends way back
upstream, signalling the appearance of a reverse-flow region (near the upstream-wall).
As centreline-velocity rises towards P3 time(t=2.60), reverse-flow is progressively neu-
tralised, till it disappears altogether. This occurs half-way between P2 and P3, at around
t=2.60 units, where the salient-corner vortex has almost disappeared. From this point
onwards, the salient-corner vortex starts to grow oncemore, before gradually decreasing
towards its steady-state form.

Next, we proceed to investigate flow-structure evolution at higher levels of elastic-
ity. The largest such level of We to be reached with such true-transient solutions was
We = 2.5.1 Fig. 12 charts velocity-vectors against time, from early development (the
first velocity overshoot, t=0.70 units) until steady-state (t=30.0 units). The unique
evolutionary flow features observed for the less-elastic fluid (We = 1.0) are replicated,
and amplified. Here again at We = 2.5, transitions are dictated by the inlet-velocity
peaks Q1-Q3 (annotated in Fig. 10). A salient-corner vortex becomes apparent at Q1
(t=0.70 units). The reverse-flow region that appears half-way between Q1 and Q2, now
expands internally towards core-flow. This secondary-vortex reaches a maximum width
at t=2.90 units, covering about half the upstream-crossflow region. Subsequently, as
the centreline-velocity increases towards Q3, again there is a gradual neutralisation of
back-flow, until its total disappearance at t=3.70 units, between Q2 and Q3 (t=4.10
units). From this point-onwards (Fig. 12), salient-corner vortices start to grow once-
more, and evolve towards their steady-state forms, with only minor fluctuations in their
respective sizes. These dynamic fluctuations in flow-structure (increase/decrease) reflect
the gradually dampened oscillations in the inlet velocity-profile, that die away as the
velocity asymptotes towards its steady-state plateau-value. The stress field structure is
reported via transient stress-contours in Fig. 13, for first normal stress-difference (N1

= τxx - τyy) and shear-stress, respectively (We = 2.5, elastic components alone). The
times reported are selected to identify the principal states of evolutionary development
in passage to steady-state. One may comment that steady-state structure around the
re-entrant corner is established somewhat earlier in normal-stress (by t=3.70) than shear-
stress (t=10.0). This is also reflected in the more dramatic adjustment required in the
salient-corner zone in shear-stress, as required to define the emerging vortex structure.

VIII. CONCLUSIONS

This paper has demonstrated the properties of some fv/fe-schemes for transient sim-
ulations of Oldroyd-B model viscoelastic flows, using a model problem with a variety
of fv-constructs, and a 4:1 contraction flow. In particular, we have considered various
fluctuation-distribution forms, different Median-Dual-Cell (MDC) combinations, and al-
ternative fv-time schemes. Numerical results have been compared against a transient
analytical solution and the influence of various factors has illustrated the principal issues
of relevance in attaining highly-accurate solutions. Favourable scheme properties are

1Alternatively, with an interest in only steady-solutions, larger We-levels of 4.6 may be achieved
[3] by using a pseudo-transient continuation procedure to gradually progress through lower We-
solution states, see Sato and Richardson [6]. Mesh refinement studies are covered in [3].
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derived, providing those, evidently capable of capturing physical oscillations accurately
in the transient, whilst retaining stability.

Our prior work has revealed that for steady-state problems, consistency in combination
of flux and source terms was vital to retain, second-order accuracy. Furthermore, when
considering complex flows, consistent inclusion of MDC-contributions was paramount
to ensure numerical stability. Results of the current study would indicate, that a ju-
dicious choice of weighting-parameters (especially those impinging on the MDC-terms)
is important when considering transient evolution. A serious issue has been to extract,
simultaneously, optimal numerical solutions both in core-flow and near shear-boundary
flow. Paradoxically, schemes that capture transient evolution well near boundaries, fail
to do so in core-flow, and vice-versa. We have been able to resolve this dilemma by
introducing consistent mass-matrix weighting (mimicking fe-form) upon time-terms. In
doing so, it has been necessary to avoid iteration at the shear-boundary itself, as this
degrades solution quality. An optimal iteration setting is commended for core-flow.

The detailed analysis of the various update-strategies reveals three important points.
The first point is related to positive schemes, exemplified via the PSI-scheme. Though
nodal-updates involving PSI capture the transient development well near shear-boundaries,
they fail to capture long-time evolution in core-flow. Conversely (point-two), the linearity-
preserving LDB-scheme performs rather well in core-flow, especially beyond peak-2 and
at long-time, but undershoots the analytical solution at the boundary, before regaining
the same at steady-state. These aspects are brought out rather well in the summarial
point values of Table II, where the LDB-scheme with iteration, proves overall the best
option, on both boundary and interior. Degradation of PSI on the boundary, with iter-
ation, or δMDC=1-δT , is also apparent. Attempts to spatially adjust in hybrid fashion,
from PSI-boundary to LDB-core, have not substantially altered this position (though
dependence upon the adaptation is subtle). The dilemma of extracting a single, gener-
alised scheme, which is optimal in both core and boundary flow, has been overcome by
appealing to the consistent mass-matrix weighting of time-terms (point-three). Dynamic
temporal scheme adjustment may show some promise and has been dealt with above.

We have demonstrated the extended application of our optimal scheme from the model
channel problem to that of a complex transient viscoelastic contraction flow. For this
4:1 contraction flow, complex features have emerged in flow-structure, notably the ap-
pearance of a large secondary-flow at early evolution-times. Such features are novel,
unexposed by fixed-point steady-state driving boundary conditions (non-time varying in
velocity-stress). We have illustrated that the steady-state structure, around and after
the re-entrant corner is established earlier in normal-stress than shear-stress. As such,
further application of the proposed methodology is encouraged, particularly with un-
structured meshing and complex flows in mind.
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TABLE I. Relative errors (×10−2), unstructured mesh, peaks and steady-state, various fv-
schemes, δMDC = 0. Time-steps to steady-state N. † Optimal-boundary, ‡ Optimal-internally.

Schemes N peak1 peak2 peak3 long-time

LDB 796 Boundary 4.62 2.51 1.86 0.43

Interior 3.57‡ 3.47 0.93‡ 0.67‡

Base PSI 786 Boundary 1.43† 1.76† 0.99† 0.28†

Interior 6.25 1.81‡ 6.57 5.62
Lax 2119 Boundary 6.83 5.62 4.32 0.34

Interior 7.33 3.33 2.57 2.03

Fr 1255 Boundary 0.06† 9.08 7.22 0.27†

Interior 6.97 3.15‡ 6.80 5.67

PSI/LDB 1004 Boundary 2.23 1.41† 1.87† 0.51
Interior 1.78 9.63 4.98 4.75

Mixed PSI/Lax 808 Boundary 5.21 3.39 3.00 1.15

Interior 0.13‡ 10.60 3.86 5.01
PSI,LDB/LDB 920 Boundary 2.02 1.59 2.33 0.28

Interior 1.33 6.10 2.20‡ 2.11‡

TABLE II. Relative errors (×10−2), unstructured mesh, peaks and steady-state, CT2, CT3.
Time-steps to steady-state N. † Optimal-boundary, ‡ Optimal-internally.

Schemes N peak1 peak2 peak3 long-time

CT2 LDB, δMDC =1 2457 Boundary 92.21 0.87 4.77 0.18
Interior 33.06 22.75 5.56 0.95

LDB, δMDC =1 − δT 1022 Boundary 3.77 1.21 0.85 0.16

Interior 4.33 7.13 0.64 0.63‡

LDB, δMDC =1 − δT 886 Boundary 4.24 2.58 1.83 0.32
Interior 3.54 3.38 0.23 0.70

CT3 LDB, δMDC = 1 922 Boundary 3.85 2.29 1.80 0.25

Interior 3.69 3.96 0.02‡ 1.00
PSI, δMDC = 1 − δT 783 Boundary 5.79 0.59 0.69 0.46

Interior 4.71 3.82 6.74 5.66

PSI, δMDC =1 874 Boundary 2.40† 0.66 0.25 0.12†

Interior 1.32 2.75 2.55 2.89

CT3, m2 LDB, δMDC =1 − δT 1109 Boundary 2.45 0.20 0.11† 0.21

Interior 1.20‡ 2.53 1.85 0.68

LDB, δMDC =1 2220 Boundary 2.97 0.12† 0.97 0.35

Interior 2.55 0.68‡ 1.23 0.96
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fe triangular element
fv triangular sub-cells
fe vertex nodes (p,uuu,τττ)
fe midside nodes (uuu,τττ)
fv vertex nodes (τττ)

a)

❅
❅■

¡¡✒

❄

(RT ,QT )

k j

i

αk αj

αi

l

T1

T2
T3

T4

T5
T6

b)

FIG. 1. Spatial discretisation, a) fe-cell with four fv sub-cells and FD per T, b) fv-control
volume for node l, with Median-Dual-Cell (MDC-shaded).

✻Node 39

❄

Node 62

FIG. 2. Finite element 10x10 and 40x40 mesh, start-up Poiseuille flow.
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FIG. 3. a) Boundary node, b) Interior node, τxx: base FD-schemes, consistent pure-FD
(δMDC=0), unstructured 10x10 mesh.
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FIG. 4. a) Boundary node, τxx: hybrid FD-schemes, consistent pure-FD (δMDC=0), unstruc-
tured 10x10 mesh.
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FIG. 5. a) Boundary node, b) Interior node, τxx: MDC inclusion, LDB and PSI, CT2 and
CT3 various δMDC, unstructured 10x10 mesh.
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FIG. 6. a) Boundary node, b) Interior node, τxx: Mass-matrix iteration, [LDB,CT3]; 1, 2, 5
iterations, unstructured 10x10 mesh.
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FIG. 7. a) Boundary node, b) Interior node, τxx: Optimal-combinations, PSI and LDB schemes,
unstructured 10x10 mesh.
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FIG. 8. a) Boundary node, b) Interior node, τxx: [CT3-LDB], start-up Poiseuille flow, refined
40x40 unstructured mesh.
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FIG.9. P lanar 4 : 1 section of contraction−flow mesh

FIG. 9. planar 4:1 section of contraction-flow mesh; magnification around re-entrant corner.

0 1 2 3 4 5 6 7 8

Time

0

0.5

1

1.5

U
x
(y)

We=1.0
We=2.5

Transient centerline-velocity, Inlet

[P1]

❄

[Q1]❄

[P2]✻
[Q2]✻

[P3]

✻

[Q3]
❄

[P4]

[Q4]

FIG. 10. 4:1 contraction, transient development of inlet centreline-velocity, [CT3-LDB,δMDC =
1], Oldroyd-B, We = 1.
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a) t = 0.20 e) t = 2.0 [P2-P3]

b) t = 0.52 [P1] f) t = 2.60 [P3]

c) t = 1.10 [P1-P2] g) t = 3.10 [P3-P4]

d) t = 1.58 [P2] h) t = 8.8 (steady-state) [P4]

FIG. 11. Time-dependent inlet boundary conditions: transient velocity-vectors, 4:1 contraction,
[CT3-LDB,δMDC = 1], Oldroyd-B, We = 1
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a) t = 0.70 [Q1] e) t = 3.70 [Q2-Q3]

b) t = 1.40 [Q1-Q2] f) t = 4.10 [Q3]

c) t = 2.65 [Q2] g) t = 5.0 [Q3-Q4]

d) t = 2.90 [Q2-Q3] h) t = 30.0 (steady-state) [Q4]

FIG. 12. Time-dependent inlet boundary conditions: transient velocity-vectors, 4:1 contraction,
[CT3-LDB,δMDC = 1], Oldroyd-B, We = 2.5
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a) t = 1.10

τxx − τyy

d) t = 1.10

τxy

b) t = 3.70 e) t = 10.0

c) t = 30.0 f) t = 30.0 (Steady-state)

FIG. 13. Time-dependent inlet boundary conditions: transient τxx − τyy and τxy fields, 4:1
contraction, [CT3-LDB,δMDC = 1], Oldroyd-B, We = 2.5.


