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Time-dependent analysis of a fiber-optic passive-loop resonator
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A time-dependent analysis of an all-single-mode fiber-optic resonator is presented in which the input field is
allowed to exhibit an arbitrary dependence on time. In particular, the transmissivity of the resonator is evaluated
for an input field possessing an arbitrary temporal coherence, which allows one to consider the role of the source

coherence time as compared with the fiber time delay.

A passive-loop resonator can be constructed by means
of a polarization-preserving monomode optical fiber
and of a low-loss single-mode-fiber directional cou-
pler, as illustrated in Fig. 1. An input field

E|(z, t) = exp(ifz — iwt)e (t) (1)

launched into the coupler at the input port 1 will
partially emerge at port 3, from which it is guided
along the fiber loop and reaches port 2 and will be
partially coupled to the output port 4. The field at
port 2 will couple partially to port 4 and partially to
port 3, thus continuing to circulate in the loop.

The characteristics of this all-fiber ring resonator
have been investigated both theoretically and experi-
mentally!? in a completely coherent case in which the
coherence time ¢, of the field is implicitly assumed
significantly to exceed = L/V, where L is the fiber
loop length and V = (dB/dw)~! is the group velocity of
the propagating mode. More recently, an analysis of
the performance characteristics of the resonator in
terms of the light-source coherence was carried out? in
which the exciting source was assumed to be an ampli-
tude-stabilized single-mode laser field

E(t) = Ejexp[—iwt + ip(t)] (2)

with a correlation time 7* of the instantaneous fre-
quency-correlation function (¢(¢)¢(t’)) much shorter
than 7.

In this Letter we report on the case in which e (¢)
exhibits an arbitrary time dependence (as long as the
bandwidth of the input field satisfies the relation dw/w
« 1 and the fiber chromatic dispersion can be neglect-
ed) and derive a general expression for the resonator
transmissivity 7" in terms of the autocorrelation func-
tion
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of the input field. This analysis finds its practical
justification in the fact that, as the length L of the loop
increases,  can become comparable with £..

The behavior of the field inside the resonator can
easily be obtained by relying on the pertinent geome-
try sketched in Fig. 1. More precisely, after indicating
by e3(¢) and e4(t) the complex amplitudes of the fields
at ports 3 and 4, one immediately gets

e(t) = (1 — 70)1/2[(1 —_ k)l/zel(t) + jR1/2
X exp(—apL + iBL)es(t — 7)1,
ex(t) = (1 = yo)2[ik Y%, () + (1 — k)12
X exp(—apL + ifL)es(t — 7)], 4)

where % is the (intensity) coupling coefficient, v =
(e1l? + |eof* = |€d]? = |€4?)/ (1] + | e2l?) is the fractional
coupler intensity loss, and we have used the relation

eo(t) = exp(—aoL + ifL)ey(t —7), (5)

oo being the amplitude-attenuation coefficient of the
fiber. By eliminating e; from the set of Egs. (4), one
-finds the following relation between ¢, and ¢;:

€,(t) — Ney(t — 1) = aey(t) + bey(t — 7), (6)

where \ = i(1 — v0)/2k\2 exp(—aoL + iBL), a =i(1 —
v0)/2k1/2, and b = (1 = vo)exp(—aoL + iBL).
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Fig. 1. Fiber-optic passive loop resonator.
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Equation (6) has the form of a Fredholm linear
integral of the second kind,

e(t) — N [ K(¢, t)e,(t")dt’ = F(¢), (7

where K(t, t') = 6[t’ — (t — 7)] (6 being the Dirac delta
function) and F() = ae;(t) + bey(t — 7). This is solved
using the standard iterative procedure? to get

&) =aq(t) +h > Net—(n+ 1], (89)
n=0
where h = b + \a.

Since the input field is random, the signficant quan-
tity to evaluate is the power (|es(t)|2), where {( ) de-
notes the ensemble average (or the time average in an
interval long compared with ¢, in a stationary situa-
tion). According to Eq. (8) one has

(les@N?) = |a|X(|e,(£)]2) + ah*

X Z A€y (B)er*[t — (n + 1)7])
n=0

+ a*h Z N *(t)ey[t — (n + 1)7])
n=0

+|h|? Z Z NN (e, [E — (n + 1)7]

n=0 m=0
X &*[t — (m + D7]). 9)

One can now regroup the above expression into the
various terms (|e;(£)[2), (e1(t)er*(t — 7)), ...,
(e1(t)er*(t — s7)), ... (note that, owing to the assump-
tion of stationarity, these correlation functions de-
pend on the differences between their temporal argu-

ments), a procedure that allows Eq. (9) to be rewritten
as

leg(®?) = (|a|2 LYy |A|2")<|e1<t>|2>
n=0

+ l:ah* + a*h + |h|2(z AT\

n=0

+ Z )\”“)\*")] (e(B)e;*(t — 7))

n=0

+ [ah*k* + a*h\ + |h|2 (Z A2

n=0

+ z N‘“)\‘”):l ()e* @t —2r)) +... ..
n=0

(10)

All the series appearing in Eq. (10) are geometric

and can thus be summed so that one can finally ex-

press the transmissivity T of the fiber resonator as a
sum of terms of decreasing magnitude:

_ (e®?
lea(®)?)

T = [a|? + %1 = N3]

n=0

X {G(O) + Z A"+ MY Gl(n + 1)7]}

+ Z (@b*\*" + a*bA)G[(n + 1)7]. (11)

n=0 .

In the two limiting cases of either very short or very
long coherence time [where one has, respectively,
G(nt) = 0forn z 1 and G(nr) = 1], Eq. (11) becomes,
after introducing M = (1 — vyg)exp(—2a,L),

T(t, < 7) =]a* +|h%1 = |N?) = (1 — v,)

X[1-@1-kr01-M/1-EM)] (12)
Tt >»7)=|a+b%|1=N?=(1-1,)

o e+ M+ 2k"M2 sin(BL)
1+ kM + 2B2MY2 sin(BL)

Equation (11), in particular, allows one to recover
the expression for T'derived in Ref. 3 for a single-mode
amplitude-stabilized laser field with a Lorentzian
spectrum for which G(r) = exp(—Awr) and, conse-
quently, G(n7) = [G(r)]" = §". In fact, inserting this
relation into Eq. (11) facilitates the summation of the
series with the following result:

T ={(1 - [N (al*+]8]) + ab*[5(1 — |N?)
+ A1 = 0] + a*b[6(1 — |N?)
+ M1 = SN = M| %(1 — [N, (14)
or, with the definitions
F=(1-R)(1—~M)(1-EMA/1—EM)1 + skV2MV2)2,

(13)

H = 45R2MY2/(1 + SEY2MY2)%, 9 = BL — «/2,
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Fig.2. Transmissivity T as a function of AL for k = 0.95, vo

=0.05, M ~ 1~ vy, and 6 = 0.7. Curve a, exact solution;
curve b, approximate solution (n = 5). e
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Fig.3. Transmissivity T as a function of 8L for k = 0.95, v
=0.05,M =~ 1—~yp,and 6 =0.7. Curvea, G(r) = exp(—Awr);
curve b, G(r) = exp[—(Aw7)?].

F
T=(-y)|1-——F—— | @5
( 70)[ 1—Hsin2(a/2)] (19

The general expression furnished by Eq. (11) can
also be rewritten as

o _A-kh@-M c
T=(1 70)(1 o {1+2;
X (EM)"V2G[(n + 1)7]

X cos[(n + 1)(BL + T/z)]})’ (16)

which yields the resonance condition SL = 2wg — /2,
q being any integer. The sharpness of the resonance
(that is, the finesse of the loop resonator) is a compli-
cated function of the degree of coherence that has to
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be numerically evaluated by truncating the series [EM
(1, G(n7) ( 1].

To estimate the rapidity of the series convergence,
we have plotted in Fig. 2 the exact behavior of T
corresponding to Eq. (15) (curve a) and that obtained
by truncating the series [Eq. (16)] with G(n7) = é" at
then =5 term (curve b). The agreement is reasonable
for the given choice of parameters and is excellent for
n = 10.

Finally, in order to present the influence of the

‘shape of the correlation function G(r) (or, equivalent-

ly, of the source spectral behavior) on the performance
of the resonator, we compare in Fig. 3 the transmissivi-
ties for G(r) = exp(—Aw7) = & and G(7) =
exp[—(Awr)?] = exp(—In? §) with a common value of &
obtained by truncating the series.at n = 20. In physi-
cal terms, these correspond to an amplitude-stabilized
laser field with an instantaneous frequency-correla-
tion time 7* [see Eq. (2)] much shorter and much
longer, respectively, than 7.
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