
Queueing Syst (2017) 87:379–415
https://doi.org/10.1007/s11134-017-9541-2

Time-dependent analysis of an M/M/c preemptive
priority system with two priority classes

Jori Selen1,2 · Brian Fralix3

Received: 29 July 2016 / Revised: 27 June 2017 / Published online: 18 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract We analyze the time-dependent behavior of an M/M/c priority queue
having two customer classes, class-dependent service rates, and preemptive priority
between classes. More particularly, we develop a method that determines the Laplace
transforms of the transition functions when the system is initially empty. The Laplace
transforms corresponding to stateswith at least c high-priority customers are expressed
explicitly in terms of the Laplace transforms corresponding to states with at most c−1
high-priority customers. We then show how to compute the remaining Laplace trans-
forms recursively, bymaking use of a variant of Ramaswami’s formula from the theory
ofM/G/1-typeMarkov processes.While the primary focus of our work is on deriving
Laplace transforms of transition functions, analogous results can be derived for the
stationary distribution; these results seem to yield the most explicit expressions known
to date.

Keywords Static priority · Time-dependent analysis · Laplace transforms ·
Multi-dimensional Markov process

Mathematics Subject Classification 60J27 · 60J35 · 60K25

B Jori Selen
j.selen@tue.nl

1 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, Netherlands

2 Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
Netherlands

3 Department of Mathematical Sciences, Clemson University, Clemson, SC, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-017-9541-2&domain=pdf
http://orcid.org/0000-0003-0673-7970

380 Queueing Syst (2017) 87:379–415

1 Introduction

Priority models with multiple servers constitute an important class of queueing
systems, having applications in areas as diverse as manufacturing, wireless communi-
cation and the service industry. Studies of these models date back to at least the 1950s
(see, for example, Cobham [7], Davis [8], and Jaiswal [15,16]), yet many properties
of these systems still do not appear to be well understood. Recent work addressing
priority models includes Sleptchenko et al. [27] and Wang et al. [29]. We refer the
reader to [29] for more specific examples of applications of priority queueing models.

Our contribution to this stream of the literature is an analysis of the time-
dependent behavior of a Markovian multi-server queue with two customer classes,
class-dependent service rates and preemptive priority between classes. To the best
of our knowledge, the joint stationary distribution of the M/M/1 2-class preemptive
priority system was first studied in Miller [24], who makes use of matrix-geometric
methods to study the joint stationary distribution of the number of high- and low-
priority customers in the system. More particularly, in [24] this queueing system is
modeled as a quasi-birth-and-death (QBD) process having infinitely many levels, with
each level containing infinitely many phases. Miller then shows how to recursively
compute the elements of the ratematrix of this QBDprocess: Once enough elements of
this rate matrix have been found, the joint stationary distribution can be approximated
by appropriately truncating this matrix.

This single-server model is featured in many works that have recently appeared
in the literature. In Sleptchenko et al. [27] an exact, recursive procedure is given for
computing the joint stationary distribution of an M/M/1 preemptive priority queue
that serves an arbitrary finite number of customer classes. The M/M/1 2-class pri-
ority model is briefly discussed in Katehakis et al. [20], where they explain how the
successive lumping technique can be used to study M/M/1 2-class priority models
when both customer classes experience the same service rate. Interesting asymptotic
properties of the stationary distribution of the M/M/1 2-class preemptive priority
model can be found in the work of Li and Zhao [23].

Multi-server preemptive priority systems with two customer classes have also
received some attention in the literature. One of the earlier references allowing for
different service requirements between customer classes is Gail et al. [13]; see also
the references therein. In [13], the authors derive the generating function of the joint
stationary probabilities by expressing it in terms of the stationary probabilities asso-
ciated with states where there is no queue. A combination of a generating function
approach and the matrix-geometric approach is used in Sleptchenko et al. [26] to
compute the joint stationary distribution of an M/M/c 2-class preemptive priority
queue. The M/PH/c queue with an arbitrary number of preemptive priority classes
is studied in Harchol-Balter et al. [14] using a recursive dimensionality reduction tech-
nique that leads to an accurate approximation of the mean sojourn time per customer
class. Furthermore, in Wang et al. [29] the authors present a procedure for finding, for
an M/M/c 2-class priority model, the generating function of the distribution of the
number of low-priority customers present in the system in stationarity.

Ourwork deviates from all of the above approaches, in thatwe construct a procedure
for computing the Laplace transforms of the transition functions of theM/M/c 2-class

123

Queueing Syst (2017) 87:379–415 381

preemptive prioritymodel. Ourmethod first makes use of a slight tweak of the clearing
analysis on phases (CAP) method featured in Doroudi et al. [10], in that we show how
CAP can be modified to study Laplace transforms of transition functions. The specific
dynamics of our priority model allow us to take the analysis a few steps further, by
showing each Laplace transform can be expressed explicitly in terms of transforms
corresponding to states contained within a strip of states that is infinite in only one
direction. Finally, we show how to compute these remaining transforms recursively,
by making use of a slight modification of Ramaswami’s formula [25]. While the focus
of our work is on Laplace transforms of transition functions, analogous results can
be derived for the stationary distribution of the M/M/c 2-class preemptive priority
model as well. We are not aware of any studies that obtain explicit expressions for the
Laplace transforms of the transition functions, or even the stationary distribution, as
we do here; these results seem to yield the most explicit expressions known to date.

The Laplace transforms we derive can easily be numerically inverted to retrieve the
transition functions with the help of the algorithms of Abate and Whitt [3,4] or den
Iseger [9]. These transition functions can be used to study—as a function of time—key
performance measures such as the mean number of customers of each priority class
in the system; the mean total number of customers in the system; or the probability
that an arriving customer has to wait in the queue. These time-dependent performance
measures can, for example, be used to analyze and dimension priority systems when
one is interested in the behavior of such systems over a finite time horizon. Using
the equilibrium distribution as an approximation of the time-dependent behavior to
dimension the system can result in either over- or underdimensioning since it neglects
transient effects such as the initial number of customers in the system. Prior to our
work, the time-dependent behavior of multi-server queues could not be analyzed using
any methods from previous work; until now one would have to resort to simulation in
order to study the system’s time-dependent behavior. Having explicit expressions for
the Laplace transforms of the transition functions greatly simplifies the computation of
some performance measures. For instance, these transforms yield explicit expressions
for the Laplace transforms of the distribution of the number of low-priority customers
in the system at time t .

We now present some numerical examples of the time-dependent performance
measures, where we will make use of the notation introduced in Sect. 2. In Fig. 1, we
plot the mean number of low-priority customers in the system as a function of time and
we also depict the equilibrium values. Similarly, in Fig. 2 we plot the time-dependent
and equilibriumdelayprobabilities for eachpriority class. TheLaplace transformsused
to obtain Figs. 1 and 2 can be computed numerically using the approach discussed
in Sect. 5.5: here we used an error tolerance of ε = 10−8. Once these transforms
have been found, numerical inversion can be done via the Euler summation algorithm
of [3] where we again used an error tolerance of 10−8. From Fig. 1 we can also
informally derive the mixing times of each scenario. It seems that the mixing time
vastly increases with an increase in the load. As expected, in Fig. 2 we see that the
delay probability of a high-priority customer is much lower than the delay probability
of a low-priority customer. Furthermore, as time passes, the delay probability of the
high-priority customer tends to the delay probability in an M/M/c queue with only
high-priority customers, which was verified to be correct. Finally, in Table 1 we show

123

382 Queueing Syst (2017) 87:379–415

Fig. 1 Mean number of
low-priority customers in the
system as a function of time for
increasing load of the
high-priority customers.
Equilibrium values are shown at
t = ∞. Parameter settings are
c = 10, ρ1 = 1/3, and ρ2 varies

0 10 20 ∞0

5

10

15

20

t

E
[X

1
(t
)]

ρ2 = 0.5
ρ2 = 0.55
ρ2 = 0.6

Fig. 2 Probability that an
arriving customer has to wait in
the queue as a function of time
for the two priority classes.
Equilibrium values are shown at
t = ∞. Parameter settings are
c = 10, ρ1 = 1/3, and ρ2 = 1/2

0 5 10 ∞0

0.2

0.4

0.6

t

D
el
ay

pr
ob

ab
ili
ty

high priority
low priority

Table 1 Computation time in seconds required to calculate, for all states in Sk , the stationary probabilities
or the Laplace transforms for a specific α = 1/2 + 1/2i

Number of servers 10 20 30 50 70 100

Stationary probabilities 0.35 0.66 1.1 2.9 7.1 21

Laplace transforms 0.52 1.3 2.7 8.7 23 62

We use the numerical implementation outlined in Sect. 5.5 with accuracies ε = 10−8. Parameter settings
are ρ1 = 1/3, ρ2 = 1/2 and c varies

the computation times of the algorithm, which was implemented in Matlab and run on
a 64-bit desktop with an Intel Core i7-3770 processor. The computation time scales
reasonably well with the number of servers, and therefore the algorithm can be used
to evaluate any practical instance.

123

Queueing Syst (2017) 87:379–415 383

This paper is organized as follows. Section 2 describes both the M/M/c 2-class
preemptive priority queueing system, as well as the two-dimensional Markov process
used to model the dynamics of this system. In the same section, we introduce relevant
notation and terminology and detail the outline of the approach. In Sects. 3–5, we
describe this approach for calculating the Laplace transforms of the transition func-
tions. We discuss the simplifications in the single-server case in Sect. 6. In Sect. 7,
we summarize our contributions and comment on the derivation of the stationary dis-
tribution. The appendices provide supporting results on combinatorial identities and
single-server queues used in deriving the expressions for the Laplace transforms.

2 Model description and outline of approach

We consider a queueing system consisting of c servers, where each server processes
work at unit rate. This system serves customers from two different customer classes,
referred to here as class-1 and class-2 customers. The class index indicates the priority
rank, meaning that among the servers, class-2 customers have preemptive priority over
class-1 customers in service. Recall that the term ‘preemptive priority’ means that
whenever a class-2 customer arrives at the system, one of the servers currently serving
a class-1 customer immediately drops that customer and begins serving the new class-
2 arrival, and the dropped class-1 customer waits in the system until a server is again
available to receive further processing, i.e., the priority rule is preemptive resume.
Therefore, if there are currently i class-1 customers and j class-2 customers in the
system, the number of class-2 customers in service is min(c, j), while the number of
class-1 customers in service is max(min(i, c − j), 0).

Class-n customers arrive in a Poissonmannerwith rateλn , n = 1, 2, and the Poisson
arrival processes of the two populations are assumed to be independent. Each class-n
arrival brings an exponentially distributed amount of workwith rateμn , independently
of everything else.We denote the total arrival rate by λ := λ1+λ2, the load induced by
class-n customers as ρn := λn/(cμn), and the load induced by both customer classes
as ρ := ρ1 + ρ2.

The dynamics of this queueing system can be described with a continuous-time
Markov chain (CTMC). For each t ≥ 0, let Xn(t) represent the number of class-n
customers in the system at time t , and define X (t) := (X1(t), X2(t)). Then, X :=
{X (t)}t≥0 is a CTMC on the state space S = N

2
0. Given any two distinct elements

x, y ∈ S, the element q(x, y) of the transition rate matrixQ associated with X denotes
the transition rate from state x to state y. The row sums of Q are 0, meaning for each
x ∈ S, q(x, x) = −∑

y �=x q(x, y) =: −q(x), where q(x) represents the rate of each
exponential sojourn time in state x . For our queueing system, the nonzero transition
rates of Q are given by

q((i, j), (i + 1, j)) = λ1, i, j ≥ 0,

q((i, j), (i, j + 1)) = λ2, i, j ≥ 0,

q((i, j), (i − 1, j)) = max(min(i, c − j), 0)μ1, i ≥ 1, j ≥ 0,

q((i, j), (i, j − 1)) = min(c, j)μ2, i ≥ 0, j ≥ 1.

123

384 Queueing Syst (2017) 87:379–415

X2(t)

X1(t)
c − 1

c − 1

i1 i2

j1

j2

λ1

λ2

λ2

j1μ2

λ1

λ2

cμ2

λ1

λ1

λ2

i1μ1

λ1

λ2

min(i1, c − j1)μ1

j1μ2

λ1

λ2

cμ2

λ1

λ2

cμ1

λ1

λ2

(c − j1)μ1

j1μ2

Fig. 3 Transition rate diagram of the Markov process X

Figure 3 displays the transition rate diagram.
We further associate with the Markov process X the collection of transition func-

tions {px,y(·)}x,y∈S, where for each x, y ∈ S (with possibly x = y) the function
px,y : [0,∞) → [0, 1] is defined as

px,y(t) := P(X (t) = y | X (0) = x), t ≥ 0. (2.1)

Each transition function px,y(·) has a Laplace transform πx,y(·) that is well-defined
on the subset of complex numbers C+ := {α ∈ C : Re(α) > 0} as

πx,y(α) :=
∫ ∞

0
e−αt px,y(t) dt, α ∈ C+. (2.2)

We restrict our interest to transition functions of X when X (0) = (0, 0) with proba-
bility one (w.p.1), and so we drop the first subscript on both transition functions and
Laplace transforms, i.e., px (t) := p(0,0),x (t) for each t ≥ 0 and πx (α) := π(0,0),x (α)

for each α ∈ C+. Our goal is to derive efficient numerical methods for calculating
each Laplace transform πx (α), x ∈ S. We often refer to the Laplace transform πx (α)

associated with the state x as the Laplace transform for state x .

123

Queueing Syst (2017) 87:379–415 385

X2(t)

X1(t)

c − 1

c − 1

c

horizontal
boundary

vertical
boundary interior

Fig. 4 Terminology of the various sets of states

2.1 Notation and terminology

It helps to decompose the state space S into a countable number of levels, where, for
each integer i ≥ 0, the i-th level is the set {(i, 0), (i, 1), . . .}. We further decompose
the i-th level into an upper level and a lower level: Upper level i is defined as Ui :=
{(i, c), (i, c+1), . . .}, while lower level i is simply Li := {(i, 0), (i, 1), . . . , (i, c−1)}
and the union of lower levels L0, L1, . . . , Li is denoted by L≤i = ⋃i

k=0 Lk . The set
of all states in phase j is denoted by Pj := {(0, j), (1, j), . . .}.

We sometimes refer to upper levelU0 as the vertical boundary. The union of upper
levels

U1 ∪U2 ∪ · · · (2.3)

is called the interior of the state space. Finally, the union

L0 ∪ L1 ∪ · · · (2.4)

is called the horizontal boundary or the horizontal strip of boundary states. Figure 4
depicts these sets.

The indicator function1{A} equals 1 if A is true and 0 otherwise. Given an arbitrary
CTMC Z , we let Ez[f (Z)] represent the expectation of a functional of Z , conditional
on Z(0) = z, and Pz(·) denotes the conditional probability associated with Ez[·]. In
our analysis, it should be clear from the context what is being conditioned on when
we write Pz(·) or Ez[·].

123

386 Queueing Syst (2017) 87:379–415

We will also need to make use of hitting-time random variables. We define for each
set A ⊂ S,

τA := inf{t > 0 : lim
s↑t X (s) �= X (t) ∈ A} (2.5)

as the first time X makes a transition into the set A (so note X (0) ∈ A does not imply
τA = 0) and τx should be understood to mean τ{x}.

2.2 Notation for M/M/1 queues

Most of the formulas we derive contain quantities associated with an ordinaryM/M/1
queue. Given an M/M/1 queueing system with arrival rate λ and service rate μ, let
Qλ,μ(t) denote the total number of customers in the system at time t . Under the
measure Pn(·), which, in this case, represents conditioning on Qλ,μ(0) = n, let Bλ,μ

denote the busy period duration induced by these customers. UnderP1(·), the Laplace–
Stieltjes transform of Bλ,μ is given by

φλ,μ(α) := E1[e−αBλ,μ] = λ + μ + α − √
(λ + μ + α)2 − 4λμ

2λ
. (2.6)

Recall that under Pn(·), Bλ,μ is equal in distribution to the sum of n i.i.d. copies of
Bλ,μ under the measure P1(·); see, for example, [28, p. 32]. Thus, for each integer
n ≥ 1 we have

En[e−αBλ,μ] = φλ,μ(α)n . (2.7)

We will also need to make use of the following quantities in Sects. 5 and 6. Sup-
pose {Λθ(t)}t≥0 is a homogeneous Poisson process with rate θ that is independent of
{Qλ,μ(t)}t≥0. For each integer i ≥ 0, define

w
(λ,μ,θ)
i (α) := E1[e−αBλ,μ1{Λθ(Bλ,μ) = i}]. (2.8)

Lemma 7 of Appendix C shows that the w
(λ,μ,θ)
i (α) terms satisfy a recursion, and, in

Lemma 8 of Appendix C, we give explicit expressions for these terms by solving the
recursion.

The following quantities associatedwithM/M/1 queueswill appear atmany places
of the analysis. To increase readability, we adopt the notation used in [10] and define
the quantities

φ2 := φλ2,cμ2(λ1 + α), r2 := ρ2φλ2,cμ2(λ1 + α), (2.9)

and

Ω2 := ρ2φλ2,cμ2(λ1 + α)

λ2(1 − ρ2φλ2,cμ2(λ1 + α)2)
. (2.10)

Further results for M/M/1 queues are presented in Appendix C.

123

Queueing Syst (2017) 87:379–415 387

2.3 Outline of our approach

Our approach for computing the Laplace transforms of the transition functions of X
when X (0) = (0, 0) w.p.1 is divided into three parts:

1. For each integer i ≥ 0, we use a slight modification of the CAP method [10] to
write each Laplace transform for each state in Ui , i.e., π(i,c−1+ j)(α), j ≥ 1, in
terms of the Laplace transforms π(k,c−1)(α), 0 ≤ k ≤ i , as well as additional
coefficients {vk,l}i≥k≥l≥0 that satisfy a recursion.

2. In Sect. 4, we obtain an explicit expression for the coefficients {vk,l}k≥l≥0. This in
turn shows that for each i ≥ 0, each Laplace transform for each state in Ui , i.e.,
π(i,c−1+ j)(α), j ≥ 1, can be explicitly expressed in terms of π(k,c−1)(α), 0 ≤
k ≤ i .

3. In Sect. 5, we derive a recursion with which we can determine the Laplace
transforms for the states in the horizontal boundary. Specifically, we derive a
modification of Ramaswami’s formula [25] to recursively compute the remaining
Laplace transforms π(i, j)(α), i ≥ 0, 0 ≤ j ≤ c − 1. The techniques we use to
derive this recursion are exactly the same as the techniques recently used in [17] to
study block-structured Markov processes. Only the Ramaswami-like recursion is
needed to compute all Laplace transforms: Once the values for the Laplace trans-
forms of the states in the horizontal boundary are known, all other transforms can
be stated explicitly without using additional recursions.

3 A slight modification of the CAP method

The following theorem is used in multiple ways throughout our analysis. It appears in
[17, Theorem 2.1] and can be derived by taking the Laplace transform of both sides
of the equation at the top of page 124 of [21]. Equation (3.2) is the Laplace transform
version of [10, Theorem 1].

Theorem 1 Suppose A and B are disjoint subsets of S with x ∈ A. Then for each
y ∈ B,

πx,y(α) =
∑

z∈A

πx,z(α)(q(z) + α)Ez

[∫ τA

0
e−αt1{X (t) = y} dt

]
, (3.1)

or, equivalently,

πx,y(α) =
∑

z∈A

πx,z(α)
∑

z′∈Ac

q(z, z′)Ez′
[∫ τA

0
e−αt1{X (t) = y} dt

]
. (3.2)

3.1 Laplace transforms for states along the vertical boundary

In this subsection, we employ Theorem 1 to express each Laplace transform
π(0,c−1+ j)(α), j ≥ 1, in terms of π(0,c−1)(α).

123

388 Queueing Syst (2017) 87:379–415

Using Theorem 1 with A = Uc
0 we obtain, for j ≥ 1,

π(0,c−1+ j)(α)

=
∑

z∈Uc
0

πz(α)
∑

z′∈U0

q(z, z′)Ez′
[∫ τUc

0

0
e−αt1{X (t) = (0, c − 1 + j)} dt

]

= π(0,c−1)(α)λ2E(0,c)

[∫ τUc
0

0
e−αt1{X (t) = (0, c − 1 + j)} dt

]
. (3.3)

From the transition rate diagram in Fig. 3, we find that the expectation in (3.3) can
be interpreted as an expectation associated with an M/M/1 queue having arrival rate
λ2 and service rate cμ2. Indeed, τUc

0
is equal in distribution to the minimum of the

busy period—initialized by one customer—of this M/M/1 queue and an exponential
random variable with rate λ1 that is independent of the queue. Alternatively, τUc

0
can

be thought of as being equal in distribution to the busy period duration of an M/M/1
clearing model, with arrival rate λ2, service rate cμ2, and clearings that occur in a
Poisson manner with rate λ1. Applying Lemma 6 of Appendix C shows that

λ2E(0,c)

[∫ τUc
0

0
e−αt1{X (t) = (0, c − 1 + j)} dt

]
= r j

2 . (3.4)

Substituting (3.4) into (3.3) then yields

π(0,c−1+ j)(α) = π(0,c−1)(α)r j
2 , j ≥ 1. (3.5)

3.2 Laplace transforms for states within the interior

Wenext develop a recursion for the Laplace transforms for the stateswithin the interior.
First, we express the transforms in upper level Ui in terms of the transforms in upper
levelUi−1 and in state (i, c−1). Second, we use this result to express the transforms in
upper levelUi in termsof the transforms for the states (0, c−1), (1, c−1), . . . , (i, c−1)
and some additional coefficients.

Employing again Theorem 1, now with A = Uc
i , yields, for i, j ≥ 1,

π(i,c−1+ j)(α)

=
∑

z∈Uc
i

πz(α)
∑

z′∈Ui

q(z, z′)Ez′
[∫ τUc

i

0
e−αt1{X (t) = (i, c − 1 + j)} dt

]

=
∞∑

k=1

π(i−1,c−1+k)(α)λ1E(i,c−1+k)

[∫ τUc
i

0
e−αt1{X (t) = (i, c − 1 + j)} dt

]

+ π(i,c−1)(α)λ2E(i,c)

[∫ τUc
i

0
e−αt1{X (t) = (i, c − 1 + j)} dt

]
. (3.6)

123

Queueing Syst (2017) 87:379–415 389

The expectation

E(i,c−1+k)

[∫ τUc
i

0
e−αt1{X (t) = (i, c − 1 + j)} dt

]
, j, k ≥ 1, (3.7)

has the same interpretation as the expectation in (3.3), except now the M/M/1 queue
starts with k customers at time 0. Using Lemma 6 of Appendix C, we obtain

λ1E(i,c−1+k)

[∫ τUc
i

0
e−αt1{X (t) = (i, c − 1 + j)} dt

]
= Υ (j, k), j, k ≥ 1, (3.8)

where, for j, k ≥ 1,

Υ (j, k) :=
{

λ1Ω2r
j−k
2 (1 − (r2φ2)

k), 1 ≤ k ≤ j − 1,

λ1Ω2φ
k− j
2 (1 − (r2φ2)

j), k ≥ j.
(3.9)

Substituting (3.8) into (3.6) and simplifying yields a recursion. Specifically, for i ≥ 0
and j ≥ 1,

π(i+1,c−1+ j)(α) = r j
2π(i+1,c−1)(α) +

∞∑

k=1

Υ (j, k)π(i,c−1+k)(α), (3.10)

with initial conditions π(0,c−1+ j)(α) = π(0,c−1)(α)r j
2 , j ≥ 1.

The recursion (3.10) can be solved, i.e., π(i,c−1+ j)(α) can be expressed in terms of
π(0,c−1)(α), π(1,c−1)(α), . . . , π(i,c−1)(α).

Theorem 2 (Interior) For i ≥ 0, j ≥ 1,

π(i,c−1+ j)(α) =
i∑

k=0

vi,k(1 − V2)
k
(
j − 1 + k

k

)

r j
2 , (3.11)

where the quantities {vi, j }i≥ j≥0 satisfy the following recursive scheme: for i ≥ 0,

vi+1,0 = π(i+1,c−1)(α), (3.12a)

vi+1, j = V1
(
vi, j−1 + V2

i∑

k= j

vi,k

)
, 1 ≤ j ≤ i + 1, (3.12b)

with initial condition v0,0 = π(0,c−1)(α). Here V1 = λ1Ω2
1−r2φ2

, and V2 = r2φ2.

Throughout we follow the convention that all empty sums, such as
∑0

k=1(·), rep-
resent the number zero.

123

390 Queueing Syst (2017) 87:379–415

Proof Clearly, when i = 0, (3.11) agrees with (3.5). Proceeding by induction, assume
(3.11) holds among upper levels U0,U1, . . . ,Ui for some i ≥ 0. Substituting (3.11)
into (3.10) yields

π(i+1,c−1+ j)(α) = r j
2π(i+1,c−1)(α) +

∞∑

k=1

Υ (j, k)
i∑

l=0

vi,l(1 − V2)
l
(
k − 1 + l

l

)

rk2 .

(3.13)
Next, interchange the order of the two summations and apply Lemma 1 of Appendix A
to get

(3.13) = r j
2π(i+1,c−1)(α) +

i∑

l=0

vi,l(1 − V2)
lλ1Ω2

(
j − 1 + l + 1

l + 1

)

r j
2

+
i∑

l=0

vi,l(1 − V2)
l V1V2

l∑

m=1

1

(1 − V2)l−m

(
j − 1 + m

m

)

r j
2 . (3.14)

To further simplify the right-hand side of (3.14), increase the summation index of the
first summation by one by setting k = l + 1, multiply its summands by 1−r2φ2

1−r2φ2
, and

change the order of the double summation. This yields

(3.14) = r j
2π(i+1,c−1)(α) +

i+1∑

k=1

V1vi,k−1(1 − V2)
k
(
j − 1 + k

k

)

r j
2

+
i∑

k=1

V1V2

i∑

l=k

vi,l(1 − V2)
k
(
j − 1 + k

k

)

r j
2

= r j
2π(i+1,c−1)(α)

+
i+1∑

k=1

V1
(
vi,k−1 + V2

i∑

l=k

vi,l

)
(1 − V2)

k
(
j − 1 + k

k

)

r j
2 , (3.15)

which shows π(i+1,c−1+ j)(α) satisfies (3.11), completing the induction step. �

4 Deriving an explicit expression for vi, j

Theorem 2 suggests that the Laplace transforms for the states within the interior can
be computed recursively:

1. Initialization step Determine π(0,c−1)(α), which yields each Laplace transform
π(0,c−1+ j)(α), j ≥ 1.

2. Recursive step on i Given π(k,c−1)(α) for 0 ≤ k ≤ i and the coefficients
{vk,l}i≥k≥l≥0
a. Compute π(i+1,c−1)(α).
b. Compute {vi+1,l}i+1≥l≥0.

123

Queueing Syst (2017) 87:379–415 391

c. Once steps 2a. and 2b. are completed, all Laplace transform values
π(i+1,c−1+ j)(α), j ≥ 1, are known.

Our next result, i.e., Theorem 3, shows that for each i ≥ 0, the {vi,l}i≥l≥0 terms
can be expressed explicitly in terms of π(k,c−1)(α), 0 ≤ k ≤ i . If our goal is to only
compute π(i,c−1+ j)(α) for some large i , then Theorem 3 allows us to avoid computing
all intermediate {vk,l}i−1≥k≥l≥0 terms, which means we can avoid computing an addi-
tional O(i2) terms. Not only that, knowing exactly how these vi, j coefficients look
could aid in future questions asked by researchers interested in the M/M/c 2-class
priority queue.

Readers should keep in mind that the expressions we have derived for the vi, j coef-
ficients do contain binomial coefficients, and one should be careful to avoid roundoff
errors while computing these expressions.

Theorem 3 (Coefficients) The coefficients {vi, j }i≥ j≥0 fromTheorem 2 are as follows:
for i ≥ j ≥ 0,

vi, j = V j
1 π(i− j,c−1)(α)

+
i∑

k= j+1

V k
1 π(i−k,c−1)(α)

k− j∑

l=1

j

k − j

(
k − j

l

)(
k − 1

l − 1

)

V l
2 . (4.1)

Proof From (3.12) we find, for each i ≥ 0, that vi,0 = π(i,c−1)(α) and vi,i =
V i
1π(0,c−1)(α); these expressions agree with (4.1).
Next, assume for some integer i ≥ 0 that vi, j satisfies (4.1) for 0 ≤ j ≤ i . Our

aim is to show vi+1, j also satisfies (4.1) for 0 ≤ j ≤ i + 1: We do this by substituting
(4.1) into (3.12b) and simplifying. There are three cases to consider: (i) j = 1; (ii)
2 ≤ j ≤ i − 1; and (iii) j = i . We focus on case (ii), with cases (i) and (iii) following
similarly.

We first examine the V1vi, j−1 term in (3.12b) by substituting (4.1). Here,

V1vi, j−1 = V j
1 π(i+1− j,c−1)(α)

+
i∑

k= j

V k+1
1 π(i−k,c−1)(α)

k+1− j∑

l=1

j − 1

k + 1 − j

(
k + 1 − j

l

)(
k − 1

l − 1

)

V l
2

= V j
1 π(i+1− j,c−1)(α)

+
i+1∑

k= j+1

V k
1 π(i+1−k,c−1)(α)

k− j∑

l=1

j − 1

k − j

(
k − j

l

)(
k − 2

l − 1

)

V l
2 . (4.2)

Next, write (4.2) in a form where the binomial coefficients match the ones in (4.1):

(4.2) = V j
1 π(i+1− j,c−1)(α)

+
i+1∑

k= j+1

V k
1 π(i+1−k,c−1)(α)

k− j∑

l=1

(j − 1)(k − l)

(k − j)(k − 1)

(
k − j

l

)(
k − 1

l − 1

)

V l
2 . (4.3)

123

392 Queueing Syst (2017) 87:379–415

The remaining terms on the right-hand side of (3.12b) can be further simplified by
substituting (4.1). Doing so reveals that

V1V2

i∑

k= j

vi,k =
i∑

k= j

V k+1
1 π(i−k,c−1)(α)V2

+
i−1∑

k= j

i∑

l=k+1

V l+1
1 π(i−l,c−1)(α)

l−k∑

m=1

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm+1
2 .

(4.4)

Swapping the order of the triple summation in (4.4) gives

(4.4) =
i∑

k= j

V k+1
1 π(i−k,c−1)(α)V2

+
i∑

l= j+1

V l+1
1 π(i−l,c−1)(α)

l− j∑

m=1

l−m∑

k= j

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm+1
2 . (4.5)

The inner-most summation over k of (4.5) can be evaluated using Lemma 3 of
Appendix A:

l−m∑

k= j

k

l − k

(
l − k

m

)

= l − m + jm

m(l + 1 − j)

(
l + 1 − j

m + 1

)

. (4.6)

Next, substitute (4.6) back into (4.5) and focus on the inner-most double summation
of (4.5). This gives

l− j∑

m=1

l−m∑

k= j

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm+1
2

=
l− j∑

m=1

l − m + jm

m(l + 1 − j)

(
l + 1 − j

m + 1

)(
l − 1

m − 1

)

Vm+1
2

=
l− j∑

m=1

l − m + jm

(l + 1 − j)l

(
l + 1 − j

m + 1

)(
l

m

)

Vm+1
2

=
l+1− j∑

m=2

l + 1 + jm − j − m

(l + 1 − j)l

(
l + 1 − j

m

)(
l

m − 1

)

Vm
2 . (4.7)

123

Queueing Syst (2017) 87:379–415 393

Substituting (4.7) into (4.5) and changing the two outer summation indices shows

(4.5) =
i+1∑

l= j+1

V l
1π(i+1−l,c−1)(α)V2

+
i+1∑

l= j+2

V l
1π(i+1−l,c−1)(α)

l− j∑

m=2

l + jm − j − m

(l − j)(l − 1)

(
l − j

m

)(
l − 1

m − 1

)

Vm
2 .

(4.8)

Furthermore, since

V2 = l + j · 1 − j − 1

(l − j)(l − 1)

(
l − j

1

)(
l − 1

1 − 1

)

V 1
2 , (4.9)

we can merge the single summation with the double summation in (4.8). In other
words,

(4.8) =
i+1∑

l= j+1

V l
1π(i+1−l,c−1)(α)

l− j∑

m=1

l + jm − j − m

(l − j)(l − 1)

(
l − j

m

)(
l − 1

m − 1

)

Vm
2 .

(4.10)

Finally, summing (4.3) and (4.10) produces (4.1), as

V1vi, j−1 + V1V2

i∑

k= j

vi,k

= V j
1 π(i+1− j,c−1)(α)

+
i+1∑

k= j+1

V k
1 π(i+1−k,c−1)(α)

k− j∑

l=1

(j − 1)(k − l)

(k − j)(k − 1)

(
k − j

l

)(
k − 1

l − 1

)

V l
2

+
i+1∑

k= j+1

V k
1 π(i+1−k,c−1)(α)

k− j∑

l=1

k + jl − j − l

(k − j)(k − 1)

(
k − j

l

)(
k − 1

l − 1

)

V l
2 . (4.11)

Summing the coefficients in front of the binomial coefficient terms proves case (ii).
Cases (i) and (iii) follow similarly. �

We now have an explicit expression for the coefficients. Substitute the expressions
for {vi, j }i≥ j≥0 into (3.11) to obtain, for j ≥ 1,

123

394 Queueing Syst (2017) 87:379–415

π(i,c−1+ j)(α) =
i∑

k=0

π(i−k,c−1)(α)
(
V1(1 − V2)

)k
(
j − 1 + k

k

)

r j
2

+
i−1∑

k=0

i∑

l=k+1

π(i−l,c−1)(α)V l
1

·
l−k∑

m=1

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm
2 (1 − V2)

k
(
j − 1 + k

k

)

r j
2 . (4.12)

Swapping the order of the double summation and grouping coefficients in front of each
Laplace transform reveals the dependence of π(i,c−1+ j)(α) on the Laplace transforms
π(0,c−1)(α), π(1,c−1)(α), . . . , π(i,c−1)(α):

π(i,c−1+ j)(α) = r j
2π(i,c−1)(α) +

i∑

l=1

V l
1π(i−l,c−1)(α)

[
(1 − V2)

l
(
j − 1 + l

l

)

r j
2

+
l−1∑

k=0

(1 − V2)
k
(
j − 1 + k

k

)

r j
2

l−k∑

m=1

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm
2

]
. (4.13)

From this expression, we see that for each fixed i ≥ 0, as j → ∞, π(i,c−1+ j)(α)

behaves in a manner analogous to that found in Theorem 3.1 of [23], which addresses,
when c = 1, the asymptotic behavior of the stationary distribution as the number
of high-priority customers approaches infinity, while the number of low-priority cus-
tomers is fixed.

The explicit expression (4.13) can be used to obtain an expression for the Laplace
transforms of the number of class-1 customers in the system. That is,

∫ ∞

0
e−αt

P(X1(t) = i | X (0) = (0, 0)) dt

=
∫ ∞

0
e−αt

∞∑

j=0

P(X (t) = (i, j) | X (0) = (0, 0)) dt

=
∞∑

j=0

π(i, j)(α) =
c−1∑

j=0

π(i, j)(α) +
∞∑

j=1

π(i,c−1+ j)(α), (4.14)

where we can simplify the final infinite sum as

∞∑

j=1

π(i,c−1+ j)(α) = r2
1 − r2

π(i,c−1)(α) +
i∑

l=1

V l
1π(i−l,c−1)(α)

[(1 − V2)lr2
(1 − r2)l+1

+
l−1∑

k=0

(1 − V2)kr2
(1 − r2)k+1

l−k∑

m=1

k

l − k

(
l − k

m

)(
l − 1

m − 1

)

Vm
2

]
, (4.15)

123

Queueing Syst (2017) 87:379–415 395

via the identity
∞∑

j=1

(
j − 1 + k

k

)

r j
2 = r2

(1 − r2)k+1 . (4.16)

5 Laplace transforms for states in the horizontal boundary

In the previous section, we showed how to express each Laplace transform for the
states on the vertical boundary and within the interior explicitly in terms of transforms
for the states in the horizontal boundary. So, it remains to determine the transforms for
the states in the horizontal boundary. In this section, we show that the latter Laplace
transforms satisfy a variant of Ramaswami’s formula, which will allow us to numeri-
cally compute these transforms recursively.

The approach we use to compute the above-mentioned variant of Ramaswami’s
formula makes, like the CAP method, repeated use of Theorem 1. This approach is
highly analogous to the approach used in [17] to study block-structured Markov pro-
cesses, yet slightly modified since we are interested in recursively computing Laplace
transforms only associated with states within the horizonal boundary. This idea of
restricting ourselves to a subset of the state space seems similar in spirit to the censor-
ing approach featured in the work of Li and Zhao [22], but it is not currently obvious
to the authors if their approach is applicable to our setting.

We first introduce some relevant notation. Define the 1 × c row vectors π i (α) as

π i (α) := [
π(i,0)(α) π(i,1)(α) · · · π(i,c−1)(α)

]
, i ≥ 0. (5.1)

To properly state the Ramaswami-like formula satisfied by these row vectors, we need
to define additional matrices. First, we define the c × c transition rate submatrices
corresponding to lower levels Li , i ≥ c, as A1 := λ1I, A−1 := diag(cμ1, (c −
1)μ1, . . . , μ1) and

A0 :=
⎡

⎢
⎢
⎢
⎢
⎢
⎣

−λ2 λ2
μ2 −(λ2 + μ2) λ2

2μ2 −(λ2 + 2μ2) λ2
. . .

(c − 1)μ2 −(λ2 + (c − 1)μ2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− A1 − A−1,

(5.2)

where I is the c × c identity matrix and diag(x) is a square matrix with the vector
x along its main diagonal. We further define the c × c level-dependent transition
rate submatrices associated with Li , 1 ≤ i ≤ c − 1, as A(i)

−1 := diag(x(i)) with

(x(i)) j := min(i, c − j)μ1, 0 ≤ j ≤ c − 1, A(i)
0 := A0 +A−1 −A(i)

−1, and for L0 we

have A(0)
0 := A0 + A−1.

123

396 Queueing Syst (2017) 87:379–415

Next, we define the collection of c × c matrices {Wm(α)}m≥0. Each element
of Wm(α) is equal to 0 except for element

(
Wm(α)

)
c−1,c−1, which is defined as

(
Wm(α)

)
c−1,c−1 := λ2w

(λ2,cμ2,λ1)
m (α).

We also need the collection of c × c matrices {Gi, j (α)}i> j≥0, where the (k, l)-th
element of Gi, j (α) is defined as

(
Gi, j (α)

)
k,l := E(i,k)[e−ατL j 1{X (τL j) = (j, l)}], 0 ≤ k, l ≤ c − 1. (5.3)

Finally, we will need the collection of c× c matrices {Ni (α)}i≥1, whose elements are
defined as follows:

(
Ni (α)

)
k,l := E(i,k)

[∫ τLi−1

0
e−αt1{X (t) = (i, l)} dt

]
, 0 ≤ k, l ≤ c − 1. (5.4)

Note that Ni (α) = Nc(α) for i ≥ c, and we therefore denote N(α) := Nc(α).

5.1 A Ramaswami-like recursion

The following theorem shows that the vectors of transforms {π i (α)}i≥0 satisfy a
recursion analogous to Ramaswami’s formula [25].

Theorem 4 (Horizontal boundary) For each integer i ≥ 0, we have

π i+1(α) = π i (α)A1Ni+1(α)

+
i∑

k=0

πk(α)

∞∑

l=i+1

Wl−k(α)Gl,i+1(α)Ni+1(α), (5.5)

where we use the convention Gi+1,i+1(α) = I.

Proof This result can be proven by making use of the approach found in [17]. Using
Theorem 1 with A = L≤i , we see that for i ≥ 0 and 0 ≤ j ≤ c − 1,

π(i+1, j)(α) =
∑

z∈L≤i

πz(α)
∑

z′∈Lc≤i

q(z, z′)Ez′
[∫ τL≤i

0
e−αt1{X (t) = (i + 1, j)} dt

]
.

(5.6)
Due to the structure of the transition rates, many terms in the summation of (5.6) are
zero. In particular, (5.6) can be stated more explicitly as

π(i+1, j)(α) =
i∑

k=0

π(k,c−1)(α)λ2E(k,c)

[∫ τL≤i

0
e−αt1{X (t) = (i + 1, j)} dt

]

+
c−1∑

m=0

π(i,m)(α)λ1E(i+1,m)

[∫ τL≤i

0
e−αt1{X (t) = (i + 1, j)} dt

]
.

(5.7)

123

Queueing Syst (2017) 87:379–415 397

We now simplify each expectation appearing within the first sum on the right-hand
side of (5.7). Summing over all ways in which the process reaches phase c − 1 again
yields

E(k,c)

[∫ τL≤i

0
e−αt1{X (t) = (i + 1, j)} dt

]

= E(k,c)

[∫ τL≤i

τPc−1

e−αt1{X (t) = (i + 1, j)} dt
]

=
∞∑

l=i+1

E(k,c)

[
1{X (τPc−1) = (l, c − 1)}e−ατPc−1

·
∫ τL≤i

τPc−1

e−α(t−τPc−1)
1{X (t) = (i + 1, j)} dt

]
. (5.8)

Applying the strong Markov property to each expectation appearing in (5.8) shows
that

(5.8) =
∞∑

l=i+1

E(k,c)

[
1{X (τPc−1) = (l, c − 1)}e−ατPc−1

]

· E(l,c−1)

[∫ τL≤i

0
e−αt1{X (t) = (i + 1, j)} dt

]

=
∞∑

l=i+1

w
(λ2,cμ2,λ1)
l−k (α)

(
Gl,i+1(α)Ni+1(α)

)
c−1, j , (5.9)

where the last equality follows from the definitions of Gl,i+1(α) and Ni+1(α), and
Lemma 8 of Appendix C. The expectations appearing within the second sum of (5.7)
can easily be simplified by recognizing that they are elements of Ni+1(α). Hence, we
ultimately obtain

π(i+1, j)(α) =
i∑

k=0

π(k,c−1)(α)

∞∑

l=i+1

λ2w
(λ2,cμ2,λ1)
l−k (α)

(
Gl,i+1(α)Ni+1(α)

)
c−1, j

+
c−1∑

m=0

π(i,m)(α)
(
A1

)
m,m

(
Ni+1(α)

)
m, j , (5.10)

which, in matrix form, is (5.5). �
It remains to derive computable representations of {Gi, j (α)}i> j≥0, as well as the

matrices {Ni (α)}1≤i≤c.

5.2 Computing the Gi, j (α) matrices

The next proposition shows that eachGi,j(α)matrix can be expressed entirely in terms
of the subset {Gi+1,i (α)}0≤i≤c−1.

123

398 Queueing Syst (2017) 87:379–415

Proposition 1 For each pair of integers i, j satisfying i > j ≥ 0, we have

Gi, j (α) = Gi,i−1(α)Gi−1,i−2(α) · · ·G j+1, j (α). (5.11)

Furthermore, for each integer k ≥ 0 we also have

Gc+k,c−1+k(α) = Gc,c−1(α). (5.12)

Proof Equation (5.11) can be derived by applying the strong Markov property in an
iterative manner, while (5.12) follows from the homogeneous structure of X along all
lower levels Li , i ≥ c. �

In light of Proposition 1, our goal now is to determine the subset of matrices
{Gi+1,i (α)}0≤i≤c−1. We first focus on showing thatG(α) := Gc,c−1(α) is the solution
to a fixed-point equation.

Proposition 2 The matrix G(α) satisfies

G(α) = (
αI − A0 − W0(α)

)−1
(
A−1 + A1G(α)2 +

∞∑

l=1

Wl(α)G(α)l+1
)
. (5.13)

Proof Assuming the matrix αI − A0 − W0(α) is invertible, Eq. (5.13) follows from
a one-step analysis argument. To show that αI − A0 − W0(α) is indeed invertible,
define the c × c matrix H(α) with elements

(
H(α)

)
i, j := E(c,i)

[∫ τ(Lc∪Uc)c

0
e−αt1{X (t) = (c, j)} dt

]
, 0 ≤ i, j ≤ c−1, (5.14)

and use again one-step analysis to establish

(
αI − A0 − W0(α)

)
H(α) = I, (5.15)

which proves the claim. �
The next proposition shows that through successive substitutions one can obtain

G(α) from (5.13).

Proposition 3 Suppose the sequence of matrices {Z(n, α)}n≥0 satisfies the recursion

Z(n + 1, α) = (
αI − A0 − W0(α)

)−1

·
(
A−1 + A1Z(n, α)2 +

∞∑

l=1

Wl(α)Z(n, α)l+1
)

(5.16)

with initial condition Z(0, α) = 0. Then,

lim
n→∞Z(n, α) = G(α). (5.17)

123

Queueing Syst (2017) 87:379–415 399

Proof This proof makes use of Proposition 2, and is completely analogous to the
proofs of [18, Theorems 3.1 and 4.1] and [17, Theorem 3.4]. It is therefore omitted. �

Now that we have a method for approximatingG(α), it remains to find amethod for
computingGi+1,i (α), 0 ≤ i ≤ c− 2. The next proposition shows that these matrices
can be computed recursively.

Proposition 4 For each integer i satisfying 0 ≤ i ≤ c − 2, we have

Gi+1,i (α) =
(
αI − A(i+1)

0 − A1Gi+2,i+1(α)

−
∞∑

l=i+1

Wl−(i+1)(α)Gl,i+1(α)
)−1

A(i+1)
−1 . (5.18)

Proof Similar to Proposition 2, (5.18) follows by a one-step analysis. The inverse in
(5.18) exists because the matrix A(i+1)

−1 is a diagonal matrix whose diagonal elements
are all positive. �

Wenowhave an iterative procedure for computing all {Gi+1,i (α)}0≤i≤c−1 matrices:
first computeG(α) fromProposition3, thenuseProposition4 to computeGc−1,c−2(α),
then Gc−2,c−3(α), and so on, stopping at G1,0(α).

5.3 Computing the Ni(α) matrices

The matrices {Ni (α)}1≤i≤c can be expressed in terms of {Gi, j (α)}i≥ j≥0.

Proposition 5 For each integer i satisfying 1 ≤ i ≤ c, we have

Ni (α) =
(
αI − A(i)

0 − A1Gi+1,i (α) −
∞∑

l=i

Wl−i (α)Gl,i (α)
)−1

, (5.19)

where we use the convention A(c)
0 = A0.

Proof The proof uses one-step analysis and is analogous to the proofs of Propositions 2
and 4. It is therefore omitted. �

5.4 Computing π0(α)

It remains to devise a method for computing the vector π0(α) so that the Ramaswami-
like recursion from Theorem 4 can be properly initialized. The following is an
adaptation of [17, Section 3.3]. We define the c × c matrix N0(α) whose elements
are given by

(
N0(α)

)
i, j := E(0,i)

[∫ τ(0,0)

0
e−αt1{X (t) = (0, j)} dt

]
, 0 ≤ i, j ≤ c − 1. (5.20)

123

400 Queueing Syst (2017) 87:379–415

In the derivation to follow, we require the notation (A)[i, j] which represents the
matrix A with row i and column j removed (meaning it is a (c− 1)× (c− 1) matrix),
while keeping the indexing of entries exactly as in A. Similarly, (A)[i,·] has row i
removed from A (meaning it is a (c − 1) × c matrix) and (A)[·, j] has column j
removed from A (meaning it is a c × (c − 1) matrix).

Proposition 6 We have

(
N0(α)

)[0,0] =
(
α
(
I
)[0,0] − (

A(0)
0

)[0,0] − (
A1

)[0,·](G1,0(α)
)[·,0]

−
∞∑

l=0

(
Wl(α)

)[0,·](Gl,0(α)
)[·,0])−1

. (5.21)

Proof Similar to the proofs of Propositions 2, 4 and 5, we use a one-step analysis and
the strong Markov property to prove the result. �

We employ (3.2) and Proposition 5 to determine the elements of the row vector
π0(α). Set A = {(0, 0)} in Theorem 1: then, for 1 ≤ j ≤ c − 1 and c ≥ 2,

π(0, j)(α) =
∑

z∈A

πz(α)
∑

z′∈A

q(z, z′)Ez′
[∫ τA

0
e−αt1{X (t) = (0, j)} dt

]

= π(0,0)(α)
(
λ1E(1,0)

[∫ τ(0,0)

0
e−αt1{X (t) = (0, j)} dt

]

+ λ2E(0,1)

[∫ τ(0,0)

0
e−αt1{X (t) = (0, j)} dt

])

= π(0,0)(α)
(
λ1

c−1∑

l=1

(
G1,0(α)

)
0,l

(
N0(α)

)
l, j + λ2

(
N0(α)

)
1, j

)
. (5.22)

Hence, the transformsπ(0, j)(α), 1 ≤ j ≤ c−1, can be expressed in terms ofπ(0,0)(α).
In Sect. 5.5, we describe a numerical procedure to determine π(0,0)(α).

Remark 1 (An alternative method for determining π0(α)) The Kolmogorov forward
equations can also be used to derive π0(α). The transition functions are known to
satisfy these equations, since supx∈S q(x) < ∞. Taking the Laplace transform of the
Kolmogorov forward equations for the states in L0 yields, after using (3.5),

π0(α)
(
αI − A(0)

0

) − π0(α)W0(α) − π1(α)A(1)
−1 = e0, (5.23)

where ei is a row vector with all elements equal to zero except for the i-th element
which is unity. Finally, using Theorem 4 to express π1(α) in terms of π0(α) yields

−π0(α)
(
−αI + A(0)

0 + W0(α)

+(
A1 +

∞∑

l=1

Wl(α)Gl,1(α)
)
N1(α)A(1)

−1

)
= e0. (5.24)

123

Queueing Syst (2017) 87:379–415 401

If one is instead interested in the stationary distribution and in particular the station-
ary probabilities of L0, i.e., limα↓0 α π0(α), (5.24) results in a homogeneous system
of equations, but it is not clear that this system still has a unique solution. On the other
hand, the approach outlined earlier for determining π0(α) can straightforwardly be
employed to obtain limα↓0 α π0(α).

5.5 Numerical implementation

In order to compute the vectors {π i (α)}i≥0, we first need to compute the matrices

{Gi+1,i (α)}0≤i≤c−1, {Ni (α)}1≤i≤c, and
(
N0(α)

)[0,0].
The first step is to computeG(α) = Gc,c−1(α). Proposition 3 shows that this matrix

can be approximated by using the recursion (5.16). Using this recursion requires us
to truncate the infinite sum appearing within the recursion. One way of applying this
truncation is as follows: given a fixed tolerance ε, pick an integer κε large enough so
that ∞∑

l=κε+1

|w(λ2,cμ2,λ1)
l (α)| ≤ ε/λ2. (5.25)

Once κε has been found, we can use the approximation

κε∑

l=1

Wl(α)Z(n, α)l+1 ≈
∞∑

l=1

Wl(α)Z(n, α)l+1, (5.26)

since the modulus of each element of the matrix on the left-hand side of (5.26) can be
shown to be within ε of what is being approximated. Here we used that the matrices
Wl(α) only have one element and the absolute value of each element of Z(n, α) (and
G(α)) is less than or equal to 1. Hence, we propose using the recursion

Z(n + 1, α) = (
αI − A0 − W0(α)

)−1

·
(
A−1 + A1Z(n, α)2 +

κε∑

l=1

Wl(α)Z(n, α)l+1
)

(5.27)

to approximateG(α). Notice that we can determine κε satisfying (5.25) by writing the
left-hand side of (5.25) as

∞∑

l=κε+1

|w(λ2,cμ2,λ1)
l (α)| =

∞∑

l=1

|w(λ2,cμ2,λ1)
l (α)| −

κε∑

l=1

|w(λ2,cμ2,λ1)
l (α)|. (5.28)

An explicit expression for the infinite sum on the right-hand side of (5.28) can be
derived with the help of Lemma 8 of Appendix C and the generating function of the
Catalan numbers; the finite sum can be computed numerically.

123

402 Queueing Syst (2017) 87:379–415

Once G(α) has been found, we can use Proposition 4 to compute each Gi+1,i (α)

matrix, for 0 ≤ i ≤ c−2. For this computation, we use the same truncation procedure
as outlined above.

The next step is to compute the matrices {Ni (α)}1≤i≤c and
(
N0(α)

)[0,0] using
Propositions 5 and 6, respectively. For both computations, we again use the above
truncation procedure.

It remains to recursively determine {π i (α)}i≥0 using Theorem 4, where we again
use the truncation procedure for the infinite sum. As we have seen in Sect. 5.4, this
recursion should be properly initialized by the value of π(0,0)(α). The random-product
representation in Theorem 6 of Appendix B shows that all Laplace transforms πx (α)

satisfy, for each x ∈ S,
πx (α) = π(0,0)(α)ψx (α), (5.29)

where π(0,0)(α) is an unknown transform and ψ(0,0)(α) = 1. It is clear that the
ψx (α) can be computed using the same procedure as for πx (α), and (5.22) shows that
ψ(0,0)(α), ψ(0,1)(α), . . . , ψ(0,c−1)(α) are computable expressions.

We can calculate π(0,0)(α) from the normalization condition

∑

x∈S
πx (α) = π(0,0)(α)

∑

x∈S
ψx (α) = 1

α
, (5.30)

which yields

π(0,0)(α) = 1

α
∑

x∈S ψx (α)
. (5.31)

Since we cannot compute this infinite sum, we determine ψ(i, j)(α) for all (i, j) in a
sufficiently large bounding box Sk := {(i, j) ∈ S : 0 ≤ i ≤ k} for some k ≥ 0. Notice
that (4.15) allows Sk to be an infinitely large rectangle. The choice of k in Sk clearly
influences the quality of the approximation. A simple procedure to choose k is the
following. Define

�k :=
∑

x∈Sk
ψx (α). (5.32)

Pick ε small and positive and continue increasing k until |�k+1−�k |
|�k | < ε.

Then, set π(0,0)(α) = 1/(α�k+1) to normalize the Laplace transforms πx (α) =
π(0,0)(α)ψx (α).

For c = 1 we can normalize the solution as outlined above, or we can explicitly
determine the value of π(0,0)(α); see the next section.

6 The single-server case

We now turn our attention to the case where c = 1, i.e., the case where the sys-
tem consists of a single server. In this case, the analysis of the Laplace transforms
π(i,0)(α), i ≥ 0, simplifies considerably. The expressions for the Laplace transforms
for the states in the interior and on the vertical boundary are identical to themulti-server
case.

123

Queueing Syst (2017) 87:379–415 403

From [12, Corollary 2.1]—see also Theorem 6 in Appendix B—we have

π(0,0)(α) = 1

(q((0, 0)) + α)(1 − E(0,0)[e−ατ(0,0)]) . (6.1)

In light of (6.1), to evaluate π(0,0)(α) the only thing that needs to be determined is
the expectation E(0,0)[e−ατ(0,0)]. This quantity is the Laplace–Stieltjes transform of
the sum of two independent exponential random variables: One is the exponential
random variable Eλ having rate λ, the other is the busy period B of an M/G/1 queue
having arrival rateλ and hyperexponential service times having cumulative distribution
function F(·). More specifically,

F(t) = λ1

λ
(1 − e−μ1t) + λ2

λ
(1 − e−μ2t), t ≥ 0. (6.2)

The Laplace–Stieltjes transform ϕ(α) of B is known to satisfy the Kendall functional
equation

ϕ(α) = λ1

λ

μ1

μ1 + α + λ(1 − ϕ(α))
+ λ2

λ

μ2

μ2 + α + λ(1 − ϕ(α))
. (6.3)

Furthermore, ϕ(α) can be determined numerically through successive substitutions of
(6.3), starting with ϕ(α) = 0; see [1, Section 1] for details. Using independence of
Eλ and B,

E(0,0)[e−ατ(0,0)] = E[e−α(Eλ+B)] = λ

λ + α
ϕ(α), (6.4)

meaning that (see also [2, Eq. (36)]) for c = 1,

π(0,0)(α) = 1

λ(1 − ϕ(α)) + α
. (6.5)

We now turn our attention to the horizontal boundary. When c = 1, the matrices
G(α) and N(α) become scalars, which we denote as G(α) and N (α), respectively.
More precisely,

G(α) := E(i+1,0)[e−ατLi], N (α) := E(i,0)

[∫ τLi−1

0
e−αt1{X (t) = (i, 0)} dt

]
,

(6.6)
which are independent of i ≥ 1.

Proposition 7 The scalar G(α) is a solution to

(λ + μ1 + α)G(α) = μ1 + λ1G(α)2 + λ2G(α)φλ2,μ2(λ1(1 − G(α)) + α). (6.7)

Proof From Proposition 2, we easily find that when c = 1,

(λ + μ1 + α)G(α) = μ1 + λ1G(α)2 + λ2

∞∑

l=0

w
(λ2,μ2,λ1)
l (α)G(α)l+1. (6.8)

123

404 Queueing Syst (2017) 87:379–415

The infinite series appearing in (6.8) can be simplified using Lemma 9 of Appendix C;
doing so yields (6.7). �

Even though we cannot use (6.7) to write down an explicit expression for G(α),
we can still use it to devise an iterative scheme for computing G(α). The next result
shows that N (α) can be expressed in terms of G(α).

Proposition 8 We have

N (α) = 1

α + λ + μ1 − λ1G(α) − λ2φλ2,μ2(λ1(1 − G(α)) + α)
. (6.9)

Proof Using Proposition 5, we observe that when c = 1,

N (α) =
(
α + λ + μ1 − λ1G(α) − λ2

∞∑

l=0

w
(λ2,μ2,λ1)
l (α)G(α)l

)−1
. (6.10)

The proof is completed by applying Lemma 9 of Appendix C to (6.10). �
Wenow focus on the recursion for the horizontal boundary.When c = 1, Theorem4

reduces to

π(i+1,0)(α) = λ1π(i,0)(α)N (α)

+ λ2

i∑

k=0

π(k,0)(α)

∞∑

l=i+1

w
(λ2,μ2,λ1)
l−k (α)G(α)l−(i+1)N (α). (6.11)

For the inner-most sum over l we have

∞∑

l=i+1

w
(λ2,μ2,λ1)
l−k (α)G(α)l−(i+1) = G(α)k−(i+1)

∞∑

m=i+1−k

w(λ2,μ2,λ1)
m (α)G(α)m .

(6.12)
Clearly, i + 1 − k ≥ 1. So let us try to evaluate the tail of the generating function of
{w(λ2,μ2,λ1)

m (α)}m≥0 evaluated at the point G(α), i.e.,

∞∑

m=i+1−k

w(λ2,μ2,λ1)
m (α)G(α)m

= φλ2,μ2(λ1(1 − G(α)) + α) −
i−k∑

m=0

w(λ2,μ2,λ1)
m (α)G(α)m, (6.13)

which follows from an application of Lemma 9 of Appendix C. The remaining
finite summation is easy to compute since each w

(λ2,μ2,λ1)
m (α) term, by Lemma 8 of

Appendix C, can be stated in terms of bK (·) functions, and these satisfy the recursion
found in Lemma 4 of Appendix A. These observations allow us to state the following

123

Queueing Syst (2017) 87:379–415 405

theorem, which yields a practical method for recursively computing Laplace trans-
forms of the form π(i,0)(α).

Theorem 5 (Horizontal boundary, single server)When c = 1, the Laplace transforms
of the transition functions on the horizontal boundary satisfy the following recursion:
for i ≥ 0,

π(i+1,0)(α) = λ1π(i,0)(α)N (α)

+ λ2

i∑

k=0

π(k,0)(α)G(α)k−(i+1)
(
φλ2,μ2(λ1(1 − G(α)) + α)

−
i−k∑

l=0

w
(λ2,μ2,λ1)
l (α)G(α)l

)
N (α). (6.14)

7 Conclusion

In this paper, we analyzed an M/M/c priority system with two customer classes,
class-dependent service rates and a preemptive resume priority rule. This queueing
system can be modeled as a two-dimensional Markov process for which we analyzed
the time-dependent behavior. More precisely, we obtained expressions for the Laplace
transforms of the transition functions under the condition that the system is initially
empty.

Using a slight modification of the CAP method, we showed that the Laplace trans-
forms for the states with at least c high-priority customers can be expressed in terms
of a finite sum of the Laplace transforms for the states with exactly c−1 high-priority
customers. This expression contained coefficients that satisfy a recursion. We solved
this recursion to obtain an explicit expression for each coefficient. In doing so, each
Laplace transform for the states on the vertical boundary and in the interior can easily
be calculated from the values of the Laplace transforms for the states in the horizontal
boundary.

Next, we developed a Ramaswami-like recursion for the Laplace transforms for the
states in the horizontal boundary. The recursion required the collections of matrices
{Gi+1,i }0≤i≤c−1 and {Ni (α)}1≤i≤c for which we showed that they can be determined
iteratively. We demonstrated two ways in which the initial value of the recursion, i.e.,
the vector π0(α), can be calculated. Finally, we discussed the numerical implementa-
tion of our approach for the horizontal boundary.

In the single-server case, the expressions for the Laplace transforms for the states on
the vertical boundary and in the interior were identical to the multi-server case. The
expressions for the horizontal boundary, however, simplified considerably. Specifi-
cally, the initial value π (0,0)(α) of the recursion could be determined by comparing
the queueing system to an M/G/1 queue with hyperexponentially distributed service
times. Moreover, the calculation of G(α) and N (α), which are now scalars, simplified
greatly.

We now comment on how our expressions for the Laplace transforms of the transi-
tions functions can be used to determine the stationary distribution. It is clear from the

123

406 Queueing Syst (2017) 87:379–415

transition rate diagram in Fig. 3 that the Markov process X is irreducible. Moreover,
it is well-known that X is positive recurrent if and only if ρ < 1. In that case, X has
a unique stationary distribution p := [px]x∈S. To compute each px term from πx (α),
simply note that

px = lim
α↓0 α πx (α). (7.1)

Using this observation, we see that the procedure for finding p is highly analogous to
the one we presented for finding the Laplace transforms of the transition functions.

Acknowledgements The authors thank both the editor and the referees for their constructive comments
on a previous version of our manuscript, as these helped us improve both the content and the readability of
our paper. The first author is supported by a free competition Grant from the Netherlands Organisation for
Scientific Research (NWO), while the second author gratefully acknowledges the support of the National
Science Foundation (NSF), via Grant NSF-CMMI-1435261.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Combinatorial identities

In this appendix, we collect some combinatorial identities that are used throughout
the paper. These lemmas are likely known, but we prove them here to make the paper
self-contained.

Lemma 1 For j ≥ 1, l ≥ 0 and Υ (j, k) defined in (3.9), we have

∞∑

k=1

Υ (j, k)

(
k − 1 + l

l

)

rk2

= λ1Ω2

(
j − 1 + l + 1

l + 1

)

r j
2 + λ1Ω2

1 − r2φ2
r2φ2

l∑

m=1

1

(1 − r2φ2)l−m

(
j − 1 + m

m

)

r j
2 .

(A.1)

Proof The result is nearly identical to [10, Lemma 1], so we omit its proof. �
Lemma 2 We have the identity

K∑

k=0

(K − k + 2l)!
(K − k)!

(k + 2m)!
k! = (2l)!(2m)!

(
K + 2l + 2m + 1

2l + 2m + 1

)

. (A.2)

Proof Rewriting the fractions as two binomial coefficients,

(A.2) = (2l)!(2m)!
K∑

k=0

(
K − k + 2l

K − k

)(
k + 2m

k

)

. (A.3)

123

http://creativecommons.org/licenses/by/4.0/

Queueing Syst (2017) 87:379–415 407

The rest of the proof follows from a direct application of [11, Chapter 2, Eq. (12.16)].
�

Lemma 3 We have the identity

l−m∑

k= j

k

l − k

(
l − k

m

)

= l − m + jm

m(l + 1 − j)

(
l + 1 − j

m + 1

)

. (A.4)

Proof Change the summation variable to n = l − k to get

l−m∑

k= j

k

l − k

(
l − k

m

)

=
l− j∑

n=m

l − n

n

(
n

m

)

. (A.5)

Splitting the summation and using the identity

U∑

n=L

(
n

L

)

=
(
U + 1

L + 1

)

(A.6)

produces

(A.5) =
l− j∑

n=m

l

n

(
n

m

)

−
l− j∑

n=m

(
n

m

)

= l

m

l− j∑

n=m

(
n − 1

m − 1

)

−
l− j∑

n=m

(
n

m

)

= l

m

l− j−1∑

n=m−1

(
n

m − 1

)

−
l− j∑

n=m

(
n

m

)

= l

m

(
l − j

m

)

−
(
l + 1 − j

m + 1

)

= l(m + 1)

m(l + 1 − j)

(
l + 1 − j

m + 1

)

−
(
l + 1 − j

m + 1

)

, (A.7)

proving the claim. �
Lemma 4 Define

bK (z) :=
K∑

k=0

Ck

(
K + k

K − k

)

zk, (A.8)

where Ck := 1
k+1

(2k
k

)
are the Catalan numbers. The sequence {bK (z)}K≥0 satisfies

two recursions. For K ≥ 2 it satisfies

(K + 1)bK (z) = (2K − 1)(1 + 2z)bK−1(z) − (K − 2)bK−2(z), (A.9)

alternatively, for K ≥ 0, it satisfies

bK+1(z) = bK (z) + z
K∑

l=0

bl(z)bK−l(z) (A.10)

123

408 Queueing Syst (2017) 87:379–415

with b0(z) = 1 and b1(z) = 1 + z.

Proof The terms bK (z) appear in [5, Section 3.3], where the authors derive (A.9). We
believe that a small typographical error appears in their recursion that we have fixed
here. To do so, in [5], substitute (23) into (24) to obtain the correct form of (16).

We now derive the recursion (A.10). Since we already have the explicit expression
(A.8) for bK (z), we will substitute this into (A.10) and show that bK+1(z) again is
given by (A.8).

Rewrite the first term on the right-hand side of (A.10) as

bK (z) =
K∑

k=0

Ck

(
K + k

K − k

)

zk =
K∑

k=0

K + 1 − k

K + 1 + k
Ck

(
K + 1 + k

K + 1 − k

)

zk . (A.11)

Substituting (A.8) into the finite sum of (A.10) gives

z
K∑

l=0

bl(z)bK−l(z) = z
K∑

l=0

(l∑

k=0

Ck

(
l + k

l − k

)

zk
)(K−l∑

m=0

Cm

(
K − l + m

K − l − m

)

zm
)

=
K∑

l=0

l∑

k=0

K−l∑

m=0

CkCm

(
l + k

l − k

)(
K − l + m

K − l − m

)

zk+m+1. (A.12)

Switch the order of the triple summation to obtain

(A.12) =
K∑

k=0

K−k∑

m=0

CkCmz
k+m+1

K−m∑

l=k

(
l + k

l − k

)(
K − l + m

K − l − m

)

=
K∑

k=0

K−k∑

m=0

CkCmz
k+m+1

K−k−m∑

n=0

(
n + 2k

n

)(
K − k − m − n + 2m

K − k − m − n

)

,

(A.13)

where we introduced n = l − k. Employing Lemma 2 for the inner-most summation
results in

(A.13) =
K∑

k=0

K−k∑

m=0

CkCmz
k+m+1

(
K + 1 + k + m

K − (k + m)

)

. (A.14)

The double summation sums over all k,m ≥ 0 such that 0 ≤ k + m ≤ K . An
equivalent summation is over the diagonals k+m = d with 0 ≤ d ≤ K and k,m ≥ 0:

(A.14) =
K∑

d=0

∑

k,m≥0 : k+m=d

CkCmz
k+m+1

(
K + 1 + k + m

K − (k + m)

)

=
K∑

d=0

d∑

k=0

CkCd−k z
d+1

(
K + 1 + d

K − d

)

. (A.15)

123

Queueing Syst (2017) 87:379–415 409

Using the identity Cd+1 = ∑d
k=0 CkCd−k , setting k = d + 1 and rewriting the

binomial coefficient produces

(A.15) =
K∑

d=0

Cd+1z
d+1

(
K + 1 + d

K − d

)

=
K+1∑

k=1

Ck

(
K + k

K + 1 − k

)

zk

=
K+1∑

k=1

2k

K + 1 + k
Ck

(
K + 1 + k

K + 1 − k

)

zk . (A.16)

Finally, summing (A.11) and (A.16) yields

bK (z) + z
K∑

l=0

bl(z)bK−l(z)

=
K∑

k=0

K + 1 − k

K + 1 + k
Ck

(
K + 1 + k

K + 1 − k

)

zk +
K+1∑

k=1

2k

K + 1 + k
Ck

(
K + 1 + k

K + 1 − k

)

zk

=
K+1∑

k=0

Ck

(
K + 1 + k

K + 1 − k

)

zk = bK+1(z), (A.17)

proving the recursion (A.10) is correct. �

Appendix B: Random-product representation

The results we present in Appendix C make use of the random-product representation
theory recently developed and discussed in [6,12]. Using this theory to study a given
Markov process X requires selecting an additional Markov process X̃ := {X̃(t)}t≥0
that shares the same state space S as X . The elements of the transition rate matrix Q̃
of X̃ must satisfy the following two properties; see [6, Section 1] and [12, Section 2]:

(i) For each x ∈ S, q̃(x) := −q̃(x, x) = ∑
y �=x q̃(x, y) = q(x);

(ii) For each x, y ∈ S, x �= y, q̃(x, y) > 0 if and only if q(y, x) > 0.

Associate with the Markov process X its transition times {Tn}n≥0, where T0 := 0
and Tn represents the n-th transition time of X . From the transition times, we create
the embedded discrete-time Markov chain {Xn}n≥0 as Xn := X (Tn), n ≥ 0. The
sequences {T̃n}n≥0 and {X̃n}n≥0 are constructed and defined similarly.

We will also need to make use of discrete-time hitting-time random variables. We
define, for each set A ⊂ S,

ηA := inf{n ≥ 1 : Xn ∈ A} (B.1)

as the first time the embedded chain make a transition into A. ηx should be understood
to mean η{x}. The continuous-time hitting-time random variable τ̃A is defined anal-

123

410 Queueing Syst (2017) 87:379–415

ogously to the definition in Sect. 2.1, and η̃A represents the first time the embedded
DTMC of X̃ reaches the set A.

The random-product representation canbe used to determine theLaplace transforms
of the transition functions, when the process is assumed to start in a fixed state x ∈ S.
Wewill employ the following theorem,which originally appeared in [12, Corollary 2.1
and Theorem 2.1].

Theorem 6 Suppose y ∈ S, where y �= x. Then the Laplace transform πx,y(α) of
px,y(·) satisfies

πx,y(α) = πx,x (α)Ey

[
e−ατ̃x

η̃x∏

l=1

q(X̃l , X̃l−1)

q̃(X̃l−1, X̃l)

]
, (B.2)

where

πx,x (α) = 1

(q(x) + α)(1 − Ex [e−ατx]) . (B.3)

Appendix C: Results for M/M/1 queues

Here we derive key quantities associated with M/M/1 queues. The first lemma is a
restatement of [10, Lemma 4], which was inspired by Problems 22 and 23 of [19,
Chapter 7].

Lemma 5 Suppose {X (t)}t≥0 is an M/M/1 queueing model with exponential clear-
ings. Arrivals occur according to a Poisson process with rate λ, each service is
exponentially distributed with rate μ and there is an external Poisson process having
rate θ of clearing instants, where, whenever a clearing occurs, all customers in the
system at the clearing time are removed. Then, for j ≥ 1,

E1

[
1{τ j < τ0}e−ατ j

]
=

(
λ
μ
φλ,μ(θ + α)

) j−1
(1 − λ

μ
φλ,μ(θ + α)2)

1 − (
λ
μ
φλ,μ(θ + α)2

) j . (C.1)

Proof The time τ0 is the minimum of the busy period of a regular M/M/1 queue, i.e.,
Bλ,μ, and an exponential random variable with parameter θ . Note that the two random
variables are independent. So,

E1

[
1{τ j < τ0}e−ατ j

]
= E1

[
1{τ j < Bλ,μ}1{τ j < Eθ }e−ατ j

]
, (C.2)

where Eθ is an exponential random variable with parameter θ . Under this descrip-
tion, the time τ j is equal to the time τ ∗

j to reach state j in a regular M/M/1 queue.
Furthermore, conditioning on both τ ∗

j and Bλ,μ yields

(C.2) = E1

[
1{τ ∗

j < Bλ,μ}1{τ ∗
j < Eθ }e−ατ∗

j

]

123

Queueing Syst (2017) 87:379–415 411

= E1

[
E

[
1{τ ∗

j < Bλ,μ}1{τ ∗
j < Eθ }e−ατ∗

j | Bλ,μ, τ ∗
j

]]

= E1

[
1{τ ∗

j < Bλ,μ}e−ατ∗
j E

[
1{τ ∗

j < Eθ } | Bλ,μ, τ ∗
j

]]

= E1

[
1{τ ∗

j < Bλ,μ}e−(θ+α)τ∗
j

]
. (C.3)

The remainder of the proof follows from the proof of [10, Lemma 4]. �
The following lemma is aminor generalization of [10, Theorem 2], in that we verify

it is still valid for α ∈ C+.

Lemma 6 Suppose {X (t)}t≥0 is the clearing model of Lemma 5. Then for each
j, k ≥ 1,

Ek

[∫ τ0

0
e−αt1{X (t) = j} dt

]

=

⎧
⎪⎨

⎪⎩

λ
μ

φλ,μ(θ+α)

λ(1− λ
μ

φλ,μ(θ+α)2)

(
λ
μ
φλ,μ(θ + α)

) j−k(1 − (
λ
μ
φλ,μ(θ + α)2

)k)
, 1 ≤ k ≤ j − 1,

λ
μ

φλ,μ(θ+α)

λ(1− λ
μ

φλ,μ(θ+α)2)
φλ,μ(θ + α)k− j

(
1 − (

λ
μ
φλ,μ(θ + α)2

) j)
, k ≥ j.

(C.4)

Proof Define the Laplace transform of the transition functions

π0, j (α) :=
∫ ∞

0
e−αt p0, j (t) dt. (C.5)

The state space for this single-server queue is S = N0. Select A = {0} and B = S\A
and apply Theorem 1 to obtain, for j ≥ 1,

π0, j (α) = π0,0(α)(λ + α)E0

[∫ τ0

0
e−αt1{X (t) = j} dt

]

= π0,0(α)λE1

[∫ τ0

0
e−αt1{X (t) = j} dt

]
. (C.6)

We can use the random-product representation ofAppendixB to derive another expres-
sion for π0, j (α). Construct a Markov process X̃ := {X̃(t)}t≥0 with transition rates
q̃(i, i − 1) = λ + θ and q̃(i, i + 1) = μ for i ≥ 1. X̃ also has transitions from state 0
to every other state, but these do not factor into the calculations so there is no need to
formally define them here. From Theorem 6,

π0, j (α) = π0,0(α)E j

[
e−ατ̃0

η̃0∏

l=1

q(X̃l , X̃l−1)

q̃(X̃l−1, X̃l)

]

= π0,0(α)E1

[
e−αBμ,λ+θ

(
λ

λ + θ

)Dμ,λ+θ] j

123

412 Queueing Syst (2017) 87:379–415

= π0,0(α)

(
λ

μ
φλ,μ(θ + α)

) j

. (C.7)

Combining (C.6) with (C.7) gives

E1

[∫ τ0

0
e−αt1{X (t) = j} dt

]
= 1

λ

(
λ

μ
φλ,μ(θ + α)

) j

. (C.8)

For now, abbreviate φ := φλ,μ(θ+α) and r := λ
μ
φλ,μ(θ+α). The remaining expected

values can be computed. First, for 2 ≤ k ≤ j ,

E1

[∫ τ0

0
e−αt1{X (t) = j} dt

]
= E1

[
1{τk < τ0}

∫ τ0

0
e−αt1{X (t) = j} dt

]

= E1

[
1{τk < τ0}e−ατk

∫ τ0

τk

e−α(t−τ0)1{X (t) = j} dt
]

= E1

[
1{τk < τ0}e−ατk

]
Ek

[∫ τ0

0
e−αt1{X (t) = j} dt

]
.

(C.9)

Furthermore, from Lemma 5,

E1

[
1{τk < τ0}e−ατk

]
= rk−1(1 − rφ)

1 − (rφ)k
, (C.10)

meaning

Ek

[∫ τ0

0
e−αt1{X (t) = j} dt

]
= r

λ(1 − rφ)
r j−k(1 − (rφ)k). (C.11)

Deriving the expected values when k > j is a little more straightforward. Here,

Ek

[∫ τ0

0
e−αt1{X (t) = j} dt

]
= Ek

[
1{τ j < τ0}e−ατ j

∫ τ0

τ j

e−α(t−τ j)1{X (t) = j} dt
]

= Ek

[
1{τ j < τ0}e−ατ j

]
E j

[∫ τ0

0
e−αt1{X (t) = j} dt

]

= r

λ(1 − rφ)
φk− j (1 − (rφ) j), (C.12)

which proves the claim. �
Lemma 7 The expectation w

(λ,μ,θ)
i (α), defined in (2.8), satisfies for i ≥ 1 the recur-

sion

w
(λ,μ,θ)
i (α)= θ

λ+μ+θ+α
w

(λ,μ,θ)
i−1 (α)+ λ

λ+μ+θ+α

i∑

k=0

w
(λ,μ,θ)
i−k (α)w

(λ,μ,θ)
k (α)

(C.13)

123

Queueing Syst (2017) 87:379–415 413

and w
(λ,μ,θ)
0 (α) = φλ,μ(θ + α).

Proof Conditioning on the length of the busy period, we have, for i = 0,

w
(λ,μ,θ)
0 (α) = E1[e−αBλ,μ1{Λθ(Bλ,μ) = 0}] = E1[e−αBλ,μ1{Bλ,μ < Eθ }]

=
∫ ∞

0
P(t < Eθ)e

−αt fBλ,μ(t) dt = φλ,μ(θ + α). (C.14)

The recursion for i ≥ 1 follows from a one-step analysis and the strong Markov
property. Since the birth–and–death process starts with 1 customer, the first event
occurs after Eλ+μ+θ time and is either an arrival according to the Poisson process
with probability θ/(λ+μ+θ) or an arrival of an additional customer with probability
λ/(λ + μ + θ). If the former occurs, due to the strong Markov property, one less
Poisson point needs to arrive. If the latter occurs, exactly i Poisson points need to
arrive in two busy periods (due to the homogeneous structure of the birth–and–death
process). This reasoning establishes the recursion (C.13). �
Lemma 8 The {w(λ,μ,θ)

i (α)}i≥0 of Lemma 7 are given byw
(λ,μ,θ)
0 (α) = φλ,μ(θ +α)

and for i ≥ 1,

w
(λ,μ,θ)
i (α) = Wi

1φλ,μ(θ + α)

i−1∑

k=0

Ck

(
i − 1 + k

i − 1 − k

)

Wk
2 = Wi

1φλ,μ(θ + α)bi−1(W2),

(C.15)
where Ck := 1

k+1

(2k
k

)
are the Catalan numbers, bK (z) is defined in Lemma 4, and

W1 = θ

λ(1 − 2φλ,μ(θ + α)) + μ + θ + α
,

W2 = λφλ,μ(θ + α)

λ(1 − 2φλ,μ(θ + α)) + μ + θ + α
. (C.16)

Proof For brevity, define wi := w
(λ,μ,θ)
i (α). Rewrite (C.13) as

(λ + μ + θ + α)wi+1 = θwi + λ
(i∑

k=1

wi+1−kwk + 2w0wi+1

)
. (C.17)

Using w0 = φλ,μ(θ + α), this reduces to

wi+1 = W1wi + W2

φλ,μ(θ + α)

i∑

k=1

wi+1−kwk . (C.18)

Straightforwardly substituting (C.15) into (C.18) and dividing by Wi+1
1 φλ,μ(θ + α)

results in

bi (W2) = bi−1(W2) + W2

i∑

k=1

bi−k(W2) bk−1(W2). (C.19)

123

414 Queueing Syst (2017) 87:379–415

Now, change the summation index by setting l = k − 1 to retrieve

bi (W2) = bi−1(W2) + W2

i−1∑

l=0

bi−1−l(W2) bl(W2), (C.20)

so that Lemma 4 proves the claim (C.15). �
Lemma 9 The generating function of the {w(λ,μ,θ)

i (α)}i≥0 is, for |z| < 1,

∞∑

i=0

w
(λ,μ,θ)
i (α) zi = φλ,μ(θ(1 − z) + α). (C.21)

Proof We use the definition of w
(λ,μ,θ)
i (α) in Lemma 7 and condition on the length

of the busy period:

∞∑

i=0

w
(λ,μ,θ)
i (α) zi =

∞∑

i=0

E1

[
e−αBλ,μ1{Λθ(Bλ,μ) = i}

]
zi

=
∞∑

i=0

E1

[
e−αBλ,μ1{Λθ(Bλ,μ) = i}zi

]

= E1

[
e−αBλ,μ zΛθ (Bλ,μ)

]

=
∫ ∞

0
E1

[
e−αBλ,μ zΛθ (Bλ,μ) | Bλ,μ = t

]
fBλ,μ(t) dt

=
∫ ∞

0
e−αt

E

[
zΛθ (t)

]
fBλ,μ(t) dt

=
∫ ∞

0
e−(θ(1−z)+α)t fBλ,μ(t) dt

= φλ,μ(θ(1 − z) + α), (C.22)

where we used the probability generating function of a Poisson distribution with
parameter θ t . �

References

1. Abate, J., Whitt, W.: Solving probability transform functional equations for numerical inversion. Oper.
Res. Lett. 12(5), 275–281 (1992)

2. Abate, J., Whitt, W.: Transient behavior of the M/G/1 workload process. Oper. Res. 42(4), 750–764
(1994)

3. Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J.
Comput. 7(1), 36–43 (1995)

4. Abate, J., Whitt, W.: A unified framework for numerically inverting Laplace transforms. INFORMS J.
Comput. 18(4), 408–421 (2006)

123

Queueing Syst (2017) 87:379–415 415

5. Abate, J., Whitt, W.: Integer sequences from queueing theory. J. Integer Seq. 13(5), 1–21 (2010)
6. Buckingham, P., Fralix, B.: Some new insights into Kolmogorov’s criterion, with applications to

hysteretic queues. Markov Process. Relat. Fields 21(2), 339–368 (2015)
7. Cobham, A.: Priority assignment in waiting line problems. Oper. Res. 2(1), 70–76 (1954)
8. Davis, R.: Waiting-time distribution of a multi-server, priority queuing system. Oper. Res. 14(1), 133–

136 (1966)
9. den Iseger, P.: Numerical transform inversion using Gaussian quadrature. Prob. Eng. Inf. Sci. 20, 1–44

(2006)
10. Doroudi, S., Fralix, B., Harchol-Balter, M.: Clearing analysis on phases: exact limiting probabilities

for skip-free, unidirectional, quasi-birth-death processes (2015). ArXiv preprint arXiv:1503.05899v3
11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3 revised edn. Wiley,

New York (1968)
12. Fralix, B.: When are two Markov chains similar? Stat. Prob. Lett. 107, 199–203 (2015)
13. Gail, H., Hantler, S., Taylor, B.: On a preemptive Markovian queue with multiple servers and two

priority classes. Math. Oper. Res. 17(2), 365–391 (1992)
14. Harchol-Balter, M., Osogami, T., Scheller-Wolf, A., Wierman, A.: Multi-server queueing systems with

multiple priority classes. Queueing Syst. 51(3–4), 331–360 (2005)
15. Jaiswal, N.: Preemptive resume priority queue. Oper. Res. 9(5), 732–742 (1961)
16. Jaiswal, N.: Priority Queues. Academic Press Inc, New York (1968)
17. Joyner, J., Fralix, B.: A new look at block-structured Markov processes. In: Working Paper (2016).

http://bfralix.people.clemson.edu/preprints/BlockStructuredPaper8June.pdf
18. Joyner, J., Fralix, B.: A new look at Markov processes of G/M/1-type. Stoch. Models 32(2), 253–274

(2016)
19. Karlin, S., Taylor, H.: A First Course in Stochastic Processes, 2nd edn. Academic Press, San Diego

(1975)
20. Katehakis, M., Smit, L., Spieksma, F.: A comparative analysis of the successive lumping and the lattice

path counting algorithms. J. Appl. Prob. 53(1), 106–120 (2016)
21. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling.

Society for Industrial and Applied Mathematics, Philadelphia (1999)
22. Li, Q.L., Zhao, Y.Q.: The RG-factorization in block-structured Markov renewal processes. In: Zhu, X.

(ed.) Observation, Theory and Modeling of Atmospheric Variability, pp. 545–568. World Scientific,
Singapore (2004)

23. Li, H., Zhao, Y.: Exact tail asymptotics in a priority queue—characterizations of the preemptive model.
Queueing Syst. 63(1–4), 355–381 (2009)

24. Miller, D.: Computation of steady-state probabilities for M/M/1 priority queues. Oper. Res. 29(5),
945–958 (1981)

25. Ramaswami, V.: A stable recursion for the steady state vector inMarkov chains of M/G/1 type. Stoch.
Models 4(1), 183–188 (1988)

26. Sleptchenko, A., van Harten, A., van der Heijden, M.: An exact solution for the state probabilities of
the multi-class, multi-server queue with preemptive priorities. Queueing Syst. 50(1), 81–107 (2005)

27. Sleptchenko, A., Selen, J., Adan, I., van Houtum, G.: Joint queue length distribution of multi-class,
single-server queues with preemptive priorities. Queueing Syst. 81(4), 379–395 (2015)

28. Takács, L.: Introduction to the Theory of Queues. Oxford University Press Inc, New York (1962)
29. Wang, J., Baron, O., Scheller-Wolf, A.: M/M/c queue with two priority classes. Oper. Res. 63(3),

733–749 (2015)

123

http://arxiv.org/abs/1503.05899v3
http://bfralix.people.clemson.edu/preprints/BlockStructuredPaper8June.pdf

	Time-dependent analysis of an M/M/c preemptive priority system with two priority classes
	Abstract
	1 Introduction
	2 Model description and outline of approach
	2.1 Notation and terminology
	2.2 Notation for M/M/1 queues
	2.3 Outline of our approach

	3 A slight modification of the CAP method
	3.1 Laplace transforms for states along the vertical boundary
	3.2 Laplace transforms for states within the interior

	4 Deriving an explicit expression for vi,j
	5 Laplace transforms for states in the horizontal boundary
	5.1 A Ramaswami-like recursion
	5.2 Computing the Gi,j(α) matrices
	5.3 Computing the Ni(α) matrices
	5.4 Computing π0(α)
	5.5 Numerical implementation

	6 The single-server case
	7 Conclusion
	Acknowledgements
	Appendix A: Combinatorial identities
	Appendix B: Random-product representation
	Appendix C: Results for M/M/1 queues
	References

