Time-Dependent Analysis of Attacks

Florian Arnold!, Holger Hermanns?, Reza Pulungan®, and Mariélle Stoelingal

! Formal Methods & Tools Group, Department of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
f.arnoldQutwente.nl, m.i.a.stoelinga@utwente.nl
2 Dependable Systems and Software, Saarland University, 66123 Saarbriicken,
Germany
hermanns@cs.uni-saarland.de
3 Jurusan Ilmu Komputer dan Elektronika, Universitas Gadjah Mada, Indonesia
pulungan@ugm.ac.id

Abstract. The success of a security attack crucially depends on time:
the more time available to the attacker, the higher the probability of a
successful attack; when given enough time, any system can be compro-
mised. Insight in time-dependent behaviors of attacks and the evolution
of the attacker’s success as time progresses is therefore a key for effective
countermeasures in securing systems.

This paper presents an efficient technique to analyze attack times for an
extension of the prominent formalism of attack trees. If each basic attack
step, i.e., each leaf in an attack tree, is annotated with a probability
distribution of the time needed for this step to be successful, we show how
this information can be propagated to an analysis of the entire tree. In
this way, we obtain the probability distribution for the entire system to be
attacked successfully as time progresses. For our approach to be effective,
we take great care to always work with the best possible compression of
the representations of the probability distributions arising. This is achieved
by an elegant calculus of acyclic phase type distributions, together with
an effective compositional compression technique. We demonstrate the
effectiveness of this approach on three case studies, exhibiting orders of
magnitude of compression.

1 Introduction

Computer security attacks on traditional IT-systems as well as on modern IT-
enabled systems, such as cars, pacemakers, or power grid infrastructure, are on
the rise. Successful attacks have a certain structure and timing, and one of the
dominant problems in preventing attacks is that the security engineers fail to
properly predict the potential angle and timing of an attack.

In a recent article [1] Basin and Capkun argue that there is a lot to learn from
the study of successful attacks. In particular, it can help in refining the attacker
model, so as to understand the potential attack angles better, and thus arrive
at ever more effective countermeasures. In this context, security engineers and
product managers are facing the practical challenge of limited resources. In the
end, decisions have to be made about how much to spend on security, and where

to invest their budget. Making well-informed choices requires insight in attacks:
which attacks seem more likely than others? How much time might they take to
succeed?

There is a growing awareness that the mathematical foundations of such quan-
titative aspects of security are worth to be better investigated [2]. Concretely, the
quantitative analysis of attacks can yield valuable insights in aspects like (1) sys-
tem parameters: which parameters influence attack times and probabilities most?
(2) what-if scenarios, e.g., what if attack probabilities increase with two orders of
magnitude? (3) design alternatives. This paper contributes to this research strand,
and it does so in the context of a prominent practical attack modelling formalism,
attack trees.

Attack trees (AT) were coined by Schneier [3], as a means to describe, doc-
ument, brainstorm, and analyze system security. Over the last decades indeed a
wide range of techniques have been developed to analyze costs, probability, effort,
etc., associated to a successful attack [4-7].

This paper studies the probability of a successful attack as time advances,
i.e., the probability distribution of attack times: given a time bound ¢, what is
the probability that the system is successfully compromised within time t? Our
probabilistic timed analysis of attacks is conservatively extending earlier time-
abstract analyses [3,5,7,8]. The latter only considered the probability whether or
not an attack eventually could take place, while we evaluate the success probability
as a function of time.

To represent probabilistic timed behaviour, we use acyclic phase-type (APH)
distributions. APH distributions are a distingushed class of probability distribu-
tions, as they can be used to approximate any other probability distribution with
arbitrary precision; and—as we fruitfully exploit in this paper—allow for very
compact representations. Furthermore, effective fitting techniques exist to derive
APH distributions from statistical data [9,10]. We therefore assume that each
leaf of an attack tree is annotated with an APH distribution representing the
time needed for this step to be successful. Of course, one may argue that it is
difficult to get realistic data about the timing of these attack steps—apart from
the attacker anyway behaving notoriously unpredictably—and that therefore, the
outcomes of this quantitative security analyses should not be trusted. Still, the
benefit of the approach we propose lies in the possibility to easily pose and effec-
tively evaluate ‘what if’ questions, understand system parameters, and to study
design alternatives at the push of a button. Especially the ‘what if” approach gives
a way to understand the sensitivity of the system with respect to different leaf
distributions.

At the core of the paper’s contribution lies a compositional attack tree seman-
tics that maps on APH distributions, together with a compositional compression
algorithm. Here, compositionality refers to the possibility to weave the compres-
sion into the compositional construction of the APH distribution associated with
the entire graph. This keeps the representations as small as possible. The compres-
sion exploits Laplace domain properties in a symbolic and effective manner. Three
case studies exemplify the effectiveness of this approach, among them a study of

the Stuxnet attack, and a novel and large industrial case. The case studies are
carried out with a full-fledged implementation of the approach we present.

Related Work. Weiss’s threat logic trees [11] and Amoroso’s threat trees [12]
were the first formal models to represent attacks for security analysis. In 1999,
Schneier introduced the notion of attack trees [3]. Since then a colorful variety of
new formalisms has evolved. These variations can be classified in static models,
which do not take the evolution of time into account, and dynamic models which
can express timed behavior such as sequencing. A more detailed overview and
classification can be found in [13].

Static models have been rigorously formalized by Mauw and Oostdijk [14].
Multi-parameter attack trees [4] were introduced to process different parame-
ters in parallel. The idea to shift the focus from the attacker’s to the defender’s
point of view was captured by the introduction of defense trees [15], [16] and
attack-countermeasure trees [6]. While these tree-based models are evaluated by
a bottom-up analysis [5], graph-based formalisms suggested by Sheyner et al. [17]
can be analyzed with model checking.

In the field of dynamic attack models, most formalisms are graph-based, for
instance compromise graphs developed by McQueen [18]. Distinct attacker prefer-
ences were introduced in [19]. More expressive approaches use Petri nets to model
intrusion detection as attack nets [20]. A tree-based formalism has only recently
been introduced by Pietre-Cambacédes and Bouissou [21,22] which enables the
modeling of sequences within complex attack scenarios.

2 Preliminaries

Random Variables. A real-valued random variable is a function X : {2 — R that
assigns a real value to each outcome of a stochastic experiment; in our case, X
describes the time it takes until a system is successfully attacked. Then P(X < t)
denotes the probability that X has a value less than or equal to ¢; in our case the
probability that a successful attack occurs within time ¢. The function F' : R —
[0,1] given by

F(t) =P(X <)

is called the cumulative distribution function (CDF) of X; and X ~ F denotes
that X has CDF F. (Note that, in many cases, P(X = t) = 0. Therefore one
considers the cumulative probability P(X < t).) We denote by F the class of all
cumulative distribution functions.

Well-known examples are the (negative) exponential distribution whose CDF
is given by

P(X <t)=1—e foranytecRT.

This distribution has a parameter A > 0, called rate, which determines the “speed”

with which the probability grows. We write X ~ exp()) if X has an exponential
distribution.

Apart from its CDF, a random variable can also be characterized by its prob-
ability density function (PDF, or density for short) f, which is the derivative of
the CDF

P(X <t) = /_t f(z)dz.

Thus, the PDF of the exponential distribution is given by f(t) = Ae™*".
Furthermore, it is important to realize that, given a real-valued random vari-
able X, and a real-valued function f: R — R, f(X) is again a random variable.
Given several random variables X1, Xs,...X, and a function ¢ : R2 — R, we
have by repetitive application that g(X1,g(Xs,...,9(Xn-1,X,))) is a random
variable. Below, we will heavily consider random variables X7 + Xo + ... + X,,,
max(X1, Xo,...X,,), and min(X7, Xs,...X,,). If we take the sum of k indepen-
dent random variables each governed by an exponential distribution with param-
eter A\, then we obtain the FErlang distribution with parameters k, A. Its density

flz) = (k’\fkl)!zk*le’/\x is the so-called convolution of the PDFs of exponential

distributions. We write X ~ erl(k, A) if X is Erlang-distributed.

Acyclic Phase-Type Distributions. Phase-type distributions are represented by the
time needed to reach a final state in a continuous-time Markov chain (CTMC). If
this Markov chain is acyclic, then we speak about an acyclic phase-type distribu-
tion (APH). APHs consitute a very prominent class of probability distributions:
they subsume the exponential and Erlang distributions. Notably, APH distribu-
tions are topologically dense [23]. This implies that any continuous distribution
can be approximated arbitrarily closely by an APH distribution or a PH distri-
bution. Very effective tools exist that compute tight approximations of arbitrary
distributions by small APH distributions or fit an APH distribution to measure-
ments, i.e., given a set of empirical data, they can compute the APH distribution
that matches most closely [9,10,24]. Moreover, as we show below, APH distribu-
tions are closed under summation, maximum, and minimum and allow for drastic
compression techniques. All this makes the APH distributions a suitable class to
model time-dependent behavior of attack trees.

A CTMC is a tuple M = (S,Q,x), where S = {51,892, " ,8n,Sn+1} IS a
countable set of states, Q : (S x §) — R is a so-called infinitesimal generator
matriz, and 7 : S — [0, 1] is the initial probability distribution on S. Intuitively,
for any two states s,s’ € S, Q(s, s) specifies the rate of the transition from s to
s’. This means that the probability that a state change occurs from s to s’ within
t time units is 1 — exp(—Q(s, s')t). By definition Q(s,s’) > 0 for all s # §’, and
Q(s,8) = =>4 Q(s,8"). The negative of the diagonal value, E(s) = —Q(s, s),
is called the exit rate of state s.

If state s,4+1 is absorbing (i.e., E(spt+1) = 0) and all other states s;, for
1 <4 <, are transient (i.e., there is a nonzero probability that s; will never be
visited once it is left), the generator matrix of the CTMC can be written as

Q{‘g‘;g‘]

Fig. 1. An acyclic PH distribution

A A A A
@& O @ ® O @ 0 @

Fig. 2. Graphical representation of (a) an exponential distribution and (b) an Erlang
distribution with 3 phases

In this paper we consider CTMCs with acyclic graph structure, or, from the
matrix perspective, with A being an upper triangular matrix. Fig. 1 shows an
example of such an acyclic CTMC. The probability distribution of the time until
the absorbing state is reached in such a CTMC is called an APH distribution [25].
Together with the initial probability vector at transient states o, matrix A com-
pletely characterizes the APH distribution under consideration. The pair (o, A)
is called the representation of the APH distribution. The CDF of the APH dis-
tribution, which represents the probability distribution of the time to absorption
mentioned above, is given by

F(t)=P(X <t)=1- ae?, (1)

where 1 is a vector of proper size whose components are all 1.
The simplest APH distributions are formed by the family of exponential and
Erlang distributions; see Fig. 2 for their graph-based APH representations.

Three Stochastic Operations. We consider three operations on continuous proba-
bility distributions, since they have very intuitive correspondences with the oper-
ators on attack trees. Let X; and X5 be two independent random variables with
distribution functions Fj(t) and F5(t), respectively; and let the random variables
Xcon = X1 —|—X2, Xmax = maX{Xl, XQ}, and Xmin = min{Xl, X2} be the summa-
tion (convolution), maximum, and minimum, respectively, of X; and X5. The ran-
dom variables Xcon, Xmax, and Xmin, have CDFs Fon(t) = fot Fi(t — x)Fy(z)dx,
Frax(t) = F1(t)Fa(t), and Fiuin(t) =1 — (1 — F1(t))(1 — Fa(t)), respectively.

Acyclic phase-type distributions are closed under these three operations. Given
APH distributions PH; and PHs, we use con(PH;, PH3), max(PH;,PHs), and
min(PH1, PH3) to denote the convolution, maximum, and respectively minimum
of the two APH distributions. The following theorem provides the recipe to ob-
tain the representation of the convolution, maximum, and minimum, given the
representations of the two constituent APH distributions.

Theorem 1. [25, Theorem 2.2.9] Let (o, A) and (3,B) be the representations
of PH distributions F(t) and G(t) of size m and n, respectively. Then

(a) their convolution is a PH distribution with representation (8, D) of size m+n,
where
0 B

(b) their maximum is a PH distribution with representation (8,D) of size mn +
m +n, where*

0 =|a,am+18] and D{A A'B]

AeB I.®B A®Ip
0= [Oé@,@, ﬂn+1OL, Oéerlﬁ] and D = 0 A 0
0 0 B

(c¢) their minimum is a PH distribution with representation (8,D) of size mn,
where

=a®B and D=AcdB.

3 Attack Trees

Attack trees establish an intuitive model to systematically describe possible attack
scenarios on a system and thereby form the basis for a threat analysis.

Attack Tree Syntax. The graphical representation of an AT is a tree. The root
node of the tree identifies the goal of the attacker within the considered scenario.
This goal can be achieved by executing a series of basic attack steps (BAS) which
are encoded as leaves of the AT. A BAS describes one action of the attacker
to exploit the system’s vulnerabilities which can not be refined into finer steps.
Complex attack scenarios are described by composing the involved BASs. The
syntactic tool to express this composition in an AT are so-called gates. Most AT
formalisms use AND gates and OR gates to describe conjunctive and disjunctive
composition respectively [3,14]. Additionally, we introduce SEQ gates to model
time dependencies between BASs. This gate is described in more detail in the se-
quel. We use the standard distinctive shapes to visualize AND gates and OR gates.
The graphical representation of an SEQ gate is an AND gate with a horizontal
arrow pointing in the direction of progressing time.

The syntax and semantics of ATs allow the leaves to be annotated with any
CDF in F, but our analysis techniques exploit the fact that we work with APH
distributions.

Definition 1 (AT gates and elements). An AT gate is one of AND, OR or
SEQ. We denote by G the set of gates. An AT element is either a gate, or a CDF.
The set of AT elements £ is given by € =G U F.

In the sequel, given a set X, we let X* denote the set of all sequences, also
called lists, over X. For a list € X*, let |x| denote its length; (x); is the i-th
element of z. Informally, an attack tree is a directed acyclic graph whose leaves
are labeled by an element of F; all other nodes are gates, being either AND, OR
or SEQ.

4 ® and @ denote the Kronecker product and sum operators, respectively. See for in-
stance [25].

steal gold
(3
L

break into bank open safe escape
cut open
and combo safe
find key

Fig. 3. Attack tree for the scenario ‘steal gold from a bank’

open with key

get combo
from employee

Definition 2 (Attack tree syntax). An attack tree A is a graph (V,child, r, 1),
where

— V is a finite set of vertices.
child : V. — V'* assigns to each vertex a list of input vertices.
— We define the set of edges of A by E4 = {(v,w) € V?|3i . w = (child(v));}.
We require that (V, E4) is acyclic with a single root r € V. All vertices have
to reach r.
We denote by L the leaves of (V,E4), so that L = {v € V | |child(v)| = 0}.
{:V — & is a labeling function that assigns to each vertex an AT element
such that

e Fach leaf in A is annotated with a CDF: £(v) € F, for allv € L;

o All other vertices are annotated with gates: £L(v) € G for all v € V\L.

Example 1. The attack tree in Fig. 3 models the attack scenario to rob gold from
a bank. To do so, the attacker first has to get into the bank before he can try to
open the safe. This time dependency is modeled with a SEQ gate. The attacker has
two possible ways to open the safe; he can either unlock it or cut it open; hence,
the OR gate. To unlock the safe, the attacker needs to find a key and obtain
the access combo from an employee. As there is no time dependency between
these two steps, we compose them with an AND gate. After opening the safe, the
attacker has to make for a safe escape with his booty. The distribution of the time
to execute each BAS is modeled as exponential or Erlang distribution.

Timed Probabilistic Semantics of Attack Trees. In this section we define the se-
mantics of the AT elements. We aggregate the CDF's of the BASs along the gates
to obtain a single CDF for an AT A, making use of the operators introduced
above. Therefore, the semantics of each AT element, denoted by [.], is a CDF.
We aim to derive [[r] for the root node r. We further define [A] = [r]. Let in the
following v € V(A) be a node of A with inputs vy, ..., v,.

BAS. Let v be a leaf, so £(v) € F. It is then annotated with a CDF that
represents the distribution of the time to execute this attack step. We formalize

this interpretation by defining the semantics of a leaf node as its annotated CDF,
i.e., [v] = L(v).

AND gate. Let vertex v be labeled with AND, £(v) = AND. Then the attack
step represented by v is completed by the attacker, once each of the steps repre-
sented by its input vertices are completed. This corresponds to the latest time a
step represented by the input vertices is completed which in turn is expressed by
the maximum over the CDFs of its inputs, in other words [AND(vy,...,v,)] =
max{[v1],..., [v.]}

OR gate. Let /(v) = OR. Then the attack step represented by vertex v is com-
pleted, when at least one of the steps represented by its input vertices is completed.
This corresponds to the earliest time at which an attack step represented by any of
the input vertices is completed. Analogous to the AND gate we thus define its se-
mantics using the minimum of the CDFs: [OR(v1, ..., v,)] = min{[v1], ..., [v.]}

SEQ gate. Finally, let £(v) = SEQ. The semantics of a SEQ gate is similar
to that of an AND gate in the sense that the attack step represented by it is
only achieved if all the steps represented by its input vertices are completed. In
addition, it expresses a causal dependency of BASs that induces a temporal order:
attack steps can only be executed in succession: A step commences at the moment
another step is successfully completed. The time at which the step represented by
vertex v is achieved corresponds to the sum of the times required to complete each
of the attack steps represented by its input vertices. As these times are random
variables distributed according to CDFs, we use the convolution operation to
define the semantics of the SEQ gate as [SEQ(v1,...,v,)] = con{[v1],..., [va]}.
The SEQ gate is a novelty in attack modeling, its semantics is inspired by the
‘trigger’ element in [21].

The CDF [A] corresponding to the entire attack tree A is derived by compos-
ing the CDF's in the leaves with maximum, minimum, and convolution operations
along the tree structure.

4 Efficient Analysis of Attack Trees

This section shows how we can efficiently analyze attack times for ATs whose
leaves are annotated with APH distributions, based on clever representations of
these. In general, the CTMC representation of an APH distribution is not unique,
and two representations of one APH distribution can differ drastically in size. In
practice, there is a need to have the smallest possible representation. This holds in
particular when applying the minimum, maximum and sum operators, since these
yield exponential blow ups of the CTMC representations. To tackle this problem,
we discuss two important representations: the ordered bidiagonal representation,
and the Cox representation.

APH Representations. The size of an APH representation is the dimension of A.
Notably, any APH distribution has infinitely many representations of different
sizes. An (acyclic) minimal representation of an APH distribution is an APH
representation with the least possible number of states.

There are two different canonical forms of APH representations, ordered bidi-
agonal and Cox forms, each with a simple and easy-to-understand structure. Each
of them is “canonical” in the sense that it (if viewed as a graph) is unique up to
isomorphism. Every APH representation can be transformed into either of them
without altering its stochastic behavior, i.e., its distribution.

19 14 15
48 4i 4i

1 3 4
% D@

Fig. 4. (a) An ordered bidiagonal and (b) a Cox representations of the APH represen-
tation from Fig. 1

Ordered Bidiagonal. Fig. 4(a) depicts an ordered bidiagonal representation. Such
representation has a simple structure: the states are ascendingly ordered by
their exit rates, each of them has only one transition to its neighbour, and
the initial distributions spans the entire state space. An efficient algorithm,
called the spectral polynomial algorithm (SPA) [26], can be used to construct
the ordered bidiagonal representation of any given APH representation. SPA
has complexity O(n?3), where n is the size of the given APH representation.

Cox. A Dirac distribution is a probability distribution that assigns full probability
to a single outcome. Consider the representation depicted in Fig. 4(b). Here,
every state, apart from the absorbing state, has a transition to the next state,
possibly a transition to the absorbing state, and no other transitions. If the
representation has descending exit rates and a Dirac initial distribution to the
highest exit rate state, then it is called a Coz representation. The name is due
to David R. Cox [27], who coined this representation.

Once an ordered bidigonal representation is obtained, transforming it to the
associated Cox representation can be performed with complexity O(n) [28],
where n is the number of states in the resulting representation.

Size Compression. Given the three operations introduced in Section 2, Theorem 1
is the basis for constructing complex APH representations from simpler ones.
However, in practice we often face an explosion in size, especially rooted in the fact
that the maximum and minimum are basically cross-product constructions. Hence,
they grow as the product of their component sizes, while the convolution grows as
their sum. This phenomenon is not uncommon especially for concurrent system
representations. Luckily, we have an effective means to compress the resulting sizes
considerably in almost all cases. This is rooted in a polynomial-time algorithm [29]
that compresses the size of any APH representations. Due to space constraints,
we only provide a brief summary of the functioning of this algorithm below. For

an exhaustive discussion of the algorithm and its properties, the interested reader
is referred to [29].

Given an arbitrary APH representation («, A) as input, the algorithm returns
an ordered bidiagonal representation, denoted Red(e, A), having the same PH
distribution, with a representation size being at most the size of the original
one. The compression achievable goes beyond concepts like lumpability [30], since
the algorithm exploits properties of the Laplace-Stieltjes transform. In very brief
terms, the algorithm checks, for each matrix row and column certain dependencies
in the matrix of its ordered bidiagonal representation of the distribution (obtained
by running the SPA algorithm a priori). These dependencies are expressible in
terms of linear equation systems. If satisfied, a state can be identified as being
removable, and is subsequently removed from the representation. This process is
then iterated until no further state is identified as being removable.

Overall, the algorithm has complexity O(n?), where n is the number of states
of the original representation. It can be applied to arbitrary APH distributions. In
fact, this can turn an exponential growth (in the number of composed components)
of the matrix size into a linear growth which is almost certainly a minimal APH
representation [29].

Implementation. We have implemented a tool to generate and manipulate APH
representations, together with the compression algorithm in a toolsuite called
APHMIN. The tool accepts as input an expression written in a prefix notation
The expressions follow the grammar

P:=exp(A) | erl(k,\) | con(P, P) | max(P, P) | min(P,P) | cox(u, A\, P),

where A € Ry and p € Rxq are rates, and k € Zy. Here, exp(\) and erl(k, A)
represent exponential and Erlang distributions; these are the building blocks of
more complex APHs constructed by using operators convolution (con), maximum
(max), and minimum (min). cox(u, A, P) is an operator used to produce Cox
representations. This operator semantically works as follows: given an APH P,
cox(p, A, P) is a new APH obtained by adding a new state having a transition
with rate p to the absorbing state and a transition with rate A to P. Repeated
application of this operator enables us to produce any Cox representation, and
hence represent any APH distribution (and hence approximate any distribution
with arbitrary precision) as APHMIN expressions.

The user-perceived functionality of APHMIN is simple. It takes an expres-
sion, compresses it, and returns the resulting compressed APH representation,
either as a nested cox(-)-expression, or as a file containing the result as a simple
list of transitions. For end users experimenting with attack trees and similar for-
malisms, APHMIN is wrapped in a web-based interface accessible at the address
http://depend.cs.uni-saarland.de/tools/aphmin.

Phase-Type Fitting for a Basic Attack Step. Generally, there are two ways to
obtain the CDF for a BAS: 1) with historical data; or 2) on the basis of expert
opinion. If empirical data is available, that data is provided as input to a fitting

tool, preferably G-Fit [10]. G-Fit then produces the best matching CDF, rep-
resented by a hyper-Erlang distribution. Since hyper-Erlang distributions are a
subset of the family of APH, we already have a convenient input format for our
analysis. A second possibility is that experts estimate the mean time ¢ to execute
this BAS and then use exp(1/t) as APH representation. This is justified by the
fact that the exponential distribution is the “most random” of all distributions
with a given mean, in the sense that it has maximal entropy. Indeed, other attack
models use the exponential distribution as a default choice [21,31].

Time-Dependent Analysis. In this section we use the above concepts to evaluate
a given attack tree A with respect to the total time required by the attacker to
reach the root node. In a first step, the CDFs of the leaves are obtained as APH
distributions from fitting algorithms [9,10]. We then compress the APH distribu-
tion [A] of A with the tool APHMIN. For this purpose, we need to transform A
into an expression which follows the grammar of APHMIN. This can be done by
traversing A in a depth-first manner: the labels of all nodes are listed in the order
the nodes occur this traversal. Additionally, we have to take care of nested brack-
ets and the fact that con(-), max(-) and min(-) are binary operators in APHMIN
(for efficiency reasons).

Ezample 2. Consider the AT in Fig. 3. Starting at the root, we order the nodes
according to their occurrence in a depth-first manner and put the corresponding
APH operations in place, keeping track of nested brackets. This yields

con(exp(1), min(max(exp(2), exp(1)),erl(2, 3)), exp(5)).

As con(-) above has three parameters, we need to nest another con(-) expression
with the latter two parameters to obtain a valid APHMIN expression.

The CDF of such a compressed APH distribution can then be derived nu-
merically on the basis of Equation (1): Given a set of time-points 7" and a PH
representation (a, A), we compute the probabilities F'(¢) that the absorbing state
is hit within ¢ time-units, for each ¢t € T'. To calculate these probabilities, we have
implemented a postprocessing tool which uses the uniformization technique [32]
and the Fox-Glynn algorithm [33]. Alternatively, several stochastic model checkers
such as PRISM [34] or MRMC [35] can be employed as postprocessing tools.

The time-dependent analysis is a powerful tool since it basically performs a
static analysis for any point in time. As an example, we fix the time horizon t = 1
and calculate the probability to reach the root of the model in Fig.3 with a static
bottom-up evaluation. As there is no correspondence for the SEQ gate in static
models, we treat it as an AND gate. At first, we define random variable X; which
corresponds to the BAS ‘break into bank’ and is distributed according to exp(1),
so X7 ~ exp(1l). Similarly, define X5 ~ exp(2), X3 ~ exp(5) and X4 ~ erl(2,3)
to represent the other BASs. We have P(X; < 1) = 0.63, P(X; < 1) = 0.87,
P(X; <3)=0.99 and P(X, < 1) = 0.8. In a static evaluation, the probability to
reach an AND gate is the product of the probabilities of its inputs. An OR gate
with input probabilities ¢; and ¢ is reached with probability 1 — (1 —v1)(1 —v2).

The probability to steal the gold in this static interpretation is thus calculated by
P(steal gold) = 0.63- (1 — (1 —0.87-0.63) - (1 —0.8)) - 0.99 = 0.57.

Evaluating the random variable C' which is distributed according to the APH
distribution in Example 2 after one time unit yields the same result with our tool
chain: P(C' < 1) = 0.57.

Conservative Ezxtension. The above example illustrates that time-dependent anal-
ysis conservatively extends the conventional static and thus untimed interpreta-
tion. To make this precise, we restrict to attack trees without SEQ gates (which
are dynamic in nature), and relate to the conventional static probabilistic seman-
tics [14].

We assume that each BAS vertex v has a probability p, associated to it.
Then the conventional static probabilistic semantics for a BAS is [[v]] = po,
for an AND gate it is [JAND(v1,...,v,)[] = [I{[vi]l, and for an OR gate it
is [OR(v1,...,v,)[] = 1 = TI7(1 — [[vs]])- This induces a static probabilistic
semantics [[A]] of any attack tree A (without SEQ gates), provided each BAS
has a probability associated to it. It gives the probability to succesfully carry out
the attack represented by the tree.

For a given attack tree A and time ¢ € RT, we now use A; to refer to the
attack tree where each BAS v gets the static probability p, = F,(t) associated,
where F,, = L(v) is the CDF labelling vertex v. So we look at each BAS at time ¢
and ask for the probability that the basic attack step represented by it is already
completed. On the other hand, we can also take the timed interpretation [A] of
the entire tree, which by the semantics in Section 3 is some CDF F 4 and look at
the probability of successfully having completed the attack by time ¢ by evaluating
F4(t). We refer to this value as [A]; in the theorem below.

Theorem 2. Let A be an attack tree without SEQ gates. For any time point
t e RY, [A]: = [[A:]-

Thus, the time-dependent analysis conservatively extends static attack tree
modelling. The proof uses the semantic interpretation of AND and OR gates as
maximum and minimum operations, respectively (Section 3), the definition of the
stochastic operations maximum and minimum (Section 2) and their properties,
and the fact that as long as the underlying model has a tree structure, all nodes
on the same level are stochastically independent.

5 Implications for System Security

Our analysis technique describes a system’s vulnerabilities in a temporal context,
but the results still need to be interpreted in terms of security. Generally, the
analysis provides the user with a temporal dimension for possible attack vectors
and associated risks expressed by success probabilities—can attacks be success-
fully executed in hours, days or rather months? More specific findings for security
practitioners can be generated by elaborating on the primary results.

Lower Bound Analysis. In some cases the attacker has only a little time frame to
execute an attack. An example for such a time-dependent vulnerability is the roll-
out or update of an operating system. Once it is on the market, many hackers will
try to find and exploit unknown vulnerabilities before they are found and fixed by
the developers. In this race, the starting point of an attack is quite predictable.
Thus, the analysis of P(0 < X < u) is of interest to answer the question ‘How
much time does the attacker need to succeed with a certain percentage’. The
result gives an idea about how fast one has to react to fix vulnerabilities.

Cost-Benefit Analysis of Countermeasures. Security officers often face the prob-
lem to determine the benefits of investments into the existing security landscape.
If more than one countermeasure might be beneficial but the budget is limited,
a cost-benefit analysis is the classical tool to arrive at a decision. Our analysis
framework helps to argue from a temporal perspective: ‘Given countermeasures
A, B and C, which one is most effective in reducing the risk of a successful attack
within 1 day?’. This question can be answered by performing a separate analysis
for each countermeasure option. We adapt the original attack tree by removing
all subtrees and leaves that are prevented by the respective countermeasure and
analyze the resulting model. The results can then be compared with respect to
the desired properties.

Impact of Individual BASs. Naturally, one wants to identify the most serious
vulnerabilities in a system. Therefore, a typical question which follows from the
formation of an attack tree is the following: ‘Which BAS has the most impact
in the attack tree?”’. In the context of our temporal analysis this question reads
as ‘The execution time of which BAS impacts the total execution time of the
whole attack scenario most significantly?’. We can answer this by performing a
sensitivity analysis. We perform k41 experiments, where & is the number of BASs.
Initially, we analyse the original attack tree, and in each subsequent analysis we
change the input distribution of one BAS, leaving the others fixed; i.e., we adapt
the parameters of the distribution of the considered BAS in such a way that the
expected execution time of this BAS doubles. We can then determine in how
far this change reflects in the execution time of the whole attack scenario. By
comparing the results we can rank the BASs with respect to their impact on the
total execution time of a successful attack. Moreover one can answer the question
‘If the system is to be protected for one month, against which BAS it is most
important to protect?’. On the downside, this kind of sensitivity analysis requires
k + 1 times more resources.

6 Case Studies

In this section we highlight the effectiveness of our approach by means of sev-
eral case studies. They demonstrate that the algorithm implemented in APHMIN
yields significant state space compressions so that even complex scenarios can be
analyzed efficiently, as presented in Table 2.

[steal exam |

Social Steal
interaction hardcopy
approach mailbox repository locate

lecturer
anonymously

crack penetrate
firewall | |repository

break
into
office

0.8 0.8 0.8
20.6 20.6 0.6
x))
k0.4 k0.4 0.4

0.2 0.2

|
! !
| |
| |
- T - - 1 P - - ! P - -
0O 5 10 15 20 25 0O 5 10 15 20 25 0O 5 10 15 20 25
t in hours t in hours t in hours

(a) No countermeasures (b) Countermeasure A (c) Countermeasure B

Fig. 6. CDFs of the time to steal the exam with respect to different countermeasures

Steal Exam. This case study models a student who wants to get hold of a forth-
coming exam. Within this scenario we consider three different types of attacks:
social engineering, hacking and physical intrusion. Each attack type consists of
various possible attack paths. To obtain a digital version of the exam via hacking,
the student can, for instance, try to find a copy of the exam on either the mail-
box server or the repository. Both possible attack paths can be refined in several
BASs. For instance, the student could either hack the exchange server externally
or try to acquire the account data by either using a keylogger or simply guessing
the password. To each BAS we assign an exponential or an Erlang-distibution as
estimates of the time required by the attacker to successfully execute this step.
The school wants to decrease the risk of such a theft, since it would heavily
damage its reputation. The school management has the options to either acquire
safe deposit boxes (countermeasure A) in which exams can be stored, or to apply a
policy which forbids to send exams via email (countermeasure B). The first option
would prevent the BAS ’steal key’, since the lockers are password-protected. The
second option would prevent the subtree 'mailbox’. We assume that the counter-
measures block the corresponding BAS in their entirety. The school management
wants to find the option which minimizes the risk of an attack within the opening
time of the school (12 hours). We evaluated the attack scenario in the original

Compromise
corporate
network

Attack
industria
system

Tnjection
via USB

Main
module
execution

Run mod-
ified code

P2P
Commu-
nication

C&C server
commu-
nication

Tser opens
WinCC file
projects

PLC sends
false data

Service
server

RPC vuln

signals || signals

Fig. 7. Attack tree for the case study ‘Stuxnet’

o
o

F(t)
o o
o v B O ®
F(t)
o o
o v ok O ®

50 100 140 50 100 140
t in days t in days

(a) Original set-up (b) Increased rate of ’Infec-
tion of control PC’

Fig. 8. CDFs of the time to successfully execute the Stuxnet attack

set-up, and with respect to the two countermeasures. The results are displayed in
Fig. 6. The attack tree without countermeasures applied is presented in Fig. 5.

The results clearly show that countermeasure B is more effective than coun-
termeasure A. It reduces the risk of a successful attack within the given time by a
third. The introduction of a policy is in this case more effective than an investment
into the physical infrastructure. Of course, the application of both countermea-
sures would reduce the probability of a successful theft even more. This example
highlights the strength of a timed analysis. It allows the security practitioner to
evaluate the system security with respect to crucial time intervals.

Stuznet. The second case study considers the Stuxnet attack, a sophisticated cy-
ber attack which targeted industrial installations in 2010 and arouse great interest
in media and among security experts. The model is based on [36]. To adapt the
case study to our formalism, we left out the probabilistic nodes used in this model.

Table 1. Sensitivity analysis of the ’Stuxnet’ case study. The table shows the increase
in the probability of success of the whole attack after 20, 40 and 60 days, if the rate of
the respective step is doubled

BAS after 20 days after 40 days after 60 days
Injection via USB +1.0 % +23 % +1.2 %
P2P Communication +0.2 % +0.3 % +0.1 %
C&C server communication +0.2 % +0.3 % +0.1 %
Removable media +0.1 % +0.2 % +0.1 %
Infection of control PC +7.4 % +17.6 % +17.6 %
Collect data +2.5 % +15.1 % +16.3 %
Intercept in/out signals +3.2 % +12.3 % +8.0 %
Modify out signals +0.5 % +0.7 % +0.3 %
Cascade centrifuges +0.8 % +1.5 % +0.7 %
other BASs +0.0 % +0.0 % +0.0 %

The goal of Stuxnet in our scenario is to compromise supervisory, control
and data acquisition systems (SCADA) of Iranian nuclear enrichment facilities to
slow down the production of centrifugal machines. In the considered model, the
business corporate network is assumed to be isolated from the SCADA system.
Thus, the attack consists of the two phases; first the internal corporate network
is compromised and then the SCADA system attacked from there.

As the corporate network is not directly connected to the Internet, an attack
can be initiated by infecting an external device which is brought into the facilities
and connected to the control system. Once it has installed itself on one PC, the
malware tries to infect as many workstations as possible. It then waits until it
can reach the Process Control Network, for instance through an infected remov-
able drive. Within the SCADA system it can target modules with two specific
CPU types. After gathering data for a longer period of time it sends faked data
to the physical infrastructure which slows down and even damages the targeted
centrifuges. The attack tree is presented in Fig. 8.

We want to determine the BAS which has the most impact upon the total
execution of this attack and conduct a sensitivity analysis as explained above,
i.e., we sequentially change the CDF of one BAS at a time such that its expected
execution time doubles. The results are compared to the original model to iden-
tify the BASs which are most sensitive with respect to the total execution time.
Table 1 highlights the results which suggest that the steps ‘Infection of control
PC’, ‘Intercept in/out signals’ and ‘Collect data’ have the greatest impact upon
the execution time of the whole attack and should be prioritized when it comes
to the application of countermeasures.

IPTYV case study. This case study was conducted in the European TREsPASS
project [37] to gain insights into the modeling and analysis of socio-technical
attacks. It describes a home-payment system designed to support elderly people
or people with disabilities, who may have difficulty in leaving their home, in
managing their own money. This system is based on the delivery of payments
services to individuals via an IPTV set-top box in their own home. It allows

0.8
~0.6
2

k0.4

0.2

4 8 12 16
t in hours

Fig.9. CDF of the time to attack the IPTV system.

the user to order and pay for food and goods of the daily life from home. The
system is currently in the development phase and its potential attack vectors are
investigated with the help of the following scenario: Since the system is specifically
designed for elderly people, we assume that the attacker is a carer who intends
to abuse the set-top box to enrich himself. He can for instance try to acquire the
payment card and the password of the set-top box, either by stealing it or using
his social engineering skills. In total, this case study covers eight major scenarios.

This case study is much more complex than the previous ones, the attack tree
contains 148 nodes which are located on up to 14 different levels. More than 90
of its nodes are leaves. Due to confidentiality reasons, we cannot disclose more
details about the tree.

The state space of the resulting APH model before compression has a size of
about 10'0. To evaluate this model in a feasible time we used a shortcut that ac-
celerates the analysis process by orders of magnitudes. Instead of composing the
whole APH representation at once, we analyze the model in a compositional man-
ner. At first, we split the attack tree into 9 subtrees which are connected via OR
gates. We analyse these subtrees individually by computing the probability of the
attacker’s success for a set of time-points T". The results are recomposed by using
the static computation formula for the OR gate for each ¢ € T. This approach
is possible because the subtrees do not share nodes and are thus stochastically
independent. This compositional analysis allowed us to evaluate the case study
within minutes, whereas the compression and analysis of the entire model at once
would take several weeks. The result is presented in Fig.9.

Case Study Evaluation. Each attack tree in the case studies presented has a dis-
tinctive structure with leaves on different levels being connected by a mixture
of gates. We analyzed each set-up with the APHMIN toolchain. The results, as
presented in Table 2, were computed with the webservice which implements APH-
MIN, the CDFs were derived with the postprocessing tool on a meachine with a
2.20 GHZ dual-core processor. #States gives the number of states in the graphical
representations of the APH of [r]. The runtime is calculated as the sum of the
runtime of both tools.

The smaller models in the first case study can be solved within seconds and
even a more involved sensitivity analysis can be performed quickly. Unfortunately,
previous work on time-dependent attacks does not offer any figures for comparison.
Nonetheless, the results suggest that our analysis technique is extremely efficient

Table 2. Set-up and runtime performance of the case studies

#Leaves #Gates #States #States Runtime
before after in seconds
APHMIN APHMIN

Steal Exam 12 9 15121 160 9.37

Steal Exam A 12 9 3025 76 1.26

Steal Exam B 12 9 5041 157 5.32

Stuxnet 14 11 94 56 1.13

Stuxne.t Sensitivity 14 1 o4 56 16.65
Analysis

IPTV 92 56 647" 482" 551.62*

* sum over all 9 models of the compositional analysis

in deriving a probability distribution for the execution time of an attack scenario
expressed by an attack tree. With the IPTV attack scenario also a more complex
case study could be solved in a feasible time.

Another interesting observation is that the complexity of the considered at-
tack tree is not the most important factor when it comes to the computation time.
Complex input distributions, such as Erlang distributions with many phases, cause
a blow-up of the state space since they are rooted at the lowest level of the compo-
sition; and thereby cause longer computation times. Therefore, the computation
time of the analysis of a model depends on both its scale as well as the complexity
of its input distributions.

7 Conclusion

In this paper we have formalized the semantics of attack trees so as to allow
their use for a probabilistic timed evaluation of attack scenarios. The semantics
used an effective framework based on acyclic phase-type distributions, and as such
enables the derivation of the distribution of the time until the attack is successfully
executed. We highlighted that any input distribution at hand for a basic attack
step can be cast into the class of APH distributions. Its impact is propagated
along the tree, yielding a single monolithic APH distribution for the entire tree.
A key component for effective and efficient evaluation is a compression algorithm
for APH distributions. This compression can be weaved into the construction
process of the monolithic distribution, a feature that is especially interesting in
light of the dynamic nature of attack trees: it allows the preprocessing of often
appearing attack paths.

We have reported on several distinct case studies demonstrating that this
approach can evaluate complex scenarios in a short time. These empirical studies
have been carried out with an implementation of the approach as part of a tool
chain. As future work we aim at merging and enriching the existing tool with a
state-of-the-art APH fitting algorithm [10] as well as a graphical interface. We

further aim at support for cost annotations of attack steps, and at support for
probabilistic gates, as they appear in the literature on attack trees [21,22].

Acknowledgements. This research has been partially funded by the NWO project
ArRangeer (12238), by the DFG/NWO bilateral project ROCKS (DN 63-257),
by the DFG SFB/TR 14 (AVACS), and by the EU FP7 projects no. 295261
(MEALS), 318003 (TREsPASS), and 318490 (SENSATION).

References

1.

10.

11.

12.

13.

14.

15.

16.

Basin, D.A., Capkun, S.: The research value of publishing attacks. Commun. ACM
55(11) (November 2012) 22-24

Kopf, B., Malacaria, P., Palamidessi, C.: Quantitative Security Analysis (Dagstuhl
Seminar 12481). Dagstuhl Reports 2(11) (2013) 135-154

Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s journal 24(12)
(Dec 1999)

Jirgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter attack
trees. In: Proceedings of the OTM 2008 Confederated International Conferences,
CooplS, DOA, GADA, IS, and ODBASE 2008. OTM ’08 (2008) 1036-1051

Kordy, B., Pouly, M., Schweitzer, P.: Computational aspects of attack—defense
trees. In: Proceedings of the 2011 international conference on Security and Intelligent
Information Systems. SIIS’11 (2012) 103-116

Roy, A., Kim, D., Trivedi, K.: Attack countermeasure trees (act): towards unifying
the constructs of attack and defense trees. Sec. and Commun. Netw. 5(8) (August
2012) 929-943

Zonouz, S., Khurana, H., Sanders, W., Yardley, T.: Rre: A game-theoretic intrusion
response and recovery engine. In: DSN ’09. IEEE/IFIP International Conference on
Dependable Systems Networks, 2009. (july 2009) 439-448

Ray, 1., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: Proceedings of the 10th European conference on Research
in Computer Security. ESORICS’05 (2005) 231-246

Horvéath, A., Telek, M.: Phfit: A general phase-type fitting tool. In: Proceedings of
the 12th International Conference on Computer Performance Evaluation, Modelling
Techniques and Tools. TOOLS ’02 (2002) 82-91

Thiimmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with
the EM algorithm. IEEE Trans. Dependable Sec. Comput. 3(3) (2006) 245-258
Weiss, J.: A system security engineering process. In: Proceedings of the 14th Na-
tional Computer Security Conference. (1991) 572-581

Amoroso, E.: Fundamentals of computer security technology. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1994)

Kordy, B., Pietre-Cambacedes, L., Schweitzer, P.: DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees. CoRR abs/1303.7397 (2013)
Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference
on Information Security and Cryptology, ICISC 2005. LNCS 3935. (2005) 186-198
Bistarelli, S., Peretti, P., Trubitsyna, I.: Analyzing security scenarios using defence
trees and answer set programming. Electron. Notes Theor. Comput. Sci. 197(2)
(feb 2008) 121-129

Kordy, B., Mauw, S., Radomirovié, S., Schweitzer, P.: Foundations of attack-defense
trees. In: Proceedings of the 7th International conference on Formal aspects of
security and trust. FAST’10 (2011) 80-95

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation
and analysis of attack graphs. In: Proceedings of the IEEE Symposium on Security
and Privacy, 2002. (2002) 273-284

McQueen, M., Boyer, W., Flynn, M., Beitel, G.: Quantitative cyber risk reduction
estimation methodology for a small SCADA control system. In: HICSS ’06. Pro-
ceedings of the 39th Annual Hawaii International Conference on System Sciences,
2006. Volume 9. (2006) 226-226

LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based se-
curity metrics using adversary view security evaluation (advise). In: Proceedings of
the 2011 Eighth International Conference on Quantitative Evaluation of SysTems.
QEST ’11, IEEE Computer Society (2011) 191-200

McDermott, J.: Attack net penetration testing. In: Proceedings of the 2000 workshop
on New security paradigms. NSPW ’00, New York, NY, USA, ACM (2000) 15-21
Pietre-Cambacédes, L., Bouissou, M.: Beyond attack trees: Dynamic security model-
ing with boolean logic driven Markov processes (BDMP). In: European Dependable
Computing Conference (EDCC). (april 2010) 199-208

Pietre-Cambacédes, L., Bouissou, M.: Attack and defense modeling with BDMP. In:
Proceedings of the 5th international conference on Mathematical methods, models
and architectures for computer network security. MMM-ACNS’10 (2010) 86-101
Johnson, M.A., Taaffe, M.R.: The denseness of phase distributions. School of In-
dustrial Engineering Research Memoranda 88-20, Purdue University (1988)
Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM
algorithm. Scandinavian Journal of Statistics 23(4) (1996) 419-441

Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover (1981)

He, Q.M., Zhang, H.: Spectral polynomial algorithms for computing bi-diagonal
representations for phase type distributions and matrix-exponential distributions.
Stochastic Models 2(2) (2006) 289-317

Cox, D.R.: A use of complex probabilities in the theory of stochastic processes.
Proceedings of the Cambridge Philosophical Society 51(2) (1955) 313-319
Cumani, A.: Canonical representation of homogeneous Markov processes modelling
failure time distributions. Microelectronics and Reliability 2(3) (1982) 583-602
Pulungan, R., Hermanns, H.: Acyclic minimality by construction—almost. In:
QEST, IEEE Computer Society (2009) 6372

Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31 (1994) 59-75

Jonsson, E.; Olovsson, T.: A quantitative model of the security intrusion process
based on attacker behavior. Software Engineering, IEEE Transactions on 23(4)
(1997) 235245

Reibman, A.L., Trivedi, K.S.: Numerical transient analysis of Markov models. Com-
puters & OR 15(1) (1988) 19-36

Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4)
(April 1988) 440-445

Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking
with prism: a hybrid approach. STTT 6(2) (2004) 128-142

Katoen, J.P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker mrmc. Perform. Eval. 68(2) (2011) 90-104
Kriaa, S., Bouissou, M., Pietre-Cambacédes, L.: Modeling the stuxnet attack with
BDMP: Towards more formal risk assessments. In: 7th International Conference on
Risk and Security of Internet and Systems (CRiSIS). (oct. 2012) 1-8

The TREsPASS project: www.trespass-project.eu.

