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Abstract. A time dependent scattering theory for a quantum mechanical particle
moving in an infinite, three dimensional crystal with impurity is given. It is shown that
the Hamiltonian for the particle in the crystal without impurity has only absolutely con-
tinuous spectrum. The domain of the resulting wave operators is therefore the entire
Hubert space.

I. Introduction

In the time dependent approach to potential scattering theory, one
endeavors to establish the existence and completeness of wave operators
Ω± = s-\imeitHl e~itH acting in a Hubert space jf, where H is the

ί-> + oo

Hamiltonian operator for the free evolution of the system and Hi is the
perturbed Hamiltonian operator for the system with interactions. Here
completeness means that the ranges of Ω± coincide with the absolutely
continuous subspace of Jf with respect to H1. The unitary scattering
operator S is then given simply by S = Ω\Ω_ [1,2].

Mathematically rigorous results asserting the existence and com-
pleteness of Ω± have been given in the particular case of single particle
potential scattering in which — H = A is the Laplacian acting in L2 (1R3),
and Hx = H + W(x), where W(x) is a short range potential, e.g.
W(x)sLί(JR3)nL2(ίR3) [2-4]. It is a natural question to ask whether
these results may be modified to accommodate the situation in which
both H and Hί are altered by the addition of a periodic potential V(x\
that is, where H and Hί are given by H = - A + V(x), Hι = -Δ + V(x)
+ W(x) and V{x) = V(x + α) = V{x + b)= V(x + c) for three linearly inde-
pendent vectors α, b, c. The modification would constitute a theory of
scattering from an impurity W(x) in a crystal, with the role of free
Hamiltonian played by H= -A + V(x) [5].

We show that such a modification is indeed possible assuming that
V(x) is square integrable over a unit cell (Theorem 3, Section III). In
fact this modification is almost immediate except for one technical
point: since the domain of the resulting wave operators is only the
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absolutely continuous subspace J^a c of &? with respect to H, it is of
course desirable that this domain be non-empty so that the scattering
theory is non-trivial. Thus Section II gives a spectral characterization
of H = — A + V(x) showing that J^a c = Jf, i.e. H has no normalizable
eigenfunctions, and the continuous spectrum of H is absolutely con-
tinuous.

These spectral properties are not surprising. The non-existence of
normalizable eigenfunctions in one dimension is well known from
ordinary differential equation arguments, and the absolute continuity of
the spectrum is not hard to deduce from the resolvent [6,7]. But a proof
of these spectral properties becomes more difficult in higher dimensions.
Since they are fundamental to the time dependent theory of scattering,
the principal part of this article is devoted to a discussion of just these
properties. For additional spectral properties see [8-10].

II. Spectral Properties of Hamiltonians with Periodic Potentials

It will be convenient to work in momentum space. Let H be the self
adjoint operator acting in Jf = L2(IR3) defined by

(Hφ)(p) = p2φ(p)+ £u«<p(p + «), pelR 3 (1)
qeΓ

where Γ is the reciprocal lattice, and vq are the Fourier coefficients of
the (real) potential V(x). It is assumed that £ \vq\

2 = v2 is finite, which
qeΓ

corresponds to V(x) being square integrable over a unit cell in con-
figuration space. (We follow the notation of [11].) Let k be any point
in the first Brillouin zone B, and set Γk = {j e 1R31 j = k + q, q e Γ}. Denote
as 42 t n e Hubert space of square summable functions {φk} defined on
Γk with norm (φ\φk}k= ^ φk(j)φk(j) We obtain a direct integral

JeΓk ®

decomposition of Jf7 which we write J f = \ 42 d3 k. As is well known, the
B Θ

point of this decomposition is that it reduces H; if φ— f φkd3k, then
B

®

Hφ= J H(k)φkd3k (2)
B

with H(k) acting in /2 defined by

(H(k)φk)(j) = {(T(k)+V(k))φk)(j)=j2φk(j)+ £ Vj-qφ
k(q),

qeΓk φ

(T{k)φk)(j)=j2φk(j), jeΓk.
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A study of the spectral properties of H is then effected by a study of
those of H{k).

In [11], it is shown that the operators (z - T{k))~1 and V(k) {z - T{k))~*
are Hilbert-Schmidt for z not in the spectrum of T(k). Also, the resolvent
R(z,H(k)) = (z-H(k))-ί=(z-T{k))-1 (l - F(fe)(z-Γ(fc))'1)'1 is Hil-
bert-Schmidt for z not in the spectrum of H(k). The spectrum of H(k)
consists of (real) isolated points of finite multiplicity. Given any R e 1R,
only a finite number of eigenvalues of H(k) are less than R.

Let Uk: ek->elkeB be the unitary map defined by

(Ukφ
k)(j) = φk(j + k), jeΓ. (4)

Then we can define the operator Hk(0) acting in el to be

Hk(0) = UkH{k) C/fc"1 = H(0) + 2k P + k2 (5)
with

(Piφ°)(j)=jiφ°(j), z= 1,2,3, j e Γ . (6)

Hk(0) is thus unitarily equivalent to H(k). Although Hk(0) was defined
for keB, we can extend the definition of Hk(0) in k throughout the
complex plane (C3 by the right hand side of (5). Because the domain
@{Hk{0)) = £){H{0)) = @(T(0)) = S)° is independent of ft and Hk(0)φ° is
a holomorphic function of k for φ° e !3° [iϊfc(0) is a closed operator
which is self adjoint for k real], it follows that Hk(0) is a self adjoint
type A holomorphic family in each of the variables kh i= 1,2, 3 ([2],
pp. 375, 385). We elaborate on the analytic behavior of the eigenvalues
of Hk(0) as functions of k. Assume that coordinates are chosen so that
the k3-direction is perpendicular to one of the faces of the Brillouin
zone B.

Lemma 1. Let kί,k2 be held constant and real. Then each eigenvalue
K(k) °f Hk(0) and its corresponding projection Pk(0), regarded as func-
tions of k3, may be taken to be holomorphic in a neighborhood of the real
axis. λn(k) is not constant as a function of fc3. ({n} is a numbering of the
eigenvalues, including degeneracies.)

Proof. A proof of the holomorphy of the λn's is given in [8]. We
remark that the holomorphy of the eigenvalues and projections is a
consequence of Hk(0) being a self adjoint type A holomorphic family
with compact resolvent ([2], p. 392). Finally, suppose to the contrary
that λn(k) = λn is constant in fe3, for some ku k2 and n. Let Tk(0) acting
in el be defined by T*(0) φ° = (T(0) + 2k P + k2) φ°, φ° e@°. Set
D = {k3e(C\(λn-Tk(0))~i is bounded}. Since

(λn - ff'ίO))"1 = (λn - Tk(0))-' (1 - 7(0) (λn - T^O))-1)-1
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is not bounded for k3 in a neighborhood N of the real line, 1 must be
an eigenvalue of the compact operator V(0)(λn — T^O))"1 for k3 in NnD
and hence throughout D ([2], Theorem 1.9, p. 370). But this is impossi-
ble; for |im/c3| sufficiently large, and refc3 so that inf|re/c3 + J 3 | > 0

jeΓ, we obtain | |V(0)(λn- 7^(0))"x | | < 1. In particular, the Hubert -
Schmidt norm of this operator may be made arbitrarily small, |im/c3| -> GO.
(See Lemma A-l of the Appendix.) Π

Remark. Although the λ^s can be chosen holomorphic in any one of
the variables kh they will not in general be single valued as a function
of all three variables kt. Typically, there will be curves running through B
such that λn(k) will experience a discontinuity as k passes in a loop about
a curve. Hence the labeling {n} of the eigenvalues will be discontinuous.
For the sake of definiteness, choose λn(ku k2, k3) to be an analytic con-
tinuation in k3 oϊλn{ku /c2,0), where the λn(ku fc2,0)are ordered according
to magnitude.

Lemma 2. Let Bλ = {k e B \ λ is an eigenvalue of H(k)}. Then μ(Bλ) = 0
where μ is Lebesgue measure in B.

Proof. Equivalently, Bλ = {keB\λ is an eigenvalue of Hk(0)}. Let
q E ΉBλ, the complement of Bλ in B. For some ε > 0, λ will not be an
eigenvalue of Hk(0\ \k — q\< ε; hence ^Bλ is open and Bλ is closed. Thus
Bλ is measurable. Let f(k) be its characteristic function. Then by FubinΓs
theorem ([12], p. 190), we have μ(Bλ) = J f(k) dk3 dkλ dk2 so that μ(Bλ) = 0

if $f(k)dk3=F{kuk2) = 0. But F(kί9k2)= J dk3 where S(kl9k2)
S{kuk2)

= {k3\λ is an eigenvalue of Hk(0)} = {k3\λ — λn(k) = 0 for some n}.

(Only a finite number of λ^s need be considered since for n sufficiently
large λn>λ+ 1. See Lemma A-2 of the appendix.) Thus by Lemma 1,
S(ku k2) is the zero set of a finite number of non-constant holomorphic
functions in fc3, which clearly has measure zero. •

Although the proof that H has no normalizable eigenfunctions is
contained implicitly in the proof of Theorem 2 below, it is easy to give
a separate proof of that fact here.

Theorem 1. The spectrum of H is pure continuous.

Θ

Proof Let (H-λ)φ= f (H(k) -λ)φkd3k = 0. Then (H(k) -λ)φk = 0
B

almost everywhere in B. φk vanishes almost everywhere for ke%>Bλ. On
the other hand, by Lemma 2 μ(Bλ) = 0 implying φk = 0 a.e. in B. •

We next prove that the continuous spectrum of H contains no
singular continuous part.
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Theorem 2. The spectrum of H is absolutely continuous.

Proof. It suffices to show that (φ(z — H)~ιφ) has continuous
boundary values in z as z approaches any bounded interval / of the
real axis, for φ in some dense set @jCJf. In this case, the quantity

—— lim{<φ(λ — iε — H)~ιφ's) — (φ(λ + iε — H)~ι φ)} is continuous in
2πι ε^o

λ e R But this limit is just the Radon-Nikodym derivative of (φE(λ) φ)
with respect to Lebesgue measure, where E(λ) is the spectral family of H.
This shows that the spectral family E(λ) is absolutely continuous in /
and, since / is arbitrary, in the entire real line ([2], Chapter 10).

Let Q)o consist of finite linear combinations of the function

φ = e-Pi2-P22-P3
2

 a n c j j t s translates in Jf=L 2(IR 3). 90 is dense in tf.
It is clear that φ ) Γ k e ί2

k if φ e $>0. If q e (C3 and φ e 3ι0, φq(p) = φ(q + p)
e L2(1R3) and φq

k = φ(p + q)]Γk e ίk\ Note also that if xpk e ίk\ (ψ\ φq

k}k

will be holomorphic in q e <C3. The function

<φ\ Pn(k) φk}k = <Ukφ\ UkPn(k) Uf1 Ukφ%

= (Ukφ\Pn

k(0lUkφ
k)oφe%,

regarded as a function of k3, will have a holomorphic continuation in
a neighborhood of the real axis since both Pn

k(0) and Ukφ
k are

holomorphic.
Next we define Q)1. Let / be a bounded interval. There exists a finite

N > 0 such that i£n>N, dist (λΛ(fc), /) > 1 for all UeB. (See Lemma A-2
of the Appendix.) Then we set Q)j — Fj&0 where F7 is a bounded positive
symmetric operator defined by

g(k)

N{kltk2)
π dk3

(7)

where g(k) is a C 2 function, 0 ^ g 5Ξ1, which is non-zero at every interior
point of B and vanishes on the boundary dB. N(kι,k2) is just a nor-
malization defined by

ί l , * 2 ) = Π
keB

d V
dk, + sup

keB

d
dk3 "

+ sup
k3

keB

δ2 (8)

iVf/c,, fc2)
 ι will be piecewise continuous and non-vanishing in B. Since

g(k) Π λ; vanishes only on a set of measure zero, F, φ φ 0 for
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φ Φ 0. The normalization insures that Fj is bounded. Finally, if ψ Φ 0 is
in Jf7, <ip, Fjφ) = (Fjψ, φ} φ 0 for some φ e ^ 0 which implies Q)ι = Fj@0

is dense in Jf.
Let z lie in the resolvent set of H. For any φ e Jf, we have

<φkPH(k)φk> j 3 f

i zλ(fc) i

The latter term will be a bounded analytic function of z in a neighborhood
of /, since dist (λn, I) > 1 for n > N. It only remains to show that the first
term has continuous boundary values in z for φ = Fjφ0 e Q)ι, i.e. φ0 e 2)0.
But the first term is just

V έ N2(fcfe) IM 5k ' z-λn(k)

where we have integrated by parts in fe3, and used the fact that g = 0 on
δJ5. Integrating by parts once more in fe3, we obtain

ln(z-λ B )

= Σ ί
(10)

\2 Id w Άl

Gn ^r,— λΛ + 3 GM -—— λM

where

Gn(k) = g2(k) ( Π - ^ - A,(/c)) <φo

kPn(k) φo

k> • (H)
[ Φ «
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In this form it is clear that J(z) will have continuous boundary values
as z->/. The normalization function was constructed to keep the inte-
grand of the right hand side of (10) bounded. Hence we have the
theorem. •

III. Scattering Theory

Let Hw=-Δ + V{x) + W{x) act in J f = L2(IR3) with V(x) again a
real periodic function of JC, square integrable over a unit cell, and W(x)
a real valued function of x satisfying the conditions of the theorem
below. W(x) is just the potential due to the impurity. H is the "free"
Hamiltonian, H = - A + V(x).

Theorem 3. Let W be relatively compact with respect to — A and
assume \W\*(ί— A)'1 is Hilbert-Schmidt. Then the wave operators
Ω+ (HW,H) exist and are complete, i.e. the range of Ω± is the absolutely
continuous subspace with respect to Hw. The domain of Ω± is Jf.

Proof Let λ be a point below the spectrum of H. We have in the
momentum representation that

(ί-A)(λ-Hy1= J(1 + T(k))(λ- Γ(Zc))-1 (1 - V(k)(λ- Tik))-1)-1 d3k
B

is bounded. Therefore W{λ-H)~ι = W(ί - A)~ι{\ - A)(λ~H)"1 is
compact. Similarly \W\*(λ-H)~ι is Hilbert-Schmidt. By ([2], Theo-
rem 4.9, p. 545) the wave operators exist and are complete. The domain
of Ω± is the absolutely continuous subspace of Jf with respect to H,
hence by Theorems 1 and 2, all of Jf7.

Remark. Perturbations satisfying Theorem 3 include W(x) e L1 (1R3)
n L 2 (1R2) ([2], p. 546). A theorem for such perturbations has been given
by Lenahan [12], but with the periodic potential βV(x) assumed
bounded, and the coupling constant β not assuming supposed excep-
tional values. Results on existence of wave operators have been shown
for a broader class of perturbations W(x) [12]. These results can
probably be extended further [3, 4], but the main point here has been
to establish the appropriate spectral properties for the unperturbed
Hamiltonian H.

Appendix

We first prove a lemma needed for Lemma 1 of Section II.

Lemma A-l. For appropriate choice o/re/c3, the Hilbert-Schmidt norm
of V(0) (λ — T^O))"1 tends to zero, |im/c3| tending towards GO.
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Proof The Hilbert-Schmidt norm S(k) is given by

S ( k ) = Σ v p - q v * P - q ( λ — ((I + k ) 2 ) 1 ^ — (q + / t * ) 2 ) " 1

p,qeΓ

= v2Σ ((λ -{q + re/c)2 + (im/c)2)2 + 4(im/c (q + re/c))2)"1, ^ e Γ
qeΓ

where k points in the /c3-direction. Fix refc so that \q3 + re/c3| does not
vanish, qeΓ. (Recall that the /c3-direction was chosen perpendicular to
a Brillouin zone face.) Then for some finite M > 0 independent of im fe3,

((λ -q2 + (im/c)2)2 + 4(imft ^ ) 2 ) " 1

But this latter term is in turn uniformly bounded in q e Γrek and |imfc| ^ 1
by Λ (̂((̂  + r) 2-(im/c) 2) 2 + 4(imfc (̂f + r))2 + (im/c)2)"1 for some finite
N>0, r e ΰ . In short, for this choice of re/c3 and |im/c3| ^ 1,

S(fc)^ const f

1

= const J
- i ό

in spherical coordinates. The p integration can be done explicitly by
making the substitution of variables x = p2, extending the contour of
integration to (— GO, OO) (the integrand will be pure imaginary x<0),
and then performing the integral by contour integration techniques.
One obtains

S(k) S const re ^ dμ

The integrand of the right hand side is uniformly bounded and goes to
zero |im/c|->oo for almost all μ. Hence by the Lebesgue dominated con-
vergence theorem ([13], p. 151), S(fc)-»0|imfc|->oo. D

Finally, we prove a remark made in the proof of absolute continuity
for the spectrum of H. (See the remark following the proof of Lemma 1,
regarding the numbering of the eigenvalues λn(k).)

Lemma A-2. Given any λ>0, there exists an N such that if n> N,
λn(k)^λ.

Proof. The proof of this lemma reduces to showing that if TV is chosen
large enough, a continuation λn(k) of λn(0) to koeB along a straight
line ί in B satisfies λn(k) ^λ,n>N,keί. We have an estimate of the form
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£>>0 may be taken arbitrarily small [11]. But this estimate implies that

1 / ~ x / M*ol_i) ([2], Theorem 3.6, p. 391).

Choose b so that (ebd-ί) = ^ where d=sup|fc|. Then \λn(k) - λn(0)\

^ \ — h jλn(0). But if N is large enough, i.e. λn(0) large enough, it is

clear that λn(k) ̂  λ. •
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