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Abstract

Expressions for the remainder function of a time dépendent
infinitesimally geﬁerated canonical transformatién have recently
been found by Dewar, who considered the action of the transformation
operators on Liouville's equation. Here an alternate proof of the
remainder functioﬁ expression is given, based on the transformations :
of'paiticlé trajectories. Thén, using this expression, a proof of

the symmetry-equals-invariant theorem is given.

*Work done under the auspices of the U.S. Energy Research and
Development Administration.



Introduction

. . . 1
In the canonical transformation theory presented in most texts, »2

the generating function F(q, P, t) of mixed variables playé a major role. .
Knowledge of this function allows one to calculate the new Hamiltonian

using the equation:

K=Hed . @

%%;is known as the reﬁainder;function of the transformation. Another
topic presented in most texts is that of infinitesimal canonicalAtrans—
formations. By suécessively doing infinitesimal transformations, one
can genérate a family of canoniéal transformations. The formula corre-
sponding to Equation (1) was not known fbr a family of canqnical
transformations until recently, when Deprit3 found such an expression
in terms of a power series expansion. Then Dewar4 cast Deprit's theory
in operator form, and found an expression for the Hamiltonian by
considering the action of thése_dperators on Liouville's equation.

The first part of phis paper is devoted to deriving Dewar's
result by considering the individual particle trajectories rather
than Liouville's equation. In this formulation it is seen that
finding the femainder function is a calculus problem. The final
result of the transformation theory is then uséd to prove the symmetry-
equals-invariant theorem. This theorem has been discussed pfeviously,s’6 K
but'its proof can be made more rigorous by using the new transformation

theory.
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Theory of Infinitesimal Canonical Transformations

‘Thié section begins wifh‘the introduction of.notatioﬁ and.the
statement of elementary.fécts coﬁcerning canonical trénsformations.
.Thenvfhe fundamental théofém will be.stafed and"pfoven.

Following Saletan and Cromer,1 the Set of canonical variables is
denoted by the vector 2> suéh that Qps o v v s Q=295+ - - ’-Zn and
pl; “ e v pn==zﬁ+1,. ces Zope The matrix y is defined to contain
the Poisson:bracket relations:

1 for j=i+n .
Y.. = {Zi’ zj} = -1 for i=j+n : - (2)

1J 0 otherwise

The matrix Y is seen to be antisymmetric and invertible.

i

T Vi T Siy - . (3D)
k . _

It will be necessary to consider time-dependent canonical transfor-

mations which depend differentially on a parameter 6. A transformation

is canonical if it preserves the Poisson bracket relations:

3z 9z

{Zm(,%, t’ 6)’ ZQ’(,%, t‘f e)} = IZJ _B—Z;Ylj gZ—J' = sz' . (4)

In addition to being canonical, the transformations %(%,t, 8) are required
fo be invertible, twice differentiable in all arguments simultaneouély,

and to reduce to the identity when 6=0:

2127z t, 0), t,0] = 2717z, t, 8), t,8] = 2 (5a)

Z(z,t,0) = 2 .  (5b)
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It will alsoAbe necessary to consider functions of the phase
space variables %,_the time t, and the bgrameterze. By transforming
the variables, néw functions can be formed from old. As an example,
the function f(%,t, 6) can be defined by transforming the function

F(%,t) according to:

£(z,t,8) = FZ(z,t,0),1t) o (6)

To avoid ambiguities in taking derivatives, a very explicit
notation must be introduced. The symbol
oF | ’ (7)
9z : .
L ZGz,t,60),t,6
means: take the derivative of the functipn F(%,t) with respect to
the variable Zgs then for the variables Zs substitute %(%,t, 8).
When the arguments are not explicitly written, they are assumed to be

Z- This notation is illustrated by applying the chain rule to equation

(6):

LA (8)
2z, t,0),t & °7 ot '
n oty

Finally, one more fact is needed which can be stated in the form

of a lemma:

Lemma

Given a differentiable family of invertible canonical mappings £z, t,0),

there exists a function w(%,t, 8) such that

35 " +{W(,€’ t, 0), Zi('%" t’G)} . | ()
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This statement is shown to be true in Réference 1, p. 222, For
completeness, a proof is included in Appendix A. Using (9) and (5),
it is possible to show that the inverse transformation satisfies the

following relation with the same function w:

_1 .
9z _ -1
o= - @G 0,1, 00, 200 (¢, 1, 0] (10)

The)function w(%,tgle) is here known as the generating function of
the transformation %(%,t, Gj. This'funptionlis not to be confused
with the generating functions of mixed variables used by Goldstein,2
which are known here as the 'mixed genératiﬁg functiong.”

~ Now thaf the basic properties of canqnical transformations have
been discussed, it is possible to discuss the problem at hand. First

it is assumed that the evolution in time of the variables %'is given by

" a Hamiltonian h(%,t). Then it is known (Ref. 1, Ch. VI) that there

exists a function K which gives the evolution of. the transformed

variables according to

2oz, t, 0 = {Z,, K(Z(z, t, 0), t, )} . - an

The objective here is to find the new Hamiltonian K.

Consider the standard expression for computing the time derivative

of the function 22(%,§, 8):

. dZg o
2(z,t,0) = ==+ {Z,,h}. _ (12)

Suppose a function r(%,t, 6) can be found such that the partial deriva-

tive of ZQ with respect to time can be written in the form:

3z
EARCILE . Ca



Then equation (12)bbecomes

. {Zz,k} , . . (14a)

e
1]

where

k = h+r . (14b)
Thus the function K which is in (11) is given by:
B ) _1 ) ) ]
K(z,t,0) = k(Z "(z,t,6), t,08) . : (15)

Now it is seen that to complete the transformation theory, the
- function r(é,t, 0) which satisfies (13) must be found. The function

T is found by differentiating (9) with respect to time.

2 Ga) - B e (e 5 16)
Equation (16) is a differential equation in 6 for the function %;%m
This equation,‘toéether with a boundary condition, uniquely specifies
%;%—. The apﬁropriate boundary condition follows from (5b):

?-;ti— 0. | | an

_,%I,t,O :

I now assert that the following set of formulas gives a solution to

(16) and (17):

= = {Z;» 7} (18)
r(z,t,8) = R(Z(z,t,0), t,6) (19a)
6 _
oW
R(z,t,0) = - [ d6" o (19b)
“ o Otz e, e, t00 -

Proving this assertion completes the task of finding K.
To prove that (18) is a solution, it must first be noted that when

O is zero, R vanishes. Using (19a) and (18), this implies that (17) is
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satisfied. To prove that (16) is satisfied by (18) and (19), I will

. calculate both sides of eduation (16) using (18) and (19), and'show

them to be equal. | | |
Using (18), the left hand side of-equationv(lé) can be put in

the form:

3

: 9Zj - _ or
L.H.S. = {—a—e—,r} +{z., 55 ~v (20)
Rewriting the second term using (19a) and the chain rule gives:
974
L.H.S. = {=, 7} + {z,, g%. ]
,%(,%}}t—,e))t’e
3R 3Zy, ‘ 4' '
+ % {Zi’ 5;;‘ x jﬂ;‘} . (2

Z(z,t,0),t,0

Then using (9) on-the first and third terms, equation (21) becomes:

o R
L.H.S. = {{w,z.}, rp + {Z., =5
{ i } i 36*%(%,t,e),t,; .
3R . ‘ '
e <t} =

£(z,t:0),t,0
Recognizing the chain rule in the following form,
R

3
L
g %%

| ez} = e R(zG.8), 1,0}, (23)
ZQ/({%J’t’e)’t’e '

and ihserting (19b) into the second term of (22) results in:

L.H.S. = {{w,Zi}‘, r} + {g-z—, z.}+ {zi, {w,r}} . (24)

Jacobi's identity allows equation (24) to be written in its final form.



L.H.S. =.{—gft°-, Z.} + {w, {Zifr}} . : (25)

‘This expression is seen to equal the right hand side of (16) upon using
(18), proving the-assertion.

The results of this éecfion show the existence of a
formula giving the ﬂew Hamiltonian in terms of the infinitesimal genera-

ting function w. Combining (14b), (15), and (19), the final result is:

= -1 '»B_W_
K(z,t,8) = h(Z7"(z,t,0), t) - {) de’ = 2,00, 0,00 (26)
. . "’\;’ 5 ’ »

To connect these results to Dewar's,4 operators corresponding to

the transformation are defined by:

(T()) (z,t,8) = £(2(z,t,8),t,0) . . (27)
Theﬁ equation (26) becomes -
-1 R B o ' '
K=T (8)h - (f) o' T 7(8') 5-(8") . (28)
Though this equation appears to differ froﬁ‘Dewar's'equation (27),4
it is only because of differences in conventions.

As Dewar‘points out, by expanding w in a power series in.e, Deprit's
perturbation theory can be derived. Since the operator T is also a power
series, this way of doing perturbation theory involves multiplying series.

I would like to point out that in practical calculation, (28) is more qonQ "

venient than Dewar's formula since there is one less operator series to

multiply.
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The Symmetry-Equals-Invariant Theorem

Now I would like to consider the application of (26) to the

'symmetry—equals-invariant theorem. In its time dependent form, this

theorem was partially discussed By Whittaker.6 Receﬂtly, Anderson
gave a more complete discussion.s, Here I would like to show that the
piodf‘éf this theorém need not be based on expansions; in faCf, its
proof.for a finite composition of infinitesimal transformations becomes
étraightforward using (26).

First, definitioﬁs for the terms used ﬁust be given. A fgmily of
canonical transformations is said to be a symmetry, if the new Hamiltonian
K is identical in form to the old Hamiltonian h up to the addition of

an arbitrary function of t and 6 alone.

K(z,t,8) = h(g,t) + £(t,8) | (29

An invariant of the motion g(%,t) is any function whose total time

derivative is zero.
» _ 0g 3 . :
g =50t {g.n} =0 (30)

With these definitions, the following theorem is proven.

ThevSymmetry—Equals—Invariant Theorem

Given a family of canonical transformations which is a symmetry of
the Hamiltonian h, one can construct an invariant of the motion g.
Conversely, the canonical transformation generated by any invariant g

is a symmetry of the Hamiltonian.

Proof

To prove the first statement, we assume that we know the symmetry

%(%,t,e), and we have constructed the generating function w(%,t,e) as
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in Appendix A. Using the symmetry property (29) in equation (26) gives

3]
-1 9
hig,t) + £(t,8) = h(z " (z,t,0), t) - [ do" 5% 0 : . (3D)
| 0 27 G,t,0M), 1,0
Differentiating (31) with respect to © results in
Af 5h 2200w
55 = = g X 5= *ael o1 . (32)
2027 (z,t,0), ¢ 2T (7,1,0), 1,8
Now using equation (10) and transforming Z> (32) becomes
©ow of _ ' .
R*WM+%“O' (33)

t
The function g(%,t,e) = wﬁé,t,e) —.fdt' gg—(t',e), is seen to be

an invariant of the motion for all 6.
To prove the second statement, I assume a function g(%,t) is known
which is an invariant. Then, the transformation é(%,t,e) is determined by

integrating (9),using

wiz,t,0) = gz,t) . (34)

To prove this transformation is a symmetry, differentiate (26) with

respect to 0.

1
9Z ,
L 9g (35)

oK }* oh .
T ot),-1
90tz .0, t

R A PR I

X

Using (10), this becomes

9K

3% - ({g,h}-+%%)’ (36)

e, e

but since g is an invariant:

3 - 0 . ‘ ) ' (37)
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This of course tells us that

K(g,t,0) = K(z,t,0) = h(z,t) , | ENCOR

proving the theorem.

Conclusions
It has been shown that Dewar's formula for the remainder function
for a succession of infinitesimal transformations can be proven by consi—
~deration of particle trajectories rather than Liouville's equation. In \
the process, an equation has been derived which is.simpler to use when

doing perturbation theory. Finally, this equation has been used to

give a rigorous proof of the symmetry-equals-invariant theorem.
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- Appendix A: Proof of the Lemma

Lemma
Given a differentiable family of invertible mappings Z(z,t.0),

there exists a function w(&,t,e) such that

9Zy V
=g - {w, zk} (A1)
Proof

The lemma will be proven by construction. Consider first the
vector x(%,t,e) given by
dZy, : (A2)

\Y ( :t’e) = z Y YN .
k% g 8 e,0), 10

Suppose X can be shown to be the gradient of a potential, i.e.

'
Vi = - azk (A3)
Then w is given by
W(z.t,0) = W (Z(z,t,0), t,6) . (A4)

This can be seen by inserting (A2Z) into (A3), multiplying the
result by Yim’ summing over k and using (3b) to get

azm’

oW :
26 =1 55;_ Yikm = {W’Zm} (A5)

',%—1(/%,’1:’6) t)e k

“Upon transforming > this becomes

dZ : '
E_é“l= W(z(z,t,8), t,8), z (z,t.0)} . -~ (A6)

So it is seen that once the potential W has been found, the lemma has

been proven.
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vTo find the potent131 W, first the symmetry of the partial deriva-

tives of M must be shown:
—_— . , L (A7)
') k o

Once this is pfoven, W is found:'by integrating J:
& : v
= _ (I t . . b
w=- | % Vo (z',t,0)dzy . ; , (A8)
To prove_the symmetry (A7), the partial derivatiyé must be calcu-
lated. This is doﬁe by differentiation of (A2).

Vg 922y az;t

ai;‘= L Yim 560z
m T T

x (A9)
7 (z.t.0), 6,8 % |

‘Digressing for a moment , it is noted that (3b) and (4) can be combined

to give:
37 o E . - v
= __——J—- - PR
63'2 - Z 3z ( z Yﬂji 3z Ypr), v (A10)
r T 1ip : :

Also, differentiating (5a) and transforming % gives

| oz, 2z !
R g R o . | e (A11)
VI % '7(z,t,8) t,0 '
IY3ZJ'
At this point the fact that the matrix ggf-is invertible,since the
T

transformation %(&,t,e) is inVertible,is used to impiy,from (A10) and
(A11), the following relationship.

azz! | 3 3Z;
| ==L Y5, Y
322 2(2,t,9), t,0 ip 21 sz .pr

(A12)
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Transforming Z in (A12) and inserting the result into (A9) gives
the final form for the partial derivative:

vy (3 322y 3z
5 = “Yim 3652 Yop 52 Vi
BZQ km_aeazr Tp sz 412

(A13)
mrip '

27 (z.t,0),t,0
To prove that the right-hand side of (Al13) is symmetric in k and

2, equation (4) is differentiated with respect to 9.

92z YA 3z 92Z;
) 8682 Yrp le =-1 522; Yrp 5§§éL (Al4)
Tp T P rp T p
Upon inserting this relation into (A13) and using the antisymmetry
property of the y matrix, the symmetry (A7) is.seén to be true,

proving the lemma.

L.
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