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Abstract 

Converging evidence indicates that separate goal-directed and habitual systems compete to 

control behavior1. However, it has proven difficult to reliably induce habitual behavior in human 

participants2–4. We reasoned that habits may be present in the form of habitually prepared 

responses, but are overridden by goal-directed processes, preventing their overt expression. 

Here we show that latent habits can be unmasked by limiting the time participants have to 

respond to a stimulus. Participants trained for 4 days on a visuomotor association task. By 

continuously varying the time allowed to prepare responses, we found that the probability of 

expressing a learned habit followed a stereotyped time course, peaking 300-600ms after 

stimulus presentation. This time course was captured by a computational model of response 

preparation in which habitual responses are automatically prepared at short latency, but are 

replaced by goal-directed responses at longer latency. A more extensive period of practice (20 

days) led to increased habit expression by reducing the average time of movement initiation. 

These findings refine our understanding of habits, and show that practice can influence habitual 

behavior in distinct ways: by promoting habit formation, and by modulating the likelihood of habit 

expression.  
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Behavioral, computational, and neurobiological evidence suggests that behavior is 

governed by two distinct systems5,6. The goal-directed system selects actions based on an 

evaluation of which options will best achieve future task goals. In principle, this yields the best 

possible outcome, but at the cost of being computationally-intensive and slow. By contrast, the 

habitual system selects actions based on what has been successful in the past. Habitual action 

selection is simpler and faster, but it is inflexible; it produces the same action irrespective of 

changes in goals or the environment.  

Studies in animals demonstrate that repeating a newly learned behavior leads to a 

transition from goal-directed to habitual behavior1,3. This work has also established dissociable 

neural substrates for goal-directed and habitual systems, with different regions of the cortex and 

striatum implicated in expressing goal-directed versus habitual behavior7. However, establishing 

similarly robust habit formation in humans has been surprisingly elusive2–4. 

We propose that a major reason why habit formation has been difficult to observe in 

humans is that habits exist, but are masked by goal-directed processes. Actions could be 

habitually selected and prepared without being immediately executed, allowing them to be 

replaced by more appropriate, goal-directed responses before any movement is generated. This 

view is supported by recent work establishing that movement preparation occurs independently 

from, and much earlier than, movement initiation8. Critically, the habitual system provides 

potential responses rapidly, while the goal-directed system requires longer processing times. 

We therefore reasoned that limiting the time participants had to prepare responses would 

prevent preparation of goal-directed responses, unmasking otherwise latent habits. 
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Figure 1. Task and training schedule for Experiment 1. a) Experimental setup. Participants 

responded to the appearance of a stimulus by pressing a corresponding keyboard button. b) 

Example stimuli (letters of the Phoenician alphabet). c) Experiment 1 overview. In the 4-Day 

Practice condition, participants completed 4,000 reaction-time-based training trials on original 

mapping A over 4 days. On the fifth day (Assessment) they were tested on their knowledge of 

mapping A in a criterion test block, then learned revised mapping B until they achieved a steady 

accuracy criterion (see Figure 2d). They then completed forced-response trials (Figure 2e) 

under this new mapping. In the Minimal Practice condition, participants only performed the 

assessment session (and therefore practiced the original mapping A only until they achieved a 

steady accuracy criterion). d) Trial structure of the reaction-time-based training task. 

Participants attempted to complete blocks of 100 trials as quickly as possible, incurring a 1s 

time penalty for incorrect responses. e) Data from the reaction-time-based training in the 4-Day 

Practice condition. Participants’ median reaction times, reaction time variability (median 

absolute deviation) and error rates improved with training. Error bars represent bootstrapped 

95% confidence intervals. 
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In Experiment 1, participants (n=22) completed a visuomotor association task in which 

arbitrary stimuli directed them to press specific keyboard buttons (Figure 1a). We contrasted 

behavior in two conditions: a 4-Day Practice condition and a Minimal Practice condition. In the 

4-Day Practice condition, participants first trained on a previously unseen stimulus-response 

mapping, completing 4,000 reaction-time-based trials (100 trials × 10 blocks × 4 days) in which 

they responded as quickly as possible to visual stimuli presented in rapid succession (Figure 

1d). Performance at this task improved with practice (Figure 1e), with significant reductions in 

reaction times (average of first vs last day, t-test, t21=11.96, p<0.001), reaction time variability (t-

test on reaction time median absolute deviation, t21=9.38, p<0.001), and errors (t-test, t21=2.18, 

p<0.05).  

We assessed whether practice led participants to habitually prepare a particular response 

by transposing the required responses for two of the four stimuli (Figure 2b). Participants first 

learned this revised mapping in a criterion test block; they were instructed that there were no 

time constraints in this block, and that they should focus on learning a new stimulus-response 

mapping. They trained on the revised mapping until satisfying an accuracy criterion of five 

consecutive correct responses to each stimulus, which occurred on average within 44±5 

(mean+SEM) trials. The number of trials needed was comparable to that required to learn the 

original mapping at the start of the Minimal Practice condition (40±4 trials) (Figure 2d; paired 

samples t-test, t21=0.64, p=0.53). Thus, participants had no difficulty in learning to accurately 

respond according to the revised mapping, regardless of whether they had practiced an 

incompatible mapping beforehand. This seemingly suggested that four days of practice had not 

led the association to become habitual. 
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Figure 2. Switch manipulation, retraining, and forced-response task results. a) Following either 

minimal practice or four days of practice on original stimulus-response mapping A (example 

mapping shown), two stimulus-response associations were switched to create a revised 

mapping (b). c) This revised mapping allowed the identification of habitual behavior – trials in 

which participants acted according to the originally learned mapping (a habitual error) rather 
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than the revised mapping (correct response). d) Participants trained on the revised mapping 

without reaction time constraints until they reached a criterion of 5 consecutive correct 

responses to each stimulus. Participants required approximately 40 trials to learn this revised 

mapping, regardless of the volume of training they had completed on the original mapping. Error 

bars represent ±1SEM. e) Participants then completed a forced-response task, shown here in 

schematic form. Participants were instructed to respond synchronously with the final tone in a 

sequence of four equally spaced tones. Stimulus onset was varied relative to this time in order 

to impose differing response times, distributed randomly and uniformly from 0-1200ms prior to 

the fourth tone. f) Distribution of responses as a function of allowed preparation time for the 4-

Day Practice group. Each line presents the proportion of different types of responses within a 

100ms sliding-window. Purple: correct responses for unchanged, consistently mapped stimuli. 

Blue: Correct responses for remapped stimuli. Red: habitual errors for remapped stimuli. The 

brief increase in the probability of responding according to the original map between 300-600ms 

indicates transient habitual preparation of the originally practiced mapping. g) Analogous results 

for the Minimal Practice condition, indicating no evidence of habitual action preparation. h) 

Direct comparison of the time-varying probability of expressing the original response across the 

groups. Inset compares the proportion of habitual responses binned across successive 300ms 

intervals relative to the minimum time at which participants could respond to stimuli (tmin - see 

text for details). Shaded error regions in f-h represent bootstrapped 95% confidence intervals. 

Bar chart error bars represent ±1SEM. 

 

We then examined whether limiting response preparation time would unmask habitual 

preparation of the initially practiced response. We achieved this using a "forced-response" 

paradigm8–10 (see methods). Participants were forced to initiate a response at a fixed time in 

each trial (i.e. synchronously with the fourth tone of a metronome). Varying the onset of the 

visual stimulus in relation to the time of the fourth tone enabled us to control the time the 
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participants had to prepare their action (Figure 2e), allowing us to probe which responses were 

prepared at different times. 

To visualize the time-course of response preparation, we assessed the probability of 

expressing different responses within a 100ms sliding window (Figure 2f). Focusing first on 

responses to stimuli that did not change between the mappings (consistently mapped stimuli; 

purple curve in Figure 2f), the probability of generating the correct response was at chance 

(0.25) for preparation times less than ≈300ms. This indicates that participants had insufficient 

time to process the stimulus, and therefore had to guess. The probability of generating the 

correct response then rose gradually as preparation time increased, reaching asymptote 

between 700-900ms. 

Habitual response preparation was revealed by assessing the time course of responses to 

remapped stimuli. In the 4-Day practice condition, the probability of generating the originally 

learned response (Figure 2f, orange curve) began at chance for low (<300ms) preparation times 

but then transiently increased above chance at preparation times of 300-600ms, before 

declining towards zero as the proportion of correct responses (Figure 2f, blue curve) began to 

increase. Therefore, despite the fact that participants had no difficulty in acquiring the revised 

mapping after four days of practice, forcing them to respond at low preparation times unmasked 

latent habitual responses. By contrast, in the Minimal Practice condition (Figure 2g), the 

proportion of habitual errors (Figure 2g, yellow curve) began at chance, then declined as 

preparation time increased. 

We summarized and confirmed these observations by analyzing the overall likelihood of 

habitual responses in a 300ms interval aligned to the minimum possible time at which 

participants could generate an accurate response (tmin, identified as the time at which a 

cumulative Gaussian fit to the speed-accuracy trade-off for consistently mapped stimuli first 

reached 5% of its height), which showed a significant interaction between condition and 

required preparation time (RMANOVA, F1,21=58.32, p<0.001).   
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We note that participants’ ability to prepare appropriate responses was slowed; the speed-

accuracy trade-off for remapped stimuli was shifted later relative to that for consistently mapped 

stimuli (Figure 2f; purple vs blue curves, significant difference between the center of the speed-

accuracy trade-offs, t21=5.93, p<0.001, mean difference 93ms). In the Minimal Practice 

Condition, by contrast, there was no such difference in the speed of preparation between 

remapped and consistently mapped stimuli (t21=0.64, p=0.53). 
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Figure 3. Computational model of response preparation. a) We assume that, in each trial, a 

response is prepared at a random time (assumed here to follow a Gaussian distribution) after 

stimulus onset (a, upper panel), giving rise to the observed speed-accuracy trade-off across 

trials (a, lower panel). b) As the mean and variance of the time of preparation improve (b, upper 

panel) the speed-accuracy trade-off improves (b, lower panel). c) After the mapping is revised, 

the original mapping (red) is still habitually prepared. The appropriate, revised response (blue) 

becomes available later and replaces the habitually prepared response. This sequence of 

events leads to a time-varying probability of each response being expressed (c, lower panel). d) 

Averaged behavior (thin lines) and average model fit (bold lines) for the minimal practice 

condition. Fit shown here for the model with no habitual preparation ( ρ = 0; equivalent to panel 

a), which had a lower AIC for this condition. Error bars show +/- SEM. e) Behavior and model fit 

in the 4-Day practice condition. Fit shown is for the model with habitual preparation (panel c), 
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which had a lower AIC for this condition. f) Difference in AIC between the habitual ( ρ  = 1) and 

non-habitual ( ρ  = 0) models for individual participant fits to the data. Results favored the 

habitual preparation model in the majority of participants in the 4-Day Practice condition, but in 

only one participant in the Minimal Practice condition.  

 

The time-varying expression of habitual or goal-directed behavior was accurately described 

by a computational model of response preparation (Figure 3). We first considered a model of 

response preparation in the case of a single learned association8 (Figure 3a). The time at which 

responses became prepared, ��, was assumed from trial to trial according to a Gaussian 

distribution. Critically, the response is not necessarily initiated at time ��, but is instead held in a 

prepared state until a response is initiated. If the time at which the response is initiated is equal 

to or greater than ��, the participant will have had sufficient time to process the stimulus and 

prepare the appropriate response. But if the time allowed to respond is less than ��, the 

participant will not have had enough time to process the stimulus, and will therefore respond at 

a chance level of accuracy. These assumptions predict a speed-accuracy trade-off qualitatively 

matching that observed for the consistently mapped stimuli (Figure 3a, lower panel). 

Improvements in the speed-accuracy trade-off through practice are explained by improvements 

in the mean and variance of the distribution of �� (Figure 3b, upper panel).  

We extended this model to account for the possibility of multiple, competing response-

selection processes (Figure 3c). In this model, habitual and goal-directed processes select 

potential responses in parallel, but compete for preparation of a single action. We assume that 

the habitual response becomes available at time ��, while the correct, remapped response 

becomes available at a later time ��. We assume that �� and  �� are both Gaussian distributed 

and independent, but with �� having a greater mean and variance than ��. Critically, participants 

will prepare the habitual response as soon as it is available (i.e. at time ��), but this will be 
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replaced by the goal-directed response once that becomes available (i.e. at time ��). 

Participants will express whichever response is prepared at the time of movement initiation. 

Therefore a habitual response will be generated if the response is initiated after �� but before 

��. This model replicated the stereotypical time course we observed experimentally (Figure 3c, 

lower panel). 

Applying this model, we first compared fits to data pooled across participants. The habitual 

preparation model accounted for the data in the 4-Day Practice condition significantly better 

than an alternative model in which the previously practiced response was never prepared (ΔAIC 

in favour of habitual preparation model = 275.6). By contrast, data from the Minimal Practice 

condition was best explained by the model in which participants did not habitually prepare 

actions (ΔAIC in favour of no habitual preparation model = 215.3).  

Our models also accounted for individual participant behavior well (Figures S1 and S2). In 

the 4-Day practice condition, the habit model better explained data for 16/22 participants (mean 

ΔAIC = 11.3, Figure 3f) suggesting that the majority of participants had become habitual 

following practice. In the Minimal practice condition, the no-habitual-preparation model better 

explained behavior in 21/22 participants (mean ΔAIC = 14.8, Figure 3f). Thus, the results of 

Experiment 1, along with the computational model, established that four days of practice led to 

habitual behavior in the majority of participants. This habit was not apparent when participants 

completed the task under self-paced conditions (i.e. in the criterion test blocks), but was 

unmasked by forcing them to respond rapidly. 
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Figure 4. Results for Experiment 2 (20 Days/20,000 trials of Practice). a) Participants’ median 

reaction times, reaction time variability (median absolute deviation) and error rates over training. 
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Each circle represents data for one block of 100 trials. Separations in the lines between points 

indicate between-day breaks. Error bars present bootstrapped 95% confidence intervals. b) The 

speed-accuracy trade-off for the original stimulus-response associations (Mapping A) was 

assessed using forced-response trials at multiple points during training: at baseline (just after 

achieving criterion), and at the end of each week of practice. The leftward shift indicates that 

participants learned to execute the association more rapidly with practice. c) The number of 

trials required to achieve criterion for the revised mapping was higher in the 20-Day Practice 

condition than the Minimal Practice or 4-Day Practice conditions in Experiment 1. d) Participants 

in the 20-Day Practice condition made significantly more habitual errors during the criterion test 

block under the new mapping, but did so with significantly faster reaction times (e) compared to 

conditions with less practice. f) Forced-response data for the 20-Day Practice condition. Speed-

accuracy trade-off for consistently-mapped stimuli (purple), and remapped stimuli (blue). The 

peak probability of expressing the originally practiced response (red) was even greater than in 

the 4-Day Practice condition (see text for statistical comparisons). g) Predicted behavior in the 

20-Day Practice condition (dotted lines), based on group-level model fits to behavior in the 4-

Day Practice condition, and fits to the speed of preparation of responses to consistently mapped 

stimuli (solid line). 

 

In a second experiment we investigated the effects of more extensive practice on habitual 

behavior. In Experiment 2 a new group of participants (n=14) trained on an original mapping 

over a period of 4 weeks, completing 20 days of practice in total (1,000 trials per day, 20,000 

total trials). As in Experiment 1, participants trained in reaction-time-based trials. The prolonged 

practice enabled participants to reduce their reaction times by 70ms relative to participants at 

the of the 4-Day practice condition (group-by-day interaction for first/last day comparison, 

F1,34=22.53, p<0.001; no baseline difference between groups on day 1 of training, t34=0.89, 

p=0.38). The speed of participants’ response preparation was also periodically assessed during 
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learning through forced-response trials, yielding speed-accuracy trade-offs for the practiced 

mapping (Figure 4). This data revealed a clear improvement in the latency at which participants 

could generate an accurate response (rmANOVA on mean preparation time, F4,52=41.81, 

p<0.001; Figure 4b). 

Following practice, we tested whether response preparation had become habitual by 

remapping two of the four stimuli, as in Experiment 1. Participants practiced this new mapping 

until they made 5 consecutive correct responses to each stimulus. Participants needed an 

average of 76±13 trials to achieve this criterion; significantly more than the 44±5 trials needed in 

the Minimal Practice condition (t-test, t34=2.74, p<0.05) or the 40±4 trials needed in the 4-Day 

practice condition (t-test, t34=3.24, p<0.01). This increase was largely attributable to participants 

committing more habitual errors (Figure 4d, Mann-Whitney U test vs Minimal Practice condition, 

Z=2.92, p<0.01, and vs 4-Day Practice condition, Z=2.14, p<0.05). 

We also found that participants who learned the revised mapping after 20 days of practice 

had shorter reaction times during the criterion test block than those who practiced for only four 

days (Figure 4e, Mann-Whitney U test vs 4-Day Practice condition, Z=2.46, p<0.05), or those 

that had minimal practice (vs Minimal Practice condition, Z=2.94, p<0.01), suggesting a link 

between habitual responses and short response times. 

Participants were then tested under forced-response conditions (Figure 4f), allowing more 

detailed examination of the effect of additional practice on their response preparation. As 

expected from the practice-based improvements in reaction time (Figure 4a) and the speed-

accuracy trade-off (Figure 4b), the center of the speed-accuracy trade-off for consistently 

mapped stimuli (Figure 4f, purple line) was significantly earlier than that of participants in the 4-

Day practice condition in Experiment 1 (t-test on mean preparation time, t34=2.32, p<0.05, mean 

difference 48ms).  

The speed at which responses to remapped stimuli could be prepared (Figure 4f, blue line) 

was slower than for consistently mapped stimuli (t-test on mean preparation time, t34=11.50, 
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p<0.001, mean difference 162ms), but was similar to that observed after 4 days of practice (t-

test on revised response speed-accuracy trade-offs, t34=0.81, p=0.43). Thus, given sufficient 

time, participants were perfectly capable of producing accurate goal-directed responses. 

As expected, forced-response trials revealed habitual response preparation in the 20-Day 

Practice condition. Responses were similar to those in the 4-Day Practice condition, except that 

participants who trained for 20 days were more likely to produce habitual responses when 

forced to respond at low latencies (t-test on 20-Day practice vs 4-Day practice groups for 0-

300ms following tmin, t34=2.98, p<0.01).  

As with the 4-Day Practice condition, data from the 20-Day Practice group favored the 

habitual preparation model over the no-habitual-preparation model, even more strongly than for 

Experiment 1 (ΔAIC in favour of habitual preparation model = 318.2). At the individual-

participant level, the data favored the habit model in all 14 participants who completed the 

experiment (mean ΔAIC = 24.3; Figure S3). 

Our data indicated that 20 days of practice led to more pronounced habitual behavior 

compared to just 4 days of practice, which was apparent in two distinct ways. First, participants 

made more habitual errors in the criterion test block. While this could suggest that the habit had 

become more difficult to override with goal-directed responses, data from the timed-response 

condition did not support this view; the speed-accuracy trade-off for generating an accurate, 

goal-directed response (blue lines in Figure 2f versus Figure 4f) was indistinguishable from that 

in the 4-Day practice condition. Instead, the increase in the number of habitual errors occurring 

during this block was more likely attributable to the fact that participants who trained for 20 days 

responded with lower reaction times during the criterion test block. This suggests participants 

may have persisted in responding with short reaction times that were successful during their 

training11, which in turn increased the likelihood that they would express the habitually prepared 

action. 
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The model predicted the fact that the peak probability of expressing a habitual error was 

greater after 20 days of practice than after 4 days of practice (Figure 4g). The probability of 

expressing a habitual error is strongly influenced by the speed at which responses can be 

prepared; more rapid preparation of a habitual response broadens the window of opportunity for 

it to be expressed before it is replaced by the appropriate, goal-directed response (Figure S4a). 

After 20 days of practice, participants had significantly reduced the latency at which they could 

select and prepare the habitual response (Figure 4b). The increase in the peak probability of a 

habitual response observed between 4 and 20 days of practice was consistent with model 

predictions based on observed improvements in preparation speed (see Figure 4f; see 

Supplemental Materials for further details). 

An alternative interpretation of the increased probability of generating a habitual error is 

that habitual preparation became more likely to occur. Our initial model considered habitual 

response preparation as an all-or-nothing process – a habitual response is always prepared 

when available (i.e. when response time is greater than �� and less than ��). However, we also 

considered a model in which habitual preparation of the originally practiced mapping might 

occur with a variable probability ��, which could be construed as the ‘strength’ of the habit. 

Under this model, with a strong habit (�� � 1), the originally practiced mapping would be reliably 

prepared every time a particular stimulus is presented. With no habit (�� � 0), the originally 

practiced mapping is never prepared. With an intermediate habit (e.g. 0 � �� � 1) the originally 

practiced mapping might be prepared on only a subset of trials. Practice may increase the 

probability of habitual response preparation occurring at all in a given trial, i.e. strengthening the 

habit. We fit this model to pooled data at the group level, finding that this probabilistic habit 

model better explained the data than the original habit model for both the 4-day condition (ΔAIC 

= 10.4) and the 20-day condition (ΔAIC = 11.7). However, we noted that this superior fit at the 

group level may not have been due to individual participants probabilistically preparing habitual 

responses (i.e. engaging in habitual preparation only in a subset of trials), but could instead be 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/201095doi: bioRxiv preprint 

https://doi.org/10.1101/201095
http://creativecommons.org/licenses/by/4.0/


Page 18 of 33 

attributable to the group data containing a mixture of habitual and non-habitual participants. Fits 

to individual participants showed that the probabilistic habit model (�� � �0,1
) better accounted 

for the 4-day practice condition data in only 4/22 participants, compared to 12/22 for the original 

habit model (�� � 1), and 6/22 for the no-habit model (�� � 0). In the 20-day practice group, the 

original habit model (�� � 1) best explained the data for all 14 participants. Our results therefore 

offered strongest support for the interpretation that habit formation is a discrete, all-or-nothing 

process. 

In summary, Experiment 2 illustrates that extensive practice led to more overt habitual 

behavior. This effect occurred because well-practiced participants tended to respond at shorter 

latencies and could prepare the habitual response more rapidly, rather than habitual preparation 

itself becoming more likely to occur in any given trial.  

The relative expression of different components of learning has previously been shown to 

be influenced by limiting cognitive resources12,13, including the time available to prepare an 

action14–18. However, previous research has manipulated preparation time in a relatively simple 

‘high-or-low’ manner, or based on spontaneous variations in ‘voluntarily’ selected reaction times. 

The forced-response paradigm used here allowed us to systematically assess the temporal 

dynamics of these effects. Examining responses across a continuum allowed us to precisely 

track the evolving competition between habitual and goal-directed response selection.  

Our results and model clarify the nature of competition between habitual and goal-directed 

response selection. Although both processes can select specific actions in parallel, they 

compete for which of these potential responses becomes prepared and ready to execute. This 

is consistent with the emerging view that, although multiple goals might be entertained in 

parallel, only a single movement is ever prepared19,20. 

Behavioral and neuroscientific evidence indicates that the preparation and initiation of 

actions occur separately8,21. Our results and model support this view, indicating that a response 

can be habitually selected and prepared, but not immediately expressed, allowing it to later be 
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replaced by a goal-directed response. Importantly, these preparatory events do not directly 

influence the timing of response initiation, which is thought to be under independent control8 and 

subject to its own use-dependent biases11. Critically, when participants respond with suitably 

low latencies, they will generate a habitual response. This accounts for the differences in the 

behavior in criterion test blocks following training. In Experiment 1 participants self-selected 

relatively long response times; consequently, no habitual responses were apparent. By contrast, 

in Experiment 2; participants appeared to persist with the low reaction times that had been 

successful during training blocks, and were therefore more liable to express their habit. 

In both experiments, practice enabled participants to generate accurate responses at lower 

latencies, as reflected in an improved speed-accuracy trade-off (i.e. they became more skilled at 

the task22–24). Both skilled and habitual behavior are hallmarks of automatic performance25. 

Although definitions of automaticity vary, it is typically considered to involve improvements in 

skill, habitual behavior, and the ability to perform actions with little or no conscious attention25–27. 

Notably, our data indicate that skill improved continuously with practice, while the presence of 

habitual action preparation was better explained as an all-or-nothing phenomenon (see 

supplementary materials), suggesting a potential dissociation between the processes of skill 

acquisition and habit formation in automatic behaviour.  

Previous research has failed to achieve any clear consensus on the neural basis of 

automaticity, proposing that it arises either through increases in network efficiency26,27, or 

through discrete shifts in the brain regions that control behavior, either within the basal ganglia, 

within cortex, or from the cortex to the cerebellum28–30 (note that similar regions are also 

frequently implicated in both skill acquisition31,32 and habit formation6). We propose these 

differing conclusions may have arisen because the tasks used to examine automaticity likely 

engaged multiple distinct learning processes: skill learning, habit formation, and changes in 

mental representation, and may have engaged these to differing degrees. Employing separate 

measures of skill acquisition and habit formation could therefore significantly help to clarify the 
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underlying neural basis of automaticity. 

In summary, our present results establish the existence of habitual response preparation, 

and demonstrate how fine-grained behavioral assessment can unmask habits that may not be 

apparent under conventional, self paced approaches. Practice led to the formation of a habit 

within four days. However, further practice also brought about additional changes that made an 

existing habit more likely to be expressed. Thus, our results highlight an important distinction 

between formation and expression of habits. We suggest that dissociating these aspects of 

habitual responding is critical to achieve a complete understanding of habitual behavior. 
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Methods 

Participants 

A total 39 participants took part in the study. Experiment 1 included 24 individuals. Two 

participants withdrew from Experiment 1 having completed only one of the two required 

experimental conditions, leaving 22 full datasets for the experiment (17 right handed, 13 female, 

mean age 21 years). Experiment 2 included 15 participants. One participant withdrew due to 

computer hardware failure, leaving a total of 14 participants (12 right handed, 4 female, mean 

age 26 years) to complete the experiment. All participants gave written informed consent, and 

all procedures were approved by the Johns Hopkins School of Medicine Institutional Review 

Board. Participants received financial compensation ($15/hour) for their participation. 

 

General Procedures 

The task involved responding to the appearance of one of four stimuli (letters of the 

Phoenician alphabet) by pushing a specific key on a computer keyboard with the index, middle, 

ring, or little finger of the dominant hand. The stimulus corresponding to each response was 

counterbalanced across participants, controlling for potential effects whereby participants would 

find some stimuli easier to recognize and learn to respond to than others. As Experiment 1 

comprised two conditions and used a within-subjects design, we employed two sets of distinct 

stimuli (see Figure S5), and counterbalanced the condition to which they corresponded across 

participants. Participants in Experiment 1 also completed the two conditions (Minimal Practice 

and 4-Day Practice) in a counterbalanced order. In all conditions stimuli were presented 

psuedorandomly within 20 trial subblocks, with each stimulus appearing five times within a 

subblock, and the same stimulus appearing in two consecutive trials at the most. Participants 

attempted to respond to stimuli in training, criterion test, or forced-response trial blocks: 
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Training blocks 

During training, participants completed a gamified task in which they attempted to complete 

blocks of 100 reaction-time based trials as quickly as possible (See Figure 1d). In each trial a 

stimulus appeared in the center of the screen, and a tone played to signal the participant that a 

trial had started. On correct responses a pleasant auditory tone sounded, and after a 300ms 

delay the task advanced to next trial. Errors were punished with an auditory buzzer sound and a 

compulsory delay of 1000ms, after which the participant could once again respond to the same 

stimulus; this process repeated until the correct response was provided, at which point the task 

progressed to the next trial. At the end of each block participants received feedback on the time 

taken to complete each block, and how this compared to their 'personal best' block completion 

time. Participants were encouraged to improve their performance by aiming to beat their 

personal best time each time they completed the task.  

 

Criterion test of mapping knowledge 

We assessed the ability of participants to learn new or revised stimulus-response 

associations using criterion test blocks. Participants were instructed that reaction time 

constraints were removed, that their goal was to learn the correct set of stimulus-response 

associations, and that the block would end once they had made enough correct responses in a 

row. These blocks ended once participants had made five consecutive correct responses to 

each stimulus (minimum of 20 trials), and the number of trials required to reach this steady, 

high-accuracy criterion was recorded. 

 

Forced-response blocks 

We used forced-response trials to probe the speed of response preparation and to assess 

whether participants habitually prepared their responses. Each block comprised 100 trials. In 

each trial the participant heard a series of four tones, spaced 400ms apart, and was instructed 
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to synchronize their response with the onset of the fourth and final tone. The stimulus appeared 

at a random (uniformly distributed) time during the series of tones, effectively controlling the 

amount of time in which the participant could prepare their response. As such, in cases in which 

participants did not have chance to process the stimulus (i.e. when it appeared less than 

~300ms before the deadline of the fourth tone), they were essentially forced to guess the 

correct response (and thus had a 1 in 4 chance of responding correctly). 

 

Protocol 

Experiment 1 

In Experiment 1 participants completed a counterbalanced, crossover design comprising 

two conditions. Both conditions began with a warm-up/familiarization task. Participants 

completed 2 blocks (200 trials total) of reaction-time based trials in response to non-arbitrary 

stimuli (pictures of the hand with one finger colored black to indicate the desired response - see 

Figure S6). This was followed by 2 blocks (200 trials total) of forced-response trials to the same 

non-arbitrary stimuli. This familiarization period allowed the experimenter to explain the practice 

and forced-response paradigms to the participant, and to ensure that the participant could 

comply with the demands of each task.  

Following this familiarization procedure, participants in the Minimal Practice condition then 

learned an original map of stimuli (Mapping A) in a block of criterion test trials, after which a 

second block of criterion test trials was used to introduce and assess the ability to learn a 

revised mapping (mapping B). We then probed for habitual response preparation using forced-

response trials. The 4-Day Practice condition used the same assessment, but this was 

completed after four consecutive days of practice (10x100 trial reaction time training blocks 

each day) on Mapping A.   
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Experiment 2 

The second experiment comprised a single condition. All participants first completed the 

same familiarization procedure as in Experiment 1. Participants then completed a criterion test 

block in which they learned a set of stimulus-response associations through trial and error 

(Mapping A). Once they had achieved this criterion, they completed 500 forced-response trials 

on this original mapping (to allow assessment of baseline performance), followed by 500 

reaction-time-based training trials. Each day thereafter, participants completed ‘training 

sessions’ in which they completed 10x100 trial blocks of reaction-time-based training trials. On 

the final (fifth) day of training for each week of practice, participants completed a ‘training and 

probe’ session, in which they completed 500 (5 x 100-trial blocks) reaction-time based training 

trials, followed by 500 (5x100 trial blocks) of forced-response trials. Participants completed 20 

sessions in this manner (aiming to complete five sessions of practice in each seven-day week), 

allowing us to measure changes in performance at baseline, and after each of the four weeks of 

practice.  

On a separate day after all training sessions were complete, participants were exposed to 

the same assessment as in Experiment 1; they learned a revised set of stimulus-response 

associations in a criterion test block, and their performance on this new mapping was then 

probed in 5x100 trial blocks of forced-response trials.  

 

Data Analysis 

Reaction time trials 

Performance for each block was measured by taking the median reaction time (measured 

from stimulus onset to response onset) for correct trials, the median absolute deviation of the 

reaction time, and by calculating the error rate for each block (i.e.number of erroneous 

responses in each block; note that it was possible for participants to make multiple errors in the 

same trial, as the trial did not advance until the participant provided the correct answer). 
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Criterion test trials 

Criterion test trials were primarily analyzed by counting the number of trials required for a 

participant to make five consecutive correct responses to each stimulus. The reaction time and 

accuracy for each response was recorded (although participants were made aware that there 

were no reaction time requirements for these trials).  

 

Forced-response trials 

Preparation times were calculated as the time between stimulus presentation and the 

participant's first response. We examined the probability of three types of response; correct 

responses to consistently mapped stimuli,( i.e. stimuli for which the same key press was 

required throughout the experiment), correct responses to the remapped associations, and 

responses consistent with the original mapping. A sliding window visualized the time-varying 

probability for each of these trial types and response types; responses were binned over 100ms 

windows, and the proportion of correct vs total responses was calculated and recorded for the 

center of each window.  

 

Response Preparation Models 

First, we consider the simple case of generating responses in the context of a single 

mapping � between stimuli and actions (see8). We assume that preparation of the response (i.e. 

becoming ready to generate the response) occurred as a discrete event at a random time 

��~
��� , ����. Responses generated prior to �� are assumed to be roughly uniform across the 

four possible keys, reflecting the fact that participants were guessing. Responses generated 

later than �� are assumed to be correct with probability �� (with other responses distributed 

uniformly across the other three keys). The probability of observing a correct response, given 

that the response was generated at time � being correct is therefor given by 
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���������|�� � ���������|� � ������ � ��� � ���������|� � ������ � ���� �

�
�1 � Φ����� � ��Φ����  , 

Where Φ���� � Φ��!��, ���� is the cumulative distribution of ��. The probability of an error is, 

likewise given by  

�������|�� � �

�
�1 � Φ�����  � �1 � ���Φ���� p�error|t� � �1 � q��		
��|
���1 � Φ
�t�� �

q��		
��|
Φ
�t�.  

 

 We extended this model to include the possibility of two distinct mappings A (the original, 

habitual mapping) and B (the goal-directed mapping). We assumed that the associated 

responses become available at independent times T
 ) N�µ
, σ

� � and 

T� ) N�µ
, σ

� ���~
��� , ���� with �� - ��, reflecting the fact that we expect response B to be 

available, on average, later than response A. In this instance, when the presented symbol is one 

that has been remapped, there are three possible response types: 1) a correct response 

(according to the ‘true’ mapping B), 2) a habitual error (correct according to the original 

mapping, A), and 3) an “other error” (not correct for either A or B). The probability of each 

response type depends on which of the events, A or B, have occurred by the time of 

responding. To simplify notation, we use �. to denote the event � � ��, and � to denote the 

event � � ��, with likewise definitions for /0 and /. The probability of a given response being 

generated at time � is then given by:  

���|�� � ���|�., /0����.���/0����|�, /0�������/0� ���|�., /����.���/����|�, /�������/�    
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� ���|�., /0��1 � Φ������1 � Φ���������|�, /0�Φ�����1 � Φ���������|�., /��1 � Φ�����Φ��������|�, /�Φ����Φ����
.  

We assumed that the habitual and goal-directed processes select the response associated with 

that mapping with probability �� and ��, respectively. Critically, we assumed that when the goal-

directed response B becomes available it will immediately be prepared, displacing any 

habitually prepared response A. Additionally, the likelihood of different responses might have 

been influenced by a possible bias in guessing either remapped or non-remapped keys, which 

we represented through the parameter ��, reflecting the baseline probability of pressing one of 

the two remapped keys. The overall distribution of responses is then given by: 

2 ���������|����3456�748 �����|������3�� �����|�� 9 �

: ����1 � 2��   
�1 � ���/3��2�1 � ���/3  ���1 � ���/32�1 � ���/3  ���1 � ���/32�1 � ���/3>

?@
A�1 � Φ������1 � Φ�����Φ�����1 � Φ������1 � Φ�����Φ����Φ����Φ���� BC

D
. 

This model can be more compactly expressed as: 

E��� � FΨ�t�. 

Finally, we extended this model to allow for the possibility that event A or B occurring 

failed to update the prepared response. We assumed success rates �� and �� respectively for 

these events. Note that these parameters are distinct from �� and ��, which represent the 

probability of updating the prepared response to the appropriate key. The parameter �� allows 

the model to capture the possibility of a persistent propensity to committing habitual errors even 

at long reaction times, due to a lapse in generating the goal-directed response. The parameter 

�� can be interpreted as a ‘habit strength’ parameter, governing the probability of habitual 
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response preparation occurring. Mathematically, the probability of each response type, allowing 

for potential lapses, is given by:  

E��� � F H1000  �1 � �����00   �1 � ���0��0   �1 � ����1 � ������1 � ����1 � ��������� I Ψ�t� � QRΨ�t�. 

 

 

This full model included 9 parameters in total. However, �� and �� led to qualitatively similar 

effects on behavior. We therefore set �� � 0.95, a nominal value reflecting typical success rates 

for already well-known mappings.  

 

Model variants 

We refer to the full model described above, with 8 free parameters 

(�� , ��, �� , �� , �� , �� , ����), as the probabilistic habit model. Two further models emerge as 

special cases: the habit model corresponds to �� � 1, i.e. habitual preparation on every trial, 

having 7 parameters. The no-habit model corresponds to �� � 0. In this model, the parameters 

�� , �� have no effect on behavior and �� and �� become equivalent. The no-habit model 

therefore has four free parameters: �� , �� , �� , ��. 

We estimated the parameters of these models based on maximum likelihood, using the 

Matlab function fmincon. To achieve more robust fits to data that avoided the possibility of 

unrealistically steep speed-accuracy trade-offs (� N 0), we regularized the fits by adding an 

additional term to the overall log-likelihood that penalized values of �� and �� that deviated from 

some typical value ��: 

O� � O � P��� � ���� � P��� � ����. 
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We set �� � 0.1Q and P � 500, which avoided overfitting the slope of the speed-accuracy trade-

off without biasing parameter recovery too much. Our results were qualitatively unaffected by 

the exact values of �� and P used. 
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