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Abstract
Contact geometry allows us to describe some thermodynamic and dissipative sys-
tems. In this paper we introduce a new geometric structure in order to describe
time-dependent contact systems: cocontact manifolds. Within this setting we develop
the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases.
In the singular case, we present a constraint algorithm aiming to find a submanifold
where solutions exist. As a particular case we study contact systems with holonomic
time-dependent constraints. Some regular and singular examples are analyzed, along
with numerical simulations.
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1 Introduction

In the last decades, the interest in the formalism and applications of differential geo-
metric structures to the study ofmathematical physics and dynamical systems has risen
drastically [1, 3, 29, 39]. The natural geometric framework for autonomous conserva-
tive mechanical systems, both Hamiltonian and Lagrangian, is symplectic geometry
and the variational approach is based on Hamilton’s variational principle. For non-
autonomous systems [11, 21, 24, 38, 43] the same variational principle is valid, but the
underlying geometry is cosymplectic geometry [2, 10, 13]. Time-dependent systems
can also be geometrically formulated as the Reeb dynamics of a contact system. Both
symplectic and cosymplectic structures are particular instances of Poisson geometry
[22, 39, 50].

Recently, the application of contact geometry to the study of dynamical systems
has grown significantly [4, 18, 26]. This is due to the fact that contact geometry is not
only a way to geometrically model the time-dependency in mechanical systems [23],
which can also be done by means of cosymplectic geometry, but it also allows us to
describe mechanical systems with certain types of damping, quantummechanics [14],
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Time-dependent contact mechanics 1151

circuit theory [31], control theory [45] and thermodynamics [5, 48], among many
others [41]. In recent papers [7, 8], the authors consider time-dependent systems,
although a rigorous geometric description of time-dependent contact mechanics is in
order. These systems include mechanical systems with time-dependent external forces
and, in particular, controlled systems whose controls can be used to compensate the
damping.

Let us recall that the variational approach to contact systems is based on Herglotz’s
principle [36] (see for instance [15–17]). This variational principle generalizes the
Hamilton principle and it is appropriate to deal with action-dependent Lagrangians.
From the geometric perspective, it is important to point out that contact structures are
not Poisson, but Jacobi. This is due to the fact that the Leibniz rule is not fulfilled [18].

In the present paper, we develop a formalism in order to geometrically describe
contact mechanical systems with explicit time-dependence. We begin by introducing
a new geometric structure: cocontact manifolds. These manifolds extend the notion of
both contact and cosymplectic structures. We study the properties of these manifolds,
exhibit some examples, prove a Darboux-type theorem for these structures, and show
that cocontact manifolds are Jacobi manifolds. In addition, we introduce the notion
of cocontact orthogonal complement of a submanifold and define and characterize
the coisotropic and Legendrian submanifolds of a cocontact manifold. This geometric
framework is later used to develop both Hamiltonian and Lagrangian formulations of
time-dependent mechanical systems with dissipation.

The introduction of time-dependence makes us consider systems subjected to con-
straints that can vary with time. Such systems can be described by introducing the
constraints in the Lagrangian via Lagrange multipliers. These Lagrangians are obvi-
ously singular, since the velocity associated to the Lagrange multipliers do not appear
in the expression of the Lagrangian. In order to study such systems, we introduce the
notion of precocontact structure as a weakened version of a cocontact structure, and
describe a suitable constraint algorithm.

The structure of the paper is as follows. In Sect. 2, we describe the geometrical
setting that will be used throughout the paper. We present the notion of cocon-
tact manifold and some examples. In particular, we see that cocontact manifolds
are Jacobi manifolds, and thus all the theory about Jacobi structures is applicable
to cocontact structures. Section 3 is devoted to develop a Hamiltonian formula-
tion for dissipative time-dependent systems, while Sect. 4 dedicated to develop the
Lagrangian formulation for cocontact systems and state the associated generalized
Herglotz–Euler–Lagrange equations. In Sect. 5 we study the case of mechanical
systems described by singular time-dependent contact Lagrangians and give a descrip-
tion of the constraint algorithm to obtain the dynamics in both the Hamiltonian and
Lagrangian formulations. Section 6 is devoted to analyze the case of damped mechan-
ical systems with holonomic constraints which can depend on time. Finally, in Sect. 7,
three examples are presented and worked out: the damped forced harmonic oscillator,
a system with time-dependent mass subjected to a central force with friction, and the
damped pendulum with variable length. We also show and discuss some simulations
of these systems.

Throughout the paper all the manifolds and mappings are assumed to be smooth
and second-countable. Sum over crossed repeated indices is understood.
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1152 M. de León et al.

2 Geometrical setting

2.1 Cocontact manifolds

Definition 2.1 LetM be amanifold of dimension 2n+2. A cocontact structure onM
is a couple (τ, η) of 1-forms onM such that τ is closed and such that τ ∧η∧(dη)∧n is a
volume form onM . Under these hypotheses, (M, τ, η) is called a cocontactmanifold.

We can see from this definition that every cocontact manifold has two tangent
distributions. The first one is generated by ker τ , is integrable, and gives a foliation
made of contact leaves. The other one is ker η and it is not integrable. This structure
will be very useful when proving the Darboux theorem.

Example 2.2 Let (P, η0) be a contact manifold and consider the product manifold
M = R× P . Denoting by dt the pullback to M of the volume form in R and denoting
by η the pullback of η0 to M , we have that (dt, η) is a cocontact structure on M .

Example 2.3 Let (P, τ,−dθ) be an exact cosymplectic manifold and consider the
product manifold M = P × R. Denoting by s the coordinate in R we define the
1-form η = ds − θ . Then, (τ, η) is a cocontact structure on M = P × R.

Example 2.4 (Canonical cocontact manifold) Let Q be an n-dimensional smoothman-
ifold with local coordinates (qi ) and its cotangent bundle T∗Q with induced natural
coordinates (qi , pi ). Consider the product manifolds R × T∗Q with coordinates
(t, qi , pi ), T∗Q × R with coordinates (qi , pi , s) and R × T∗Q × R with coordi-
nates (t, qi , pi , s) and the canonical projections

R × T∗Q × R

R × T∗Q T∗Q × R

T∗Q

ρ1 ρ2

π

π2 π1

Let θ0 ∈ �1(T∗Q) be the canonical 1-form of the cotangent bundle, which has local
expression θ0 = pidqi . Denoting by θ2 = π∗

2 θ , we have that (dt, θ2) is a cosymplectic
structure in R × T∗Q.

On the other hand, denoting by θ1 = π∗
1 θ0, we have that η1 = ds − θ1 is a contact

form in T∗Q × R.
Finally, consider the 1-form θ = ρ∗

1θ2 = ρ∗
2θ1 = π∗θ0 ∈ �1(R × T∗Q × R) and

let η = ds − θ . Then, (dt, η) is a cocontact structure in R × T∗Q × R. The local
expression of the 1-form η is

η = ds − pidq
i .

Proposition 2.5 Let (M, τ, η) be a cocontact manifold. We have the following isomor-
phism of vector bundles:

� : TM −→ T∗M
v �−→ (i(v)τ )τ + i(v)dη + (i(v)η) η
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Time-dependent contact mechanics 1153

Proof It is clear that ker � = 0, since M is a cocontact manifold. Hence, it follows that
� has to be an isomorphism. ��

This isomorphism can be extended to an isomorphism of C∞(M)-modules:

� : X(M) −→ �1(M)

X �−→ (i(X)τ )τ + i(X)dη + (i(X)η) η

Proposition 2.6 Given a cocontact manifold (M, τ, η), there exist two vector fields
Rt , Rs ∈ X(M), called Reeb vector fields, satisfying the conditions

⎧
⎨

⎩

i(Rt )τ = 1 ,

i(Rt )η = 0 ,

i(Rt )dη = 0 ,

⎧
⎨

⎩

i(Rs)τ = 0 ,

i(Rs)η = 1 ,

i(Rs)dη = 0 .

Rt is the time Reeb vector field and Rs is the contact Reeb vector field.

Taking into account the isomorphism � introduced above, we can give an alternative
definition of the Reeb vector fields:

Rt = �−1(τ ) , Rs = �−1(η) .

Theorem 2.7 (Darboux theorem for cocontact manifolds) Let (M, τ, η) be a cocontact
manifold. Then, for every point p ∈ M, there exists a local chart (U ; t, qi , pi , s)
around p such that

τ |U = dt , η|U = ds − pidq
i .

These coordinates are called canonical or Darboux coordinates. Moreover, in Dar-
boux coordinates, the Reeb vector fields are

Rt |U = ∂

∂t
, Rs |U = ∂

∂s
.

Proof The idea of the proof is the following: in every cocontact manifold there is
a contact foliation made of leaves of the distribution generated by ker τ (which are
(2n+1)-submanifolds) and, on each of them, the restriction ofη is a contact form.Now,
we can take local coordinates adapted to the foliation and, on each leaf, use theDarboux
theorem for contact manifolds. Hence, we have local coordinates (t̃, qi , pi , s) such
that η = ds− pidqi . Finally, we can write τ as a combination of all these coordinates,
τ = f (t̃, qi , pi , s)dt̃ , where f is a non-vanishing function, and then we can redefine
the coordinate t . ��
Remark 2.8 Consider a cocontact manifold (M, τ, η) such that τ = dt . Then, the
two-form

� = e−t (dη + η ∧ τ)
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1154 M. de León et al.

is a symplectic form on M . Moreover, the two-form � is exact, since

� = d(e−tη) .

2.2 Cocontact manifolds as Jacobi manifolds

It is known that symplectic, cosymplectic and contact manifolds are particular
instances of a more general geometric structure: Jacobi manifolds. Then, it is rea-
sonable to think that cocontact manifolds should also be Jacobi manifolds.

Jacobi manifolds

Definition 2.9 A Jacobi manifold is a triple (M,
, E), where 
 is a bivector field
on M , i.e. a skew-symmetric 2-contravariant tensor field, and E is a vector field on
M , such that

[
,
] = 2E ∧ 
 , LE
 = [E,
] = 0 ,

where [·, ·] denotes the Schouten–Nijenhuis bracket [44, 47].

Given a Jacobi manifold (M,
, E), we can define a bilinear map on the space of
smooth functions on M , called the Jacobi bracket, given by

{ f , g} = 
(d f , dg) + f E(g) − gE( f ) .

The Jacobi bracket is bilinear, skew-symmetric, satisfies the Jacobi identity and fulfills
the weak Leibniz rule

Supp({ f , g}) ⊆ Supp( f ) ∩ Supp(g) . (1)

Hence, the set of smooth maps C∞(M) equipped with the Jacobi bracket {·, ·} is a
local Lie algebra in the sense of Kirillov.

The converse is also true: given a local Lie algebra structure on C∞(M), one can
define a Jacobi structure (
, E) on M such that its Jacobi bracket coincides with the
bracket of the local Lie algebra bracket [37, 40].

Definition 2.10 Given a Jacobi manifold (M,
, E), we can define the morphism of
vector bundles


̂ : T∗M → TM ,

given by 
̂(α) = 
(α, ·). This morphism of vector bundles induces a morphism of
C∞(M)-modules 
̂ : �1(M) → X(M).
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Time-dependent contact mechanics 1155

Given a smooth function f ∈ C∞(M), we define the Hamiltonian vector field
associated with f as

X f = 
̂(d f ) + f E .

The characteristic distribution C of (M,
, E) is spanned by these vector fields X f .
It is integrable, and it can be defined in terms of the bivector 
 and the vector field E
as

C = 
̂(T∗M) + 〈E〉 .

In general, the morphism 
̂ is not an isomorphism, as can be seen in the following
example.

Example 2.11 (Contact manifolds) Consider a contact manifold (M, η). We have the
C∞(M)-module isomorphism � : X(M) → �1(M) given by

�(X) = i(X)dη + (i(X)η)η ,

and we denote its inverse by � = �−1. The Reeb vector field is R = �η.
Then we can define a Jacobi structure (
, E) on M given by


(α, β) = −dη(�α, �β) , E = −R .

In this case, the morphism 
̂ is given by


̂(α) = �(α) − α(R)R ,

and it is clear that 
̂ is not an isomorphism, since ker 
̂ = 〈η〉 and Im 
̂ = ker η.

Example 2.12 (Poisson manifolds) A Poisson manifold is a smooth manifold M such
that C∞(M) has a Lie bracket satisfying the Leibniz rule

{ f g, h} = f {g, h} + { f , h}g .

It can be seen that this implies the weak Leibniz rule (1), thus giving a local Lie algebra
structure to the set of smooth functions on M . One can prove that the Jacobi bracket of
a Jacobi manifold (M,
, E) is Poisson if and only if E = 0. Taking this into account,
a Poisson manifold is a Jacobi manifold with E = 0. We can redefine the notion of
Poisson manifold as a couple (M,
), where 
 is a bivector such that [
,
] = 0.

We know that both symplectic and cosymplectic manifolds are Poisson. Hence,
they are also Jacobi manifolds with


(α, β) = ω(�α, �β) , E = 0 ,

where ω is the 2-form of the symplectic or cosymplectic manifold and � is the inverse
of the flat morphism � of the symplectic or cosymplectic manifold.
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1156 M. de León et al.

Jacobi structure of cocontact manifolds

Consider now a cocontact manifold (M, τ, η). In Darboux coordinates, the flat iso-
morphism reads

�

(
∂

∂t

)

= dt = τ ,

�

(
∂

∂qi

)

= dpi − pids + p2i dq
i ,

�

(
∂

∂ pi

)

= −dqi ,

�

(
∂

∂s

)

= ds − pidq
i = η .

Its inverse is the isomorphism � : �1(M) → X(M), which is given by

�dt = ∂

∂t
,

�dqi = − ∂

∂ pi
,

�dpi = pi
∂

∂s
+ ∂

∂qi
,

�ds = ∂

∂s
− pi

∂

∂ pi
.

We can define a 2-contravariant skew-symmetric tensor 
:


(α, β) = −dη(�α, �β) ,

which in Darboux coordinates reads


 = ∂

∂qi
∧ ∂

∂ pi
− pi

∂

∂ pi
∧ ∂

∂s
.

Proposition 2.13 Let (M, τ, η) be a cocontact manifold. Then, (
, E), where E =
−Rs, is a Jacobi structure on M.

The previous proposition can be proved usingDarboux coordinates. UsingDarboux
coordinates, the Jacobi bracket reads

{ f , g} = ∂ f

∂qi
∂g

∂ pi
− ∂g

∂qi
∂ f

∂ pi
− pi

(
∂ f

∂ pi

∂g

∂s
− ∂g

∂ pi

∂ f

∂s

)

− f
∂g

∂s
+ g

∂ f

∂s
.

In particular, one has

{qi , q j } = {pi , p j } = 0 , {qi , p j } = δij , {qi , s} = −qi , {pi , s} = −2pi .

123



Time-dependent contact mechanics 1157

Legendrian submanifolds

In the previous sectionwe have seen that every cocontactmanifold (M, τ, η) is a Jacobi
manifold taking 
(α, β) = −dη(�α, �β) and E = −Rs . We will study a special kind
of submanifolds associated to this structure.

In first place, we find a new expression for the morphism 
̂ which is easier to
manipulate. We have

α = ��α = i�αdη + (i�αη)η + (i�ατ )τ ,

and contracting with the Reeb vector fields Rs, Rt , we get

α(Rt ) = i�ατ , α(Rs) = i�αη .

Now,

β(
̂(α)) = −i�β i�αdη

= i�αi�βdη

= i�α
(
β − (i�βη)η − (i�βτ )τ

)

= β(�α) − β(Rs)α(Rs) − β(Rt )α(Rt )

= β (�α − α(Rs)Rs − α(Rt )Rt ) ,

and thus


̂(α) = �α − α(Rs)Rs − α(Rt )Rt .

It is clear that τ, η ∈ ker 
̂. Consider β ∈ ker 
̂. Then, �β = β(Rs)Rs +β(Rt )Rt .
Using the morphism �, we have that

β = β(Rs)η + β(Rt )τ .

Hence, we have that ker 
̂ = 〈τ, η〉.
Definition 2.14 Let (M, τ, η) be a cocontact manifold and consider a submanifold
N ⊂ M . We define the cocontact orthogonal complement of N as

TpN
⊥ = 
̂

(
(TpN )◦

)
.

Notice that v ∈ TpN⊥ if, and only if, there exists α ∈ T∗
pN such that 
̂(α) = v

and α(u) = 0 for every u ∈ TpN .

Definition 2.15 Let (M, τ, η) be a cocontact manifold and consider a submanifold
N ↪→ M .

(i) N is said to be coisotropic if TN⊥ ⊂ TN .
(ii) N is said to be isotropic if TN ⊂ TN⊥.
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1158 M. de León et al.

(iii) N is said to be Legendrian if TN = TN⊥.

The following theorem characterizes isotropic and Legendrian submanifolds.

Theorem 2.16 Consider a cocontact manifold (M, τ, η) with dim M = 2n + 2 and a
submanifold j : N ↪→ M. Then,

(i) N is isotropic if and only if j∗η = 0 and j∗τ = 0.
(ii) N is Legendrian if and only if j∗η = 0, j∗τ = 0 and dim N = n.

Proof (i) Suppose TN ⊂ TN⊥. Let v ∈ TpN , then v ∈ TpN⊥ and hence there
exists some α ∈ T∗

pN such that 
̂(α) = v and α(u) = 0 for every u ∈ TpN .
Then,

η(v) = η(
̂(α)) = η(�α) − α(Rs)Rs − 0 = 0 .

Since ηp(v) = 0 for every p ∈ N and every v ∈ TpN , we have j∗η = 0.
Analogously, j∗τ = 0.
Conversely, suppose j∗η = 0 and j∗τ = 0. Let v ∈ TpN . We want to check that
v ∈ TpN⊥. Consider

α = ivdη .

Since j∗η = 0, we have j∗dη = d j∗η = 0 and thus iuivdη = α(u) = 0 for
every u ∈ TpN . Now, we want to check that

v = 
̂(α) = �α − α(Rs)Rs − α(Rt )Rt = �α .

Since � is an isomorphism, this is the same as checking that �(v) = α, which is
obvious taking into account that j∗η = 0 and j∗τ = 0. Finally, we have already
proved that α(TpN ) = 0.

(ii) Suppose that TN = TN⊥ and let k = dim N . Thus, at any point p ⊂ N ,

dim TpN
◦ = 2n + 2 − dim TpN = 2n + 2 − k .

Since TN ⊂ TN⊥, we have that τp, ηp ∈ TpN ◦ and then ker 
̂p ⊂ TpN ◦. Now,
since TpN = TpN⊥ = 
̂p(TpN ◦),

dim TpN
◦

︸ ︷︷ ︸
2n+2−k

= dim 
̂p(TpN
◦)

︸ ︷︷ ︸
k

+ dim ker 
̂p
︸ ︷︷ ︸

2

,

which implies that k = n.
Conversely, we have that 2n + 2 − n = dim TpN⊥ + 2 and thus dim TpN⊥ =
n = dim TpN . Since TpN ⊂ TpN⊥, it is clear that TpN = TpN⊥.

��
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3 Cocontact Hamiltonian systems

We can use the cocontact geometric framework developed in the previous section to
deal with Hamiltonian systems with dissipation and with explicit time dependence.

Definition 3.1 A cocontact Hamiltonian system is a tuple (M, τ, η, H) where
(M, τ, η) is a cocontact manifold and H ∈ C∞(M) is a Hamiltonian function.

The cocontact Hamilton equations for a curve ψ : I ⊂ R → M are

⎧
⎨

⎩

i(ψ ′)dη = dH − (LRs H)η − (LRt H)τ ,

i(ψ ′)η = −H ,

i(ψ ′)τ = 1 ,

(2)

where ψ ′ : I ⊂ R → TM is the canonical lift of the curve ψ to the tangent bundle
TM .

Let us express these equations using Darboux coordinates (see Theorem 2.7). Con-
sider the curve ψ(r) = ( f (r), qi (r), pi (r), s(r)). The third equation in (2) imposes
that f (r) = r , thus we will denote r ≡ t . The other equations become:

⎧
⎪⎨

⎪⎩

q̇i = ∂H
∂ pi

,

ṗi = −
(

∂H
∂qi

+ pi
∂H
∂s

)
,

ṡ = pi
∂H
∂ pi

− H .

We can give another interpretation of these equations using vector fields.

Definition 3.2 Let (M, τ, η, H) be a cocontact Hamiltonian system. The cocontact
Hamiltonian equations for a vector field X ∈ X(M) are:

⎧
⎨

⎩

i(X)dη = dH − (LRs H)η − (LRt H)τ ,

i(X)η = −H ,

i(X)τ = 1 .

(3)

Equations (3) can be rewritten using the isomorphism � as

�(X) = dH − (
LRs H + H

)
η + (

1 − LRt H
)
τ .

Therefore, it is clear that the cocontact Hamilton equations (3) have a unique solution.
The solution to this equations is called the cocontact Hamiltonian vector field, and
will be denoted by XH . Its local expression is

XH = ∂

∂t
+ ∂H

∂ pi

∂

∂qi
−

(
∂H

∂qi
+ pi

∂H

∂s

)
∂

∂ pi
+

(

pi
∂H

∂ pi
− H

)
∂

∂s
.

Remark 3.3 It can be seen that the vector field XH − Rt coincides with the one for the
associated Jacobi manifold given in the preceding section.
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Proposition 3.4 Let X be a vector field in M. Then every integral curve ψ : U ⊂
R → M of X satisfies the cocontact equations (2) if, and only if, X is a solution to
(3).

Proof This is a direct consequence of equations (2) and (3), and the fact that any point
of M is in the image of an integral curve of X . ��

4 Cocontact Lagrangian systems

4.1 Lagrangian phase space and geometric structures

Let Q be a smoothn-dimensionalmanifold.Consider the productmanifoldR×TQ×R

endowed with natural coordinates (t, qi , vi , s). We have the canonical projections

τ1 : R × TQ × R → R , τ1(t, vq , s) = t ,

τ2 : R × TQ × R → TQ , τ2(t, vq , s) = vq ,

τ3 : R × TQ × R → R , τ3(t, vq , s) = s ,

τ0 : R × TQ × R → R × Q × R , τ0(t, vq , s) = (t, q, s) .

Notice that τ2 and τ0 are the projection maps of two vector bundle structures.
Usually, we will have in mind the projection τ0. In fact, the vector bundle R × TQ ×
R

τ0−→ R × Q × R is the pull-back of the tangent bundle with respect to the map
R × Q × R → Q.

Our goal is to develop a time-dependent contact Lagrangian formalism on the
manifold R × TQ × R. The usual geometric structures of the tangent bundle can
be naturally extended to the cocontact Lagrangian phase space R × TQ × R. In
particular, the vertical endomorphism of T(TQ) yields a τ0-vertical endomorphism
J : T(R × TQ × R) → T(R × TQ × R). In the same way, the Liouville vector field
on the fibre bundle TQ gives a Liouville vector field � ∈ X(R×TQ ×R). Actually,
this Liouville vector field coincides with the Liouville vector field of the vector bundle
τ0. The local expressions of these objects in Darboux coordinates are

J = ∂

∂vi
⊗ dqi , � = vi

∂

∂vi
.

Definition 4.1 Let c : R → R × Q × R be a path, with c = (c1, c2, c3). The prolon-
gation of c to R × TQ × R is the path

c̃ = (c1, c′
2, c3) : R −→ R × TQ × R ,

where c′
2 is the velocity curve of c2. Every path c̃ which is the prolongation of a path

c : R → R × Q × R is said to be holonomic. A vector field � ∈ X(R × TQ × R)

is said to satisfy the second-order condition (for short: it is a sode) when all of its
integral curves are holonomic.
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This definition can be equivalently expressed in terms of the canonical structures
defined above:

Proposition 4.2 A vector field� ∈ X(R×TQ×R) is a sode if, and only if,J ◦� = �.

In natural coordinates, if c(r) = (t(r), ci (r), s(r)), then

c̃(r) =
(

t(r), ci (r),
dci

dr
(r), s(r)

)

.

The local expression of a sode is

� = f
∂

∂t
+ vi

∂

∂qi
+ Gi ∂

∂vi
+ g

∂

∂s
. (4)

So, in coordinates a sode defines a system of differential equations of the form

dt

dr
= f (t, q, q̇, s) ,

d2qi

dr2
= Gi (t, q, q̇, s) ,

ds

dr
= g(t, q, q̇, s) .

4.2 Cocontact Lagrangian systems

Definition 4.3 A Lagrangian function is a function L : R × TQ × R → R. The
Lagrangian energy associated to L is the function EL := �(L) − L ∈ C∞(R ×
TQ × R). The Cartan forms associated to L are defined as

θL = tJ ◦ dL ∈ �1(R × TQ × R) , ωL = −dθL ∈ �2(R × TQ × R). (5)

The contact Lagrangian form is

ηL = ds − θL ∈ �1(R × TQ × R) .

Notice that dηL = ωL. The couple (R × TQ × R,L) is a cocontact Lagrangian
system.

Taking natural coordinates (t, qi , vi , s) in R × TQ × R, the form ηL is written as

ηL = ds − ∂L
∂vi

dqi , (6)

and consequently

dηL = − ∂2L
∂t∂vi

dt ∧ dqi − ∂2L
∂q j∂vi

dq j ∧ dqi − ∂2L
∂v j∂vi

dv j ∧ dqi − ∂2L
∂s∂vi

ds ∧ dqi .

Notice that, in general, given a cocontact Lagrangian system (R×TQ×R,L), the
family (R×TQ×R, τ = dt, ηL, EL) is not a cocontact Hamiltonian system because
condition τ ∧ η ∧ (dηL)n �= 0 is not fulfilled. The Legendre map characterizes which
Lagrangian functions will give cocontact Hamiltonian systems.
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Definition 4.4 Given a Lagrangian L : R × TQ × R → R, its Legendre map is the
fibre derivative ofL, considered as a function on the vector bundle τ0 : R×TQ×R →
R × Q × R; that is, the map FL : R × TQ × R → R × T∗Q × R given by

FL(t, vq , s) = (
t,FL(t, ·, s)(vq), s

)
,

where FL(t, ·, s) is the usual Legendre map associated to the Lagrangian L(t, ·, s) :
TQ → R with t and s freezed.

Notice that the Cartan forms can also be defined as

θL = FL ∗(π∗θ0) , ωL = FL ∗(π∗ω0) ,

where θ0 and ω0 = −dθ0 are the canonical 1- and 2-forms of the cotangent bundle
and π is the natural projection π : R × T∗Q × R → T∗Q (see Example 2.4).

Proposition 4.5 For a Lagrangian functionL the following conditions are equivalent:

(i) The Legendre map FL is a local diffeomorphism.
(ii) The fibre Hessian F2L : R × TQ × R −→ (R × T∗Q × R) ⊗ (R × T∗Q × R)

of L is everywhere nondegenerate (the tensor product is of vector bundles over
R × Q × R).

(iii) (R × TQ × R, dt, ηL) is a cocontact manifold.

The proof of this result can be easily done using natural coordinates, where

FL : (t, qi , vi , s) −→
(

t, qi ,
∂L

∂vi
, s

)

,

and

F2L(t, qi , vi , s) = (t, qi ,Wi j , s) , with Wi j =
(

∂2L
∂vi∂v j

)

.

And the three conditions in the above proposition are equivalent to say that the matrix
W = (Wi j ) is everywhere regular, hence they are equivalent.

Definition 4.6 A Lagrangian function L is said to be regular if the equivalent con-
ditions in Proposition 4.5 hold. Otherwise L is called a singular Lagrangian. In
particular, L is said to be hyperregular if FL is a global diffeomorphism.

Remark 4.7 As a result of the preceding definitions and results, every regular cocontact
Lagrangian system has associated the cocontact Hamiltonian system (R × TQ ×
R, dt, ηL, EL).

Given a regular cocontact Lagrangian system (R × TQ × R,L), from Proposition
2.6 we have that the Reeb vector fields RL

t , RL
s ∈ X(R × TQ × R) for this system

are uniquely determined by the relations
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⎧
⎨

⎩

i(RL
t )dt = 1 ,

i(RL
t )ηL = 0 ,

i(RL
t )dηL = 0 ,

⎧
⎨

⎩

i(RL
s )dt = 0 ,

i(RL
s )ηL = 1 ,

i(RL
s )dηL = 0 .

Their local expressions are

RL
t = ∂

∂t
− Wi j ∂2L

∂t∂v j

∂

∂vi
,

RL
s = ∂

∂s
− Wi j ∂2L

∂s∂v j

∂

∂vi
,

whereWi j is the inverse of theHessianmatrix of the LagrangianL, namelyWi jW jk =
δik .

Notice that if the Lagrangian function L is singular, the Reeb vector fields are not
uniquely determined. This will be discussed in Sect. 5.

4.3 The Herglotz–Euler–Lagrange equations

Definition 4.8 Let (R × TQ × R,L) be a regular contact Lagrangian system.
The Herglotz–Euler–Lagrange equations for a holonomic curve c̃ : I ⊂ R →

R × TQ × R are

⎧
⎪⎨

⎪⎩

i(c̃′)dηL =
(
dEL − (LRL

t
EL)dt − (LRL

s
EL)ηL

)
◦ c̃ ,

i(c̃′)ηL = −EL ◦ c̃ ,

i(c̃′)dt = 1 ,

(7)

where c̃′ : I ⊂ R → T(R × TQ × R) denotes the canonical lifting of c̃ to T(R ×
TQ × R).

The cocontact Lagrangian equations for a vector field XL ∈ X(R × TQ × R)

are

⎧
⎨

⎩

i(XL)dηL = dEL − (LRL
t
EL)dt − (LRL

s
EL)ηL ,

i(XL)ηL = −EL ,

i(XL)dt = 1 .

(8)

The vector field which is the only solution to these equations is called the cocontact
Lagrangian vector field.

Notice that a cocontact Lagrangian vector field is a cocontact Hamiltonian vector
field for the function EL (and the cocontact structure (dt, ηL)).

In natural coordinates, for a holonomic curve c̃(r) = (t(r), qi (r), q̇ i (r), s(r)),
equations (7) are

ṫ = 1 , (9)

ṡ = L , (10)
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ṫ
∂2L
∂t∂vi

+ q̇ j ∂2L
∂q j∂vi

+ q̈ j ∂2L
∂v j∂vi

+ ṡ
∂2L

∂s∂vi
− ∂L

∂qi
= d

dr

(
∂L
∂vi

)

− ∂L
∂qi

= ∂L
∂s

∂L
∂vi

.

(11)

Condition (9) implies that t(r) = r + k. This justifies the usual identification t = r .

Meanwhile, for a vector field XL = f
∂

∂t
+ Fi ∂

∂qi
+ Gi ∂

∂vi
+ g

∂

∂s
, equations (8)

read

(F j − v j )
∂2L

∂t∂v j
= 0 , (12)

f
∂2L
∂t∂vi

+ F j ∂2L
∂q j∂vi

+ G j ∂2L
∂v j∂vi

+ g
∂2L

∂s∂vi
− ∂L

∂qi
− (F j − v j )

∂2L
∂qi∂v j

= ∂L
∂s

∂L
∂vi

,

(13)

(F j − v j )
∂2L

∂vi∂v j
= 0 , (14)

(F j − v j )
∂2L

∂s∂v j
= 0 , (15)

L + ∂L
∂v j

(F j − v j ) − g = 0 , (16)

f = 1 , (17)

where we have used the relations

LRL
t
EL = −∂L

∂t
, LRL

s
EL = −∂L

∂s
,

which can be easily proved taking coordinates.

Theorem 4.9 IfL is a regular Lagrangian, then XL is a sode and equations (12)–(17)
become

f = 1 , (18)

g = L , (19)

∂2L
∂t∂vi

+ v j ∂2L
∂q j∂vi

+ G j ∂2L
∂v j∂vi

+ L ∂2L
∂s∂vi

− ∂L
∂qi

= ∂L
∂s

∂L
∂vi

, (20)

which, for the integral curves of XL, are the Herglotz–Euler–Lagrange equations
(9), (10) and (11).

This sode XL ≡ �L is called the Herglotz–Euler–Lagrange vector field associ-
ated to the Lagrangian function L.
Proof This results follows from the coordinate expressions. If L is a regular
Lagrangian, equations (14) lead to Fi = vi , which are the sode condition for the
vector field XL. Then, (12) and (15) hold identically, and (13), (16) and (17) give
the equations (18), (19) and (20) or, equivalently, for the integral curves of XL, the
Herglotz–Euler–Lagrange equations (9), (10) and (11). ��
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Hence, the local expression of the Herlgotz–Euler–Lagrange vector field is

�L = ∂

∂t
+ vi

∂

∂qi
+ W ji

(
∂L
∂q j

− ∂2L
∂t∂v j

− vk
∂2L

∂qk∂v j
− L ∂2L

∂s∂v j
+ ∂L

∂s

∂L
∂v j

)
∂

∂vi
+ L ∂

∂s
.

An integral curve of this vector field satisfies the classical Euler-Lagrange equations
for dissipative systems, as can be easily verified:

d

dt

(
∂L
∂vi

)

− ∂L
∂qi

= ∂L
∂s

∂L
∂vi

, ṡ = L .

Remark 4.10 It is interesting to point out how, in the Lagrangian formalism of dissipa-
tive systems, the expression in coordinates (10) of the second Lagrangian equation (7)
relates the variation of the “dissipation coordinate” s to the Lagrangian function and,
from here, we can identify this coordinate with the Lagrangian action, s = ∫ L dt .

Remark 4.11 Equations (10) (11) coincide with those derived from the Herglotz vari-
ational principle [28, 35, 36].

5 The singular case

If the Hessian of the Lagrangian is not regular (in other words, the Lagrangians is
singular), the construction of Sect. 4.2 does not lead to a cocontact structure, as shown
in 4.5. In order to describe the dynamics of singular Lagrangians we require somemin-
imal regularity conditions. Inspired by previous works on the singular case for contact
systems [19] and cosymplectic systems [13] we will define precocontact structures.

5.1 Precocontact structures

Definition 5.1 Let M be a smooth manifold and consider two one-forms τ, η ∈
�1(M). We define the characteristic distribution of (τ, η) as

C = ker τ ∩ ker η ∩ ker dη .

If C has constant rank, we say that the couple (τ, η) is of class cl(τ, η) = dim M −
rank C.
Definition 5.2 Consider a smooth manifold M . The couple (τ, η), where τ, η ∈
�1(M), is a precocontact structure on M if dτ = 0, the characteristic distribu-
tion of the couple (τ, η) has constant rank and cl(τ, η) = 2r + 2 ≥ 2. The triple
(M, τ, η) will be called a precocontact manifold.

Theorem 5.3 (Darboux theorem) Let (M, τ, η) be a precocontact manifold with
dim M = m.Then, aroundeverypoint p ∈ M, there is a local chart (U ; t, qi , pi , s, u j ),
where 1 ≤ i ≤ r , 1 ≤ j ≤ c, 2r + 2 + c = m, such that

τ |U = dt , η|U = ds − pidq
i , C =

〈
∂

∂u j

〉

.
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Proof Since the one-form τ is closed, we have that locally τ = dt . Moreover, ker τ is
an integrable distribution and thus induces a foliation F of M . Consider the leaf F0
corresponding to t = t0. We want to see that the class of η|F0

is odd (the definition
of class of a one-form can be found in Definition VI.1.1 in [30]). It is clear that, on a
point p ∈ F0, C = Cη|F0

. Hence,

cl(η|F0
) = m − 1 − rank Cη|F0

= m − 1 − rank Ct0 = cl(τ, η) − 1,

and since cl(τ, η) ≥ 2 is even, we have that cl(η|F0
) ≥ 1 is odd. Now, using Theorem

VI.4.1 in [30] we obtain the desired result. ��
Remark 5.4 If cl(τ, η) = m thenmmust be even andwe recover the cocontact structure
introduced in Definition 2.1.

Given a precocontact manifold (M, τ, η), the morphism � can be defined in the
same way as in the regular case:

� : TM −→ T∗M
v �−→ (i(v)τ )τ + i(v)dη + (i(v)η) η .

However, in this case it is not an isomorphism (see Proposition 5.6).

Definition 5.5 A vector field Rs ∈ X(M) is a contact Reeb vector field if

�(Rs) = η .

A vector field Rt ∈ X(M) is a time Reeb vector field if

�(Rt ) = τ .

Both kinds of vector fields always exist thanks to the theorem 5.3, and global ones
can be constructed using partitions of the unity. Crucially, in the precocontact case the
Reeb vector fields are not unique.

Proposition 5.6 Let (M, τ, η) be a precocontact structure on M. Then

C = ker τ ∩ ker η ∩ ker dη = ker � = (Im �)◦ .

Proof We will begin by proving that ker τ ∩ ker η ∩ ker dη ⊇ ker �. Let X ∈ ker �,
then

�(X) = 0 . (21)

Let Rs, Rt be a contact and time Reeb vector fields respectively. Contracting both
sides of equation (21) with Rs , we have

0 = i(Rs)i(X)dη + i(Rs)((i(X)η)η) + i(Rs)((i(X)τ )τ )
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= −i(X)(i(Rs)dη)) + (i(X)η)(i(Rs)η) + (i(X)τ )(i(Rs)τ )

= i(X)η .

On the other hand, contracting with Rt , we obtain

0 = i(Rt )i(X)dη + i(Rt )((i(X)η)η) + i(Rt )((i(X)τ )τ )

= −i(X)(i(Rt )dη)) + (i(X)η)(i(Rt )η) + (i(X)τ )(i(Rt )τ )

= i(X)τ .

Hence, we also have that i(X)dη = 0 and then X ∈ ker τ ∩ ker η ∩ ker dη. The other
inclusion is trivial.

Now we will show that ker � = (Im �)◦. Let X ∈ ker �. By the first equality,
i(X)τ = 0, i(X)η = 0 and i(X)dη = 0. Then, for every vector field Y ,

i(X)�(Y ) = i(X)(i(Y )τ )τ + i(X)i(Y )dη + i(X)(i(Y )η)η = −i(Y )i(X)dη = 0 ,

and hence ker � ⊂ (Im �)◦. Now, as it is clear that both subspaces of TpM have the
same dimension, we have that ker � = (Im �)◦. ��

Notice that if R1 and R2 are two contact (or two time) Reeb vector fields, then,
R1 − R2 ∈ C. Conversely, if R is a contact (time) Reeb vector field, then R + V is a
contact (or time) Reeb vector field for any V ∈ C.
Definition 5.7 A precocontact Hamiltonian system is a family (M, τ, η, H) where
(M, τ, η) is a precocontact manifold and H ∈ C∞(M) is the Hamiltonian function
on M .

Definition 5.8 Let (M, τ, η, H) be a precocontact Hamiltonian system and Rs and Rt

two contact and time Reeb vector fields respectively. The precocontact Hamiltonian
equation for a vector field X is:

�(X) = γH , (22)

where γH = dH − (
LRs H + H

)
η + (

1 − LRt H
)
τ .

Equation (22) has two problems in the singular case: γH depends (a priori) on the
Reeb vector fields we have chosen and there may not exist a solution to the equations.
Both problems are solved by applying a suitable constraint algorithm.

5.2 Constraint algorithm

The aim of the constraint algorithm is to find a submanifold M f ⊂ M such that there
exists a solution to the equation (22) which is tangent to the submanifold M f . The
algorithm has two steps: the consistency condition, where we look for the submanifold
where the equation has solution, and the tangency condition, where we analyse where
the solution is tangent to the submanifold. These steps are applied iteratively, but the
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first step is specially relevant because it will solve the multiplicity of Reeb vector
fields.

Consider a γH with particular Reeb vector fields Rs and Rt . M1 is defined as the
subset of the points of M where solutions exist:

M1 = {p ∈ M | (γH )p ∈ �(TpM)} .

Theorem 5.9 Let M̄1 = {p ∈ M | (LY H)p = 0 , ∀Y ∈ C}. Then M1 = M̄1.

Proof Let p ∈ M1. Then (γH )p ∈ �(TpM) = (ker �)◦p = C◦
p. For any Y ∈ C we have

that

0 = (iY γH )p = (
iY (dH − (

LRs H + H
)
η + (

1 − LRt H
)
τ)

)

p = (LY H)p ,

because iY τ = iY η = 0. Hence, p ∈ M̄1.
Conversely, consider p ∈ M̄1 and Y ∈ C. Then, (iY dH)p = 0, which implies

(iY γH )p = 0. Thus (γH )p ∈ (C)◦p = �(TpM). Since Y is arbitrary, we have that
p ∈ M1. ��
Corollary 5.10 Over M1, the one-form γH does not depend on the choice of the Reeb
vector fields.

Proof Let γH as above and γ̄H for R̄t , R̄s . Then, γH − γ̄H = (L(R̄t−Rt )
H)τ +

(L(R̄s−Rs )
H)η. Since R̄t − Rt , R̄s − Rs ∈ C, we have that γH = γ̄H on M1. ��

Notice that on M1, the precocontact Hamiltonian equation for the precocontact
system (M, τ, η, H) does not depend on the choice of the Reeb vector fields Rt , Rs .

In M1 (which we assume to be a submanifold) there exists a solution XH of (22),
but it may not be tangent to M1. Therefore, we define

M2 = {p ∈ M1 | (XH )p ∈ (TpM1)} ,

which we also assume to be a submanifold. Iterating this procedure we can obtain a
sequence of constraint submanifolds

· · · ↪→ M f ↪→ · · · ↪→ M2 ↪→ M1 ↪→ M .

If this procedure stabilizes, that is, there exists a natural number f ∈ N such that
M f +1 = M f , and dim M f > 0 we say that M f is the final constraint submanifold.
In M f we can find solutions to equations (22) which are tangent to M f . Notice that,
in the Lagrangian case, we need to impose the sode condition.

In general, the Reeb vector fields are not tangent to the submanifolds provided by
this constraint algorithm. One can continue the algorithm by demanding the tangency
of the Reeb vector fields, as shown in [19]. This is important if we want a Dirac–Jacobi
bracket on the resulting constraint submanifold, which requires a Reeb vector field.
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5.3 Precocontact Lagrangian systems

Consider a Lagrangian function L : R × TQ × R → R, and the associated objects
ηL and EL as defined in Sect. 4.2.

Definition 5.11 A Lagrangian function L : R × TQ × R → R is admissible if the
Hessian of L has constant rank and (R×TQ×R, dt, ηL) is a precocontact manifold.

Remark 5.12 Not every Lagrangian whose Hessian has constant rank leads to a pre-
cocontact structure. Consider the manifold R ×TR × R, with coordinates (t, q, v, s),
and the Lagrangian L = vs. The Hessian of L has constant rank equal to 0, and
the 1-forms are τ = dt and ηL = ds − sdq. We have that dηL = −ds ∧ dq, thus
cl(τ, ηL) = 4 − 1 = 3, which is odd (in a set where s �= 0) . The main problem of
this structure is that there are no Reeb vector fields as defined in 5.5.

Remark 5.13 The condition of being admissible is stronger than the condition proposed
in [19], which is just for the Hessian to have constant rank. In light of the previous
example, which can also be considered in the precontact setting, we believe it is
necessary to require that the Lagrangian is admissible. Non-admissible Lagrangians
will be studied in a future work.

The precocontact Herglotz–Euler–Lagrange equations are defined as in Definition
4.8, but there is no result about the solutions like Theorem 4.9. First of all, since we
are dealing with a precocontact system, a constraint algorithm is required in order to
find solutions. In particular, on the final constraint submanifold, the Herglotz–Euler–
Lagrange equations do not depend on the choice of the Reeb vector fields, as proved
in Corollary 5.10. Moreover, the holonomy condition is not always recovered and it
has to be imposed, leading to new constraints which have to be considered during the
constraint algorithm.

5.4 The canonical Hamiltonian formalism

In the (hyper)regular case, the Legendre transform gives a diffeomorphism between
(R ×TQ × R, dt, ηL) and (R ×T∗Q × R, τ = dt, η) such that FL∗η = ηL. For the
singular case, the Legendre transform can be defined but, in general,P := Im(FL) =
FL(R×TQ×R) � R×T∗Q×R. Some regularity conditions are required to assure
that a Hamiltonian precocontact system can be realised on P .

Definition 5.14 A singular Lagrangian L is almost-regular if

• L is admissible,
• P := Im(FL) = FL(R × TQ × R) is a closed submanifold of R × T∗Q × R,
• the Legendre map FL is a submersion onto its image,
• the fibers FL−1(FL(t, vq , s)) ⊂ R × TQ × R are connected submanifolds for
every (t, vq , s) ∈ R × TQ × R.

In the almost-regular case we can construct the triple (P, τ, ηP ), where ηP =
j∗PFL∗η ∈ �1(P), τ = FL∗dt and jP : P ↪→ R×T∗Q×R is the natural embedding.
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Furthermore, the Lagrangian energy EL is FL-projectable, that is, there is a unique
HP ∈ C∞(P) such that EL = ( jP◦FL)∗HP . Then, (P, τ, ηP , HP ) is a precocontact
Hamiltonian system.

The contact Hamiltonian equations for XP ∈ X(P) are (3) adapted to this situa-
tion. As in the Lagrangian formalism, these equations are not necessarily consistent
everywhere on P and we must implement a suitable constraint algorithm in order to
find a final constraint submanifold P f ↪→ P (if it exists) where there exist vector
fields X ∈ X(P), tangent to P f , which are (not necessarily unique) solutions to (3)
on P f .

6 Dampedmechanical systems with holonomic constraints

There are two classes of constraints:holonomic, which only depend on the generalized
coordinates and time, and nonholonomic, which have a dependence on velocities or
momenta. Nonholonomic constraints are more intricate and there are several ways
to implement them (see [33] for a general study of these kind of constraints in the
symplectic setting).

In a recent article [20] the authors consider contact systems with nonholonomic
constraints and show how a contact system can be understood as a symplectic system
with nonholonomic constraints. This chapter adds to these results by considering
singular Lagrangians and allowing explicit dependence on time of both the Lagrangian
and the constraints. On the other hand, we only consider holonomic constraints.

Consider a Lagrangian precocontact system (R × TQ × R,L′), with τ = dt .
We will denote by ηL′ , C′ and EL′ the contact form, characteristic distribution and
Lagrangian energy associated to the system (R × TQ × R,L′). Now we add a set of
independent constraints f α(t, qi , s) = 0 with 1 ≤ α ≤ d, which define a submanifold
S ↪→ R×TQ×R. In order to define a suitable constraint submanifold, these constraints
functions must verify the condition

rank

(
∂ f α

∂qi

)

= d , ∀t, s .

Therefore, we can understand these constraints as a constraint in the generalized
coordinates (qi , s) for every value of time t .

In order to find the precocontact Lagrangian vector field for (S,L), we add d new
configuration variables λα , thus the enlarged manifold is R × T(Q × R

d) × R, with
local variables (t, qi , vi , λα, vα, s). We consider the new Lagrangian:

L = L′ + λα f α .

thus λα act as Lagrange multipliers and we consider them dynamical variables.
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We have the precocontact Lagrangian system (R×T(Q×R
d)×R,L). The contact

form is the same ηL = ηL′ , and the characteristic distribution is

C = C′ ∪
〈

∂

∂λα

,
∂

∂vα

〉

.

And the Lagrangian energy is

EL = EL′ − λα f α .

The primary constraints are generated by sections of C, which we can separate in

two classes, those which are sections of C′ and ∂

∂λα

and
∂

∂vα

. The last ones give the

constraints:

L∂/∂λα EL = − f α = 0 ; L∂/∂vα EL = 0 .

Thus,we recover the original constraints from the constraint algorithm. IfY is a section
of C′, then

LY EL = LY EL′ − λαLY f α = 0 .

The primary constraints for the Lagrangian L′ (that is, without imposing f α = 0) are
LY EL′ . Thus, these constraints become coupledwith f α and are not conserved in gen-
eral. From this point the constraints algorithm should continue imposing the tangency
condition. The outcome will depend on the particular Lagrangian and constraints.

We will now compute the dynamical equations, which are complementary to the
constraint algorithm. Consider a holonomic vector field:

X = f
∂

∂t
+ vi

∂

∂xi
+ vα

∂

∂λα

+ Gi ∂

∂vi
+ Gα

∂

∂vα

+ g
∂

∂s
.

Then the precocontact equations (22) are

f = 1 ,

g = L ,

f α = 0 ,

∂2L′

∂t∂vi
+ v j ∂2L′

∂q j∂vi
+ G j ∂2L′

∂v j∂vi
+ L′ ∂2L′

∂s∂vi
− ∂L′

∂qi

= ∂L′

∂s

∂L′

∂vi
+ λα

(
∂ f α

∂qi
+ ∂ f α

∂s

∂L′

∂vi

)

.
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7 Examples

In the following examples we consider mechanical systems in Riemannian manifolds
described by Lagrangians of the form L = K − U , with K and U the kinetic and
potential energy respectively [1]. These Lagrangians are hyperregular. In order to
introduce dissipation and external forces, we will add some additional terms to these
Lagrangians such as γ s and G(t, q) respectively. We also consider systems subjected
to holonomic time-dependent constraints f α(t, q).

7.1 Damped forced harmonic oscillator

In this example we are going to study a forced harmonic oscillator with damping. We
will develop both the Lagrangian and Hamiltonian formalisms. Consider a harmonic
oscillator of mass m with elastic constant k and an external force f (t) depending on
time.

Lagrangian formalism

The configuration manifold for this system is Q = R equipped with coordinate q.
Consider the phase manifold R × TQ × R equipped with coordinates (t, q, v, s) and
the Lagrangian function L : R × TQ × R → R given by

L(t, q, v, s) = 1

2
mv2 − k

2
q2 + q f (t) − γ

m
s , (23)

where f (t) is a time-dependent external force. The Lagrangian energy associated to
this Lagrangian function is

EL = 1

2
mv2 + k

2
q2 − q f (t) + γ

m
s ,

and its differential is

dEL = −q f ′(t)dt + (kq − f (t))dq + mvdv + γ

m
ds .

The Cartan 1-form for the Lagrangian L is θL = mvdq. The contact 1-form is
ηL = ds−mvdq, and its differential is dηL = mdq ∧dv. The Reeb vector fields are:

RL
t = ∂

∂t
, RL

s = ∂

∂s
.

Consider a vector field X ∈ X(R × TQ × R) with local expression

X = a
∂

∂t
+ F

∂

∂q
+ G

∂

∂v
+ g

∂

∂s
.
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Fig. 1 These figures depict the evolution of the position and velocity of the damped harmonic oscillator
with respect to time and the phase portrait of the system

The cocontact Lagrangian equations (8) for this vector field yield the conditions

⎧
⎪⎪⎨

⎪⎪⎩

F = m ,

G = − k
m q + f (t)

m − γ
m v ,

g = L ,

a = 1 .

Hence, the vector field X is

X = ∂

∂t
+ v

∂

∂q
+

(

− k

m
q + f (t)

m
− γ v

)
∂

∂v
+ L ∂

∂s
.

Its integral curves (t(r), q(r), v(r), s(r)) satisfy the system of differential equations

⎧
⎨

⎩

ṫ = 1 ,

mq̈ + γ q̇ + kq = f (t) ,

ṡ = L .

In Fig. 1a we see the evolution with respect to time of the position and the velocity
of the damped oscillator taking as external force a smooth pulse at t = 1. We can see
the damping of the position and the velocity. In Fig. 1b we have represented the phase
portrait of the same solution where we can see the initial pulse and how the system
decays to the equilibrium point due to the friction.

InFig. 2wecan see thedissipationof both theLagrangian energy and themechanical
energy given by

Em = 1

2
mv2 + 1

2
kq2 .

Notice that the Lagrangian energy decays exponentially, while the mechanical energy
follows the evolution of the Lagrangian energy but oscillating around it.
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Fig. 2 Evolution of the mechanical energy (red) and the Lagrangian energy (blue) (color figure online)

Hamiltonian formalism

Consider the Legendre map associated to the Lagrangian function (23):

FL : R × TQ × R → R × T∗Q × R ,

which is given by

FL(t, q, v, s) = (t, q, p ≡ mv, s) .

Notice that the Legendre map FL is a global diffeomorphism and hence L is an
hyperregular Lagrangian.

Then, R × T∗Q × R is equipped with the cocontact structure (dt, ds − pdq). The
Hamiltonian function H such that FL∗H = EL is

H(t, q, p, s) = p2

2m
+ k

2
q2 − q f (t) + γ

m
s .

Then, a vector field Y ∈ X(R × T∗Q × R) is a solution to Hamilton’s equation (3) if
it has local expression

Y = ∂

∂t
+ p

m

∂

∂q
+

(

− kq + f (t) − p

m
γ

)
∂

∂ p
+

(
p2

2m
− k

2
q2 + q f (t) − γ

m
s

)
∂

∂s
.
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Its integral curves (t(r), q(r), p(r), s(r)) satisfy

⎧
⎪⎪⎨

⎪⎪⎩

ṫ = 1 ,

q̇ = p
m ,

ṗ = −kq + f (t) − p
m γ ,

ṡ = p2

2m − k
2q

2 + q f (t) − γ
m s .

Combining the second and the third equations above, we obtain the second-order
differential equation

mq̈ + γ q̇ + kq = f (t) .

7.2 A time-dependent systemwith central force and friction

Consider the Kepler problem in the case where the mass of the particle subjected to
the central force is a non-vanishing function of timem(t). It is clear that the motion of
the particle is on a plane and hence the configuration manifold is Q = R2\0 endowed
with coordinates (r , ϕ).

The phase bundle R × T∗Q × R with coordinates (t, r , ϕ, pr , pϕ, s) has a natural
cocontact structure given by the 1-forms τ = dt and η = ds − prdr − pϕdϕ. The
Reeb vector fields are

Rt = ∂

∂t
, Rs = ∂

∂s
.

Consider the Hamiltonian function H ∈ C∞(R × T∗Q × R) given by

H(t, r , ϕ, pr , pϕ, s) = p2r
2m(t)

+ p2ϕ
2m(t)r2

+ k

r
+ γ s .

The vector field X ∈ X(R × T∗Q × R) satisfying equations (3) has local expression

X = ∂

∂t
+ pr

m(t)

∂

∂r
+ pϕ

m(t)r2
∂

∂ϕ
+

(
p2ϕ

m(t)r3
+ k

r2
− γ pr

)
∂

∂ pr

−γ pϕ

∂

∂ pϕ

+
(

p2r
2m(t)

+ p2ϕ
2m(t)r2

− k

r
− γ s

)
∂

∂s
.
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Then, the integral curves (t, r , ϕ, pr , pϕ, s) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ = 1 ,

m(t)ṙ = pr ,

m(t)r2ϕ̇ = pϕ ,

ṗr = p2ϕ
m(t)r3

+ k
r2

− γ pr ,

ṗϕ = −γ pϕ ,

ṡ = p2r
2m(t) + p2ϕ

2m(t)r2
− k

r − γ s .

Hence, the integral curves must fulfill the system of second-order equations

{
d
dt (m(t)ṙ) = m(t)r ϕ̇2 + k

r2
− γm(t)ṙ ,

d
dt

(
m(t)r2ϕ̇

) = −γm(t)r2ϕ̇ .

7.3 Damped pendulumwith variable length

Consider a damped pendulum of mass m with variable length �(t) [32]. Its position
in the plane can be described using polar coordinates (r , θ). The constraint r =
�(t) will be introduced in the Lagrangian function via a Lagrange multiplier. The
phase space of this system is the bundle R × TR

3 × R, equipped with coordinates
(t, r , θ, λ, vr , vθ , vλ, s). The Lagrangian function describing this system is

L = 1

2
m(v2r + r2v2θ ) − mgr(1 − cos θ) + λ(r − �(t)) − γ s ∈ C∞(R × TR

3 × R) ,

where λ is the Lagrange multiplier.
The contact 1-form is

ηL = ds − mvrdr − mr2vθdθ ,

then

dηL = mdr ∧ dvr + 2mrvθdθ ∧ dr + mr2dθ ∧ dvθ ,

and we have the 1-form τ = dt . Hence, (R × TR
3 × R, τ, ηL) is a precocontact

manifold.We can take as Reeb vector fields Rs = ∂/∂s, Rt = ∂/∂t . The characteristic
distribution of (τ, ηL) is

C = ker τ ∩ ker ηL ∩ ker dηL =
〈

∂

∂λ
,

∂

∂vλ

〉

.

The Lagrangian energy associated to L is

EL = 1

2
m(v2r + r2v2θ ) + mgr(1 − cos θ) − λ(r − �(t)) + γ s ,
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and thus

dEL − Rt (EL)dt − Rs(EL)η

= mvrdvr + mr2vθdvθ + (
mrv2θ + mg(1 − cos θ) − λ + γmvr

)
dr

+ (
mgr sin θ + γmr2vθ

)
dθ − (r − �(t))dλ .

Consider a sode X ∈ X(R × TR
3 × R) with local expression

X = f
∂

∂t
+ vr

∂

∂r
+ vθ

∂

∂θ
+ vλ

∂

∂λ
+ Gr

∂

∂vr
+ Gθ

∂

∂vθ

+ Gλ

∂

∂vλ

+ g
∂

∂s
.

The dynamical equations for the vector field X yield the conditions

f = 1 , vr = vr , vθ = vθ , r − �(t) = 0 , g = L ,

Gr = rv2θ − g(1 − cos θ) + λ

m
− γ vr , Gθ = −2

r
vrvθ − g

r
sin θ − γ vθ

and we obtain the constraint function

ξ1 = r − �(t) ,

defining the first constraint submanifold M1 ↪→ R × TR
3 × R.

Hence, the vector field X has the form

X = ∂

∂t
+ vr

∂

∂r
+ vθ

∂

∂θ
+ vλ

∂

∂λ
+

(

rv2θ − g(1 − cos θ) + λ

m
− γ vr

)
∂

∂vr

+
(

−2

r
vrvθ − g

r
sin θ − γ vθ

)
∂

∂vθ

+ Gλ

∂

∂vλ

+ L ∂

∂s
(on M1) .

Imposing the tangency of the vector field X to the submanifold M1, namely the
condition LXξ1 = 0, we obtain the constraint

ξ2 = vr − �′(t) = 0 (on M1) ,

defining a new constraint submanifold M2 ↪→ M1. The tangency conditionLXξ2 = 0
of the vector field X to the submanifold M2 yields the new constraint function

ξ3 = mrv2θ − g(1 − cos θ) + λ − mγ �′(t) − �′′(t) (on M2) ,

defining a new constraint submanifold M3 ↪→ M2, and we also get Gr = �′′(t).
Imposing again the tangency condition we obtain a new constraint function

ξ4 = LXξ3 = vλ − 3m�′(t)v2θ − 2m�(t)γ v2θ − mgvθ sin θ

−mγ �′′(t) − m�′′′(t) (on M3) ,
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defining the submanifold M4 ↪→ M3. Requiring X to be tangent to M4 we determine
the last coefficient Gλ, whose expression we will omit, and no new constraints appear.
Thus, there is a unique vector field solution to equations (8) and has local expression

X = ∂

∂t
+ �′(t) ∂

∂r
+ vθ

∂

∂θ
+

(
3m�′(t)v2θ + 2m�(t)γ v2θ

+ mgvθ sin θ + mγ �′′(t) + m�′′′(t)
) ∂

∂λ

+ �′′(t) ∂

∂vr
+

(

−2

r
vrvθ − g

r
sin θ − γ vθ

)
∂

∂vθ

+ Gλ

∂

∂vλ

+ L ∂

∂s
(on M4) .

The integral curves of this vector field satisfy the following second-order differential
equation

θ̈ = −γ θ̇ − 2
�′(t)
�(t)

θ̇ − g

�(t)
sin θ . (24)

Fig. 3 Plots of the pendulum with friction coefficient γ = 0.5 and �(t) = 1 + 0.1 sin(2π t)
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Fig. 4 Plots of the pendulum with friction coefficient γ = 0.75 and �(t) = 1 + 0.1 sin(2π t)

Notice that if we consider a pendulum with fixed length �(t) = �◦, we recover the
usual equation for a damped pendulum:

θ̈ = −γ θ̇ − g

�◦
sin θ .

On the other hand, setting γ = 0 in equation (24), we obtain the equation of the simple
pendulum with variable length studied in [32].

In Figs. 3 and 4 we have represented a couple of simulations of a damped pendulum
of mass m = 1 with variable length considering �(t) = 1 + 0.1 sin(2π t), friction
coefficients γ = 0.5 and γ = 0.75 respectively, and initial conditions θ(0) = π/4
and θ̇ (0) = 0. We have plotted the evolution of the radial and angular coordinates
and we can see the loss of amplitude, and hence of energy, of the system. Notice that
in this example, the energy does not tend to zero, but to a positive constant since the
radial coordinates keeps oscillating forever.
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8 Conclusions and further research

In this paper we have introduced a geometrical formulation for time-dependent contact
systems by defining a new geometric structure: cocontact manifolds. This new notion
combines the well-known contact and cosymplectic structures. We have also proved
that cocontact manifolds are Jacobi manifolds and defined and characterize the notions
of isotropic and Legendrian submanifolds.

This geometrical setting allows us to develop the Hamiltonian and Lagrangian for-
malisms for time-dependent contact systems, generalizing those for contact systems
[6, 18, 26] and cosymplectic systems [23]. In addition, we have studied the problem
where the system is defined by a singular Lagrangian, thus introducing the notion
of precocontact structure. This is useful since many systems are defined by singu-
lar Lagrangians. As an application, we have studied the particular case of cocontact
systems with time-dependent holonomic constraints.

We have worked out two regular examples: the damped forced harmonic oscillator
and the Kepler problem with non-constant mass and friction; and a singular one: a
pendulum with variable length and friction. This last example is singular because we
have introduced the constraint with a Lagrange multiplier and the constraint algorithm
gives back the constraint. Computer simulations of some of these examples have been
included.

The structures introduced in this paper could be used to improve our understanding
of time-dependent dissipative systems. For instance, providing new geometric integra-
tors [7–9, 49] from the discretization of the obtained equations, discussing symmetries
and their associated dissipated and conserved quantities, and studying reduction pro-
cedures such as coisotropic reduction [1, 18] and Marsden–Weinstein reduction [42].
It would be also interesting to state the Hamilton–Jacobi theory for these systems and
describe the Skinner–Rusk unified formalism for cocontact systems.

The formulation presented in this work is also a first step towards finding a geo-
metric formalism for non-autonomous dissipative field theories based on the k-contact
setting [25, 27, 34] and generalizing the multisymplectic formalism [12, 46]. The k-
contact formalism allows to describe autonomous field theories, such as field theories
with damping, some equations from circuit theory, such as the so-called telegrapher’s
equation, or the Burgers’ equation. Nevertheless, there are many examples of non-
autonomousfield theories, likeMaxwell’s equationswith a non constant charge density
or general relativitywithmatter sources that require a formulation for non-autonomous
field theories.
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